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Abstract

This paper describes the COMBINE software package used for statistical analyses by
the CMS Collaboration. The package, originally designed to perform searches for a
Higgs boson and the combined analysis of those searches, has evolved to become the
statistical analysis tool presently used in the majority of measurements and searches
performed by the CMS Collaboration. It is not specific to the CMS experiment, and
this paper is intended to serve as a reference for users outside of the CMS Collabo-
ration, providing an outline of the most salient features and capabilities. Readers are
provided with the possibility to run COMBINE and reproduce examples provided in
this paper using a publicly available container image. Since the package is constantly
evolving to meet the demands of ever-increasing data sets and analysis sophistication,
this paper cannot cover all details of COMBINE. However, the online documentation
referenced within this paper provides an up-to-date and complete user guide.
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1 Introduction

The CMS statistical analysis software, COMBINE, is designed with two main features in mind.
The first is to provide a command-line interface to several common workflows used in sta-
tistical analyses in high-energy physics, and the second is to encapsulate the statistical model
using a human-readable configuration file — herein referred to as a “datacard”. These features
are intended to ensure consistency in statistical methodology and allow for efficient investi-
gation of potential issues, without limiting the complexity of any single analysis. Perhaps the
most important consequence is that the constructed likelihoods can be combined to produce
a greater sensitivity in searches or measurements, provided that the data sets are statistically
independent. The COMBINE analysis software is built around the ROOT [1], ROOFIT [2], and
ROOSTATS [2] packages.

The statistical methods in COMBINE, many of which were developed in the LHC Higgs Com-
bination Group [3], were originally designed for searches for a Higgs boson in proton-proton
collisions. The COMBINE tool was used in early searches [4] for, and the subsequent discovery
of, the Higgs boson [5, 6] by the CMS Collaboration. Historically, its main use case within the
CMS Collaboration was in searches for the Higgs boson, hence many of the function names and
variables used in COMBINE include “Higgs”. However, the tool is not specific to these searches
or measurements of Higgs boson properties but instead is a generic tool usable for various
statistical analyses of LHC data. Since the Higgs boson discovery, many extensions have been
included that have been used for the statistical analysis in numerous publications of the CMS
Collaboration, including measurements of Higgs boson properties [7], searches for supersym-
metry [8], and measurements of standard model parameters such as the top quark mass [9].
The COMBINE tool has also been used with data from the ATLAS and CMS experiments to
produce combined measurements of the Higgs boson mass, production and decay rates, and
coupling modifiers [10, 11]. Furthermore, the COMBINE software includes several routines that
provide diagnostic information regarding the statistical model and statistical analysis methods
used in such publications.

This paper provides a summary of the statistical methods and capabilities of the COMBINE
tool. For complete and up-to-date documentation, it is recommended that the reader consult
the online documentation [12].

In this paper, command line instructions are indicated by the symbol $ at the start of the line.
Square brackets [option] indicate optional commands that alter the default behavior of COM-
BINE, while angular brackets <option value> indicate a value that must be specified by the
user. The color scheme for the listings contained in this paper is as follows:

’1 Contents of a complete datacard.

$ Executable command line.

’> Terminal output from the tool.

’Snippet of a datacard or of Python code.

This paper is organized as follows. Section 2 details the dependencies of the software and in-
structions for its installation. The statistical model that is constructed by COMBINE is described
in Section 3, followed by detailed explanations of the analysis types available in the tool and
instructions on how they are implemented in Section 4. Section 5 provides instructions on the
use of physics models in COMBINE, with several examples given. This section also provides a



concrete example of a full statistical model constructed in COMBINE. Section 6 provides instruc-
tions on how to run COMBINE. It demonstrates several common statistical procedures using the
tool, for example, the calculation of maximum likelihood estimates and confidence or credible
intervals, and performing goodness of fit tests. Finally, a summary is given in Section 7.

2 Installation

Aside from ROOT and ROOFIT, and their dependencies, several additional libraries are used
for optimized algebraic calculations, such as vectorization libraries VDT [13], the GNU scien-
tific library GSL [14], and EIGEN [15]. Additional common libraries are used, which include
BOOST [16], and GzIP [17]. The COMBINE package may be compiled either within a CMS
software (CMSSW) environment that provides a versioned set of all dependencies, or as a stan-
dalone package. Details of different installation instructions are regularly updated in the online
documentation. A precompiled version of COMBINE is available as a DOCKER [18] container
image:

$ docker run [--platform linux/amd64] --name combine -it gitlab-registry.cern.ch/cms
<3 —cloud/combine-standalone:v9.2.0

At the time of writing this paper, the latest version of COMBINE is v9.2.0, and all of the example
datacards and the inputs necessary to run COMBINE can be found in the tseqdata/tutorials/-
CAT23001 directory. For statistical calculations that make use of random sampling, the results
obtained by a reader are expected to be consistent with, but not identical to, those provided in
this paper.

3 The statistical model

The primary task of COMBINE is to produce a statistical model, p(data; CT>), which encodes the
probability density for the observed data parameterized by the model parameters ®, and is
subsequently used for the statistical analysis.

For numerical efficiency, it is useful to factorize the statistical model p(data; ®) as much as
possible with respect to both observables and parameters. The parameter space is partitioned
into parameters of interest ji and nuisance parameters . Nuisance parameters are used to
model various uncertainties of theoretical and experimental origin, such as those involved in
the prediction of process cross sections or associated with luminosity calibration. Furthermore,
the observable space is partitioned into primary observables X, defined as those that appear
in components of the model containing the parameters of interest, and auxiliary observables i/
that appear only in components of the model containing nuisance parameters. Each nuisance
parameter v, (each element of the vector 7) is paired with a corresponding auxiliary observ-
able y; (element of 1) in a component of the statistical model that provides information about
how well the nuisance parameter is known. Therefore, the statistical model constructed using
COMBINE is factorized into the primary and auxiliary components of the probability as

p(%,7;,®) = p(%;ji, ) HPk Yii Vi), @

where p(X; ji, V) is the probability distribution of the observables for the primary analysis, and
Px (Y Vi) are the probability distributions of the auxiliary observables. A likelihood function is




constructed for a particular data set of independent identically distributed observables {X;} as
L(®) =[TpGEs i) T pelyve)s @)
d k

where the subscript d runs over all entries in the data set and the likelihood function is used
in both Bayesian and frequentist calculations. Early searches for the Higgs boson by the CMS
collaboration reported upper limits on the Higgs boson cross section using both Bayesian and
frequentist methods [4] with COMBINE.

In COMBINE, the probability density terms associated with the auxiliary observables, py(vy; Vi),
can also be reinterpreted as posterior distributions for the nuisance parameters, py(vi|yy), re-
sulting from the outcome of measurements of, or otherwise justified constraints on, the auxil-
iary observables vy, through the relationship

Pe(Vilyi) o pic(ies vie) 7t (Vi ), 3)

where 71, (v;) are the nuisance parameter priors. This procedure provides probability distri-
butions from which nuisance parameter values can be sampled when generating pseudo-data
sets that COMBINE uses in certain statistical calculations, as described in Section 6.3. For all
types of nuisance parameters in COMBINE, the priors are always assumed to be uniform [3] so
all of the 7 (v) are constants.

Each element of X is referred to as a “channel” and is statistically independent from all other
elements of ¥. For example, each element of ¥ could be the event counts in different recon-
structed final states of some data set. The term p(X;ji, V) in Eq. (1) becomes a product over the
channels,

p(X; i, V) = HPi(xiP i,v), 4)

where i runs over the channels that comprise the primary analysis and p; is the probability
density function (pdf) for the observable x;.

The likelihood function constructed by COMBINE assumes that all y; are statistically indepen-
dent from each other and from the primary observables. The user must specify the observables
and their pdfs using the datacard as described below.

4 Supported analysis types

A configuration file in plain text format is required for COMBINE to define the observables ¥
and ¥/, and their pdfs p(%; ji, V) and py(yy; vi). This file is the datacard and is the primary input
to COMBINE. The file is also used to specify the observed data needed to define the likelihood
function, whether the analysis is a simple counting experiment or a more complex analysis
using binned or unbinned distributions of the data with histograms or parametric functions to
describe the pdfs.

The package includes a script text2workspace.py that COMBINE uses to convert the user
defined inputs (in the form of the datacard) into a binary representation of the statistical model.
The script can be run before running COMBINE itself to produce a binary ROOT file containing
the statistical model in the form of a ROOFIT RooWorkspace object. The script is automatically
run if the datacard is provided as the input to COMBINE. The script is run with the following
command:

$ text2workspace.py [-m <mass>] [-o <datacard>.root] <datacard>.txt




The output ROOT file is given the same name as the input datacard, with the extension mod-
ified to . root unless the option -o is specified. The value of mass, a parameter widely used
in searches for new particles, is interpreted by the text2workspace.py script to specify the
datacard keyword $MASS, as described in Section 4.2.1.

It is possible to combine several datacards into a single datacard using the combineCards.py
script:

$ combineCards.py Namel=cardl.txt Name2=card2.txt .... > <combined card>.txt

This allows for building complex statistical models, while retaining the readability of indi-
vidual components (datacards) of the model. Multiple instances of any nuisance parameter,
sharing the same name, are treated as a single parameter of the statistical model with a single
corresponding auxiliary observable y, provided that the pdf specified for y is the same in each
instance. The rest of this section describes the preparation of datacards and associated inputs
for use with COMBINE.

The first line of the datacard is a declaration of the number of channels, imax, that are present
in the statistical model:

imax <number of channels>

For a single-channel analysis the datacard entry would be imax 1. If the value of imax is

“” o7

specified as “»”, COMBINE automatically determines the number of channels.

The next lines in the datacard declare the number of processes to be considered, jmax+1, and
the number of nuisance parameters, kmax:

jmax <number of processes minus one>
kmax <number of nuisance parameters or sources of systematic uncertainties>

For datacards with a single signal process, jmax is the number of background processes. Data-
card lines starting with “#” are ignored by COMBINE and any amount of whitespace is allowed
to separate columns and lines in the datacard. These features can be used to include descriptive
comments in the datacard. The next sections of the datacard have a different syntax depending
on whether the datacard represents a counting or shape analysis.

4.1 Counting analyses

A counting analysis is one for which the statistical model can be cast in the form of Eq. (1) with
only one primary observable, namely the total event count in a single channel that includes
multiple sources of signal and background. In the following, the primary observable is labeled
n. The probability to observe n events is described by a Poisson distribution,

N
for which the expected value, A, can be a function of one or more parameters, and represents
the total number of expected signal and background events.

Each process comes with a specified reference rate and one or more sources of uncertainty that
are referred to as “systematic”, even if they are of statistical origin. In COMBINE the defini-
tions of each systematic uncertainty require the functional form for the probability distribution
Px (v vi) to be specified. These typically reflect calibration measurements that often result in
log-normal or gamma distributions.
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Datacard 1: Counting experiment datacard - datacard-1-counting-experiment.txt

1 imax 1

> jmax 2

3 kmax 3

+ # A single channel - chl - in which 0 events are observed in data
bin chl

¢ observation 0

7 # ——m——————e

s bin chl chl chl

9 process PPX WW tt

10 process 0 1 2

11 rate 1.47 0.64 0.22

12 # —————————e

13 lumi 1nN 1.11 1.11 1.11

4 XS 1nN 1.20 = =

15 NnWW gmN 4 = 0.16 =

Datacard 1 is an example with all of these elements, representing a counting experiment with
one channel having a signal process ppX with reference rate of 1.47, two background processes
WW and tt, and three nuisance parameters that model systematic uncertainties in both the
signal and background rates. In this example, the integrated luminosity uncertainty (1umi),
assumed to be log-normal, results in an uncertainty in the expected signal rate, as well as
in the expected rates of the WW and tt backgrounds. The reference rates of the signal and
background processes are determined using simulation. A log-normal type uncertainty in the
signal rate (xs) is included to account for the uncertainty in the predicted cross section of the
signal process. A limited number of simulated events are available to determine the rate of the
WW background. The statistical uncertainty due to this limited number of simulated events
(nWwW) propagates as a gamma distribution to the rate of WW.

