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Abstract

An approach to modeling the dynamics of x-ray amplified spontaneous emission and

superfluorescence—the phenomenon of collective x-ray emission initiated by intense pulses of X-ray

Free Electron Lasers—is developed based on stochastic partial differential equations. The equations

are derived from first principles, and the relevant approximations, derivation steps, and extensions

specific to stimulated x-ray emission are presented. The resulting equations take the form of three-

dimensional generalized Maxwell-Bloch equations augmented with noise terms for both field and

atomic variables. The derived noise terms possess specific correlation properties that enable the

correct reconstruction of spontaneous emission. Consequently, the developed theoretical formalism

is universally suitable for describing all stages of stimulated x-ray emission: spontaneous emission,

amplified spontaneous emission, and superfluorescence. We present numerical examples that illus-

trate various properties of the emitted field, including spatio-temporal coherence, spectral-angular

and polarization characteristics. We anticipate that the proposed theoretical framework will estab-

lish a robust foundation for interpreting measurements in stimulated x-ray emission spectroscopy,

modeling x-ray laser oscillators, and describing other experiments leveraging x-ray superfluores-

cence.
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I. INTRODUCTION

X-rays are naturally suited for studying the dynamical structure of matter with atomic

resolution and on sub-femtosecond timescales. X-ray Free Electron Lasers (XFELs) [1–5]

create a paradigm shift, opening the realm of exploring high-intensity, nonlinear x-ray–

matter interaction phenomena. The bright and femtosecond-short XFEL pulses can drive

matter into previously unexplored, highly excited states, enabling unique insights into its

structure and dynamics [6–11].

For instance, focused XFEL beams can prepare atoms in a state of sizeable population

inversion of core-valence transitions through rapid inner-shell photoionization. In the optical

domain, a medium that is kept in a population-inverted state and placed in a resonator forms

a classical laser oscillator. In the x-ray domain, sustaining a steady state of population

inversion is hampered by fast decay processes on the femtosecond timescale. We consider

the case of a transient population inversion produced by a short x-ray pulse traveling through

a pencil-shaped medium. The x-ray emission process starts from isotropic, spontaneous x-

ray fluorescence, which, upon propagating through the excited medium, is exponentially

amplified until saturation, resulting in short, directed x-ray emission bursts. We later refer

to the exponential amplification regime as the amplified spontaneous emission (ASE) regime

and the saturation as the superfluorescence (SF) regime.

Soft x-ray SF was first realized in Ne gas [12, 13], with the observed emission also referred

to as atomic x-ray lasing. Subsequent experiments demonstrated hard x-ray SF for solid

targets [14, 15] and liquid jets [16, 17]. Several applications for these types of x-ray pulses

have been proposed. The directivity and high intensity of SF pulses facilitate high signal-to-

noise ratio measurements, beneficial in x-ray spectroscopy. As experimentally demonstrated

in [16], chemical shifts are preserved in stimulated x-ray emission spectroscopy (sXES). Fur-

thermore, it has been shown that weaker x-ray emission lines can be seeded and selected

from other lines [17]. The development of these sXES techniques is one of the future direc-

tions at XFELs [9]. Furthermore, x-ray SF may be used as a source of x-ray radiation with

unique characteristics. In [15], it was demonstrated that employing a SASE XFEL pump

pulse can result in double-pulse x-ray SF. Further improvement of this technique may create

x-ray sources needed for coherent nonlinear spectroscopy techniques [18]. In Ref. [19], a

lasing medium, operating in hard x-ray ASE or SF regimes, is considered in a Bragg cavity,
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with the ultimate goal of forming an X-ray Laser Oscillator (XLO) resulting in spatially

and temporally coherent x-ray pulses, with properties comparable to planned cavity-based

XFEL pulses [20–23].

The interpretation of sXES data and modeling of x-ray SF-based sources strongly benefit

from predictive, quantitative modeling. In general, the phenomenon can be considered as a

particular case of superradiance, which historically attracted significant interest [24–26]. A

full quantum description of the interaction between the continuum of electromagnetic field

modes and an ensemble of few-level emitters can be performed for certain particular cases,

assuming the permutational invariance of emitters [27–29] or restricting the evolution to

early times [30, 31]. However, these methods cannot be directly applied to our setting since

we are interested in systems containing ∼ 1012 emitters. Therefore, we opt for a coarse-

grained description of the problem, approximating the ensemble of atoms as a continuous

medium. Our approach encompasses, in the general case, the dynamics of pumping and

building up the transient population inversion, the initial stage of spontaneous emission,

subsequent propagation and diffraction of the amplified emitted field, and the dynamics

in the nonlinear saturation regime. If quantum properties of the electromagnetic field can

be neglected, the description can be done with the help of optical Maxwell-Bloch (MB)

equations [32]. However, in the case of SF, no atomic coherences nor emitted fields are

initially present, hence homogeneous MB equations lack the source of spontaneous emission.

Combining the MB equations with quantum effects triggering SF is necessary.

A rigorous description of both quantum and classical effects, e.g. diffraction, is possible

in the ASE regime. In this case, the emitted fields are not strong enough to cause a change

in the population inversion, and the equations for field and atomic operators become linear.

Under these conditions, analytical expressions for emitted field properties can be derived for

various shapes of the inverted medium [33–35]. Once the emitted field becomes strong, the

ASE regime transforms into the SF regime where nonlinear effects play an important role,

and the quantum fluctuations have negligible contributions. In the case of instantaneous

excitation of atoms, the influence of quantum fluctuations can be represented by a suitable

distribution of initial conditions for the MB equations. In two-level systems, the distribution

of initial conditions can be mapped onto the distribution of tipping Bloch-vectors from the

pole of the Bloch sphere [25, 36]. The numerical modeling of SF including diffraction effects

is possible in paraxial approximation [25, 37] as well as within rigorous finite-difference
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time-domain methods [38, 39]. However, in the x-ray domain, the rapid depopulation of the

core-excited states on fs timescale due to the Auger-Meitner and radiative decays limits the

approximation of instantaneous excitation. In this case, pumping, decay, and SF take place

on the same time scale. In addition, different regions of the medium may experience evolution

in different regimes—e.g., the central part may experience saturation, while the edges may

be still within ASE. Hence, a formalism that enables a uniformly-suitable description of

both quantum spontaneous emission and semi-classical MB-like behavior is needed.

It is possible to modify semi-classical equations in a phenomenologic way to include quan-

tum effects responsible for spontaneous emission, by for example augmenting the MB equa-

tions with noise terms in the field equations [40], or in the atomic equations [41], by including

stochastic relaxation terms in the atomic equations and performing rescaling of the electric

field—so-called Ehrenfest+R method [42, 43], and other ways [44, 45]. However, since those

methods are not derived from the first principles, they possess certain limitations. Among

those methods, the approach based on augmenting the MB equations with phenomenological

noise terms [41] is widespread and has been applied for a series of applications [15, 16, 46–

50]. This approach has the same computational complexity as MB equations and describes

well the nonlinear dynamics in the saturation stage, however, has deficiencies in the descrip-

tion of the initial spontaneous-emission-dominated stage. Namely, the resulting temporal

profile of the spontaneous emission is not reproduced correctly [51, 52]. A correct descrip-

tion of the spontaneous emission and cross-over to MB equations can be realized based on

solving equations for the correlation function of the field and atomic coherences [52]. This

approach has been applied to several systems [53, 54], but is computationally costly, since

two-point quantities need to be computed. Moreover, extending this approach beyond two-

level systems is challenging since the factorization of higher-order correlation functions into

one-point and two-point correlation functions—which is crucial to obtain a closed system of

equations—becomes problematic even for the three-level systems.

In this paper, we present an approach that is general enough to describe spontaneous

x-ray emission, ASE, and SF under realistic conditions and is free from uncontrollable ap-

proximations. We build on the formalism presented in paper [55], and apply it to the case

of lasing in copper atoms. We consider a typical XFEL pump pulse and parameters of

the medium that result in pencil-shaped geometry. In this case, we can apply the paraxial

approximation and—due to a short pump-pulse duration as well as rapid level decay com-
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pared to the propagation time—neglect the back-propagating wave and thus take advantage

of using a co-moving frame by the concept of retarded time. Under these simplifications,

we obtain equations in the structure similar to MB augmented with noise terms. The de-

rived noise terms possess non-trivial correlation properties and can correctly reproduce the

spontaneous emission.

In practical applications, when sampled in a Monte Carlo fashion, the proposed formalism

can often result in diverging statistical realizations, a characteristic shared with similar

phase-space methods [56–58]. In this article, we introduce an empirical modification designed

to mitigate this divergent behavior. A more rigorous strategy addressing this issue will be

explored and detailed in subsequent publications.

The paper is organized as follows: In Sec. II, we formulate the master equation for Cu-Kα1

lasing in a pencil-shape medium. Specific details about the pumping, decay, and decoherence

processes can be found in Appendices A and B. In Sec. III, the master equation is converted

into a system of stochastic differential equations. In Appendix H, the numerical scheme for

solving these equations is presented. Finally, in Sec. IV, we give an example of numerical

modeling and discuss the relationship between the output of the stochastic equations and

the physical observables of interest.

II. PROBLEM STATEMENT

A. Resonant interactions with the light

We consider an ensemble of many-level atoms in free space interacting through the quan-

tized electromagnetic field. Each atom bears its own index a, to differ from the others. Its

inner structure is characterized by a set of levels {|p〉} and energies ~ωp. The free Hamilto-

nian of atom a has the following form

Ĥa =
∑

p

~ωa,pσ̂a,pp, (1)

Here, we introduce operators σ̂a,pq = |p〉a〈q|a that measure the occupations and transitions

between states of a particular atom a.

Prior to being excited by, for example, an XFEL beam, the atoms are in their ground

state. Being ionized, the atoms start interacting with each other through the quantized

5



electromagnetic field, resonant to the open transitions. The Hamiltonian of the field reads

Ĥf =
∑

k,s

~ωkâ
†
k,sâk,s. (2)

Each mode of the field is characterized by a wave vector k, frequency ωk = |k|c, and

polarization vector es. The pumping by a focused XFEL beam typically results in a pencil-

shaped geometry of the excited medium. According to Ref. [59], for Gaussian beams with

beam waist w0 > 100λ (λ is radiation wavelength), the difference between the solutions of

full Maxwell equations and the paraxial scalar wave equations is less than a few percent.

Since the XFEL focus size—even for the best x-ray focusing optics—is much larger than

the wavelength [60, 61], we can use the paraxial approximation. In this case, the field

propagating in the medium includes only the paraxial modes whose wave-vectors k are close

to the central carrier wave vector k0 = ω0/c. Its propagation direction is denoted as z. The

polarization vectors es remain independent of the wave-vectors k and are orthogonal to the

z-axis, forming the basis for a two-dimensional space. In this article, we employ right- and

left-hand circular polarized Jones vectors as the chosen polarization basis (see Ref. [62]):

e−1 = (ex − iey)/
√
2,

e+1 = (ex + iey)/
√
2.

In addition to the field propagating along the z-axis, the atoms exhibit isotropic spon-

taneous emission. This phenomenon cannot be accurately analyzed using the paraxial ap-

proximation. Given the negligible interaction of this emission with the medium, we exclude

it from the field variable and consider it solely in the context of the lifetimes of the excited

states. See Sec. II B for more details.

The light is assumed to be resonant with the two manifolds of atomic levels: upper levels

{|u〉}, and lower levels {|l〉}, whose transition energies ωuu′ = ωu − ωu′ and ωll′ = ωl − ωl′

are assumed to be much smaller than the carrier frequency ω0. We reserve the indices u and

l for the upper and lower states, respectively. For the numerical example, we will consider

the level scheme corresponding to the Kα1 transition of Cu atoms and stimulated emission

following 1s ionization. SF on this transition was observed in [14]. The Cu-Kα1 transition is

a candidate for the first implementation of the x-ray laser oscillator concept [19]. To address

the polarization properties of the emitted field, we have to explicitly treat the degenerate

sublevels with different magnetic numbers. The manifolds of upper and lower levels have
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FIG. 1: Illustration of the Kα1 system within a copper atom. Upper states 1s−1
1/2

experience radiative decay to lower states 2p−1
3/2 at a spontaneous rate Γrad., and are

coupled by two radiation modes (Ω±1). All ionic states are generated through nonresonant

photoionization from the ground state (p
(pump)
i ). These ionic states can subsequently decay

either spontaneously (ΓK,ΓL3
) or via photoionization triggered by the pump and emitted

fields (Γ(ion.)).

the following explicit form

{u} =
{

1s 1

2
,m=− 1

2
, 1s 1

2
,m= 1

2

}

,

{l} =
{

2p 3

2
,m=− 3

2
, 2p 3

2
,m=− 1

2
, 2p 3

2
,m= 1

2
, 2p 3

2
,m= 3

2

}

.
(3)

The considered level scheme is sketched in Fig. 1.

The dynamics of the atomic populations is supposed to be incomparably slower than the

oscillations of the field; therefore, we neglect all non-resonant interactions. Based on these

assumptions, we write the following interaction Hamiltonian:

V̂ = −ig0~
∑

a,u,l

dulσ̂a,ul
∑

k,s

âk,sese
ikra + h.c., (4)

where the indices u and l represent the upper and lower states, g0 =
√

ω0/2V ~ε0, V is

the quantization volume, dpq are the matrix elements of the dipole moment operators, and

ra is the coordinates of atom a. The size of the atoms is typically assumed to be small

in comparison with the wavelength of the electromagnetic field in the system, allowing the

application of the dipole approximation. In the case of Kα transitions, the wavelength is

comparable to the atom size; however, it is still much larger than the overlap between atomic

orbitals involved in Kα transitions. In this case, the dipole approximation could be used as

well.
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We decompose dul into the product of the reduced dipole moment d0 [63] and dimension-

less coefficients Tul,s and Tlu,s:

dules = d0Tul,s, dlue
∗
s = d0Tlu,s. (5)

The reduced dipole moment d0 defines the strength of the transition, whereas the coefficients

Tlu,s = T ∗
ul,s store the directional information and are proportional to Clebsch–Gordan coeffi-

cients. They can be calculated based on the Wigner-Eckart theorem (more in Appendix A 1):

{

Tul,s=1

}

=

2p 3

2
,m=− 3

2
2p 3

2
,m=− 1

2
2p 3

2
,m= 1

2
2p 3

2
,m= 3

2
( )

0 0 1/3 0 1s 1

2
,m=− 1

2

0 0 0 1/
√
3 1s 1

2
,m= 1

2

(6a)

{

Tlu,s=−1

}

=

2p 3

2
,m=− 3

2
2p 3

2
,m=− 1

2
2p 3

2
,m= 1

2
2p 3

2
,m= 3

2
( )

1/
√
3 0 0 0 1s 1

2
,m=− 1

2

0 1/3 0 0 1s 1

2
,m= 1

2

(6b)

where the index s describes the polarization of the emitted field and takes the values −1

or 1, corresponding to circular polarizations of the field traveling along the sample. The

remaining coefficients Tlu,s can be derived by conjugation, namely, Tlu,s = T ∗
ul,s. The transi-

tions corresponding to non-zero Tul,s and Tlu,s are depicted in Fig. 1. The analysis of possible

transitions shows that the considered Kα1 level scheme is equivalent to two Λ systems, com-

posed of levels
{

2p 3

2
,m=− 3

2
, 1s 1

2
,m=− 1

2
, 2p 3

2
,m= 1

2

}

and
{

2p 3

2
,m= 3

2
, 1s 1

2
,m= 1

2
, 2p 3

2
,m=− 1

2

}

. Each of

the Λ systems interacts with fields of both polarizations; as a result, in the general case,

neither field polarization modes nor the Λ systems can be decoupled from one another.

Finally, we note that by assuming g0 is independent of ω, we disregard dipole-dipole

interactions that can lead to decoherence between neighboring atoms. The effect of dipole-

dipole interactions is local and solely determined by the density of the atoms, while the

collective behavior of superfluorescence is mainly influenced by the total number of atoms. A

proper geometry of the system can minimize the loss of coherence. Consequently, neglecting

dipole-dipole interaction is well-justified for large, elongated systems.

B. Inclusion of the pump and decay processes

Superfluorescence in Cu is initiated by an intense and focused pump pulse with an x-ray

photon energy above the 1s ionization threshold. As a result, the Cu atoms are transferred
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from the neutral ground state to the core-ionized state, predominantly leaving the Cu atom

in the 1s−1
1/2 state. This state can decay radiatively to the 2p−1 manifold of states or undergo

other radiative processes, as well as Auger-Meitner decay. Eq. (4) with levels from Eq. (3)

describes the evolution of a small subsystem of atomic levels conditioned by the interaction

with the resonance and paraxial fields. Processes such as photoionization, Auger-Meitner

decay, fluorescence, electron-impact ionization, shake-off, and others that follow the irradia-

tion by an XFEL pulse [64] need to be incorporated. Since the paraxial fields do not include

all spontaneous emission, it is necessary to consider its impact at the level of lifetimes of the

excited states.

In addition to the states listed in Eq. (3), we also analyze the population of the neutral

ground state, which is required for describing the pumping via photoionization. To describe

the absorption of the pump pulse, we will consider the cumulative population of singly-

ionized states ρ(aux.)(r, τ) that are not explicitly mentioned in Eq. (3) (see Appendix A for

more details). The inclusion of pump, decay, and decoherence is typically performed in

Markov approximation with the help of a master equation [52, 65]. Assuming a separate

independent reservoir for each atom, the master equation is modified as follows:

dρ̂(t)

dt

∣

∣

∣

incoh.
= L̂incoh.[ρ̂(t)]

=
∑

i

p
(pump)
i (ra, t)σ̂a,i0ρ̂(t)σ̂a,0i + Γrad.

∑

ik

G
(rad.)
ik σ̂a,ikρ̂(t)σ̂a,ki

− 1

2

∑

i

Γi(ra, t) (ρ̂(t) σ̂a,ii + σ̂a,iiρ̂(t)) .

(7a)

Here, Γi(r, t) represents the inverse lifetime of the state |i〉. The non-stationary pump

field causes secondary ionization, subsequently making the lifetimes non-stationary as well.

Without the time-dependent contributions, Γu = 2.24 fs−1 and Γl = 0.96 fs−1, both of which

are comparable to the duration of the pump pulse. p
(pump)
i (r, t) represents the transition

rates from the neutral ground state |0〉 due to photoionization, G
(rad.)
ik describes spontaneous

radiative transitions between levels listed in Eq. (3), and Γrad. is the spontaneous radiation

emission rate calculated based on d0 and given by Γrad. = ω3
0d

2
0/3πε0~c

3. The explicit form

of these coefficients as well as further details on the implementation of incoherent processes

are discussed in Appendix A.

Finally, we consider the absorption of the quantized electromagnetic field through non-

resonant transitions. This can be described by the following additional terms in the master
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equation:

dρ̂(t)

dt

∣

∣

∣

absorp.
= L̂absorp.[ρ̂(t)]

=
c

2

∑

s

∫

dr
([

Âs(r)ρ(t), A
†
s(r)

]

+
[

Âs(r), ρ(t)Â
†
s(r)

])

µs(r, t).
(7b)

Here, µs(r, t) represents the absorption coefficients defined for each polarization s. These

coefficients are assumed to be small compared to resonance absorption. To simplify the nota-

tion, we introduce the operator Â(r) =
∑

k,s âk,sese
ikr
/√

V , defined in coordinate space. It

is important to note that µs(r, t) varies with time to account for changes in the atomic states,

which in turn affect the values of the cross-sections. The explicit form of the absorption

coefficient µs(r, t) can be found in Appendix A 6.

III. STOCHASTIC DIFFERENTIAL EQUATIONS

A. Stochastic variables

Understanding the evolution of a macroscopic ensemble of atoms coupled to a quantized

electromagnetic field is a complex and challenging topic. This complexity arises due to

the exponential growth in the number of degrees of freedom associated with the underlying

density matrix. In the study of superfluorescence in compact systems [55], the density matrix

is represented as a factorized product of one-particle density matrices, with the dynamics of

these individual one-particle density matrices described by Bloch equations. To account for

collective many-body effects, additional noise terms are introduced. Each realization of these

noise terms yields a distinct density matrix, and the average of different density matrices

restores quantum effects, accurately reproducing the phenomenon of collective spontaneous

decay in compact ensembles of atoms.

Simplifying the analysis of superfluorescence in compact systems involves tracing out the

field degrees of freedom, leading to a parametrization that includes only atomic variables.

However, in elongated systems, explicit consideration of the propagation of the field becomes

necessary. The parametrization from Ref. [55] is extended to include the field variables:

ρ(t) =
〈

∏

a

ρ̂a(t)
∏

k,s

Λ̂(αk,s(t), α
†
k,s(t))

〉

. (8a)
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Here, each atom is characterized by a one-particle density matrix ρ̂a:

ρ̂a =
∑

p,q

ρa,pq(t)σ̂a,pq. (8b)

To incorporate the electromagnetic field, we draw inspiration from the concept of positive

P representation (see Refs. [56, 57] for more details). We expand the field in the basis of

coherent states |αk,s(t)〉. In the density matrix formalism, the coherent states are combined

into normalized projectors Λ̂(α, α†):

Λ̂(α, α†) = |α〉 〈α†∗| exp
(

−α†α +
|α|2
2

+
|α†|2
2

)

. (8c)

The evolution of the one-particle density matrices ρa,pq(t) and field mode amplitudes αk,s(t)

and α†
k,s(t) is governed by stochastic differential equations, which will be introduced later.

The presence of noise terms in these equations allows for the restoration of quantum many-

body effects. Different realizations of the noise terms lead to different density matrices

whose average is represented by the angle brackets in Eq. (8). While the constituent density

matrices can be factorized, the resulting combination cannot be represented by a direct

product.

The variables αk,s(t) and α†
k,s(t) represent the field in reciprocal space. To analyze the

propagation effects, we combine these variables into slowly varying electric field amplitudes

denoted as Ω
(±)
s (r, t). In terms of Rabi frequency, these amplitudes have the following form:

Ω(+)
s (r, τ) = id0

∑

k

g0αk,s(τ + z/c)eikr+iω0τ , (9a)

Ω(−)
s (r, τ) = −id0

∑

k

g0α
†
k,s(τ + z/c)e−ikr−iω0τ . (9b)

Here, we have introduced the retarded time τ = t−z/c, which conveniently incorporates the

propagation effects. Additional information regarding the transition to the retarded time is

provided in Appendix E.

For K-α transitions in period-IV elements, the transient core-shell population inversion

state created by the pump pulse relaxes on a femtosecond timescale due to the Auger-

Meitner effect and x-ray fluorescence. As a result, the non-trivial dynamics of the atomic

variables is mostly conditioned by the presence of the pump fields. For typical media of

interest, such as solution jets and solid samples, the typical thickness of the medium is on
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the order of 100 µm, while the pump length is on the order of c × 10 fs, or about 3 µm.

In the context of the original coordinates, the moving pump fields cover a narrow diagonal

strip in the (z, t)-plane. To avoid simulating the trivial dynamics outside of this strip, it

is convenient to substitute the original time t with the retarded time τ = t − z/c. In the

(z, τ)-plane, the pump and SF pulses remain stationary, and the region of relevant dynamics

is compressed into a narrow horizontal strip. Consequently, introducing retarded time helps

save computational resources.

Finally, numerical simulations assume discretizing the dynamic variables on a grid. A

finite grid step implies that we expect the variables to change slowly between neighboring

nodes of the grid. When using the original time parameter t, the size of the coordinate grid

step must be comparable to the time step due to the finite speed of light; otherwise, atoms

within a single coordinate step may not evolve uniformly. However, when employing the

retarded time parameter τ , it conveniently accounts for propagation phenomena, and the

coordinate step becomes constrained by other factors, such as amplification by an inverted

medium.

By analogy to the field variables in Eq. (9), we intend to redefine Γi(r, t), p
(pump)
i (r, t),

and µs(r, t) involved in Eq.(7) in terms of the retarded time τ . We perform the following

substitution:

Γi(r, τ + z/c) Γi(r, τ),

p
(pump)
i (r, τ + z/c) → p

(pump)
i (r, τ),

µs(r, τ + z/c) µs(r, τ).

(10)

We will consistently use these redefined variables throughout the article.

In Appendix F, we show that closely situated atoms can be grouped into collective vari-

ables. We divide the medium into small regions with a volume ∆V and define collective

variables for each region. Given the assumption of a small ∆V , the resulting variables can

be treated as continuous:

1

∆V

∑

a∈∆V

ρa,u1u2
(τ + za/c) → ρu1u2

(r, τ), (11a)

1

∆V

∑

a∈∆V

ρa,l1l2(τ + za/c) → ρl1l2(r, τ). (11b)

Here, the indices ui and li represent the upper and lower states. For the coherences between
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the upper and lower states, we have to account for the frequently oscillating factor e−iω0τ :

1

∆V

∑

a∈∆V

ρa,ul(τ + za/c)e
iω0τ → ρul(r, τ), (11c)

1

∆V

∑

a∈∆V

ρa,lu(τ + za/c)e
−iω0τ → ρlu(r, τ). (11d)

In order to describe spontaneous emission, the equations for the atomic and field variables

will incorporate elementary noise terms fs(r, τ), f
†
s (r, τ), gs(r, τ), and g†s(r, τ). The first

pair is statistically independent of the second pair. fs(r, τ) and f †
s (r, τ) possess distinct

correlation properties as follows:

〈fs(r, t)fs′(r′, τ ′)〉 = 〈f †
s (r, τ)f

†
s′(r

′, τ ′)〉 = 0, (12a)

〈fs(r, τ)f †
s′(r

′, τ ′)〉 = δss′δ(z − z′)δε(τ − τ ′)δε(r⊥ − r′⊥). (12b)

Similar stochastic characteristics apply to both gs(r, τ) and g†s(r, τ). The presence of the

delta-function δ(z−z′) simply reflects Ito’s interpretation of integration along the z-axis (see

Appendix C). Furthermore, δε(τ−τ ′) is a localized function serving a purpose similar to that

of a delta-function. Its width is determined by 1/[c∆kz], where ∆kz represents the range of

longitudinal wave-vectors required for an accurate field representation. In a similar fashion,

the width of the transverse correlator is determined by the range of relevant transverse modes

required for an accurate representation of the paraxial fields. Consequently, δε(r⊥ − r′⊥) is

a bell-shaped function with a waist of ∼ λ0/
√
∆o, where ∆o represents the solid angle

encompassing the paraxial modes. For more detailed information, refer to Appendices E

and F.

B. Stochastic Bloch equations

The detailed derivations of the equations presented in this section can be found in Ap-

pendices D, E, and F. The Ito stochastic differential equations for ρpq(r, τ) have the form of

a semi-classical Bloch equations with additional noise terms. Their incoherent parts read as

follows:

∂

∂τ
ρpq(r, τ)

∣

∣

∣

incoh.
=− (Γp(r, τ) + Γq(r, τ))ρpq(r, τ)/2

+ δpq

(

p(pump)
p (r, τ)ρ(ground)(r, τ) + Γrad.