The datacard lines immediately following the imax, jmax, and kmax lines describe the number
of events observed in each channel. Line number 5, starting with bin, defines the label that
should be used for each channel. In this example there is one channel, labeled ch1. Line num-
ber 6, starting with the word observation, indicates the number of observed events, which
is 0 in Datacard 1. For analyses in which the data are binned in a histogram, a template-based
datacard can be used instead of treating each bin of the histogram as a separate channel. There
are typically several processes that contribute to the overall signal or background expected
yields. Lines 8-11 in Datacard 1 describe the number of events expected for each channel and
process, arranged in columns. The first column in each row identifies the information expected
in the remaining columns. The number of columns beyond the first column must be equal to
the total number of processes across all channels, i.e, to the product imax(jmax + 1). Line 8
starting with bin indicates that this row specifies the channel that each column refers to. In
this case, since there is only a single channel, the number of columns in addition to the first
one is equal to the number of signal and background processes in this channel. Lines 9 and 10
starting with process indicate that these rows refer to the labels and types of the various pro-
cesses. Line 9 provides a label for each process and line 10 defines the type of the process which
is either a positive number for a background process, or 0 or a negative number for a signal
process. Line 11, starting with rate, indicates the expected event yield in the specified channel
and process. This value should be considered as a reference rate for the process, assuming pre-
determined values for theoretical cross sections, detector acceptance and selection efficiencies,
and integrated luminosity of the data set used in the analysis. The rates can be modified by the




parameters of the statistical model ®. In the simplest statistical model available in COMBINE, a
single parameter of interest, the signal strength r, multiplies the rate of every signal process in
the datacard as described in Section 5.

The remaining lines 13-15 contain the description of systematic uncertainties that are to be
included in the statistical model. Each of these systematic uncertainties is associated with a
dedicated nuisance parameter v. The systematic uncertainties section of the datacard is struc-
tured as follows:

o The first column indicates the name used in the binary representation of the statis-
tical model for identifying the uncertainty. This is the name given to the ROOFIT
RooRealVar object that encodes the corresponding nuisance parameter in the sta-
tistical model.

e The second column identifies the effect of the associated nuisance parameter and
the form of p(y;v) to be included in the statistical model. For gamma type nuisance
parameters, this column has two entries, which is explained in the following.

e Finally, there are columns describing the effect of the systematic uncertainty on the
rate of each process in each channel. The number of columns is the same as for the
previous lines declaring channels, processes, and rates. If a process is unaffected by
a nuisance parameter, the corresponding column entry for that nuisance parameter
is “-".

The different types of systematic uncertainties that can be included in the datacard for counting
experiments are shown in Table 1. Each of these types results in an associated probability term
p(y; v) which is either a normal distribution,

N(y;v,0,) = L ef%(lz’iw2 (6)
yr Yy U‘V\/ﬁ 7
Poisson distribution,
e—V
P(yv) =Y K (7)

or uniform distribution,
= ify € [a,b],

0 otherwise.

U(y;a,b) = { ®)
Equation (6), aside from being used directly for normally distributed observables, is also the
building block for log-normally distributed observables, as discussed below. The Poisson dis-
tribution of y in Eq. (7) becomes a gamma distribution in v when the observed value of y is
substituted and the expression is interpreted as a likelihood function.

In Datacard 1 there are three sources of systematic uncertainty that affect one or more pro-
cesses. Each of these lines results in a single nuisance parameter v, auxiliary observable y,
and associated probability density p(y; v) being included in the statistical model. The nuisance
parameters are v, i, V,o, and v ,, with corresponding auxiliary observables v, ,.;, V.5, and

xs/

anW'

The first two uncertainties are log-normal types [19], detailed below using the integrated lu-
minosity L uncertainty as an example. The rates of signal and background are typically pro-
portional to L. The rates defined in the datacard are normalized to a reference value L,, which
represents the nominal value of the integrated luminosity. Deviations from this reference value
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are expressed through the dimensionless quantity f = L/L,. An estimate f is available as a ran-
dom sample from a pdf p( f f). The probability distribution p(f; f) is log-normal, so that the
sampling distribution of In f is normal, with mean equal to In f. The standard deviation of In f
can be judiciously written as In x, where « is a positive constant that is specified in the datacard.
The nuisance parameter v that controls the systematic uncertainty in the integrated luminosity
is then not considered to be L itself, but rather is defined as v = In f/ Inx from which it fol-
lows that the multiplicative factor in the rate corresponding to luminosity is f(v) = x". The
observable y is then a sample from p(y; v), which is normal with mean v as in Eq. (6), and unity
standard deviation. The log-normal type is typically used when f is positive by definition, as
is the case with the integrated luminosity, and p(f; f) continuously approaches zero as f — 0.

The first uncertainty in Datacard 1, 1umi in line 13, represents the uncertainty in the measured
integrated luminosity of the data set. The effect of this uncertainty is 11% on the rate of the
ppX, WW, and tt processes. This means that the rates of all three processes are multiplied by a
factor of 1.11 when the nuisance parameter v, ; is set to +1, and by a factor of 1/1.11 = 0.90
when it is set to —1. The log-normal type is also useful when a systematic uncertainty is taken
to be a factor of «, also often expressed as percentage uncertainty of x — 1. This means that high
tails of the distribution of f above xf and low tails below f/x each contain equal probability
of roughly 16%. The second uncertainty in Datacard 1, xs in line 14, represents an uncertainty
in the calculation of the theoretical cross section of the signal process. This uncertainty has an
effect of 20% on the signal rate while leaving the background processes unaffected.

The gamma type uncertainty is used to model uncertainties in the rate of a particular process
due to the limited sample size used to predict the rate. The third uncertainty in Datacard 1, nww
in line 15, is a gamma type uncertainty. This line in the datacard specifies that the reference rate
of the Www background process is determined from a sample of 4 simulated events, each with an
event weight of 0.16.

The full statistical model that COMBINE produces by default using Datacard 1 is given in Sec-
tion 5.

4.2 Shape analyses

A shape analysis is defined as one that incorporates one or more primary observables, beyond a
single number of events, in the statistical model of Eq. (1). The datacard has to be supplemented
with two extensions: a new block of lines defining the pdfs for the observables related to each
process in each channel, and a block of lines defining systematic uncertainties that affect those
pdfs.

The pdf can be parametric or template-based, depending on the inputs provided by the user. In
the former case, the parametric pdf for each process has to be provided as a ROOFIT object that
is derived from the RooAbsPdf class. These objects must be contained in a RooWorkspace ob-
ject that is identified as an input workspace in the datacard. In the latter case, for each channel,
histograms must be provided to represent the pdf for each process binned in the observable
for that channel. These must be either ROOT THI1 or RooDataHist histogram objects, for
analyses in which the data are binned, or RooDataSet objects when the data are unbinned.

As with the counting experiment, the total reference rate of a given process must be identified
in the rate line of the datacard. However, there are special options for shape-based analyses:

e A value of -1 in the rate line indicates that COMBINE should calculate the rate from
the input TH1 object using the TH1::Integral method, or the RooDataSet or
RooDataHist using the RooAbsData: : sumEntries method.



Table 1: Available uncertainty types for counting experiments. The second and third columns
indicate the entries for the datacard required to specify the type, and the relative effect on
the yield of each process in each channel. The fourth and fifth columns indicate the resulting
multiplicative factor by which COMBINE scales the normalization of the relevant process in
the specified channel, and the term p(y;v) that is included in Eq. (1). Finally, the last column
indicates the default values of v and y. Where relevant, the value of x — 1 can be interpreted as
the relative uncertainty in the process normalization in a given channel.

Uncertainty type Directive Inputs Multiplicative factor, f(v) p(y;v) Default values

Log-normal 1nN kappa KY N(y;v,1) v=y=0

(kPown) " if v < —0.5,

Asymmetric kappaDown,
1nN (x9P)"if v > 0.5, N(yv,1) v=y=0
log-normal kappaUp on
8 K(RPMP ) herwise.
Log-uniform 1nU kappa ¥ Uy, 1/x) v=y=1(x+1/x)
Gamma gmN N, alphat v/N P(y;v) v=N+1y=N?}

*K (kPown xUp y) = % [4In (kUP /xPown) 4 In (kUPxDown) (4815 — 40v% + 15v)] ensures that the multiplicative factor and its
first and second derivatives are continuous for all values of v, and reduces to a log-normal for gPown — 1 /4Up,
*The rate value for the affected process must be equal to Na.

The default value for the nuisance parameter is set to the mean of a gamma distribution with parameters xk = N +1, A =1,
as defined in Ref. [20].

e For parametric shapes defined as RooAbsPdf objects, if a parameter is found in the
input workspace with the name pdfname_norm, the rate is multiplied by the value
of that parameter.

For shape analyses, the statistical model constructed by COMBINE is factorized where possible
into normalization and shape terms that provide significant gains in computation time. Exam-
ples of this factorization can be seen in Egs. (10) and (17).

4.2.1 Template-based shape analyses

The majority of statistical analyses performed by the CMS Collaboration are template-based
analyses. This choice of analysis is particularly common when there is no physically motivated
parametric function to describe the pdfs for the primary observables. Example analyses include
the observations of Higgs boson decays to bottom quarks [21], which uses the output of a deep
neural network, and the production of four top quarks in proton-proton collisions [22], which
uses boosted decision trees to construct the observable.

A template-based shape analysis is one in which the observable in each channel is partitioned
into N bins. The number of events 7, in the data that fall within each bin b (with b running
from 1 to Np) is considered as an independent Poisson process. The observable x in Eq. (4)
in each channel is replaced by the set of observables 1, for the purpose of constructing the
statistical model in COMBINE. For each channel, COMBINE constructs the term p(x;ji, V) as a
product of Poisson probabilities, yielding

Ng

p(xf, V) = ;—[P (np; Ay (H, V), ©
=1
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where the total expectation for a given bin is denoted as A;, and the observed event count in
data in a given channel and bin is denoted by #,. In the case of Ny = 1, Eq. (9) reduces to
the pdf that COMBINE constructs for a single counting analysis, cf. Eq. (5). For each channel,
histograms must be provided that specify, for each bin, the observed data and the expected
yield for each process that contributes. These can be provided as either ROOT TH1 objects
or ROOFIT RooDataHist objects. Within each channel, all histograms must use the same
partitioning (binning) of the observable. When using RooDataHist objects, the observable
name must be the same for all processes within that channel. An explicit check is made to
ensure the normalization of the data histogram corresponds to the number of observed events
and that the normalization of the histograms matches the rates provided in the datacard in each
channel.

Template-based analysis datacards contain one or more rows in the form:

shapes <process> <channel> <file> <histogram> [<
< histogram_systematic_uncertainty wvariation>]

“w o7

In this datacard line, process is any of the process names or “»” for all processes, or data_obs
for the observed data, and channel is any of the channel names, or “+” for all channels. The
value of file gives the name of the ROOT file. The labels histogram and histogram_s
ystematic_uncertainty_variation identify either the names of the TH1 objects or the
RooWorkspace and RooDataHist objects within that file. Several keywords in the datacard

line are reserved for automatic substitution when constructing the statistical model:

e $PROCESS is substituted with each process label or data_obs for the observed data.
e SCHANNEL is substituted with each channel label.

® SSYSTEMATIC is substituted with the name of each nuisance parameter (with an
additional suffix Up or Down) that appears in the lines at the end of the datacard.

e SMASS is replaced with a mass value, which is passed as a command line option.