∑

k

G
(rad.)
pk ρkk(r, τ)

)

,
(13a)
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where ρ(ground)(r, τ) represents the population of the neutral ground state |0〉. The following
terms capture the unitary evolution:

∂

∂τ
ρpq(r, τ)

∣

∣

∣

unitary
=− i∆ωpqρpq(r, τ)

+ i
∑

r,s

[

Ω(+)
s (r, τ)

(

Tp>r,sρrq(r, τ)− ρpr(r, τ)Tr>q,s

)

+ Ω(−)
s (r, τ)

∑

r

(

Tp<r,sρrq(r, τ)− ρpr(r, τ)Tr<q,s

)

]

,

(13b)

where p > q means that index p corresponds to the subset of upper states {|u〉} whereas

index q corresponds to the subset of lower states {|l〉}. Additionally, we have introduced

the following energy differences:

∆ωuu′ = ωu − ωu′ ,

∆ωul = ωu − ωl − ω0,

∆ωlu = ωl − ωu + ω0,

∆ωll′ = ωl − ωl′ ,

where the indices u and l represent the upper and lower states. In order to describe the

spontaneous emission, we introduce the following stochastic terms:

∂

∂τ
ρpq(r, τ)

∣

∣

∣

noise
=
∑

s

(

∑

r

ρpr(r, τ)Tr>q,s − ρpq(r, τ)
∑

u,l

Tul,sρlu(r, τ)

)

g†s(r, τ)

+
∑

s

(

∑

r

Tp<r,sρrq(r, τ)− ρpq(r, τ)
∑

u,l

Tlu,sρul(r, τ)

)

f †
s (r, τ),

(13c)

that involve f †
s (r, τ) and g†s(r, τ) defined in Sec. III A. In addition to the previously men-

tioned approximations, we disregard contributions from Eq. (13c) that exhibit a quadratic

dependence on the atomic variables ρpq(r, τ). These terms are proportional to the coherences

ρlu(r, τ) and ρul(r, τ), which are notably smaller when compared to the atomic populations

during the pump stage. The coherences ρlu(r, τ) and ρul(r, τ) gain significance only after

substantial growth of the SF field. Given that noise terms play a critical role only in the

initial stages when a strong SF field has not yet developed, it is justifiable to omit the

quadratic terms.
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C. Stochastic wave equations for the field amplitudes

Similarly, the field variables are governed by traditional wave equations augmented by

noise terms. These equations are linear, allowing for the decomposition of Ω
(±)
s (r, τ) into

two components:

Ω(±)
s (r, τ) = Ω

(±)
s, det.(r, τ) + Ω

(±)
s, noise(r, τ), (14a)

where Ω
(±)
s, det.(r, τ) are influenced by the initial conditions and deterministic parts, while

the noise components Ω
(±)
s, noise(r, τ) are driven by the noise terms fs(r, τ) and gs(r, τ). The

specific equations for these two components are given by:

[

∂

∂z
− i

2k0

(

∂2

∂x2
+

∂2

∂y2

)

+
µs(r, τ)

2

]





Ω
(+)
s, det.(r, τ)

Ω
(+)
s, noise(r, τ)



 = (14b)

i
3

8π
λ20Γrad.





n(r)
∑

u, l Tlusρul(r, τ)

fs(r, τ)



 ,

[

∂

∂z
+

i

2k0

(

∂2

∂x2
+

∂2

∂y2

)

+
µs(r, τ)

2

]





Ω
(−)
s, det.(r, τ)

Ω
(−)
s, noise(r, τ)



 = (14c)

− i
3

8π
λ20Γrad.





n(r)
∑

u, l ρlu(r, τ)Tuls

gs(r, τ)



 ,

where the indices u and l represent the upper and lower states, n(r) is the concentration of

the atoms, and λ0 is the wavelength of the carrier mode. From a qualitative standpoint, the

atoms can be described as simultaneously carrying independent deterministic and stochastic

dipole moments, corresponding to ρul(r, τ) and fs(r, τ), respectively. The deterministic

dipoles give rise to the deterministic fields Ω
(±)
s,det.(r, τ), resembling solutions to traditional

Maxwell equations. In contrast, the stochastic dipole moments generate the stochastic fields

Ω
(±)
s,noise(r, τ).

It is crucial to emphasize that the right-hand side may encompass modes beyond the

scope of the paraxial approximation. To address this issue, damping is introduced to the

Laplace operator ∂2/∂x2+∂2/∂y2 for non-paraxial modes. By using spectral methods, damping

is implicitly implemented by considering a finite set of basis functions. Additionally, note

that the integration along the z-axis should be carried out using Ito’s interpretation.
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D. The structure of the noise terms

During the initial phase, when coherences or fields are absent, the deterministic terms in

Eq. (13b) are zero. However, the noise contribution for the coherences becomes non-zero if

the upper states are populated. Owing to the correlation properties detailed in Eq. (12),

the noise terms in the equations governing atomic variables remain uncorrelated, just as the

noise terms in the equations for field variables. Correlations solely manifest between the

noise terms associated with field and atomic variables. This property allows for the accurate

capture of the temporal profile of emitted radiation in the limit of pure spontaneous emission.

For a more in-depth exploration of this aspect, please refer to Section III F.

E. Expectation values

From a set of realizations of the stochastic variables, various expectation values can be

constructed. The atoms are characterized by the variables ρpq(r, τ), which are directly linked

to one-particle properties:

Tr [σ̂a,uu′ ρ̂(t)] = 〈ρa,u′u(t)〉 = 〈ρu′u(ra, t− za/c)〉, (15a)

Tr [σ̂a,ll′ ρ̂(t)] = 〈ρa,l′l(t)〉 = 〈ρl′l(ra, t− za/c)〉. (15b)

Constructing expectation values related to transitions between upper and lower states, it is

essential to restore the phase:

Tr [σ̂a,ulρ̂(t)] = 〈ρa,lu(t)〉 = 〈ρlu(ra, t− za/c)〉eiω0(t−za/c), (15c)

Tr [σ̂a,luρ̂(t)] = 〈ρa,ul(t)〉 = 〈ρul(ra, t− za/c)〉e−iω0(t−za/c). (15d)

Recall that the continuous variables ρpq(r, τ) represent the collective atomic properties in

the vicinity of coordinate r. To replace the discrete atomic variables ρa,pq(t), which pertain

to individual atoms, with their continuous analogs, we assume that the atomic variables

exhibit sufficient smoothness. Further details can be found in Appendix F.

Let us provide an example of obtaining two-particle properties. The correlations between

neighboring atoms can be measured by the product of their coherences as follows:

Tr [σ̂a,ulσ̂a′,l′u′ ρ̂(t)] = 〈ρa,lu(t)ρa′,l′u′(t)〉

= 〈ρlu(ra, t− za/c)ρul(ra, t− za/c)〉eiω0∆z/c.
(15e)
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Since the atoms are close to each other, we do not distinguish their coordinates when using

the slowly varying continuous variables. The distance between the atoms, ∆z = za − za′ , is

only involved in the frequently oscillating phase multiplier eiω0∆z/c.

To analyze the properties of the emitted fields, we define the following first-order corre-

lation functions:

Js(r, τ1, τ2) =
〈Ω(+)

s (r, τ1)Ω
(−)
s (r, τ2)〉

3
8π
λ20Γrad.

. (16)

Thanks to the properly chosen multiplier, Js(r, τ, τ) directly provides the photon flux:

Is(r, τ) =
dN

(ph.)
s (r, τ)

dtdS
= Js(r, τ, τ). (17)

F. Spontaneous emission within the stochastic methodology

The noise terms in the equations of motion manifest most prominently in the case of spon-

taneous emission. The evolution due to spontaneous emission can be modeled by assuming a

low atomic density, denoted as n(r), which reduces the chance of re-absorption. Practically,

this limit is addressed by retaining terms linearly dependent on n(r) in equation (16). It

still requires integration of the equations for the atomic variables. We neglect deterministic

parts of the fields Ω
(±)
s,det.(r, τ) in Eq. (13) as they are proportional to n(r). Consequently,

the equations become linear and can be straightforwardly integrated. Substituting the inte-

grated expressions for the atomic coherences ρul(r, τ) and ρlu(r, τ) into the field equations

(14) and utilizing the correlation properties in Eq. (12), we obtain:

Js(r, τ1, τ2) ≈
3

8π
λ20Γrad. e

−γdec.|τ1−τ2|

∫

n(r′)〈ρ(up.)s (r′,min(τ1, τ2))〉|Gs(r− r′)|2dr′, (18)

where we assume that the coherences decay with a rate γdec. = [Γu + Γl] /2. Gs(r) is the

Green function for the propagation of the emitted field. ρ
(up.)
s (r, τ) and ρ

(low.)
s (r, τ) are

defined as:

ρ(up.)s (r, τ) =
∑

u,u′,l

Tlusρuu′(r, τ)Tu′ls, (19a)

ρ(low.)
s (r, τ) =

∑

l,l′,u

Tulsρll′(r, τ)Tl′us, (19b)

where the indices u and l represent the upper and lower states. The difference between these

two values, ρ
(up.)
s (r, τ)− ρ

(low.)
s (r, τ), can be interpreted as an effective population inversion.
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For a more comprehensive explanation of how the noise terms accurately replicate spon-

taneous emission, please refer to the details provided in Appendix G.

IV. NUMERICAL EXAMPLES AND DISCUSSION

In this section, we provide a detailed demonstration of x-ray emission modeling, employ-

ing parameters closely aligned with the anticipated experimental conditions for the XLO

project outlined in Ref. [19]. To achieve a sizeable population inversion through rapid pho-

toionization, we require a high pump-pulse energy and strong focusing. We assume an

XFEL-pulse energy of 250 µJ, with the pump focused down to a 200 nm x 200 nm FWHM,

and the x-ray photon energy set at 9 keV (above the Cu K-edge). The temporal profile of

the XFEL pulse is conditioned by the self-amplified spontaneous emission (SASE) process

and is thus composed of a large number of randomly generated spikes [66]. However, for this

demonstration, we aim to disentangle the stochasticity inherent in the current simulation

approach from the SASE stochasticity. To achieve this, we use a Gaussian temporal profile

with an 11.7 fs FWHM.

As a medium that generates x-ray lasing, following [19], we consider a 270 µm thick jet of

8-molar solution of Cu(NO3)2 in water. Our calculations are performed on a 900 by 900 nm

spatial domain in the transverse direction, with 64 by 64 grid points, 40 grid points in the

longitudinal direction, and 180 points for the 37 fs long temporal moving window. Unless

otherwise stated, all numerical results shown are based on these parameters.

For technical details about the implementation of the numerical scheme, please refer to

Appendix H. We discretized the equations using a split-step method, where the noise and

deterministic parts of the fields are integrated by means of different schemes. The separation

of the fields in Eq. (14a) into two parts becomes apparent.

A. Run-away trajectories and diffusion gauges

Before delving into the numerical results, it is essential to address a challenge inherent

in approaches based on stochastic differential equations [57, 58]. Apart from the stability

requirement of the numerical scheme, the stochastic differential equations themselves should

prevent unbounded, diverging solutions. Given the exponential amplification involved in
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the phenomenon under analysis, it is crucial to clarify the following: diverging trajectories

grow at a rate faster than any exponential function and reach infinity within a finite time

interval. In Ref. [55], it was demonstrated that the freedom in constructing noise terms for

superfluorescence in compact systems can be leveraged to suppress divergent behavior. This

approach extends to the paraxial geometry. Here, we outline the main steps, with further

details provided in Appendix H.

Diverging trajectories may arise when effective population inversion for any polarization

s is present:

Re(ρ(up.)s (r, τ)) > Re(ρ(low.)
s (r, τ))1. (20)

For coordinates r and retarded time τ satisfying the condition in Eq. (20), Eq. (14) should

be modified to suppress divergent behavior. This is achieved by replacing the density matrix

elements in Eq. (14) with their real parts:

ρlu(r, τ) → 1

2
(ρlu(r, τ) + ρ∗ul(r, τ)) , (21a)

ρul(r, τ) → 1

2
(ρul(r, τ) + ρ∗lu(r, τ)) . (21b)

The consequences of the transformation in Eq. (21) for the evolution of the field are discussed

in the text following Eq. (27). The justification for the transformation in Eq. (21) is the

generalized Girsanov theorem or application of the stochastic drift gauge as described in

Refs. [57, 58]. In general, the stochastic drift gauge transformation in Eq. (21) should be

accompanied by re-weighting the stochastic trajectories when computing expectation values

in Sec. III E.

Unfortunately, for a large number of atoms, this weight coefficient might cause instabilities

and worsen convergence. Therefore, we aim to neglect it in the current numerical implemen-

tation. A more rigorous approach is the subject of further publications. To compensate

for the absence of the weight coefficient, we reduce the need for gauging by minimizing the

difference between atomic coherences ρul(r, τ) and ρ∗lu(r, τ). To minimize this difference,

we take advantage of another degree of freedom in the representation of noise terms known

as stochastic diffusion gauge analyzed in Refs. [57, 58]. Namely, since there is no unique

way to define noise terms satisfying correlation properties (12), one can use this freedom

to minimize the difference between atomic variables ρeg(r, τ) and ρ∗ge(r, τ). Our goal is to

1 In the proposed formalism, the populations are complex, so we extract their real parts.
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FIG. 2: (a) Number of pump photons as a function of propagation distance in the copper

solution, the solid line denotes the numerical result of the simulation, and the dashed line

denotes the number of photons obtained from the Beer-Lambert law; (b) spatio-temporal

evolution of the pump field intensity and (c) initial neutral state population along the

target axis; longitudinal sections at y = 0 of (d) pump photon fluence (number of pump

photons per unit area) and (e) population of the initial neutral state after the end of the

pump pulse.

minimize the average squared difference for each s, r, and τ :

〈∣

∣

∣

∑

eg

Tges
(

ρeg(r, τ)− ρ∗ge(r, τ)
)

∣

∣

∣

2〉

, (22)

reducing the difference between the sources in the equations for Ω
(+)
det.(r, τ) and Ω

(−)∗
det. (r, τ).

The explicit form of the resulting noise terms used in the presented numerical simulations can

be found in Appendix H. In Section IVC, we demonstrate that the modified equations, as

proposed in Appendix H and this section, accurately reproduce spontaneous emission—the

seeding stage of the amplification process.
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B. Pump propagation

The critical factor governing the dynamics of SF is the population inversion in the Cu ion.

This inversion, in turn, is influenced by the dynamics of the pump pulse and the population

of the neutral ground state. In Fig. 2, we illustrate the evolution of these quantities,

computed using the expressions detailed in Appendix A.

Fig. 2 (a) presents the number of pump photons as a function of propagation distance.

Notably, it displays a slower decline than anticipated by Beer’s law, indicating substantial

bleaching [67–69]. In our formalism, this phenomenon is mainly driven by the reduction of

the neutral ground state population, which possesses the largest absorption cross-section.

As depicted in Fig. 2 (c), the ground state population diminishes to zero within the front

part of the pump pulse, causing stronger absorption in this region compared to the tail of the

pulse. This leads to pulse shortening [70] and a shift of its peak to later times, as observed

in Fig. 2 (b) and experimentally demonstrated in [71]. Additionally, the transverse profile of

the pump pulse changes with propagation distance, as shown in Fig. 2 (d). Since bleaching is

less pronounced for lower intensity pulses, the outer regions of the pulse experience stronger

absorption than the central parts. As the pump pulse propagates, it decreases in energy,

shrinks in transverse size, its duration shortens, and its peak shifts to a later time. These

changes are reflected in the population of the ground state of the atoms, as illustrated in

Figs. 2 (c) and (e). The product of the pump flux and ground state population is the

dominant contribution in Eq. (13a), setting the stage for SF emission.

C. Spontaneous emission

Before delving into the analysis of SF simulation, it is advantageous to explore pure

spontaneous emission, which serves as a valuable benchmark for our framework. To isolate

spontaneous emission, we modify Eqs. (13) and (14) by eliminating the field variables in

Eq. (13b). In other words, we exclude the stimulation responsible for amplification. Fig. 3

compares the solutions of these modified equations to the photon number value derived

from Eq. (18). Since the analysis of spontaneous emission properties necessitates averaging

over a large number of stochastic realizations, and as this study does not focus on angular

properties, a smaller grid has been used for Figs. 3, 4, and 5. Specifically, we employ
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imation. For large distances z, the Green function can be approximated as:

|G(r− r′)| ≈ 1

λz
. (23)

By substituting this asymptotic form of the Green function into Eqs. (17) and (18), we obtain

the following expression for the number of spontaneously emitted photons with polarization

s traversing cross-section S:

dN
(ph.)
s

dτ
=

3

8π

S

z2
Γrad.

∫

n(r)〈ρ(up.)s (r, τ)〉dr. (24)

The number of emitted photons is proportional to the amount of excited atoms within

the volume and the solid angle S/z2 in which the spontaneous radiation is collected. The

pre-factor agrees with quantum-mechanical calculations based on the Weisskopf-Wigner ap-

proximation [72], see also the discussion in [52].

For short propagation distances, the Green’s function turns into a ”broadened” delta-

function:

G(r− r′) ≈ δ(r⊥ − r′⊥), (25)

meaning that the light travels almost parallel to the z-axis. The width of this delta-function

is defined by the number of considered paraxial modes. Consequently, the number of spon-

taneously emitted photons of polarization s traversing the cross-section of the sample is

dN
(ph.)
s

dτ
=

3

8π
∆oΓrad.

∫

n(r)ρ(up.)s (r, τ)dr, (26)

where ∆o is the solid angle spanned by the considered paraxial wave-vectors.

The transition between the asymptotic behaviors of Eqs. (25) and (23) determines the

dependence of the number of spontaneously emitted photons on the propagation distance:

for a small distance, the dependence is linear since the Green function in Eq. (25) is constant;

for a larger propagation distance, the descending Green function results in the deceleration

of the growth.

Fig. 4 shows the correlation function of the field integrated2 over the simulation domain

of the exit surface. The diagonal of the time correlation function determines the averaged

2 In the spontaneous emission regime, the contribution from each voxel is conditioned by the noise terms

and is independent of other voxels. Consequently, the transversely-integrated quantities require fewer

trajectories to obtain a given S/N level compared to the case of quantities at a specific transverse coordinate

x, y.
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to the real part. In both ASE and saturation regimes, the noise terms are smaller than the

regular terms in Eqs. (13) and (14). As a consequence, the scatter of the real part of indi-

vidual realizations of the number of photons exhibits, upon propagation, approximately the

same width on the log scale. This observation suggests that, within logarithmic accuracy, a

few trajectories are sufficient to determine the mean photon number in the deep ASE and

saturation regimes.

The knowledge of the transverse field distribution is essential for the applications of SF,

as it is directly related to the angular distribution of the emitted intensity. In Ref. [17],

the larger angular spread of seeded-SF emission compared to the angular spread of the seed

pulse enabled the detection of the seeded Mn Kβ signal. Another example for which the

angular properties of the SF are crucial is the XLO—–in this case, the angular divergence

determines the efficiency of the in-coupling of the SF radiation into the crystal cavity.

Fig. 7 illustrates the transverse distribution of the field. Each row corresponds to a differ-

ent propagation distance, representing qualitatively distinct regimes: spontaneous emission

(SE), ASE, and saturation or superfluorescence (SF). Fig. 7 (a), (d), (g) show the intensity

distribution for a single run of the numerical scheme (a single trajectory). In the case of

SE represented by Fig. 7 (a), the spontaneously emitted intensity varies stochastically from

pixel to pixel. Upon propagation, due to diffraction, neighboring pixels establish a corre-

lation resulting in a speckle-like pattern. As Fig. 7 (d), (g) shows, the size of the speckles

grows upon propagation. As discussed for Figs. 3, 6, a single realization does not, strictly

speaking, have a direct physical meaning—–an ensemble of realizations is needed to deter-

mine the observable. In our case, one of the properties of interest is the transverse size of the

emitted field, which can be deduced from the intensity profile shown in Fig. 7 (b), (e), (h).

Averaging over several trajectories results in a smooth and axially-symmetric distribution.

Another property of interest is the transverse coherence of the emitted radiation. A rough

estimate of this property can be obtained based on the average size of the speckles. As an

observable quantifying the transverse coherence, we can consider the transverse correlation

function [72]:

Γs(r⊥, z, τ) =

∫

〈Ω(+)
s (r′, z, τ)Ω(−)

s (r′⊥ + r⊥, z, τ)〉dr′⊥ (28)

shown in Fig. 7 (c), (f), (i). As expected, the size of the transverse correlation function

approximately agrees with the size of the speckles. Initially, in the SE regime Fig. 7 (c),
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FIG. 7: Transverse field distribution: (a), (d), (g) — intensity distribution of the emitted

radiation for a single realization. (b), (e), (h) — the same quantity calculated by averaging

over an ensemble of realizations. (c), (f), (i) — field correlation function in the transverse

direction calculated according to Eq. (28). The rows of figures (a) – (c), (d) – (f), and

(g) – (i) correspond to propagation distances of z = 0 µm (SE regime),

z = 135 µm (ASE regime), and 270 µm (SF regime), with peak intensity observed at times

τpeak = 11 fs, 15 fs, and 17 fs, respectively. For averaging, 20,000 numerical realizations are

used for the SE regime and 1,300 for the ASE/SF regimes.
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FIG. 8: (a) Emitted flux (time-integrated number of photons per unit area) as a function

of propagation distance z for several positions in the transverse direction: on the axis

(|r⊥| = 0) and progressively further from the axis (|r⊥| = 84 nm, 119 nm, 169 nm);

(b) Transverse cuts of the effective population inversion for propagation distances

z = 0, 135 µm, 270 µm and times τpeak = 11 fs, 15 fs, and 17 fs, respectively. The number of

numerical realizations is 1300.

the transverse coherence has the size of just one pixel and grows upon propagation. Since

the transverse size of the correlation function is smaller than the transverse width of the

intensity profile, the SF field is not fully transversely coherent, as also the speckle structure

of single trajectories suggests. The ratio of the transverse width of the intensity profile to

speckle size gives an estimate of the effective number of transverse modes.

The evolution of the transverse field profile is conditioned by the distribution of the

population inversion as well as diffraction effects. Fig. 8 (a) shows the photon flux as

a function of the propagation distance at several transverse positions. As expected, the

center of the beam exhibits the highest flux, which gradually decreases towards the edges,

in accordance with the distribution of the population inversion shown in Fig. 8 (b). The

population inversion decreases as the beam propagates due to the combined effects of pump-

pulse absorption and nonlinear (saturation) effects. In the ASE regime, a larger population

inversion leads to larger amplification of the emitted radiation. As a result, the beam
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experiences gain guiding [76] and decreases in size. However, as Fig. 8 (a) shows, for the

inner parts of the beam, the transition from ASE to saturation takes place at a shorter

propagation distance than for the outer parts. As a result, after the saturation regime sets

in for the on-axis part of the beam, the beam size increases—–as the middle column of Fig. 7

also illustrates.

E. Spectral-angular properties

The direct experimental measurement of the transverse and temporal profiles of the

emitted x-ray field poses considerable difficulty. X-ray fields are typically measured in the far

field, providing the angular distribution of the emission. The temporal properties of the x-ray

pulse are often inferred from spectral analysis using a grating or crystal spectrometer. For

example, in [15], fringes in the spectrum were used to reconstruct the temporal separation

between the peaks of the underlying field temporal profile. If a 2D detector is used to

measure the field after the analyzer crystal, the detector provides a spectral and angular

distribution of the emission. To obtain this distribution from the presented formalism, we

first perform the Fourier transform of the fields Ω
(±)
s (r, τ):

Ω̄(±)
s (θx, θy, z, ω) =

∫

dxdydτ

(2π)3
Ω(±)

s (r, τ) exp [±ik0(xθx + yθy)∓ iωτ ] .

Similarly to Eqs. (16) and (17), we express the spectral and angular distribution Īs(θx, θy, z, ω)

as follows:

Īs(θx, θy, z, ω) =
〈Ω̄(+)

s (θx, θy, z, ω)Ω̄
(−)
s (θx, θy, z, ω)〉

3
8π
λ20Γrad.

. (29)

Fig. 9 (a) displays a typical spectral-angular distribution for a single realization in the SE

regime. As expected, it exhibits isotropy in the angular direction and is highly stochastic.

Fig. 9 (d) corresponds to the ASE regime and reveals multiple spikes associated with the

field modes emerging from spontaneous emission noise. In Fig. 9 (g), we observe a similar

distribution at a greater propagation distance in the SF regime. Here, the most intense

modes are further amplified, while less intense modes diminish. This behavior is reminiscent

of the well-known mode clearance phenomena in FEL physics [77].

To confirm these observations at a single-trajectory level, spectral-angular intensity pro-

files are averaged over an ensemble of realizations, as shown in Fig. 9 (b), (e), (h). Specifi-
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FIG. 9: Spectral-angular properties of the emitted radiation: (a), (d), (g) —

spectral-angular distribution of the emitted radiation integrated over the θy direction for a

single realization. (b), (e), (h) — the same quantity, calculated by averaging over an

ensemble of realizations. (c), (f), (i) — Wigner distribution (30) at the center of the beam

(x = y = 0). The solid red lines represent projections of the Wigner function onto the time

and energy axes, providing the temporal intensity profile and spectrum. The dashed red

line illustrates how the spectrum would appear if calculated according to Eq. (31). The

series of figures (a) – (c), (d) – (f), and (g) – (i) correspond to propagation distances of

z = 0 (SE regime), z = 135 µm (ASE regime), and z = 270 µm (SF regime). The number of

numerical realizations is 1,000 for the SE regime and 100 for the ASE/SF regimes,

respectively.
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cally, the angular distribution remains isotropic for the SE case (Fig. 9 (b)), becomes nar-

rower in the ASE case (Fig. 9 (e)), and further narrows down in the SF regime (Fig. 9 (h)).

The temporal-spectral properties of the emitted field can be conveniently characterized

in terms of the Wigner distribution:

Ws(r, ω, τ) =

∫

dτ ′

2π
〈Ω(+)

s (r⊥, z, τ + τ ′/2)Ω(−)
s (r⊥, z, τ − τ ′/2)eiωτ

′〉. (30)

The projection of the Wigner distribution on the time axis gives the averaged temporal

intensity profile, and the projection on the frequency axis gives the spectral profile. Figs. 9

(c), (f), (i) show the Wigner distribution for propagation distances corresponding to the SE,

ASE, and SF regimes. The profile on the time-axis is influenced by the time dependence of

the population inversion, while the profile on the frequency-axis is influenced by the deco-

herence rate of the transition. As a result, the spectral width of the produced radiation is

broadened compared to the width determined by assuming a Fourier-limited pulse. The ra-

diation is not transform-limited. If the radiation were fully coherent, and the field amplitude

had a constant phase across the pulse, the connection between the spectrum

Is(r, ω) =

∫

dτWs(r, ω, τ)
3
4
λ20Γrad.

and temporal intensity profiles

Is(r, τ) =

∫

dωWs(r, ω, τ)
3
8π
λ20Γrad.

for transform-limited pulses would be given by:

Is(r, ω) =

∣

∣

∣

∣

∫

dτ

2π
eiωτ

√

Is(r, τ)

∣

∣

∣

∣

2

. (31)

The spectral profile calculated according to Eq. (31) is depicted as a dashed line in Figs. 9

(c), (f), (i). During the propagation, the spectral profile becomes narrower due to the gain-

narrowing effect of the ASE regime [74], as shown in the comparison of Figs. 9 (c) and

(f). Deep in the SF regime, the emitted field eventually becomes so large that the induced

dynamics, similar to Rabi oscillations, may cause additional broadening and splitting [53].