These lines are interpreted sequentially in the order they appear in the datacard, which allows
for multiple instructions with wild card characters and keywords to define the pdfs for each
process across the channels. The $MASS keyword was originally intended to allow for a single
datacard to be used for different mass hypotheses of the Higgs boson myy. In analyses such as
the search for H - WW™ — 2/2v [23], a different set of histograms for the signal at specific val-
ues of my; are chosen by specifying this keyword on the command line. In the H — ZZ* — 4/
and H — 7y analyses, this keyword makes it possible to measure myy using the MH parameter,
which can be varied continuously [10]. This keyword is useful in searches for new particles
whose masses are not known. The COMBINE package supports arbitrary user-defined key-
words in the datacard, the values of which can be set at runtime with the command line. This
is particularly useful for analyses in which the probability distributions depend on more than
one parameter.

For each channel, the expected value for the total rate in a given bin b is expressed as a sum
over processes p,

Ay (1, V) = Y M, (i, V) wyy, (V) + Ey (1, V), (10)
P

where the functions wy,(7) are the number of expected events for a process in a given bin
b, M,, (ji, V) is the overall multiplicative factor representing the effects of the statistical model
parameters on the total rate of a given process, and E; (ji, V), discussed at the end of this section,
accounts for the statistical uncertainties arising from limited simulated or collision data used
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to populate the histogram. The value of A, (i, V) is restricted to be positive for any values of
the parameters.

The functions wy, (V') are derived using the histograms provided by the user that represent the
expected distribution for a given process, for the nominal model and for alternates in which
a particular nuisance parameter is varied. Dropping the process labels henceforth, the nomi-
nal bin contents are denoted by w). For each shape systematic uncertainty s, two additional
histograms are specified, w;* and w;~, typically corresponding to the distributions for the
values v; = +1 and v, = —1, respectively. The datacard must include an additional line in the
systematic uncertainties block with the form:

<name> shape|[N] <effect_p_ i>

where effect_p_i is a sequence of values that indicate the effect of the uncertainty in each
process p and channel i in the datacard. Each value in the sequence can be “~” or 0 for no
effect, or 1 to indicate that the process is affected. Values different from 1 can be specified to
indicate that the histograms provided represent the expected distribution for other values of the
associated nuisance parameter v,. For example, a value of 0.5 would indicate to COMBINE that
the alternative histograms correspond to values of v, = £2 as is illustrated for the systematic
uncertainty modelled by the nuisance parameter sigma in Datacard 2.

The alternative histograms can be different from the nominal histogram both in the fractional
content of each bin, f, = w,/ Yy wy, and in their normalization. For the latter, the term
M, (#,7) in Eq. (10) contains an additional asymmetric log-normal multiplicative factor, as

described in Table 1, where the values of kUP and xP°"" are defined by

+/—
«Up/Down _ Lb Wy ) (11)

0
Y Wy

For the former, the user can choose between either parameterizing the variation due to each
nuisance parameter directly in terms of the fractional bin contents, f;,, or their logarithms,
In(f,), by specifying either shape or shapeN in the systematic line of the datacard, respec-
tively. The functions for the fractions are given by

H@) = f) + Y Fv, 677,67 ), (12)
S

if using the shape algorithm or
fo (@) = e(UD+EFOuBTAT ) (13)

if using the shapeN algorithm, respectively, where 2 = w)/ Yy ), &% = i — f0, AVF =
In( 5’i) — In( fl?), and the subscript s iterates over each systematic uncertainty. Similarly to the
nominal fractions, the values of fi* are determined by fi= = w;™/ ¥y w*. The shape al-
gorithm is typically used when the variation due to a systematic uncertainty is relatively small
compared to the contents in each bin, while the shapeN algorithm is used when a systematic
uncertainties results in large variations. This is due to the fact that the latter yields a smooth
function close to zero when the fractional bin contents are small.

The function F depends on a set of scaling factors, €;. These are assumed to be unity by default,
but may be set to different values, e.g., if the values of wZ’i correspond to vy = +£X, then
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Datacard 2: Template analysis datacard - datacard-2-template-analysis.txt

imax 1
> jmax 1
3 kmax 4
. #
5 shapes * * template-—analysis-—-datacard-input.root $PROCESS
< S$PROCESS_S$SYSTEMATIC

o #

7 bin chl

s observation 85

0 #

0 bin chl chl

11 process signal background

2 process 0 1

13 rate 24 100

14 #

15 lumi 1nN 1.1 1.0

1+ bgnorm 1nN = 1.3

17 alpha shape = 1 # uncertainty in the background template.
15 sigma shape 0.5 = # uncertainty in the signal template.

€, = 1/X. The function F is defined as
W((et—6)+ %((Vr +67)J(W), —q<V <g;

F(v,6%,6,¢) = { V5,
—v'é,

(14)

=

7

1//
1/l

IN IV

where v/ = ve, 7 = v'/q, and J (V) = (37° — 10v° + 15v). The minimum value of € for a given
process in a given channel is ¢ = min(e,). These functions ensure that the fractions and their
tirst and second derivatives are continuous for all values of v. A discussion of the different func-
tions that are commonly used for parameterization in template-based analyses can be found in
Ref. [24]. For each shape [N] systematic uncertainty line in the datacard corresponding to an
uncertainty s, an auxiliary observable y, and its probability distribution p(y,;vs) = N (y,; v, 1)
are included in the statistical model in Eq. (1). The default values are v, = y, = 0.

Datacard 2 is an example of a template-based analysis in which the observable x is the out-
put of a multivariate analysis (MVA) discriminator. The histograms defining the distributions
of all processes, and their variations due to systematic uncertainties, are contained in a single
ROOT file named template-analysis—-datacard-input . root. Datacard 2 contains two
processes, signal and background. Line 5 specifies the mapping between the histograms
in the ROOT file (as shown in Table 2) and the processes defined in the datacard. Lines 17
and 18 provide the definition of systematic uncertainties that affect the probability distribu-
tion of the observable for the different processes. In the example, two such uncertainties are
listed, one, alpha, that affects only the background process, and the other, sigma, that affects
only the signal process. Any text beyond the number of columns expected in these lines is
ignored by COMBINE and can be used to include descriptions of the systematic uncertainties
in the datacard. Within the ROOT file, two histograms for each systematic uncertainty are
provided, which represent the probability distributions and rates of the signal and background
processes when the associated nuisance parameters are varied. In the ROOT file, these are TH1
objects named background_alphaUp and background_alphaDown, and signal_sigmaUp
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and signal_sigmaDown. Table 2 shows the TH1 inputs contained in the ROOT file used in
Datacard 2.

Table 2: TH1 objects contained in the template-analysis-datacard-input.root file
used in Datacard 2. The histograms used to determine the effects of the sigma parameter
on the signal distribution correspond to twice the variation resulting from the systematic un-
certainty modelled by the parameter.

Object name Description

data-obs Histogram containing the observed number of events in
each bin of the analysis.

signal Histogram containing the expected yields w) of the signal
process in each bin of the analysis.

background Histogram containing the expected yields w) of the back-
ground process in each bin of the analysis.

signal_sigmaUp, Histograms containing the expected yields of the signal

signal_sigmaDown process for each bin in the analysis when the nuisance

parameter sigma is set to —2 (Down) w, , and +2 (Up)
w; , and all other nuisance parameters are set to their de-
fault values.

background_alphaUp, Histograms containing the expected yields of the back-

background_alphaDown ground process for each bin in the analysis when the nui-
sance parameter alpha is set to —1 (Down) w,, and +1
(Up) wj;, and all other nuisance parameters are set to their
default values.

Figure 1 shows the histograms used to determine the expected yield w) and yields expected
for the variations of the systematic uncertainties w;” and w, for the signal and background
processes. The histogram for the observed data is also shown.

The term E, (i, V) in Eq. (10) accounts for the statistical uncertainties in the histograms used
to determine w,,. When the histograms are provided using TH1 objects, these terms can be
included using the following line at the end of the datacard:

<channel> autoMCStats <threshold>

The first string channel should give the name of the channels in the datacard for which these
statistical uncertainties should be included. The wildcard “+” indicates that this should ap-
ply to all channels in the datacard. The value of threshold should be set to a value greater
than or equal to zero to include the uncertainties. This value sets the threshold on the effective
number of unweighted events above which the uncertainty is modeled with a single nuisance
parameter for each bin following the Barlow—Beeston procedure outlined in Ref. [25], using the
simplifying approximation introduced in Ref. [26]. This procedure is used to improve the com-
putational performance without introducing significant impact on the accuracy of the results.
Below the threshold, an individual nuisance parameter for each process is created. For each
nuisance parameter, a corresponding probability distribution for y is included when building
the model in Eq. (1), the form of which is determined by this effective number.

When threshold is set to a number of effective unweighted events greater than or equal to
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Figure 1: Histograms used to define the pdfs for Datacard 2. The red and blue histograms show
the nominal yields in each bin w) for the background and signal processes, respectively. The
dotted and dashed lines show the histograms that provide the values of w;" and w; , respec-
tively for each of the systematic uncertainties that modify the shape of the signal and back-
ground pdfs. The red dashed and dotted lines are associated with the effect of the nuisance
parameter alpha on the background process, while the blue dashed and dotted lines are asso-
ciated with the effect of the nuisance parameter sigma affecting the signal process. The black
points show the observed number of events in data in each bin. The error bars indicate the
statistical uncertainty.
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zero, denoted n'hreshold the following algorithm is applied to each bin b:

1. Sum the yields wgp and uncertainties ¢,, of each background process p in the bin. wy, =

Ypcbkg wgp, and ey 1o = \/Xp cbkg e ” The values of ¢;, are obtained using the TH1: : Ge
tBinError method.

2. If e 101 = 0, the bin is skipped and no associated nuisance parameters are created.

3. The effective number of unweighted events is defined as wiftfot = wi ot/ e% tor TOounded to

the nearest integer.

The value of wgftfot determines the functional form of E,(ji,v). If wgftfot > pthreshold 3 gingle
auxiliary observable y is included in the statistical model that is normally distributed with
p(y;v) = N(y;v,1). The nuisance parameter v determines the value of Ej,

1
2
Ey(ji, 7,v) =v <Zei,,M%(ﬁ,ﬁ>> , (15)
p

where 7/ here represents all of the other nuisance parameters in the statistical model. The default
values in COMBINE are v = y = 0. If instead wf)ftfot < pthreshold 3 vector of auxiliary observables
7 with one entry per process is included in the statistical model. For processes that have a

number of effective events wip/ eéb less than nthreshold the observable is Poisson distributed
with p(y,; V) = P (Y V). For processes with wy /e2, > n™**hld, the observable is normally
distributed with p(yg;vg) = N (yg; Vg, 1). The nuisance parameters determine the value of E;,

R Vg - - I
Eb(ﬂ: ViVas Vﬁ) = Z ( - 1> wbocsz(Vl V) + ZvﬁebﬁMﬁ(VfV)/ (16)
B

14 14

where the indices « and B run over processes for which the auxiliary observables are Poisson
and normally distributed, respectively. The default values of vg = y; are zero, while the default
values of y, and v, are set to the effective number of unweighted events in the TH1 histogram
objects used to evaluate w) .

4.2.2 Parametric shape analysis

A parametric shape analysis is one that uses analytic functions rather than histograms to de-
scribe the pdfs of continuous primary observables. In these cases, the primary observable x in
each channel can be univariate or multivariate. For example, in the measurements of Higgs bo-
son cross sections in the four-lepton decay mode, the primary observable is bivariate composed
of the invariant mass of the four leptons and a kinematic discriminator designed to separate the
signal and background processes [27]. The data in parametric shape analyses can be binned, as
in the case of template-based analyses, or unbinned. Uncertainties affecting the expected dis-
tributions of the signal and background processes can be implemented directly as uncertainties
in the parameters of those analytical functions.

Datacard 3 defines a parametric analysis with a single channel and two processes: one signal
process and one background process. The datacard is similar to what would be used in a search
for a narrow resonance over a smooth background, such as in the search for Higgs boson decays
to muon pairs [28]. The primary observable is the invariant mass m of the decay products, and
the signal distribution depends on the hypothesized mass of the resonance, my. The systematic
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uncertainties include uncertainties that affect the expected rates of the signal and background
processes, and uncertainties in the parameters that describe the signal and background pdfs.