In the presented example, this regime, however, is not pronounced.

F. Field polarization properties

The scheme presented in Eq. (3) includes all the energy levels involved in the Cu-Kα1

emission. By considering the degeneracy of these states, we gain complete access to the
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polarization properties of the emitted radiation. For a quantitative analysis of polarization,

we employ the Stokes parameters Si(r, τ), with i = 0, 1, 2, 3 as introduced in Ref. [78].

Specifically, to quantify the presence of circularly polarized components in the field, we

focus on S3(r, τ), defined as:

S3(r, τ) = Ω
(+)
−1 (r, τ)Ω

(−)
−1 (r, τ)− Ω

(+)
+1 (r, τ)Ω

(−)
+1 (r, τ). (32a)

It is simply the difference in intensity between two distinct circular polarizations, reaching

its maximum and minimum values when the field is solely represented by right-hand or

left-hand polarization, respectively. Intermediate values of S3(r, τ) signify the presence of

linearly polarized components that can be quantified by S1(r, τ) and S2(r, τ) defined as

follows:

S1(r, τ) = Ω
(+)
+1 (r, τ)Ω

(−)
−1 (r, τ) + Ω

(+)
−1 (r, τ)Ω

(−)
+1 (r, τ), (32b)

S2(r, τ) = i
[

Ω
(+)
+1 (r, τ)Ω

(−)
−1 (r, τ)− Ω

(+)
−1 (r, τ)Ω

(−)
+1 (r, τ)

]

. (32c)

Similarly to S3(r, τ), S1(r, τ) is the difference in intensities carried by horizontal and vertical

polarizations while S2(r, τ) corresponds to diagonal polarizations. The introduced parame-

ters Si(r, τ) form a vector S(r, τ). Its length S(r, τ) equals the last Stokes parameter S0(r, τ)

defined as follows:

S0(r, τ) = S(r, τ) = Ω
(+)
−1 (r, τ)Ω

(−)
−1 (r, τ) + Ω

(+)
+1 (r, τ)Ω

(−)
+1 (r, τ), (32d)

which is proportional to the total intensity of the field. To eliminate information about

the intensities, which is irrelevant for this section, and to exclusively focus on the polariza-

tion state, normalizing the vector S(r, τ) is a convenient step. For individual realizations,

S(r, τ)/S(r, τ) can be represented on the Poincaré sphere (see Fig. 10 (a)). To visualize

S(r, τ)/S(r, τ), each point on the Poincaré sphere is associated with a distinct color, as

shown in Fig. 10 (b).

For a single realization, the emitted field is fully polarized; the polarization state changes

randomly from speckle to speckle. This behavior can be observed in Figs. 10 (c), (e), (g)

as the appearance of colorful speckles. On average, the emitted field is unpolarized. This

behavior agrees with the 1D analysis presented in [79], where it was concluded that the

single shots of the emitted SF radiation are fully polarized but with a random polarization

direction. However, in our case, in contrast to the 1D case, there are several spatial modes;

thus, the polarization direction varies within the transverse cross-section.
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The speckles of colors observed in Figs. 10 (c), (e), and (g) suggest that the field polar-

ization properties between neighboring points in the transverse cross-section are correlated.

To quantify this kind of correlation, let us consider the fourth-order moment of the field

taken in two points in space:

C(r⊥, z, τ) =

∫

dr′⊥
〈S(r′⊥, z, τ) · S(r⊥ + r′⊥, z, τ)〉
〈S(r′⊥, z, τ)〉〈S(r⊥ + r′⊥, z, τ)〉

. (33)

For a classical light field, the expression under the integral gives a scalar product of two

vectors on the Poincaré sphere; each of the vectors describes the polarization state of light

at points r′⊥ and r′⊥+r⊥. In this way, the quantity C(r⊥, z, τ) describes the proximity of the

polarization state at two points separated by a distance r⊥ in the transverse direction. The

quantity C(r⊥, z, τ) is shown in Figs. 10 (d), (f), (h). As expected for a quantity averaged

over the ensemble of realizations, C(r⊥, z, τ) is azimuthally symmetric. By construction,

the width in the transverse direction r⊥ of the quantity C(r⊥, z, τ) reflects the average size

of the coherent region (speckle) within which the polarization properties of the radiation

are close. As Fig. 10 shows, the extent of C(r⊥, z, τ) indeed reflects the size of the speckle

observed in single realizations. Similarly to the dynamics observed in Fig. 7, the size of the

coherent region starts from a single pixel for the SE regime and grows upon propagation, as

the comparison of Figs. 10 (d), (f), (h) shows.

G. Population inversion and polarization fields of the gain medium

Previously, we discussed the properties of the emitted field that can be observed in

experiments. In addition to the field variables, numerical modeling gives access to atomic

properties that cannot be directly measured.

In accordance with Eq. (27), the effective population inversion ρ
(up.)
s (r, τ) − ρ

(low.)
s (r, τ)

directly determines the amplification dynamics. Fig. 11 (a) displays its spatio-temporal

evolution on the axis. During the amplification stage, the population inversion is primarily

conditioned by the pump. Starting from z ≈ 150 µm, the population inversion exhibits faint

Rabi oscillations, signifying the transition to the saturation regime, where the dynamics of

the atomic variables are noticeably influenced by the emitted radiation. This influence is

confirmed by the analysis of Fig. 11 (d), displaying the population inversion in the cross-

section for a single stochastic realization. Indeed, the non-uniform distribution in the cross-
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is averaged over many statistical realizations, the axial symmetry is recovered.

In two-level atomic systems with a single pair of upper and lower states |u〉 and |l〉, Rabi
oscillations can be conveniently illustrated as a rotation of the Bloch vector:

ρBloch =











ρul + ρlu

i (ρul − ρlu)

ρuu − ρll











.

When decoherence is disregarded, this vector retains its length and rotates at a frequency

defined by the field amplitude. Although this interpretation does not apply to multi-level

systems, Figs. 11 (d) and (e) show strong anti-correlations between the effective population

inversion and polarization fields defined as follows

P (+)
s (r, τ) =

∑

u,l

Tlusρul(r, τ), (34a)

P (−)
s (r, τ) =

∑

u,l

ρlu(r, τ)Tuls, (34b)

where the indices u and l represent the upper and lower states. Since the dynamics is

triggered by stochastic spontaneous emission, single stochastic realizations of the polariza-

tion field have random phases. Consequently, the mean polarization field vanishes, namely

〈P (±)
s (r, τ)〉 = 0. To remove the insignificant random phases, we can look at the corre-

lation function 〈P (+)
s (r, τ)P (−)

s (r, τ)〉 depicted in Fig. 11 (b). According to Eq. (14), the

introduced polarization fields directly affect the deterministic evolution of the fields. As the

saturation regime is reached, the impact of the noise terms becomes completely negligible.

Consequently, starting from z ≈ 150 µm, the dynamics of the field is fully determined by

the polarization fields, as confirmed by comparing Figs. 11 (b) and (c).

V. CONCLUSIONS AND OUTLOOK

We have presented the application of stochastic quantum approach for collective light-

matter interaction for the case of x-ray superfluorescence initiated by a strongly focused

XFEL pump pulse. The properties of the cylindrical medium of high aspect ratio and the

short pump pulse allow for a number of simplifying approximations, such as: the description

based on the slowly-varying envelope functions, application of the paraxial approximation,

and neglecting back-propagating wave. Under these assumptions, a system of stochastic
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FIG. 11: Spatio-temporal evolution on the axis (x = y = 0) of (a) effective population

inversion, (b) two-particle correlation between atomic coherences, and (c) emitted

radiation intensity based on averaging over 1,300 numerical realizations; transverse profiles

for a single realization at propagation distance z = 270 µm and corresponding τpeak = 17 fs

of (d) effective population inversion and (e) two-particle correlation between atomic

coherences; (f), (g) – same quantities as (d), (e) averaged over 1,300 numerical realizations.

differential equations (13) and (14) has been obtained with a structure resembling Maxwell-

Bloch equations augmented with appropriate noise terms for both field and atomic variables.

A numerical scheme based on Eqs. (H7) – (H14) has been proposed to model the resulting

stochastic differential equations. The analysis presented in Sec. IVC shows that the proposed

noise terms are able to reproduce the temporal and spectral properties of the spontaneous

emission in the forward direction—the critical quantum phenomenon that triggers ASE, and

SF evolution.

While the spontaneous emission has been accurately reproduced, verifying the dynamics

in the ASE and SF regimes poses a challenge. Assuming that the workaround to avoid

divergent trajectories proposed in Sec. IVA may impact this dynamics, a benchmark for

this aspect would be highly useful. A more rigorous alternative modification is the subject

of future publications.

In addition, we have extended the atomic level scheme to include the states that inter-
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act with the XFEL pump pulse. Similarly to the superfluorescence, the evolution of the

XFEL pump pulse itself has been analysed within paraxial approximation. As illustrated

in the Sec. IV, the proposed formalism allows for an extended statistical analysis of various

expectation values.

The developed numerical approach is suitable for designing and analyzing x-ray SF ex-

periments. Its general formulation allows for straightforward extension to complex level

schemes, enabling the development of a quantitative theoretical model that can be com-

pared to sXES experiments [16, 17]. Moreover, the capability to address the transverse

properties of the emitted radiation can aid in interpreting complex patterns that correlate

frequency and angular emission properties of x-ray SF [15]. As a result, it can improve the

understanding and facilitates the optimization of x-ray pulse pairs production.

In the context of modeling the XLO setup [19], the developed numerical scheme provides

the necessary information about spectral, angular and polarization properties needed to

model the in-coupling of the x-ray SF radiation burst into the Bragg-crystal cavity. For the

radiation that has made one trip within the cavity, the ability of the numerical scheme to

describe the cross-over from spontaneous to stimulated emission will enable the determina-

tion of the lower threshold needed for the circulated radiation to overcome the spontaneous

emission. Investigating the parameter space of the geometry of the gain medium and the

pump-pulse properties, optimal conditions for obtaining bright and coherent x-ray pulses

can be determined and will be the subject of a future study.
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the Structure of the the Matter).

Appendix A: Dipole moment. Incoherent processes

1. Dipole moment calculations

Following [80], the dipole matrix element for transition from state |n′l′s′j′m′〉 to |nlsjm〉,
where l(l′) and s(s′) denote the orbital angular momentum and spin, j (j′) andm (m′) the to-

tal angular momentum and its projection, and n (n′) any additional quantum numbers, can

be calculated as 〈nlsjm|D̂q|n′l′s′j′m′〉 = (−1)j−m
√
2j + 1





j 1 j′

−m q m′



 〈nlsj||D||n′l′s′j′〉,

where D̂q is a component of the electric dipole operator, and 〈nlsj||D||n′l′s′j′〉 is the re-

duced dipole matrix element, which in notation from Eq. (5) corresponds to d0/
√
3 due to

normalization.

2. Isotropic fluorescence

Apart from the spontaneous emission that travels along the z-axis and is resonant with

the upper and lower states (as presented in Eq. (3)), there is also spontaneous emission

occurring in all other directions. However, since this emission does not strongly interact with

the medium, it is unnecessary to consider it explicitly at the level of the fields. Nevertheless,

we still need to account for the population change caused by this isotropic emission. For

this reason we define isotropic fluorescence decay widths, defined as follows:

γij =
ω3
0

3π~ε0c30

1
∑

q=−1

∣

∣

∣
〈i|D̂q|j〉

∣

∣

∣

2

. (A1)

These coefficients enter Eq. (13a) in two forms: the dimensionless coefficients G
(rad.)
ij and the

inverse lifetime Γi(r, t). The dimensionless coefficients G
(rad.)
ij characterize the increase in

the populations of the lower states and are defined as the normalized spontaneous isotropic
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fluorescence decay widths γij/Γrad.. The explicit form of G
(rad.)
ij is given by:

{

G
(rad.)
lu

}

=

1s 1

2
,m=− 1

2
1s 1

2
,m= 1

2




























1/3 0 2p 3

2
,m=− 3

2

2/9 1/9 2p 3

2
,m=− 1

2

1/9 2/9 2p 3

2
,m= 1

2

0 1/3 2p 3

2
,m= 3

2

(A2)

Since the coefficients Γi(r, t) are influenced by other processes, we discuss them in more

detail later in Appendix A 4.

3. Photoionization

To incorporate incoherent pumping and photoionization into Eq. (13a), we have intro-

duced additional terms represented by the coefficients p
(pump)
i (r, t). These coefficients are

defined as follows:

p
(pump)
i (r, τ) =

∑

F

JF(r, τ)S
(ground)
F ,i . (A3)

Here, JF(r, τ) represents the flux of the electromagnetic field, and the coefficients S
(ground)
F ,i

are the cross-sections for ionization that promotes an atom from the ground state to one

of the excited states |i〉 (refer to Appendix B). The process of photoionization is frequency-

dependent, which requires the separate treatment of different frequency components of the

electromagnetic field. This is why we introduced the index F to distinguish between various

frequency components. Specifically, F = P if the photoionization is induced by the pump,

and F = Ωs if the photoionization is caused by the emitted SF field, where the index s

represents its polarization. As defined in Eq. (17), the flux JΩs
(r, τ) of the SF radiation is

related to the Rabi frequencies Ωs(r, τ) in the following way

JΩs
(r, τ) =

Ω
(+)
s (r, τ)Ω

(−)
s (r, τ)

3
8π
λ20Γrad.

. (A4)

The expression for the flux JP(r, τ) of the pump field can be found in Appendix A 5.