- =

For datacards describing parametric-based analyses, the term p(¥; ji, V) in Eq. (1) is constructed
in COMBINE as,

—» — —» p V’ fp(x/ ’V)
p(X; 1, v , (17)
LT,

where fp(x; ii,V) are the pdfs for each process p for a given channel with primary observ-
able x. These pdfs can depend on both the parameters of interest and the nuisance parame-
ters. In parametric analyses, for a specific data set with n entries {x;} where d runs from 1
to n, a Poisson probability P (n; Yy Ap( i, 17)) is included in the likelihood function in Eq. (2).
The Poisson parameters A, depend only on the parameters of interest and any nuisance pa-
rameters affecting the rate of a given process. These parameters are products of multiplica-
tive factors of the form given in Table 1 and any RooAbsReal object named pdfname_norm
found in the input RooWorkspace, as described in Section 4.2. When the data are provided
as binned data sets with RooDataHist objects, the continuous observable x is replaced by
a sequence of discrete bin centres x,, and the pdfs are evaluated at these values. If the bins
are relatively narrow, this approximation provides a good estimate of the probability density.
When this approximation is not accurate, the COMBINE package provides a custom class named
RooParametricShapeBinPdf that can wrap any univariate RooAbsPdf object such that

i #) = [ fni ) (18)

The datacard lines for parametric shape analyses need two names to identify the ROOFIT object
representing the pdf for a given process in each channel, separated by a colon in the following
format:

shapes <process> <channel> <file> <workspace_name>:<pdf name>

The label workspace_name identifies the input workspace, which is a RooWorkspace object
containing the ROOFIT objects, while the second label pdf_name identifies the RooAbsPdf
or RooAbsData contained therein. The pdfs f, for each process p are defined by the objects
identified with pdf_name.

Lines 5-7 indicate the name of the input ROOT file parametric-analysis-datacard-i
nput . root that contains an input workspace (w), with RooAbsPdf objects named sig and
bkg defining the pdfs for the signal and background processes, respectively. The contents of
this workspace are summarized in Table 3.

There is a single RooRealVar object named m in the workspace, which represents the primary
observable for the analysis. The RooDataSet object named data_obs provides the observed
data. In this datacard the number of events observed in data, as indicated in line 10, is specified
as 567, so COMBINE expects this data set to contain 567 entries, each with its own value of the
RooRealVar object m.

Figure 2 shows the pdfs for the signal and background processes, and the distribution of m
in observed data. The data are unbinned and treated as such in COMBINE; the binning is
performed exclusively for visualization. The effects of varying the sigma and alpha nuisance
parameters on the pdfs for the signal and background processes are also shown.

In this datacard, the signal process is parameterized as a normal distribution with a mean given
by the hypothesized signal mass value MH. This variable is used in COMBINE when interpreting
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Datacard 3: Parametric analysis datacard - datacard-3-parametric-analysis.txt

imax 1
> jmax 1
3 kmax 2
 #

<— data_obs

shapes data_obs binl parametric-analysis—datacard-input.root w:

s shapes signal binl parametric-analysis—datacard-input.root w:sig
7 shapes background binl parametric-—-analysis—-datacard-input.root w:bkg
s #

9 bin binl

10 observation 567

11 #

2 bin binl binl

13 process signal background

14 process 0 1

15 rate 10 1

6 #

17 lumi 1nN 1.1 =

15 sigma param 1.0 0.1

19 alpha flatParam

20 bkg_norm flatParam
Table 3: Contents of the RooWorkspace object contained in the

parametric-analysis-datacard-input.root file providing inputs for the parametric

analysis datacard.

Object name Type

Description

m RooRealVar

data_obs RooDataSet

sig RooGaussian
bkg RooExponential
MH RooRealVar
sigma RooRealVar
alpha RooRealVar
bkg_norm RooRealVar

The invariant mass observable.
Invariant mass of each event in the observed data.

Normal pdf describing the probability distribution of
the invariant mass for the signal process.

Exponential pdf describing the probability distribution
of the invariant mass for the background process.

Mean of the signal pdf.
Standard deviation of the signal pdf.
Slope parameter for the background pdf.

Rate multiplier for the total background contribution.

the command line argument value —-mass. The value of the hypothesized signal mass will be
tixed to the value specified by the ——mass option unless MH is specifically listed as a parameter
of interest in the physics model. The background is an exponential distribution p(m) o e*",
with a single nuisance parameter defined in the workspace as a RooRealVar object named
alpha. The workspace also contains a nuisance parameter named bkg_norm that multiplies

the background rate.
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Figure 2: Distributions of the invariant mass observable for the signal and background pro-
cesses defined in Datacard 3. The red and blue curves show the parametric functions used to
define the probability density for the invariant mass for the background and signal processes,
respectively, at the default values of the nuisance parameters, normalized to their expected to-
tal yields. The blue shaded band shows the variation of the signal pdf when sigma is varied
between 0.7 and 1.3. The red shaded region shows the variation of the background pdf when
alpha is varied within 10% of its default value of —0.1. The black points show the distribution
of the observed data. The binning and error bars are only for visualization and neither are used
by COMBINE to build the likelihood function.
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Parametric systematic uncertainties are included using datacard lines with the syntax:

<name> param <V> [<U>, <-UDown/+UUp>]

These datacard lines directly encode uncertainties in the parameters of the signal and back-
ground pdfs. For each of these lines, an additional term N (y; v, u), is included when construct-
ing the statistical model in Eq. (1). The default values for y and v are set to the value v and
u is the value of U specified in the datacard line. Line 18 of Datacard 3 indicates that there
is a RooRealVar object describing the parameter sigma, contained in the workspace, that is
associated with a normal distribution with mean specified by v=1.0 and standard deviation
specified by U=0.1. Asymmetric uncertainties in the parameter can be defined by using the
syntax ~UDown/+UUp= —1/41 standard deviations in the relevant datacard line. The corre-
sponding term p(y;v) in the statistical model constructed by COMBINE is a dimidated Gaus-
sian distribution [29]. It is possible to include linear correlations between the parameters by
first diagonalizing the covariance among them and encoding the resulting linear combinations
of parameters as the nuisance parameters that are declared in the datacard.

To specify that a parameter should be assigned a uniform distribution for p(y; v), the datacard
line should be:

<name> flatParam

The range of allowed parameter values is determined from the RooRealVar methods getMin
and getMax, and the default value of the parameter is determined from the getVval method.
Lines 19 and 20 in Datacard 3 indicate that there are two such parameters. These lines do not
count towards the value of kmax since for frequentist calculations they can be dropped from
the datacard with no effect on the results. The same is not true for Bayesian calculations so it is
recommended to include these lines in parametric shape analyses.

4.3 Rate parameters

Additional multiplicative scale factors can be introduced in the statistical model that directly
modify the rate of a given process, in a given channel, by including additional lines in the
datacard for any type of analysis, using the following syntax:

<name> rateParam <channel> <process> <initial_ value> [<min>, <max>]

A nuisance parameter is included in the statistical model that multiplies the rate of that partic-
ular process in the given channel by its value. The default value for this parameter is set
to the value indicated by initial_value. The values of min and max can be used to set a
range for this parameter. The same rateParam nuisance parameter can be attached to mul-
tiple channels/processes by using a wild card. For example, “+” matches any process, while
“QCD_»"” matches any process whose name begins with “QCD_". Repeating the same datacard
line with different channel/process values is also supported. A uniform probability distribu-
tion within the range given is included in the statistical model if an additional flatParam

datacard line is included for that parameter.

In addition to direct rate modifiers, modifiers that are functions of other parameters can be
included using the following syntax:

<name> rateParam <channel> <process> <formula> <args>
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Datacard 4: Example ABCD datacard - datacard-4-abcd. txt

5 bin B (o] D A
+ observation 50 100 500 16

s bin B C D A A
9 process bkg bkg bkg bkg sig
10 process 1 2 0
11 rate 1 1 1 1 3

w
[y

3 lumi 1nN - - - - 1.02

4 eff 1nN - = = = 1.01

15 alpha rateParam A bkg (Q0*Q1/Q@2) beta,gamma,delta
1 beta rateParam B bkg 50

17 gamma rateParam C bkg 100

s delta rateParam D bkg 500

where formula is a string with the syntax used by the ROOT package’s TFormula, and args
is a comma separated list of the arguments for the formula. Any nuisance parameter can be
included in the formula.

Datacard 4 is an example datacard that uses the rateParam directive to implement an ABCD
background estimation method. In the ABCD method, three samples of the data, labeled B, C,
and D, that are depleted in signal contributions, are defined using two independent selection
variables to estimate one or more background contributions to the signal-enriched data sample
labeled A. In Ref. [30], the ABCD method is used to determine the contribution of the QCD
multijet background using the missing transverse momentum and an isolation variable based
on the measured energy around the electron in each event. The expected contribution from
the QCD multijet background in sample A is estimated using the observed yields in samples
B, C, and D by assuming the ratio of yields between samples A and B is the same as that
between C and D. An example ABCD analysis can be constructed as a four channel counting
analysis in COMBINE, as described in Datacard 4: The parameters beta, gamma, and delta
described by lines 16-18 are simple rate modifiers, 3, v, and J, that directly scale the yields of
the bkg process in channels B, C, and D, respectively. The parameter alpha is determined by
the formula « = Bv/4, as defined on line 15 of the datacard. The yield of the bkg process in
channel A is scaled accordingly by this formula.

Finally, any pre-existing RooAbsReal object inside a ROOT file containing a RooWorkspace
can be imported into the statistical model using the following syntax:

<name> rateParam <channel> <process> <rootfile>:<workspacename>

The value of name should correspond to the name of the RooAbsReal object inside the RooWo
rkspace. This allows for arbitrary functions of the statistical model parameters to be used to
determine the rate of a particular process in a given channel.
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5 Physics models

The COMBINE package supports the construction and association of parameters of interest to
the different signal processes declared in the datacard. This is achieved by defining the pa-
rameters of interest and how they affect the signal processes in a Python file: the physics
model. To specify the physics model to use in the statistical model construction, the option
-P in text2workspace. py should indicate the Python file and the model defined therein:

$ text2workspace.py <datacard.txt> -P HiggsAnalysis.CombinedLimit.<PythonFile>:<
< modelInstance> [-—-PO <options>]

The PythonFile should be contained in the python/ subdirectory of the COMBINE package.

The default physics model is one for which the rate of every signal process is multiplied by a
common factor r, which is the only parameter of interest. In this model ji = r. The default
model is used if the —P option is not specified.

With the physics model defined, it is now possible to fully determine the statistical model for
an input datacard. The statistical model created by COMBINE for Datacard 1 when using the
default physics model is defined as

A ; \n 1 Youw
p(]’l, g’ }", 17) = L'V)e,)L(rlv) 7e7(vlumi “Yiumi )zei(l/xs 7yxs)z %e*%ww’ (19)
n! 21 Yoww!
where the function A(r, V) is given by

A(r,7) = r 147 (1.11)"2umi (1.2)Ys 4 0.22 (1.11)"2m + 0.64 (1.11)V1umig%. (20)

The observable values for the data are setton =0, ¥, ;s = Yy = 0, and v,y = 4.

Generic physics models can be implemented by writing a Python class that defines the pa-
rameters of interest and defines how the signal (and background) yields depend on these
parameters. There are numerous example physics models provided in the COMBINE pack-
age in python/PhysicsModel.py and other Python files within the same directory. In the
PhysicsModel: floatingXSHiggs physics model, the signal processes expected in the data-
card correspond to the four dominant Higgs boson production modes at the LHC: gluon fusion,
vector boson fusion, and Higgs boson production associated with a vector boson or a pair of
top quarks. Their rates are modified by separate scaling parameters; r_ggH, r_qgqgH, r_VH (or
r_WH and r_zH), and r_ttH as defined in the following block of code:

def doParametersOfInterest (self):
"""Create parameters of interest (POIs) and other parameters, and define the POI
—> set."""
# ——— Signal Strength as only POI —-——
if "ggH" in self.modes: self.modelBuilder.doVar("r_ggH[1l, %s,%s]" % (self.ggHRange
[0], self.ggHRange[l]))
"ggH" in self.modes: self.modelBuilder.doVar("r_qqH[1l, %s,%s]" % (self.gqgHRange
[0], self.ggHRange[l]))
"VH" in self.modes: self.modelBuilder.doVar("r_ VH[1,6 %s,%s]" % (self.VHRange
[0], self.VHRange [1]))
"WH" in self.modes: self.modelBuilder.doVar("r_WH[1l,%s,%s]" % (self.WHRange
[0], self.WHRange [1]))
"ZH" in self.modes: self.modelBuilder.doVar("r_ZH[1l,%s,%s]" % (self.ZHRange
[0], self.ZHRange [1]))
"ttH" in self.modes: self.modelBuilder.doVar("r_ttH[1l,%s,%s]" % (self.ttHRange
[0], self.ttHRange[l]))

feleplelelel
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Datacard 5: Multi signal datacard - datacard-5-multi-signal.txt

imax 2
> jmax 2
kmax *

shapes * dijet FAKE
¢ shapes * incl FAKE
s bin incl dijet
9 observation 166 8

11 bin incl incl incl dijet dijet dijet
12 process ggH_hgg gqgH_hgg bkg ggH_hgg qgH_hgg bkg

13 process -1 0 1 -1 0 1

14 rate 21 1.6 140 0.4 0.95 3.2
I e —

16 QCDscale_ggH 1nN 1.12 = = 1.12 = =

7 pdf_gg lnN 1.08 = = 1.08 = =

s pdf_qgbar 1nN = 1.025 = = 1.025 =

19 bg_incl 1nN - - 1.05 - - -
pei = ",".join(["r_"+m for m in self.modes])

if self.pois: poi = self.pois

Each of these is a parameter of interest in the statistical model that COMBINE constructs. The
arrays ggHRange, gqqHRange, VHRange, WHRange, ZHRange and t t HRange specify the range
of each parameter of interest and are defined in the same Python class. The association of each
parameter of interest with each production process is defined in the following function:

def getHiggsSignalYieldScale (self,production,decay, energy):

if production == "ggH": return ("r_ggH" if "ggH" in self.modes else 1)

if production == "qgH": return ("r_qgH" if "qgH" in self.modes else 1)

if production in [ "WH", "ZH", "VH" ]: return ("r_VH" if "VH" in self.modes else
— 1)

if production == "ttH": return ("r_ttH" if "ttH" in self.modes else ("r_ggH" if
—> self.ttHasggH else 1))

raise RuntimeError, "Unknown production mode ’'%s’" % production

An example datacard with two signal processes and two channels for use with PhysicsMode
1:floatingXSHiggs is shown in Datacard 5. In this datacard, there are two signal processes,
ggH-hgg and ggH-hgg, that correspond to Higgs boson production in the gluon fusion and
vector boson fusion modes, respectively, decaying to two photons. The background process
is estimated by fitting the data outside the signal peak. The channels correspond to events
with an additional pair of jets reconstructed (di jet) or otherwise, leading to a more inclusive
channel (incl). The FAKE directive in lines 5 and 6 are used to indicate that each channel of the
counting analysis datacard represents a single bin in a histogram. This is required in counting
analysis datacards to run some of the diagnostic methods described in Section 6.8, and do not
change the statistical model constructed by COMBINE.

It is possible to include generic constraints on the parameters of the physics model. These can
be included in the datacard with lines having the following syntax:
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<name> constr <formula> <args> <delta>

where name should be a unique identifier for the constraint and formula and args follow the
ROOT TFormula syntax. The result is to multiply the probability term p(X; i, V) in Eq. (1) by
the product of constraint terms,
(&1 (7)\"
1 2\ 4

_’;_’I_; % _»I‘_)/_‘ v 21
p(X; i, 7) p(xVV)lj[(slme (21)

where | runs over the constr lines in the datacard. This feature can be used to include ad-
ditional restrictions on the parameters of the model imposed by external theoretical or exper-
imental constraints. This feature has been used to perform regularization in measurements of
unfolded differential Higgs boson cross sections in the H — 77 decay mode [31]. As an exam-
ple, the following datacard line produces a single constraint term in the statistical model with
g(f) = TegH — 2ryH + 77y and 6 = 0.03, when used with the PhysicsModel: floatingXSHiggs
physics model:

’constraint_higgs constr @0-2%xQ2+Q@1 r_ggH,r VH,r ttH 0.03

The order of the list of parameters in the fourth column of the datacard line defines which of
the parameters is assigned to each term in g(ji).

Throughout this paper, u generically denotes the first parameter of interest defined in the
physics model, while r specifically refers to the single parameter of interest in the default
physics model. For any physics model, it is possible to redefine the list of parameters of interest,

or their order within the list, using the COMBINE command line option --redefineSignalPOIs.
Parameters of interest not included in this list are demoted to nuisance parameters. This com-
mand may include nuisance parameters, which results in the removal of the probability den-
sity in the statistical model for the associated auxiliary observable. This can be used to test how
well any parameter of the model can be measured using only the primary observables, and any
remaining auxiliary observables of a given data set.

6 How to run COMBINE

This section gives an overview of the command line executable combine provided by the pack-
age, which is used to perform a number of different statistical routines using the statistical
model constructed by COMBINE. The executable runs using the command:

$ combine <datacard. [txt|root]> -M <Method>

Where the Method specifies the statistical calculation to be performed. A list of available op-
tions for the executable is displayed by adding the command line option ——help.

6.1 Generic minimizer options
A number of methods available in COMBINE make use of numerical optimization of the likeli-
hood function given in Eq. (2). Typically, these methods make use of the profile negative-log-

likelihood function, — In £(ji,V(ji)), in which the nuisance parameters are profiled; V(i) are
the values of the nuisance parameters v that maximize the likelihood function at a fixed set of
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values of the parameters of interest ji. The class CascadeMinimizer is used to steer these
routines and allows for a sequential minimization of — In £(®) using different algorithms. The
class also allows for COMBINE to perform minimization over any discrete nuisance parameters
like those needed for the implementation of the discrete profiling method described in Ref. [32].
The combinations of minimizers and algorithms supported in COMBINE are given in Table 4.
Details of these algorithms can be found in Refs. [14] and [33].

Table 4: Available combinations of minimizer and algorithms in COMBINE.

Minimizer Reference Available algorithms

Minuit [33] Migrad, Simplex, Combined, Scan.

Minuit?2 [33] Migrad, Simplex, Combined, Scan.

GSLMultiMin [14] ConjugateFR, ConjugatePR, BFGS, BFGS2,
SteepestDescent.

6.2 Output from COMBINE

Most of the methods available in COMBINE output the results of the computation to the termi-
nal. In addition these results are also saved in a ROOT file containing a TTree called 1imit.
The name of this file has the following format:

higgsCombine$NAME .MethodName . mH$SMASS . [ SWORDSVALUE] . root

where NAME is set to the value passed to the option —n, which defaults to Test, and SWORD$VALUE
is any user-defined keyword WORD in the datacard that has been set to a particular value VALUE
using the command line option —~-keyword-value WORD=VALUE. The option can be repeated
multiple times for multiple keywords. The keyword-value pairs are also stored in the output
ROOT file. The option —m sets the value of $MASS and the parameter MH if it is included in the
statistical model. Its value is written to the branch mh in the output TTree object.

The structure of the TTree contained in the output ROOT file is given in Table 5.
Table 5: TTree branches contained in the output ROOT file from COMBINE.

Branch name Type Description

limit Double_t Main result of the statistical routine being performed.

limitErr Double_t Estimated uncertainty in the result.

mh Double_t Value specified with —-mass command line option.
The default value is 120.

iToy Int_t Pseudo-data set identifier if running with ——toys.

iSeed Int_t Random seed specified with -s.

t_cpu Float_t  Estimated processing time.

t_real Float_t  Elapsed wall-clock time for routine.

quantileExpected Float_t  Quantile identifier for methods that calculate ex-
pected and observed results. The meaning is method-
dependent. Negative values are reserved for entries
that are not related to quantiles of a calculation. The
default is set to —1 and specifies that the entry corre-
sponds to the result obtained from the observed data.

6.3 Pseudo-data generation

By default, COMBINE performs the calculation using the observed data. For example, in fre-
quentist methods the observed data are automatically used to construct the likelihood function
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in Eq. (2). It is possible to run these routines instead using pseudo-data sets to determine the
distributions of various statistical quantities such as maximum likelihood estimates, or perform
optimization studies that are blind to the observed data.

The option —-toys is used to instruct COMBINE to first generate one or more pseudo-data sets,
which are used in place of the observed data. There are two variants of this procedure available
in COMBINE. In the first, specified by ——toys <N>with N > 0, COMBINE generates N pseudo-
data sets from the statistical model and runs the specified statistical routine once per data set.
The pseudo-data set is constructed by generating random values of the observables ¥. The
random number seed for the generation can be modified with the option —-seed <value>,
which allows the user to ensure each run of the COMBINE command produces different pseudo-
data sets, or identical pseudo-data sets. This allows certain calculations to be split into parallel
tasks in the former case and for performing diagnostic studies in particular pseudo-data sets
in the latter. The output TTree contains one entry for each of these data sets when generated
with N > 0.

In the second variant, specifying --toys -1 produces an Asimov data set [34]. An Asimov
data set is defined as that in which the maximum likelihood estimates for all of the model
parameters are equal to the values used to generate the data set. Asimov data sets are used
for deriving the expected outcome of frequentist calculations such as in the determination of
upper limits and confidence intervals. Where valid, their use makes these calculations much
more computationally efficient than using the first variant of pseudo-data generation.

In COMBINE, Asimov data sets are constructed using the expectation value for the probability
p(X; i, V) in counting analyses and shape analyses for which the data are binned, or by using
a large sample of weighted events, which are generated according to p(X; i, V). The event
weights in the latter case are identical for every event in the same channel, and are accounted
for when estimating parameter uncertainties from Asimov data sets [35]. The default values
of the parameters of interest are used when generating pseudo-data sets in both variants. The
command line option —~-setParameters <x>=<value_x>,<y>=<value.y>,... can be
used to specify other values of the parameters to be used for the generation of the pseudo-data
sets.

By default, pseudo-data sets in COMBINE make use of marginalization where the value of
each nuisance parameter v, is randomly sampled from its probability distribution p(vi|y;) in
Eq. (3) before generating values for the primary observables in each pseudo-data set. The aux-
iliary observables i are set to their default values. This can be modified by specifying the
option —-toysFrequentist. With this option and N > 0, a parametric bootstrap [36, 37]
is instead performed: each y is generated according to its probability distribution p(y;v),
where the value of the nuisance parameter v is set to the maximum likelihood estimate ob-
tained using the observed data and fixing the parameters of interest to the values specified
in the ——setParameters option. If instead N = —1, the value of y is this maximum like-
lihood estimate for the corresponding nuisance parameter v. When specifying the option
--bypassFrequentistFit, the default values of the nuisance parameters instead of the
maximum likelihood estimates are used.

It is possible to separate the tasks of generating the pseudo-data sets from running statistical
routines, by first saving the pseudo-data sets to a ROOT file on disk, and then passing them to
any COMBINE method later. The following sections describe the most commonly used statis-
tical methods available in COMBINE. These represent only part of the functionality of the tool
and users are recommended to consult the online documentation for a full description of its
capabilities.
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6.4 Frequentist limits and confidence intervals

The HybridNew method can be used for calculating upper limits with statistical models created
with the default physics model, and for calculating confidence intervals for models with one or
more parameters of interest using the Feldman—Cousins procedure [38]. Each of these methods
utilizes a test statistic based on the likelihood function given in Eq. (2).