Apart from the flux of the field, the change in the populations in Eq. (13a) depend on

the population of the neutral ground state ρ(ground)(r, τ). Its evolution is governed by the

following equation:

∂

∂τ
ρ(ground)(r, τ) = −

∑

F ,i

S
(ground)
F ,i JF(r, τ)ρ

(ground)(r, τ). (A5)
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4. Lifetime of the states

The lifetime of the states Γi(r, τ) in Eq. (13a) is defined primarily by three processes:

Auger-Meitner effect, fluorescence and photoionization. The first two processes can be en-

sembled into the so-called natural decay width Γ
(natural)
i . The degenerate states share the

same natural decay widths:

Γ(natural)
u =ΓK = 2.24 fs−1, (A6a)

Γ
(natural)
l =ΓL3

= 0.92 fs−1. (A6b)

Here, the indices u and l represent the upper and lower states. The decay caused by

subsequent photoionization of the ionized atoms can be represented in the following manner:

Γ
(ion.)
i (r, τ) =

∑

F

S
(ion.)
F ,i JF(r, τ), (A7)

where the cross-sections S
(ion.)
F ,i are defined in Appendix B.

5. Pump propagation

The propagation of the pump radiation through the medium results in absorption, and

change of its temporal [71] and spatial profile. This change has a significant effect on the

evolution of the x-ray superfluorescence; hence, modeling of the pump-pulse propagation is

essential. To account for the propagation effects, we analyse the pump at the level of its

electric field P(r, t). Similarly to the SF field, we introduce the concept of retarded time

τ = t− z/c and slowly varying amplitude P (+)(r, τ), and apply paraxial approximation:

P(r, t) = P (+)(r, t− z/c)ei(kPz−ωP t)êy + h.c.. (A8)

Here, ωP = kPc is the pump carrier frequency. Additionally, we have assume that the FEL

radiation is linearly polarized along the y-axis. The flux of the pump field can be defined in

the following way:

JP(r, τ) =
2ε0c

~ωP

|P (+)(r, τ)|2. (A9)

Since we suppose that the pump field interacts with the atoms via nonresonant pho-

toabsorption, it is sufficient to describe response of the atoms in terms of the absorption

41



coefficient µP(r, τ):
[

∂

∂z
∓ i

2kP

(

∂2

∂x2
+

∂2

∂y2

)]

P (±)(r, τ) = −1

2
µP(r, τ)P(r, τ). (A10)

The coefficient µP(r, τ) is assumed to be real, ensuring that P (±)(r, τ) = P (∓)∗(r, τ) and

thus maintaining the electric field P(r, t) as a real quantity, in contrast to the SF fields.

6. Absorption of the fields

The absorption coefficients for the pump field P(r, τ) and the SF fields Ωs(r, τ) can be

generally represented by the following expression:

µF(r, τ) = n(r)
∑

i

Re
(

ρ(ground)(r, τ)S
(ground)
F ,i + ρ(aux.)(r, τ)S(aux.)F

+ ρii(r, τ)S
(ion.)
F ,i + σ

(compound)
F

)

. (A11)

In this expression, the index F distinguishes different field components, as explained af-

ter Eq. (A3). σ
(compound)
F represents the photoionization cross-sections for elements in the

medium other than copper (for more details, refer to Appendix B). It’s important to note

that we take the real part of the expression within the brackets, which removes the imag-

inary contributions from elements of the density matrix that can have arbitrary complex

values. The non-linear dependence of the absorption coefficient cannot be included in the

stochastic formalism without additional approximations. Given that absorption is a classical

effect and the model with constant absorption coefficients is exact, our proposed absorption

model must be sufficiently accurate for our purposes.

The absorption of the fields is also influenced by the cumulative population of auxiliary

singly-ionized states ρ(aux.)(r, τ). Its evolution is governed by the following equation:

∂

∂τ
ρ(aux.)(r, τ) = −

∑

F

ρ(aux.)(r, τ)S
(aux.)
F JF(r, τ)+

∑

F

ρ(ground)(r, τ)S
(ground)
F , aux. JF(r, τ). (A12)

To describe ionization that promotes atoms from the ground state to one of the auxiliary

states, we introduce ionization cross-sections denoted as S
(ground)
F ,aux. . Their numerical values can

be found in the last column of the cross-section matrix in Eq. (B1). Subsequent ionization of

atoms in the auxiliary states is accounted for by the cross-sections S
(aux.)
F given in Eq. (B2).
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Appendix B: Photoionization cross-sections

Photoionization cross-sections included in the Cu-Kα1 superfluorescence model are cal-

culated using the GRASP [81] and RATIP [82] atomic codes. In our case, additional cal-

culations are required to determine the partial cross-sections corresponding to individual

magnetic sublevels. In accordance with the 6-level model of the Cu-Kα1 system presented

in Eq. (3), the valence 4s electron is omitted. The initial ground state configuration of

the copper atom in this approximation is [Ar] 3d10 1S0, and the ionic states of interest are

[Ar] 3d10 1s−1 2S1/2 and [Ar] 3d10 2p−1 2P3/2.

1. Partial photoionization cross-sections for magnetic sublevels

Photoionization of the ground state, which causes the population inversion, is described

in terms of partial ionization cross-sections encompassed in the following matrix:

{

S
(ground)
F ,i

}

=

2p 3

2
,m=− 3

2
2p 3

2
,m=− 1

2
2p 3

2
,m= 1

2
2p 3

2
,m= 3

2
1s 1

2
,m=− 1

2
1s 1

2
,m= 1

2
aux. i/F

















0.27 σ
(g)
P,2p 0.23 σ

(g)
P,2p 0.23 σ

(g)
P,2p 0.27 σ

(g)
P,2p 0.5 σ

(g)
P,1s 0.5 σ

(g)
P,1s σ

(g)
P,a P

0.12 σ
(g)
Ω,2p 0.18 σ

(g)
Ω,2p 0.28 σ

(g)
Ω,2p 0.42 σ

(g)
Ω,2p 0 0 σ

(g)
Ω,a Ω−1

0.42 σ
(g)
Ω,2p 0.28 σ

(g)
Ω+1,2p

0.18 σ
(g)
Ω,2p 0.12 σ

(g)
Ω,2p 0 0 σ

(g)
Ω,a Ω+1

(B1)

In this matrix, F = P if the photoionization is caused by the pump field, and F = Ωs if the

photoionization is induced by the emitted SF field. σ
(g)
P,j and σ

(g)
Ω,j represent the cross-sections

for photoionization. The index i defines the orbital of the electron that was removed from

the atom due to ionization. When i is denoted as ”aux.,” it refers to additional states that

do not directly participate in the formation of SF emission and are accounted for as a single

auxiliary state.

The second photoionization of the ionized atoms is described by the following partial
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cross-sections:

{

S
(ion.)
F ,i

}

=

2p 3

2
,m=− 3

2
2p 3

2
,m=− 1

2
2p 3

2
,m= 1

2
2p 3

2
,m= 3

2
1s 1

2
,m=− 1

2
1s 1

2
,m= 1

2

i/F
















1.05 σ
(i)
P,2p 0.95 σ

(i)
P,2p 0.95 σ

(i)
P,2p 1.05 σ

(i)
P,2p σ

(i)
P,1s σ

(i)
P,1s P

0.70 σ
(i)
Ω,2p 0.83 σ

(i)
Ω,2p 1.06 σ

(i)
Ω,2p 1.41 σ

(i)
Ω,2p 0.75 σ

(i)
Ω,1s 1.25 σ

(i)
Ω,1s Ω−1

1.41 σ
(i)
Ω,2p 1.06 σ

(i)
Ω,2p 0.83 σ

(i)
Ω,2p 0.70 σ

(i)
Ω,2p 1.25 σ

(i)
Ω,1s 0.75 σ

(i)
Ω,1s Ω+1

(B2)

Here, σ
(i)
P,j and σ

(i)
Ω,j denote the total photoionization cross-section of an atom in the level j.

Photoionization of the atom in the states represented by the effective auxiliary state is

accounted for via cross-sections S
(aux.)
F given in the following table:

{

S
(aux.)
F

}

=

aux. i/F
















σ
(a)
P P
σ
(a)
Ω Ω−1

σ
(a)
Ω Ω+1

(B3)

Since the target medium consists of a copper nitrate solution, we must consider the

photoionization of atoms other than copper. It leads to significant absorption of both the

pump and emitted fields, necessitating its inclusion in the model. However, the cross-sections

for ionization of additional elements in the solution are smaller than those for copper. As

such, we assume that only a small fraction of these atoms becomes ionized, maintaining a

population of 1 throughout the target at all times.

The effective photoionization cross-section due to the compound elements other than

copper can be expressed as follows:

σ
(compound)
F =

∑

el.

Nel.σF ,el.. (B4)

In this equation,
∑

el. represents the sum over these additional elements, Nel. denotes the

number of atoms of a given element per one copper atom, and σF ,el. is the corresponding

cross-section for ionization with field mode F . The elements present in the compound are

hydrogen, oxygen (denoted as el. = O), and nitrogen (denoted as el. = N). However,

since the photon energy of the pump and emitted fields is approximately 8-9 keV, nearly

three orders of magnitude above the ionization threshold of hydrogen, the corresponding

cross-sections for hydrogen can be considered negligible.

The numerical values of photoionization cross-sections for all the processes included in

the simulation of the Cu-Kα1
system are provided in Table I. In the case of an 8-molar
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solution of copper nitrate, the number of atoms in the compound per one copper atom is

NO = 13 and NN = 2. Further details of the calculations are outlined below.

Parameter Value [nm2] Parameter Value [nm2]

σ
(g)
P,1s 2.53× 10−6

σ
(i)
P,1s 4.75× 10−7

σ
(g)
P,2p 1.04× 10−7

σ
(i)
P,2p 3.02× 10−7

σ
(g)
P,a 3.23× 10−7

σ
(i)
Ω,1s 6.53× 10−7

σ
(g)
Ω,2p 1.52× 10−7

σ
(i)
Ω,2p 4.15× 10−7

σ
(g)
Ω,a 4.34× 10−7

σ
(a)
P 3.27× 10−7

σ
(a)
Ω 4.58× 10−7

σP,O 2.00× 10−8
σP,N 1.11× 10−8

σΩ,O 2.75× 10−8
σΩ,N 1.55× 10−8

TABLE I: Values of photoionization cross-sections included in the model of the Cu-Kα1

system.

2. Calculation of the partial photoionization cross-sections

The wave function of the outgoing electron can be expanded in terms of partial waves

as [83]

|ψc〉 =
∞
∑

l=0

l
∑

ml=−l

|lmlsms〉Y ∗
lml

(ϑk, ϕk)

=
∞
∑

l=0

l
∑

ml=−l

l+s
∑

jf=|l−s|

jf
∑

mf=−jf

〈jfmf |lmlsms〉|(ls)jfmf〉Y ∗
lml

(ϑk, ϕk),

(B5)

where s = 1/2 is the electron spin and ms its projection, l orbital angular momentum and

ml its projection, and ϑk and ϕk are the polar and azimuthal angles associated with the

wave vector of the electron. The final state product function combining the ion and electron

can then be expanded in terms of the total angular momentum of the system as [80]

|ψc〉|JfMf〉 =
∑

l,ml

∑

jf ,mf

〈jfmf |lmlsms〉
jf+Jf
∑

J=|jf−Jf |

J
∑

M=−J

〈JM |jfmfJfMf〉

× | [(ls)jfJf ] JM〉Y ∗
lml

(ϑk, ϕk),

(B6)
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where Jf is the total angular momentum of the ion andMf its projection, jf and mf are the

total angular momentum of the electron and its projection, and J and M correspond to the

combined system of the ion and electron. The photoionization cross-section is proportional

to the absolute square of photoionization amplitudes 〈JfMf |〈ψc|D̂q|JiMi〉, where Ji is the

total angular momentum of the initial state, Mi its projection, and D̂q is a component of

the electric dipole operator.

In the case of photoionization from the initial neutral state to a selected state of Cu+

with given Jf and Mf by field with polarization mode q, Ji =Mi = 0 and the cross-sections

of interest are

σ(Jf ,Mf , q) = ξ
∑

ms

∫

dΩk|〈JfMf |〈ψc|D̂q|00〉|2

= ξ
∑

l

∑

jf

〈1q|jf (q −Mf )JfMf〉2|〈[(ls)jfJf ] 1||D||0〉|2
, (B7)

where dΩk = sinϑkdϑkdϕk, and ξ is a constant factor that depends on the specific form of

the dipole transition operator and unit system used in the calculation (conventions differ

between different references and atomic codes). This expression determines the individual

cross-sections in the last two rows of S
(ground)
Fi corresponding to ionization with the circularly

polarized modes of the emitted field. In the derivation of Eq. (B7) the following properties

of spherical harmonics and Clebsch-Gordan coefficients were used [80]:
∫

dΩkYlml
(ϑk, ϕk)Y

∗
l′m′

l
(ϑk, ϕk) = δl,l′δml,m

′
l
, (B8a)

∑

m1,m2

〈JM |j1m1j2m2〉〈j1m1j2m2|J ′M ′〉 = δJ,J ′δM,M ′ , (B8b)

〈j1m1j2m2|JM〉 6= 0 ⇔ m1 +m2 =M. (B8c)

In the chosen coordinate system, the pump pulse is linearly polarized along the y axis.

cross-sections for ionization with the pump field can be expressed as

σ(Jf ,Mf , y) = ξ
∑

ms

∫

dΩk

∣

∣〈JfMf |〈ψc|
(

D̂−1 + D̂+1

)

/
√
2 |00〉

∣

∣

2

=
1

2
[σ(Jf ,Mf , q = −1) + σ(Jf ,Mf , q = +1)] ,

(B9)

and correspond to the individual cross-sections in the first row of S
(ground)
Fi .