In the case of upper limits, the single parameter of interest y corresponds to the parameter
r in the default physics model. A number of prescriptions using different test statistics are
supported in COMBINE as follows:

e LEP-style: —-testStat LEP --generateNuisances=1 —--fitNuisances=0.
The test statistic is defined using the ratio of likelihoods,

L(x=0, 170)) ”
Ly, ) )

where 1/, are the default values of the nuisance parameters. This test statistic was
used in the searches for the Higgs boson at the LEP [39].

° TEV—style: —-—testStat TEV ——generateNuisances=0 ——-generateExterna
1Measurements=1 —-fitNuisances=1. The test statistic is defined using a ratio
of profile likelihoods,

quep(#) = —2In (

£ ﬁ(o») , )
(p

L(p,v(p))

where 7 (0), and i (u) are the values of the nuisance parameters that maximize the
likelihood function at ¢ = 0 and p respectively. For the purposes of pseudo-data

<» O

grev(#) = —2In (

generation, the nuisance parameters are set to the values of 7(j) obtained using
the observed data, while the values of i/ are randomly sampled according to their
probability densities.

e LHC-style: ——~LHCmode LHC-limits. The test statistic is defined using a ratio of

profile likelihoods,
o [ AV(R) fo<p<u,
L(p,v)
G = Z 24
fuac(n) =9, (ﬂ%z(y))) £ <0, (24)
£(0,v(0))
0 it >y,

where fi is the maximum likelihood estimator for .. The same result is obtained with
the option ——testStat LHC --generateNuisances=0 --generateExterna
1Measurements=1 —-fitNuisances=1. The values of the nuisance parameters
v that maximize the likelihood £ assuming a specific value of y and for y = i are

denoted 7 () and 7, respectively.

The test statistic in Eq. (24) is the most widely used for setting upper limits in searches for new
physics at the LHC [3]. In COMBINE, these test statistics can be modified to perform two point
hypothesis tests such as those performed to test different hypotheses for the spin and parity
of the Higgs boson [40]. In the LEP-style prescription, the nuisance parameter values for each
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pseudo-data set are randomly sampled from their distributions p(v|y;) in Eq. (3). In the TEV-
and LHC-style prescriptions, a parametric bootstrap is used where the nuisance parameters are

set to the values of ¥/(y) obtained using the observed data before generating the primary and
auxiliary observables from their probability distributions. It is also possible to integrate out
(marginalize) the nuisance parameters in a Bayesian-inspired procedure [41] and advocated
for upper limits in high-energy physics analyses [42]. This amounts to calculating

Lai) = [ £®) ] [ ()7, 25)

where L, (f) is the integrated likelihood [41]. In COMBINE, this is achieved by modifying the
options to ——generateNuisances=1 and -—generateExternalMeasurements=0. This
is required to calculate upper limits in cases where there are few or no background events in
channels dominated by signal processes such as in the search for lepton flavor violating tau
lepton decays performed by the CMS Collaboration [43].

For a specific value of 1, the value of the test statistic using the observed data °* () is calcu-
lated, along with the two p-values p, and p; defined as

| Jo fax()|m) dg - if x=LHC, 06
- obs
" F(g(w)lu) dg  if x=TEV or LEP,
and
a2 (u) 0d £\ LHC
— f(q(n)0)dq, ifx , o
fngs(y) f(gx(n)|0)dg, if x=TEV or LEP,

where the distributions of the test statistics f(q,(u)|p) and f(g,(3)|0) are determined using
pseudo-data sets, assuming the value of i indicated and the values of v and i/ depending on
the options used, as described above. From these p-values, the tool calculates the CL crite-
rion [20, 44, 45] defined by CL, = p,,/(1 — p;). The tool then uses a bisection algorithm to find
the value of p for which CL; = a corresponding to the upper limit on p at the 100(1 — «)%
confidence level (CL). The tool can also calculate the median, and 2.5, 16, 85, or 97.5% quan-
tiles of the expected distribution of the upper limit assuming p = 0, by including the option
——expectedFromGrid=<X>, where X is either 0.5, 0.025, 0.16, 0.84, or 0.975, respectively.

The 95% CL upper limit on y in the example template analysis can be calculated using Data-
card 2 with the command:

$ combine datacard-2-template-analysis.txt -M HybridNew —--LHCmode LHC-limits —--rMax
<~ 2.0 ——clsAcc 0.01

The results of the calculation are output to the terminal as:

> —-— Hybrid New -—-
> Limit: r < 0.346362 +/- 0.0134581 @ 95% CL
> Done in 0.31 min (cpu), 0.32 min (real)

The bisection algorithm for calculating the upper limit terminates when the estimate of the
precision on the upper limit value is below a specified threshold, or when the precision cannot
be improved further. The user can specify the following options to control this behavior:

e ——rAbsAcc and —--rRelAcc: Define the accuracy on the upper limit, j,, at which
the algorithm terminates. The default values are 0.1 and 0.05 respectively, meaning
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that the search terminates when the absolute accuracy Ay, < 0.1 or the relative
accuracy Ay, /pyp < 0.05, where Ap, is the estimated uncertainty on the upper
limit.

e ——clsAcc: Determines the absolute accuracy up to which the value of CL, (or p,,)
values are computed when searching for the upper limit. The default is 0.5%.

e —T or ——toysH: Determines the minimum number of pseudo-data sets that are gen-
erated for each value of y with a default value of 500.

The distributions of the test statistic for the pseudo-data sets generated assuming each value
of u that is tested during the bisection algorithm and y = 0 can be saved in the output file
by specifying the option ——saveHybridResult. Figure 3 shows the distributions of the test
statistic gy e (¢ = 0.4) for p = 0 and 0.4 in pseudo-data sets obtained with Datacard 2.

CMS
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Figure 3: Distributions of §;yc(¢¢ = 0.4) from 100,000 pseudo-data sets for u = 0 (red his-
togram) and y = 0.4 (blue histogram) using the analysis described in Datacard 2. The observed
value of the test statistic is indicated by the black vertical line and the regions used to determine
1 — py and p,, are indicated by the pink hatched and light blue shaded regions, respectively.

To further improve the accuracy when searching for the upper limit, COMBINE interpolates
across several results to estimate p,. The interpolation uses an exponential function that is
tit to the set of results that are closest to the chosen CL and the range in y used for the fit is
determined by the accuracy specified in the command line. A plot of the calculated CL, value
as a function of y can be produced using the option —~plot=name.png. Figure 4 shows the
calculation of the upper limit at the 95% CL using the CL, criterion with Datacard 2.

The AsymptoticLimits method canbe used to calculate the upper limits in statistical models
that use the default physics model with the LHC-style prescription. This is the default method
that will be run if the command line option -M is not specified. In this method, the limit calcu-
lation relies on asymptotic approximations for the distributions of the gy yyc(y), following the
prescription described in Ref. [34]. The tool also calculates the median and 2.5, 16, 85 and 97.5%
quantiles of the expected distribution of the upper limit assuming y = 0, using an Asimov data
set. The output TTree contains an entry for each of these results, which can be identified by
the quantileExpected branch.
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Figure 4: Calculated CLg as a function of u, used to determine the 95% CL upper limit for
Datacard 2. The solid red line is used to interpolate the CL, values to find the crossing at 0.05,
and the shaded band indicates the uncertainty in the interpolation that is used to estimate an
uncertainty in the upper limit. The vertical dashed blue lines show the derived upper limit and
the estimated uncertainty due to the number of pseudo-data sets used in the calculation.

By default upper limits are calculated at the 95% CL (a = 0.05). This can be modified using
the option ——c1=<X> where X is (1 — «). Upper limits are calculated using the CL, criterion
by default. Alternatively, it is possible to only use p, by specifying the option --rule Pmuin
the command line. It is also possible to calculate the values of CL; and p,, for a single value
of u, bypassing the bisection algorithm, by specifying --singlePoint <r>, where r is the
desired value of y.

The HybridNew method can also be used to compute Feldman—-Cousins intervals by speci-
fying the option --LHCmode LHC-feldman-cousins. This method allows for calculating
confidence intervals with accurate coverage both in scenarios with low event counts or where
physical boundaries are placed on the parameters of interest . For example, this method has
been used in Higgs boson property measurements at CMS [46]. The following procedure can be
used to produce one-dimensional confidence intervals or multidimensional confidence regions
for physics models with multiple parameters of interest:

e For each parameter point, run the HybridNew method with the option —-LHCmode
LHC-feldman-cousins ——singlePoint <mul>=<vl>, <mu2>=<v2>, <mu3>=
<v3>, ... ——saveHybridResult to generate the distributions of the test statistic

e () = 21n (ﬁg"—y("”) , (28)
O

A
fa

where ji = iy, li,, ... are the parameters of interest and Lp (i1, ) indicates the maxi-
mum of the likelihood function within the bounded region () of its parameters. This
region can be defined using the command line option —-setParameterRanges <
mul>=<mulmin>, <mulmax>:<mu2>=<mu2min>, <mu2max>: ... This step also
calculates the value of the test statistic for the observed data g2 (ji).

e Collect the resulting output files into a single ROOT file and find the set of points
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for which -
[ o Farc (7)) dae > a, 29)
98¢ ()
to form the 100(1 — «)% CL allowed region.
e The output ROOT file contains the test statistic value for each pseudo-data set as
ROOFIT RooStats: :HybridResult objects. These can be used to determine con-
fidence intervals or contours at different values of a.

6.5 Significance calculation

The HybridNew method is also used to calculate the significance of the observed data when
considered against a null hypothesis. For statistical models constructed using the default
physics model, this estimates the significance of the presence of a signal contribution in the
data where the null hypothesis represents the absence of the signal. By specifying the options
—--LHCmode LHC-significance, COMBINE generates pseudo-data under the background-
only hypothesis (4 = 0) and evaluates the test statistic g, defined by

—21 5(0'5@))) if 1 >0
q0 = n( e ) M (30)

0 otherwise,

for each pseudo-data set. The value of the test statistic for the observed data q(‘)’bs is also calcu-

lated in order to determine the p-value
po= .. /010) dao (31)
0

where f(qo|0) is the distribution of the test statistic determined using the pseudo-data sets.
Figure 5 shows the observed value of g, and the distribution of g, in pseudo-data sets assuming
u = 0 for Datacard 3.

The value of p, and corresponding significance of the signal in the example parametric analysis
can be calculated using 100,000 pseudo-data sets with Datacard 3 using the command line
below:

$ combine datacard-3-parametric-analysis.txt -M HybridNew —--LHCmode LHC-significance
— -T 100000 —--mass 125

The results are output to the terminal as:

—— Hybrid New —-

Significance: 2.54397 -0.0146063/+0.0151701
Null p-value: 0.00548 +/- 0.000233452
Done in 5.95 min (cpu), 7.57 min (real)

vV VVY

The value of p, is converted into a significance using a standard normal distribution [20]. The
method Significance canbe used in order to speed up the calculation using the asymptotic
approximation for the distribution f(go|p = 0) given in Ref. [34] thereby avoiding the need
to generate pseudo-data in cases where the number of events in data is large. For the same
datacard, the asymptotic approximation for the significance can be calculated with:

$ combine datacard-3-parametric-analysis.txt -M Significance --mass 125

The result of the calculation using the asymptotic approximation is output to the terminal as:
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Figure 5: Distribution of g, in 100,000 pseudo-data sets from Datacard 3. The observed value
of the test statistic is indicated by the black vertical line and the region used to determine p, is
indicated by the light gray shaded region.

> —-— Significance -—-
> Significance: 2.56729
> Done in 0.00 min (cpu), 0.00 min (real)

The significance result and its estimated uncertainty are stored in the output ROOT file in the
limit and limitErr branches, respectively. Using the ——pval option, the p-value is stored
instead of the significance.