Reduced dipole matrix elements 〈[(ls)jfJf ] 1||D||0〉 (also called photoionization ampli-

tudes) are part of the output of the RATIP code [82], and can be used to calculate the
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prefactors in matrix S
(ground)
Fi . The code also outputs cross-sections, which are calculated

for unpolarized light and are averaged over initial states and summed over final states. Un-

polarized light can be treated as a linear combination of two incoherent linearly polarized

beams of equal intensity [84]. The calculated cross-sections, which correspond to the total

cross-sections σ
(g)
F ,i, can in our notation be written as

σ(Jf ) =
1

2

∑

q=−1,1

∑

Mf

σ(Jf ,Mf , q) = ξ
∑

l

∑

jf

|〈[(ls)jfJf ] 1||D||0〉|2. (B10)

In the case of Cu+ to Cu++ ionization, the cross-sections of interest are

σ(Ji,Mi, q) = ζ
∑

Jf

∑

Mf

∑

ms

∫

dΩk|〈JfMf |〈ψc|D̂q|JiMi〉|2

= ζ
∑

Jf

∑

l

∑

jf

∑

J

〈J(Mi + q)|JiMi1q〉2|〈[(ls)jfJf ] J ||D||Ji〉|2,
(B11)

where Ji is the total angular momentum of the initial ionic state of Cu+ andMi its projection.

These cross-sections correspond to the individual cross-sections in the last two rows of S
(ion.)
Fi .

The cross-section for ionization with the pump pulse can similarly as above be expressed as

σ(Ji,Mi, y) =
1

2
[σ(Ji,Mi, q = −1) + σ(Ji,Mi, q = +1)] , (B12)

and corresponds to the individual cross-sections in the first row of S
(ion.)
Fi . Again, the pho-

toionization cross-sections and amplitudes are calculated with the RATIP code. In our

notation these cross-sections can be expressed as

σ(Ji) =
1

2

∑

q=−1,1

1

2Ji + 1

∑

Mi

σ(Ji,Mi, q)

= ζ
1

3(2Ji + 1)

∑

Jf

∑

l

∑

jf

∑

J

(2J + 1)|〈[(ls)jfJf ] J ||D||Ji〉|2,
(B13)

in the derivation of which the following symmetry relation was used [80]:

〈j1m1j2m2|JM〉 = (−1)j2+m2

√

2J + 1

2j1 + 1
〈j2(−m2)JM |j1m1〉. (B14)

These cross-sections also correspond to the total cross-sections σ
(i)
F ,i. Because of the av-

eraging over the initial states, the relation between the partial and total cross-sections is
∑

Mi
σ(Ji,Mi, q) = (2Ji + 1)σ(Ji).
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Appendix C: Stochastic Differential Equations in the Ito form

Consider a system of stochastic differential equations for a vectorial stochastic variable

x(t) in the Ito form:

dxi(t)

dt
= Ai(x, t) +

∑

j

Bij(x, t)fi(t). (C1)

Here fi(t) are normalized Gaussian white noise terms

〈fi(t)fj(t′)〉 = δijδ(t− t′). (C2)

The stochastic Ito equation can be related to the following finite difference scheme

∆x
(t)
i = A

(t)
i ∆t+

∑

j

B
(t)
ij ε

(t)
j

√
∆t, (C3)

where ε
(t)
j are normalized Gaussian random numbers. Note, that the equations in Sec. III A

involve complex noise terms in contrast to the examples given in this section. The complex

noise term fcom.(t) can be expressed through two real noise terms

fcom.(t) =
1√
2
(f1(t) + if2(t)).

The convenience of the Ito form lies in the ease of the numerical implementation. Ac-

cording to the Ito interpretation (C3), the stochastic integration requires a new independent

random contribution every time increment and involves dynamic variables from the previous

time step.

Appendix D: Derivation of the stochastic differential equations

1. Bloch equations

Before deriving the stochastic equations used to simulate x-ray superfluorescence, we

begin by formulating the deterministic Maxwell–Bloch equations. These equations can be

derived by employing a fully factorized ansatz for the density matrix of the system

ρ(t) =
∏

a

ρ̂a(t)
∏

k,s

Λ̂(αk,s(t), α
†
k,s(t)). (D1)
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In this context, each atom is characterized by an independent one-particle density matrix

denoted as ρ̂a(t) =
∑

p,q ρa,pq(t)σ̂a,pq, while the field modes are described using projectors

Λ̂(αk,s(t), α
†
k,s(t)) as defined in Eq. (8). Consequently, the state of the system is defined the

by variables ρa,pq(t) representing the elements of the atomic one-particle density matrices,

and αk,s(t) as well as α
†
k,s(t) play the role of the field amplitudes. To derive the equations

of motion for these variables, we employ the decomposition presented in Eq. (D1) and

substitute it into the following master equation

˙̂ρ(t) = L[ρ̂(t)] = i

~

[

ρ̂(t), Ĥf +
∑

a

Ĥa + V̂

]

+ L̂incoh.[ρ̂(t)] + L̂absorp.[ρ̂(t)].

(D2)

This allows us to construct equations for the expectation values as follows:

α̇k,s(t) = Tr(âk,s ˙̂ρ(t)) = Tr(âk,sL[ρ̂(t)]),

α̇†
k,s(t) = Tr(â†k,s

˙̂ρ(t)) = Tr(â†k,sL[ρ̂(t)]),

ρ̇a,pq(t) = Tr(σ̂a,pq ˙̂ρ(t)) = Tr(σ̂a,pqL[ρ̂(t)]).

To create a closed system of equations, it is important to note that the ansatz in Eq. (D1)

factorizes second-order correlators as follows:

Tr(σ̂a,pqâk,sρ̂(t)) = ρa,qp(t)αk,s(t), (D3a)

Tr(σ̂a,pqâ
†
k,sρ̂(t)) = ρa,qp(t)α

†
k,s(t). (D3b)

The equations for the field variables αk,s(t) and α
†
k,s(t) can be divided into two parts: one

arising from unitary evolution and the other from absorption. The unitary evolution is

described as follows:

α̇k,s(t)
∣

∣

∣

unitary
=− iωkαk,s(t) + d0g0

∑

u,l

Tlu,sρa,ul(t)e
−ikra , (D4a)

α̇†
k,s(t)

∣

∣

∣

unitary
= iωkα

†
k,s(t) + d0g0

∑

u,l

Tul,sρa,lu(t)e
ikra , (D4b)

where the indices u and l represent the upper and lower states. Appart from that, we have

employed Eq. (5). To describe absorption, we define the electric fields E (±)
s (r, t):

E (+)
s (r, t) = i~

∑

k

g0αk,s(t)e
ikr, (D5a)

E (−)
s (r, t) = −i~

∑

k

g0α
†
k,s(t)e

−ikr. (D5b)
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Then, the absorption enters the equations of motion in the following way:

∂

∂t
E (±)
s (r, t)

∣

∣

∣

absorp.
= −µs(r, t)

2
E (±)
s (r, t). (D6)

For the sake of convenience, we have also divided the equations pertaining to the atomic

variables into two parts. The part responsible for incoherent processes can be expressed as:

ρ̇a,pq(t)
∣

∣

∣

incoh.
=− (Γp(r, t) + Γq(ra, t))ρpq(ra, t)/2

+ δpq

(

p(pump)
p (ra, t)ρ

(ground)
a (t) + Γrad.

∑

k

G
(rad.)
pk ρa,kk(t)

)

.
(D7)

This equation is essentially a discrete version of Eq. (13a) in original time t. The unitary

evolution is described by the following part:

ρ̇a,pq(t)
∣

∣

∣

unitary
=− iωpqρa,pq(t)

+
id0
~

∑

r,s

[

E (+)
s (ra, t)

(

Tp>r,sρa,rq(t)− ρa,pr(t)Tr>q,s

)

+ E (−)
s (ra, t)

∑

r

(

Tp<r,sρa,rq(t)− ρa,pr(t)Tr<q,s

)

]

,

(D8)

where p > q means that index p corresponds to the subset of upper states {|e〉} whereas

index q — to the subset of ground states {|g〉}. In the equations, we have employed the

electric fields E (±)
s (r, t) that conveniently assemble the field amplitudes αk,s(t) and α

†
k,s(t).

Truncation of the second-order correlators presented in Eq. (D3) and used in the deriva-

tions of Eqs. (D4) – (D8) shows that the resulting equations are valid only for the systems

with strong classical behavior. Let us find the neglected terms in the master equation and

analyze their structure. If we insert the decomposition from Eq. (D1) in the master equation

(D2) and apply Eqs. (D4) – (D8), we notice that the right-hand side L[ρ̂(t)] of Eq. (D2) is
restored only partially

L[ρ̂(t)]− ˙̂ρ(t) =
∑

b,k, s

χ̂b;k,s(t)
∏

a 6=b

ρ̂a(t)
∏

k′ 6=k,
s′ 6=s

Λ̂(αk′,s′(t), α
†
k′,s′(t)). (D9)

The time derivative of Eq. (D1) can give rise to terms where either a single atomic one-

particle density matrix ρ̂a or a single field projector Λ̂(αk,s(t), α
†
k,s(t)) is modified. Conse-

quently, the remaining terms in Eq. (D9) intertwine the atomic and field degrees of freedom.
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These terms can be expressed as:

χ̂a;k,s(t) =
∑

p, q

[

χ
(+)
a,pq;k,s(t)

∂

∂αk,s(t)
+ χ

(−)
a,pq;k,s(t)

∂

∂α†
k,s(t)

]

σ̂a,pq Λ̂(αk,s(t), α
†
k,s(t)), (D10a)

where

χ
(+)
a,pq;k,s(t) = d0g0

(

∑

r

Tp<r,sρrq(t)− ρpq(t)
∑

u,l

Tlu,sρul(t)

)

e−ikra , (D10b)

χ
(−)
a,pq;k,s(t) = d0g0

(

∑

r

ρpr(t)Tr>q,s − ρpq(t)
∑

u,l

Tul,sρlu(t)

)

eikra . (D10c)

Here, the indices u and l represent the upper and lower states.

2. Noise terms

While χ̂a;k,s(t) may initially seem complex, the uncompensated right-hand side of

Eq. (D9) essentially entangles individual atoms and single field modes and does not in-

troduce additional intricate higher-order correlations. As demonstrated in Ref. [55], the

terms in Eq. (D10) can be correctly recaptured by introducing suitable stochastic terms into

Eqs. (D4) – (D8) in the following manner:

α̇k,s(t)
∣

∣

noise
= ξk,s(t), α̇†

k,s(t)
∣

∣

noise
= ξ†k,s(t), (D11a)

ρ̇a,pq(t)
∣

∣

noise
= ηa,pq(t). (D11b)

Here, we introduce a set of Gaussian white noise terms, namely ξk,s(t), ξ
†
k,s(t), and ηa,pq(t),

with the following correlation properties:

〈

ξk,s(t)ηa,pq(t
′)
〉

= κ
(+)
a,pq;k,s(t)δ(t− t′), (D12a)

〈

ξ†k,s(t)κa,pq(t
′)
〉

= κ
(−)
a,pq;k,s(t)δ(t− t′), (D12b)

which we will determine later. We assume that the correlators of the remaining pairs of

noise terms are zero. Two non-zero correlators in Eq. (D12) prove sufficient for reproducing

the missing terms in Eq. (D9). Additionally, we treat the noise terms as integrated in the

Ito sense. See Appendix C for more details.

Typically, stochastic equations are solved using the Monte Carlo approach. The proper

statistics of the dynamic variables ρa,pq (t), αk,s(t), and α
†
k,s(t) are reconstructed by solving
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multiple equations with a randomly sampled stochastic contribution in accordance with

their statistical properties. Since the equations do not couple the variables from different

realizations, their integration can be parallelized, offering significant performance advantages

compared to methods based on the direct decomposition of the wave function into some

basis set. To sample the density matrix, we insert each realization of the dynamic variables

ρa,pq (t), αk,s(t), and α
†
k,s(t) into the decomposition in Eq. (D1) and combine the resulting

factorized density matrices into a normalized linear combination:

ρ(t) =
〈

∏

a

ρ̂a(t)
∏

k,s

Λ̂(αk,s(t), α
†
k,s(t))

〉

, (D13)

resulting in a non-factorizable density matrix. Similar to the approach in Ref. [55], this

linear combination serves to restore the missing entangled terms in Eq. (D9). Although the

stochastic ansatz does not alter the expression for the first term L[ρ̂(t)], it does modify the

derivative ˙̂ρ(t) by introducing additional terms proportional to κ
(+)
a,pq;k,s(t) and κ

(−)
a,pq;k,s(t),

a concept known as Ito’s lemma.

Consider an arbitrary function S that depends on the stochastic variables ρa,pq, αk,s, and

α†
k,s. Ito’s lemma reads:

dS

dt
=
∑

a,p,q

∂S

∂ρa,pq

dρa,pq
dt

+
∑

k,s

∂S

∂αk,s

dαk,s

dt
+
∑

k,s

∂S

∂α†
k,s

dα†
k,s

dt

+
∑

a,p,q
k,s

[

∂2S

∂ρa,pq∂αk,s

κ
(+)
a,pq;k,s +

∂2S

∂ρa,pq∂α
†
k,s

κ
(−)
a,pq;k,s

]

.

(D14)

As a result, the complete derivative of the density matrix presented in Eq. (D13) gains the

following additional components:

dρ̂(t)

dt

∣

∣

∣

∣

noise

=

〈

∑

a,p,q
k,s

[

κ
(+)
a,pq;k,s(t)

∂

∂αk,s(t)
+ κ

(−)
a,pq;k,s(t)

∂

∂α†
k,s(t)

]

σ̂a,pq×

×
∏

b 6=a

ρ̂b(t)
∏

k,s

Λ̂(αk,s(t), α
†
k,s(t))

〉

,

that entangle pairs of atoms and have exactly the same form as the right-hand side of

Eq. (D9). Consequently, if the correlators of the noise terms have the following form

κ
(+)
a,pq;k,s(t) = χ

(+)
a,pq;k,s(t), κ

(−)
a,pq;k,s(t) = χ

(−)
a,pq;k,s(t).