6.6 Bayesian upper limits and credible regions

Bayesian calculations in COMBINE are based on the posterior probability p(ji) defined by

. 1 2 o\ g
P = sy | £ (®) Tmtwnt) av, (32)

where the index d runs over the events in the observed data set {¥},, and p({¥X},) is defined
such that [ p(ji) dji = 1. The prior term for the parameters of interest p(ji) must be specified
by the user. By default this prior is assumed to be uniform over the ranges (4;, b;) specified for

each parameter of interest y;,
p(j) o HU(W a;, by). (33)

Bayesian upper limits are calculated in COMBINE using either the BayesianSimple method
for relatively simple statistical models or the MarkovChainMC method for models with mul-
tiple parameters of interest or nuisance parameters, which perform the marginalization over
the nuisance parameters. For statistical models with a single parameter of interest i, the prior
can be modified via the command line using the option ——-prior <prior> with the following
options available:

e flat: the default uniform prior.
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e 1/sqgrt (r): inverse square root prior. This is the Jeffreys prior for the mean of a
Poisson distribution [47].

e Any valid ROOT TMath: :Formula expression with @0 as the parameter of inter-
est.

e Any string that names a ROOFIT RooAbsPdf object contained in one of the input
workspaces. This option can also be used for statistical models with multiple pa-
rameters of interest.

Both methods compute the 100(1 — «)% credible upper limit on the parameter of interest .,
as

/%P p(p)dp=1-uw. (34)

—00

The value of « can be modified by specifying the option --c1=1 — a.

The BayesianSimple method computes i, using numerical integration, while the Markov
ChainMC method uses Markov chain integration [48].

The number of steps in the Markov chain and number of chains to compute can be specified
via the command line, as well as the number of steps to ignore from the start of the chain. The
user can specify a proposal algorithm by which the Markov chain evolves using the option
—-proposal <algorithm> with the following options:

e uniform: Selects the next parameter point in the chain at random.

e gaus: Uses a product of independent normal distributions, one for each nuisance
parameter where the standard deviation of the distribution for each variable is set
to some fraction of the range of the parameter defined by the option ——-propHelpe
rWidthRangeDivisor.

e ortho: This is the default proposal and is similar to the gaus proposal except that
at each point in the chain, only a single parameter is varied.

e f£it: With this proposal, COMBINE computes the Hessian matrix of —21n p(X; jt, V)
with respect to the nuisance parameters v to construct the proposal function. The
accuracy can be improved by including the option —-runMinos.

The value of i, and an estimate of its uncertainty are obtained from the average over N in-
dependent Markov chains, specified by the command line option ——tries <N>. The 95%
Bayesian upper limit on the default physics model parameter r for Datacard 1 using 100 Markov
chains can be calculated using the following;:

$ combine datacard-l-counting-experiment.txt -M MarkovChainMC --tries 100

These values are saved in the output ROOT file and output to the terminal as below:

> —— MarkovChainMC -—-
> Limit: r < 2.21031 +/- 0.0133576 @ 95% credibility (100 tries)
> Done in 0.05 min (cpu), 0.05 min (real)

If using the MarkovChainMC method, it is also possible to store the resulting Markov chains
in the output file from COMBINE using the option ——saveChain. This allows for estimating
the posterior distribution p(ji) for one or more parameters of the model and deriving credible
intervals or regions.
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6.7 Maximum likelihood estimates and scans

Likelihood-based parameter estimation is performed in COMBINE using the MultiDimFit
method. This method can be used to calculate maximum likelihood estimates for the param-
eter values and their uncertainties through several different approaches. This method has been
used by the CMS Collaboration to provide measurements in a number of different scenarios,
including Higgs boson production and decay rates, and measurements of the Higgs boson
couplings [49]. The MultiDimFit method is used to evaluate the negative-log-likelihood
function, — lnﬁ(@), and obtain maximum likelihood estimates and estimates of confidence
intervals for the parameters of interest ji using the profile likelihood ratio,

q(ii) = —In <W> , (35)

where ji are the maximum likelihood estimates for the parameters of interest, and ¥/(ji) and
i/ are the values of the nuisance parameters for which £ is maximized for a specific set of
parameter values ji and for the maximum likelihood estimates ji, respectively. The process of
finding the parameter values that maximize the likelihood function is typically referred to as a
“fit”. In Eq. (35) there are two such fits. The one in the denominator is often referred to as the
“overall best fit”. The default parameter values are commonly referred to as “pre-fit”, while
the maximum likelihood estimates are commonly referred to as “post-fit”. Throughout this and
following sections, the process of determining the maximum likelihood estimates is referred to
as maximum likelihood optimization so as not to confuse this procedure with the more general
“goodness of fit” methods described in Section 6.8.

The following choices for the ——algo option are supported in COMBINE:

e none: this is the default algorithm. The algorithm finds the parameter values ® that
maximize £(®) and reports the maximum likelihood estimates of the parameters
of interest. For a model with N parameters of interest, the output TTree contains
N branches, one for each parameter of interest with the maximum likelihood esti-
mates. The output of this algorithm can be used as the starting point for the other
algorithms to reduce their evaluation time.

e singles: the algorithm determines the maximum likelihood estimates for each
parameter of interest y and sequentially determines 68% confidence intervals for
each parameter of interest. The output TTree contains one branch for each param-
eter of interest. One of the entries contains the maximum likelihood estimates with
quantileExpected set to —1. Two additional entries for each parameter of in-
terest provide the upper ut and lower ~ bounds of the 68% CL interval for that
parameter determined as the range of that parameter for which g(p) < 1/2.

e cross: the algorithm determines the maximum likelihood estimates for each param-
eter of interest and a set of intervals for each parameter y; for which g(y;) < 5, where
cis determined by [ x*(x;n) dx = w and x*(x; n) is a chi-squared distribution with
the number of degrees of freedom equal to the number of parameters of interest 7.
The output TTree has one entry with the maximum likelihood estimates for the pa-
rameters of interest fi, and two entries for each parameter of interest, corresponding
to the points that define the interval.

e contour2d: for statistical models with two parameters of interest, this algorithm
constructs two dimensional contours bounding the regions for which g(ji) < 5,
where ¢ is computed from | C°° Xx*(x;2)dx = a. The output contains values corre-
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sponding to the maximum likelihood estimates with quantileExpected set to
—1, and additional entries that define the contour. For a = 0.32 the contour pro-
duced corresponds to ¢ = 2.3 [20].

e random: in this algorithm, the value of g(}i) is evaluated for N uniformly distributed
random points in the space spanned by the parameters of interest. The number of
points is set by the option ——points=<N>.

e fixed: in this algorithm, value of q(ji) is calculated at a specified point in the
space spanned by the parameters of interest. The fixed point is specified using the
--fixedPointPOIs option.

e grid: the value of g(ji) is evaluated on a grid of parameter of interest points with N
points in total. The number of points N is specified with the option —-points=<N>.
It is possible to partition the scan into multiple runs of COMBINE using the options
——firstPoint <n>and ——-lastPoint <m>, where 0 <n<m< N.

The fixed and grid algorithms can be used to evaluate the likelihood function and g (i) for
any value of the statistical model parameters. In each of the above options the value of x can be
defined using the option —-c1=1 — a. The output TTree branch named deltaNLL stores the
value of g(ji). Additional branches can be included to store the values of any nuisance param-
eter, any RooCategory object, or any RooFormulaVar object contained in the workspace
produced by COMBINE by adding the options ——saveSpecifiedNuis, ~—saveSpecified
Index, or ——saveSpecifiedFunc, respectively.

Confidence intervals calculated with COMBINE using these algorithms will yield results with
approximately correct coverage in the absence of large non-Gaussian uncertainties [50-52]. If
the overall best fit values lie on physical boundaries in the parameter space, the Feldman-
Cousins procedure described in Section 6.4 should be used to obtain intervals with improved
coverage properties.

The maximum likelihood estimates for the parameters 7,1y and rqqy and estimates of their
uncertainties can be obtained using Datacard 5 with the PhysicsModel: floatingXSHiggs
physics model using the commands below,

$ text2workspace.py datacard-5-multi-signal.txt -P HiggsAnalysis.CombinedLimit.
< PhysicsModel: floatingXSHiggs —-PO modes=ggH,qgqH -o datacard-5-multi-signal.root
<~ -—-mass 125

$ combine datacard-5-multi-signal.root -M MultiDimFit --algo singles —--mass 125

The output from COMBINE is given below:

> ——— MultiDimFit --—-

> best fit parameter values and profile-likelihood uncertainties:
> r_ggH : +0.882 -0.749/+40.795 (68%)

> r_gqqH : +4.683 -2.746/+3.464 (68%)

> Done in 0.00 min (cpu), 0.04 min (real)

For each parameter, the result is presented as a measurement # — A~ u/ + Aty, where the
values of Ay are determined from the 68% confidence intervals as

A= |u* —pl. (36)

The relative precision on ryqyy is better than for 7,1y due to the larger signal to background ratio
in the di jet channel of this datacard. The parameters are correlated due to the contribution
of each process across both channels. This can be seen by considering the shape of the function
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q(rggtis Tqqu)- Figure 6 shows q(rgety, 7qqr) using the same datacard and physics model. The
points indicate the output from COMBINE using the grid and contour2d algorithms. The
box shown in the figure is constructed from the set of intervals calculated using the cross
algorithm with (1 — a) = 0.68.

A subset of parameters for any of the algorithms can be specified using multiple instances of
the option ——parameters. In this case, all other parameters of interest are set equal to their
default values throughout the calculation. This behavior can be adjusted by including the op-
tion ——floatOtherP0I=1, which instructs COMBINE to include the remaining parameters of
interest in the list of profiled parameters for the purposes of the calculation of profile likeli-
hoods. This is not the same as using the ~—~redefineSignalPOIs option as selecting subsets
of parameters does not remove the associated probability distribution p(y;v) when nuisance
parameters are included. Figure 7 shows the values of q(rgg, Fqqn) and q(rqqn, fggr) Ob-
tained from COMBINE using the grid algorithm, and the 68% CL intervals on each param-
eter obtained using the singles algorithm. In this case, the options ——parameters=<x>
——floatOtherP0OI=1 are included where X is either r_ggH or r_gqgH.
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Figure 6: Values of q(rgg1,7qqn) for Datacard 5 in a model with two parameters of interest
rgerr and rgqpy. The orange scale shows the values obtained in COMBINE at the set of points
indicated by the black dots, using the grid algorithm. The blue box is constructed using the
cross algorithm with (1 — a) = 0.68. The white cross and white dots indicate, respectively, the
maximum likelihood estimates for 74,1y and ryqpy from the best fit, and the 68% CL confidence
region obtained using the contour2d algorithm defined as the values of (» ) for which

q(rggt, Tqqu) = 2.3.
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6.8 Goodness of fit tests and diagnostics

The GoodnessOfFit method can be used to perform a test of compatibility between the ob-
served data and the statistical model. While the statistical model constructed by COMBINE is
used as the null distribution, goodness of fit (GoF) tests do not have a well-defined alternative
hypothesis, unlike conventional hypothesis tests.

The GoodnessOfFit method evaluates a test statistic for the observed data and generates
the expected distribution of the test statistic under the null distribution using pseudo-data. In
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Figure 7: Example of q(gg11, Pqqri) and q(rqqmi, Fgeri) Obtained from COMBINE with Datacard 5.
The points indicate the values at which the functions are evaluated using the grid algorithm,
and the shaded region indicates the 68% CL intervals on each parameter obtained using the
singles algorithm. The horizontal dashed lines indicate the values of g(y) used to define
68% and 95% CL intervals.

COMBINE this is done in two separate commands:

$ combine -M GoodnessOfFit <datacard.txt> —--algo=<test-statistic>

$ combine -M GoodnessOfFit <datacard.txt> —--algo=<test-statistic> —--toys <N>

The first command evaluates the observed test statistic and the second determines the distribu-
tion of the test statistic under the null hypothesis using pseudo-data sets. The statistical model
parameters used to specify the null hypothesis can be set using the -——setParameters option.

All of the supported test statistics are based on binned data. For statistical models that in-
clude parametric shape analyses, an automatic binning is applied to the data to evaluate the
probability density and calculate the test statistic, unless a specific binning is specified for the
observables using the RooAbsReal: :setBinning method. The following test statistics for
the ——algo option are supported in COMBINE:

e saturated: evaluates a GoF test statistic defined as
L(P)

t=-21 ,
n s

(37)

where i runs over all bins and L represents the likelihood for the saturated model [53].

e KS: evaluates the Kolmogorov—-Smirnov test statistic [19, 54, 55], based on the largest
difference between the cumulative distribution function and the empirical distribu-
tion function across all bins in all channels.

e AD: evaluates the Anderson-Darling test statistic based on the integral of the dif-
ference between the cumulative distribution function and the empirical distribution
function across all bins in all channels. This test statistic gives more importance to
the tails of the distribution in data [56, 57].
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The output TTree contains a branch called 1imit that contains the value of the test statistic
in each pseudo-data set if running with the option ——toys, or from the observed data. These
can be used to determine a p-value under the null hypothesis. Figure 8 shows the distribution
of the saturated test statistic t in pseudo-data sets using the statistical model constructed by
COMBINE from Datacard 2 with default nuisance parameter values. The p-value is 0.73 and
is computed from the distribution and the observed value of t. In this example, the template
analysis in Datacard 2 was used to generate pseudo-data sets and calculate the corresponding
p-value. The distribution of the test statistic has a peak close to the number of bins for the
observable in the datacard, which is expected for this test statistic. The method of pseudo-data
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Figure 8: Distribution of the saturated test statistic ¢ in 10,000 pseudo-data sets using Data-

card 2. The observed value of the test statistic is indicated by the black vertical line and the
region used to determine p is indicated by the light gray shaded region.

generation can be modified using the options described in Section 6.3.

The ChannelCompatibilityCheck method is used to evaluate the compatibility between
measurements of the signal rate in the N, separate channels defined in the statistical model.
The method can be used with the default physics model and calculates the value of

_ L(7)
1= 2 ) Y

c

where each r; multiplies the rate of all signal processes in a specific channel i, and 7 denotes the
maximum likelihood estimate.

The channel compatibility of the multi-signal Higgs boson analysis from Datacard 5 can be
calculated using the command line below:

'$ combine datacard-5-multi-signal.txt -M ChannelCompatibilityCheck --mass 125

The output from these commands is given below:

> -——— ChannelCompatibilityCheck -——
> Nominal fit : r = 1.4812 -0.5987/+0.6644
> Alternate fit: r = 3.5554 -1.8576/+2.3619 in channel dijet
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> Alternate fit: r = 1.1506 -0.6393/+0.6939 in channel incl
> Chi2-like compatibility variable: 1.5417
> Done in 0.00 min (cpu), 0.02 min (real)

These results are not expected to match those from the maximum likelihood estimates for the
parameters rgo1y and rqqy as the parameters in that model are related to the process signal
multipliers instead of multipliers for the total signal in each channel. The compatibility variable
in the output is the value of 4. Assuming the values of #; are normally distributed, this quantity
can be converted to a p-value p = fqoo x%(x; N, — 1) dx where x? is a chi-squared distribution

with N, — 1 degrees of freedom.

The output TTree contains the value of g in the 1imit branch. If the option ——saveFitResu
1t is specified, the output ROOT file also contains two RooFitResult objects fit_nominal,
and fit_alternate with the results of the two maximum likelihood optimizations used to
calculate the numerator and denominator in g, respectively.

The FitDiagnostics method provides a number of diagnostic routines to investigate the
statistical model. The method can be used with the default physics model and performs two
optimizations of the parameters ® that maximize the function £(®), the first with the param-
eter of interest r allowed to vary and the second with r set at a constant value of zero. The
output TTree contains the maximum likelihood estimator for r and an estimate of its uncer-
tainty. In addition to the usual output file, an additional ROOT file is produced with the name
fitDiagnostics$NAME. root. This file contains additional details about the optimizations
performed that can be used to investigate the statistical model and the optimization procedure,
the details of which are given in Table 6.

In addition to maximum likelihood estimates for all of the model parameters, these results con-
tain estimates of their uncertainties. By default, the uncertainties for all nuisance parameters

A
5

Av are estimated as Av, = H,gcl, where Hj; is the Hessian matrix of q(p),

A
T ovavi|g_g

, (39)

where @ are the maximum likelihood estimates of the statistical model parameters. The accu-
racy can be improved by including the option --minos all, which determines the uncertainty
for each nuisance parameter as,

Ay = [vE -1, (40)

where the range (v—,v") is determined as the region for which g(v) < 1/2, similar to the
singles algorithm described in Section 6.7.

The results contained in this file can be used to study the additional constraints imposed by the
observed data by considering the difference between the maximum likelihood estimates of the
nuisance parameters (“post-fit”) and their uncertainties compared to their default (“pre-fit”)
values.

The FitDiagnostics method can also be used to calculate nuisance parameter impacts [58]
for statistical models with multiple parameters of interest, defined with respect to any particu-
lar parameter of interest u for each nuisance parameter v; as,

A = (0 £ 0%y) — 1, (41)

where fi(v, + Aki) is the value of y that maximizes the likelihood function when the nuisance
parameter is shifted from its maximum likelihood estimator value by its uncertainty. Large
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Table 6: Additional output file contents from the FitDiagnostics method.

Object

Description

nuisances_prefit

fitb

fit_s

tree_prefit

tree_fit b

tree_fit_sb

RooArgSet containing the default values of ¥/, and their
uncertainties estimated from their probability distribu-
tions.

RooFitResult object containing the outcome of the
maximum likelihood optimization with r fixed to zero.

RooFitResult object containing the outcome of the
maximum likelihood optimization with r allowed to
vary.

TTree of default values of V and ¥.

TTree of maximum likelihood estimates /(0) and values
of i from the maximum likelihood optimization fixing r
to zero.

TTree of maximum likelihood estimates i/ and values of
i from the maximum likelihood optimization allowing r
to vary.

Objects below are present only if the option ——plots is included.

covariance_fit b

covariance_fit_s

channel observable prefit

channel_observable_fit b

channel_observable_fit_s

TH2D covariance matrix of the parameters from the max-
imum likelihood optimization fixing r to zero.

TH2D covariance matrix of the parameters from the max-
imum likelihood optimization allowing r to vary.

RooPlot plot of the probability density, normalized to
the yield in data, projected onto each observable in each
channel along with a histogram of the data. The statisti-
cal model parameters are set to their default values.

Same as channel_observable_prefit,exceptthe sta-
tistical model parameters are set to their maximum like-
lihood estimates from the optimization fixing r to zero.

Same as channel_observable_prefit,except the sta-
tistical model parameters are set to their maximum likeli-
hood estimates from the optimization allowing r to vary.
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impacts typically result from nuisance parameters that contribute significantly to the total un-
certainty in y and the sign of the impact indicates the sign of the (anti-)correlation between
the parameter of interest and that nuisance parameter. These impacts provide diagnostic infor-
mation that encapsulates both the constraints imposed on the nuisance parameter by the data
and the correlation of that nuisance parameter with a particular parameter of interest. Figure 9
shows the impacts for the default physics model parameter r calculated in the statistical anal-
ysis leading to the observation of four top quark production by the CMS Collaboration [22].
These impacts are calculated using both the observed data set (“obs.”) and an Asimov data
set constructed assuming standard model production of four top quarks to obtain the expected
(“exp.”) impacts.

By including the option —-saveShapes with this method, COMBINE saves additional ROOT
TH1F histogram objects in the output file. These represent the contributions from each pro-
cess in each channel of the statistical model evaluated at the default values of the param-
eters, and at the maximum likelihood estimates from the two optimizations. This allows
a visualization of the pdfs of the primary observables at the pre-fit and post-fit values of
the statistical model parameters individually for each process and each channel. For statis-
tical models that include parametric shape analyses, an automatic binning is used to con-
struct the histograms unless a particular binning is specified for the observables using the
RooAbsReal: : setBinning method. The total signal, total background, and total contribu-
tions in each channel are also saved as separate TH1F histogram objects. By adding the option
--saveWithUncertainties, the output also includes estimates of the covariance between
each of the bin yields, accounting for any correlations between the parameters of the statistical
model. This is achieved using the RooFitResult: :randomizePars () method from the re-
sults of the optimization. Figure 10 shows the distribution of the observable x for the data and
the background process in Datacard 2 using the default physics model. The uncertainties are
estimated by sampling from the distributions p(v|y) in the pre-fit case and from the covariance
matrix of the model parameters obtained from a fit to the data shown assuming r = 0 (post-fit).
The change in the expected number of events in each bin A and their uncertainties AA visually
indicate the additional constraint imposed by the data on the statistical model parameters.

The FitDiagnostics method can be run with the ——toys option such that the process nor-
malization and bin yields in each channel resulting from each of the two optimizations per-
formed using pseudo-data sets are stored, allowing for more detailed studies of the statistical
model.

7 Summary

After a decade of development, the COMBINE package has become the main tool used for statis-
tical analysis of data by the CMS Collaboration. The tool is based on the ROOT [1], ROOFIT [2],
and ROOSTATS [2] software packages to provide a command-line interface to several common
statistical workflows used in high-energy physics. The statistical model is constructed from a
text file provided by the user and a configurable physics model that encodes the parameters of
interest and the nuisance parameters that model systematic uncertainties. The COMBINE pack-
age can perform a variety of statistical procedures including calculating confidence or credible
intervals, evaluating profile likelihoods, and performing goodness of fit tests. The online doc-
umentation [12] contains comprehensive information on the capabilities and instructions for
running the COMBINE package, as well as detailed instructions for its installation.
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—e— Fit constraint (obs.) —— +1 SD impact (obs.) —— -1 SD impact (obs.)
[ Fit constraint (exp.) [ +1 SD impact (exp.) [ -1 SD impact (exp.) CMS

b tagging efficiency (b jets)

b tagging efficiency (c jets, linear)
JES: Absolute (corr.)

Additional b jets in ttW

Additional jets in ttW

Normalization ttZ

Matrix-element scale variations (ittt)
b tagging efficiency (c jets, quadratic)
b tagging efficiency (light)
Normalization ttw

JES: Relative Sample (2018)
Additional b jets in ttH

MC stat. in bin 2 of SR-27 u tttt (2017)
JES: Flavor QCD (bottom)

Final-state radiation scale
Matrix-element scale variations (ttW)
MC stat. in bin 3 of SR-3¢ tttt (2016)
Initial-state radiation scale (tttt)

Matrix-element scale variations (ttH)

Initial-state radiation scale (t_tW)

Figure 9: Example of nuisance parameter uncertainties and impacts calculated in COMBINE for
the observation of four top quark production. Each row gives the name of the nuisance param-
eter, the difference in its maximum likelihood estimate 7 with respect to its default value v,
relative to its uncertainty Av, and the impact with respect to the default physics model param-
eter Ar. The nuisance parameter constraints and impacts are calculated using the observed data
set (obs.) and an Asimov dataset constructed assuming standard model production of four top
quarks (exp.). The red and blue lines in each row represent the positive impact Ar" and nega-
tive impact Ar~, respectively, for the observed data. Similarly, the red and blue shaded boxes
represent the same quantities for the Asimov dataset. The error bars on the fit constraint values
indicate the ratio of A~v or AT v, to their default values. The two numerical values displayed
in the figure give the value of ﬁfﬁ:‘/’ for two rate parameters, which do not have well-defined
default uncertainty values. Figure adapted from Ref. [22].
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Figure 10: Distributions of the observable x for the data and background process in Datacard 2
and their uncertainties. The upper panel shows the distribution for the default values of the
nuisance parameters (red solid line, pre-fit) and for the maximum likelihood estimates assum-
ing no signal (blue dashed line, post-fit). The pink hatched and blue shaded bands show the
estimate of the uncertainty in each bin for the pre-fit and post-fit distributions, respectively. The
middle panel shows the difference between the expected number of events in the background
processes (A) and the data (1) in the pre-fit (red solid line) and post-fit (blue dashed line) cases,
and the lower panel shows the ratios of the estimated uncertainties of the post-fit distribution
AAPstit o the pre-fit AAT™ i in each bin.
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