52



Eqs. (D4) – (D8) accompanied by the noise terms in Eq. (D11) fully satisfy master equa-

tion (D2).

To simulate ξk,s(t), ξ
†
k,s(t), and ηa,pq(t), we have to decompose them in terms of indepen-

dent noise terms. There is no unique decomposition, however, the structure of Eq. (D10)

suggests the most compact one

α̇k,s(t)
∣

∣

noise
= ξk,s(t) = d0g0

∑

a

fa,s(t)e
−ikra , (D15a)

α̇†
k,s(t)

∣

∣

noise
= ξ†k,s(t) = d0g0

∑

a

ga,s(t)e
ikra , (D15b)

ρ̇a,pq(t)
∣

∣

∣

noise
= ηa,pq(t)

=
∑

s

(

∑

r

ρa,pr(t)Tr>q,s − ρpq(t)
∑

u,l

Tul,sρa,lu(t)

)

g†a,s(t)

+
∑

s

(

∑

r

Tp<r,sρa,rq(t)− ρa,pq(t)
∑

u,l

Tlu,sρa,ul(t)

)

f †
a,s(t),

(D15c)

where fa,s(t), f
†
a,s(t), ga,s(t), and g

†
a,s(t) are Gaussian white noise terms independent of the

variables αk,s(t), α
†
k,s(t), and ρa,pq(t). The noise terms fa,s(t), f

†
a,s(t) are statistically inde-

pendent of ga,s(t) and g
†
a,s(t). These elementary noise terms have the following correlation

properties

〈fa,s(t)fa′,s′(t′)〉 = 〈f †
a,s(t)f

†
a′,s′(t

′)〉 = 0, (D16a)

〈fa,s(t)f †
a′,s′(t

′)〉 = δss′δaa′δ(t− t′), (D16b)

that can only be sampled by complex-valued Gaussian white noise terms. Similar stochastic

properties hold for ga,s(t) and g
†
a,s(t).

3. Fields in the coordinate space

The deterministic unitary evolution of the atomic variables is characterized by Eq. (D8)

which incorporates the field variables αk,s(t) and α
†
k,s(t) combined into electric fields E (±)

s (r, t)

as indicated in Eq. (D5). Instead of explicitly tracking the dynamics of the variables αk,s(t)

and α†
k,s(t), we derive the equations for E (±)

s (r, t).

In the paraxial approximation, the field modes propagate nearly parallel to the z-axis.

Furthermore, we assume that only the field traveling along with the pump pulse significantly
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contributes to the dynamics of the atomic variables. Consequently, we make the assumption

that ωk = kc ≈
[

kz +
k2
⊥

2k0

]

c. We apply this approximation to Eq. (D4), along with the noise

terms presented in Eq. (D15). The resulting equations are then summed over the paraxial

wave-vectors, yielding the following expression:

[

∂

c∂t
+

∂

∂z
∓ i

2k0

(

∂2

∂x2
+

∂2

∂y2

)

+
µs(r, t)

2

]

E (±)
s (r, t) = ±ik0d0

2ε0
P (±)
s (r, t), (D17)

where we have introduced polarization fields containing both the deterministic atomic vari-

ables ρa,pq(t) and noise terms ga,s(t) and fa,s(t):

P (+)
s (r, t) =

∑

a

(

∑

u,l

Tlu,sρa,ul(t) + fa,s(t)

)

eik0(z−za)δε(r− ra),

P (−)
s (r, t) =

∑

a

(

∑

u,l

Tul,sρa,lu(t) + ga,s(t)

)

e−ik0(z−za)δε(r− ra).

Here, δε(r− ra) represents the sum
∑

k e
i(k−k0)(r−ra)/V . The summation is carried out over

a relatively large set of paraxial wave-vectors k ≈ k0 included in the electric fields. The

resulting function is localized, resembling the functionality of a delta-function. Further, we

assume that the transverse part of δε(r − ra) is infinitely small behaving as a true delta-

function for the transverse coordinates. In exchange, we introduce damping to the Laplace

operator ∂2/∂x2 + ∂2/∂y2 for non-paraxial modes. Consequently, we replace δε(∆r) into a

product of two components as follows:

δε(∆r) → δ(∆r⊥)δε(∆z).

The number of longitudinal modes included in the electric field defines the spatial and

temporal scale at which the fields’ envelopes remain constant. The corresponding spatial

scale defines the width of the delta function δε(∆z).

Appendix E: Field variables in retarded time

As motivated in Sec. IIIA, it is convenient to replace the original time variable t with the

retarded time τ = t− z/c, which effectively incorporates the propagation effects. However,

it slightly modifies the correlation properties of the noise terms. To provide a more detailed

demonstration, let us formally integrate Eq. (D17), which yields the following expression for

54



the field E (+)
s (r, t):

E (+)
s (r, t) = ±ik0d0

2ε0

∫

z′<z

Gs(r, r
′)P (+)

s (r′, t− (z − z′)/c)dr′. (E1)

Here, we express the solution in terms of the Green functions Gs(r, r
′) corresponding to the

following equation:

[

∂

∂z
− i

2k0

(

∂2

∂x2
+

∂2

∂y2

)

+
µs(r)

2

]

Gs(r, r
′) = δ(r− r′), (E2)

where δ(r−r′) is the proper delta-function. In this section, we assume a stationary absorption

coefficient µs(r), which simplifies the derivations without affecting the final result. Apart

from the omitted time derivative and time-dependence of the absorption coefficient µs(r),

the left-hand side of this equation retains the same form as the original Eq. (D17).

Let us examine the field E (+)
s (r, t) generated by an individual atom positioned at point ra.

For z < za, there is no field since we have neglected back propagation. However, for z > za,

the field can be described as follows:

E (+)
s (r, t) = i

k0d0
2ε0

∫ ∞

−∞

dz′Gs(r, r
′)

(

∑

u,l

Tlu,sρa,ul(t− z/c+ z′/c)

+ fa,s(t− z/c+ z′/c)

)

eik0(z
′−za)δε(z

′ − za)
∣

∣

r′
⊥
=r⊥,a

(E3)

Here, we have replaced z with infinity in the upper integration limit. This is justified by

the paraxial approximation, which reproduces the field only at a sufficient distance from

the atom, where δε(z
′ − za) is negligibly small. On the other hand, within the paraxial

approximation, the self-interaction of a single atom mediated by the field—a cause of spon-

taneous decay—cannot be accurately reproduced. It must be treated separately at the level

of lifetimes. See Sec. II B and Appendix A 2 for more details.

The deterministic part of Eq. (E3) can be significantly simplified. Since the atomic

coherence ρa,ul is driven by the field with the carrier frequency ω0, multiplying it by eik0(z
′−za)

results in a slowly varying function. Consequently, for a sufficiently small width of δε(z
′−za),

the integration sign together with the longitudinal delta-function in the deterministic part

can be easily omitted:

E (+)
s (r, t)

∣

∣

∣

det.
= i

k0d0
2ε0

Gs(r, ra)
∑

u,l

Tlu,sρa,ul(t− (z − za)/c). (E4)
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More care is required when integrating the noise terms. There is no timescale on which

the noise terms change slowly, making it impossible to approximate the integral. For the

sake of brevity, we can define the following ”smoothed” noise terms:

f̃a,s(t) =

∫ ∞

−∞

fa,s(t− t′)e−iω0t′δε(t
′)dt′,

g̃a,s(t) =

∫ ∞

−∞

ga,s(t− t′)eiω0t′δε(t
′)dt′,

where the effective delta-function δε(t
′) has the width of δε(∆z) divided by the speed of light.

The new function δε(∆t) is consequently involved in the following correlation functions:

〈f̃a,s(t)f̃a′,s′(t′)〉 = 〈f †
a,s(t)f

†
a′,s′(t

′)〉 = 0, (E5a)

〈f̃a,s(t)f †
a′,s′(t

′)〉 = δss′δaa′δε(t− t′)e−iω0(t−t′). (E5b)

The stochastic properties of g̃a,s(t) and g
†
a,s(t) are similar, with the only difference being a

change in the sign of i. As a result, the noise contribution in Eq. (E3) gets the following

form:

E (+)
s (r, t)

∣

∣

∣

noise
= i

k0d0
2ε0

Gs(r, ra)f̃a,s(t− (z − za)/c). (E6)

In contrast to the correlation properties in Eq. (D16) that require a specific Ito’s inter-

pretation of the time integration (see Appendix C), the noise terms that conform to the

correlation properties in Eq. (E5) can be sampled using smooth functions and possess a

simpler physical interpretation.

Note that both the deterministic part in Eq. (E4) and the noise part in Eq. (E6) depend

on the retarded time t − z/c. We can explicitly imprint it into the field variables with the

following redefinition:

Ω(±)
s (r, τ) =

d0
~
E (±)
s (r, τ + z/c)e±iω0τ . (E7)

Here, we express the field variables in terms of the Rabi frequency to simplify the equa-

tions and figure out the characteristic parameters of the problem. Besides, we compensate

frequently oscillating multipliers e±iω0τ , so the fields Ω
(±)
s (r, τ) represent the slowly varying

envelopes.

To account for more then one atom, we add a summation over index a to Eqs. (E4)
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and (E6). Using the definition of the Rabi frequencies, we arrive at the following expression

Ω(+)
s (r, τ) = i

3

8π
λ20Γrad.

∑

a: za<z

Gs(r, ra)

(

∑

u,l

Tlu,sρa,ul(τ + za/c)

+ f̃a,s(τ + za/c)

)

eiω0τ , (E8)

where λ0 is the carrier wavelength and Γrad. is the spontaneous emission rate calculated

based on d0 and given by Γrad. = ω3
0d

2
0/3πε0~c

3. The resulting fields, including Ω
(−)
s (r, τ),

can be interpreted as solutions of the following equations:

[

∂

∂z
∓ i

2k0

(

∂2

∂x2
+

∂2

∂y2

)

+
µs(r, τ)

2

]

Ω(±)
s (r, τ) = i

3

8π
λ20Γrad.P

(±)
s (r, τ), (E9)

where the polarization fields P
(±)
s (r, τ) read as follows:

P (+)
s (r, τ) =

∑

a

(

∑

u,l

Tlu,sρa,ul(τ + za/c) + f̃a,s(τ + za/c)

)

eiω0τδ(r− ra), (E10a)

P (−)
s (r, τ) =

∑

a

(

∑

u,l

Tul,sρa,lu(τ + za/c) + g̃a,s(τ + za/c)

)

e−iω0τδ(r− ra). (E10b)

Note, that we have reintroduced the time dependence of the absorption coefficient µs(r, τ)

in Eq. (E9). By following the rules outlined in Eq. (10), this absorption coefficient is now

explicitly dependent on the retarded time τ .

Appendix F: Collective and continuous variables

1. Wave equations

Since the Green function Gs(r, r
′) in Eq. (E8) exhibits slow change from one atom to

another, it becomes possible to group closely situated atoms into collective variables. We

can divide the entire medium into small regions {Ri}, each with a volume ∆V , and containing

∆N atoms. Eq. (E8) suggests the following definition of the collective coherences for each

region Ri:

ρ
(i)
ul (τ) = eiω0τ

∑

a∈∆V

ρa,ul(τ + za/c)/∆N, (F1a)

ρ
(i)
lu (τ) = e−iω0τ

∑

a∈∆V

ρa,lu(τ + za/c)/∆N. (F1b)
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Indices u and l represent upper and lower excited states. As mentioned before, the atomic

coherences ρa,ul are driven by the field with the carrier frequency ω0, so this carrier frequency

is also imprinted in the coherences. To counteract these frequent oscillations and obtain

the slowly varying amplitudes, we have multiplied the coherences by e±iω0τ . Similarly to

Eq. (F1), we define collective atomic variables for the remaining density matrix elements:

ρ(i)u1u2
(τ) =

1

∆V

∑

a∈∆V

ρa,u1u2
(τ + za/c), (F1c)

ρ
(i)
l1l2

(τ) =
1

∆V

∑

a∈∆V

ρa,l1l2(τ + za/c). (F1d)

Here, the indices ui and li represent the upper and lower states. By analogy, we define

similar collective noise terms for each region Ri:

f (i)
s (τ) = eiω0τ

∑

a∈∆V

f̃a,s(τ + za/c)/∆V, (F2a)

g(i)s (τ) = e−iω0τ
∑

a∈∆V

g̃a,s(τ + za/c)/∆V. (F2b)

Incorporating the collective variables into Eq. (E8) yields the following expression:

Ω(+)
s (ri, τ) = i

3

8π
λ20Γrad.

∑

j: zj<zi

Gs(ri, rj)

(

n(rj)
∑

u,l

Tlu,sρ
(j)
ul (τ) + f (j)

s (τ)

)

∆V, (F3)

where zj and zi represent the location of the regions Rj and Ri. The condition zj < zi

implies that the atoms within the region Rj do not interact with each other but are solely

influenced by the external fields generated by the atoms from the other regions.

In the limit of infinitesimally small ∆V , we can introduce the continuous variables as

follows:

ρ
(i)
pq (τ) ρpq(r, τ),

f
(i)
s (τ) → fs(r, τ),

g
(i)
s (τ) gs(r, τ).

In terms of these continuous variables, both the fields Ω
(+)
s (r, τ) in Eq. (F3) and Ω

(−)
s (r, τ)

can be described by the partial differential equations outlined in Sec. III C. As mentioned

before, we make the assumption that a given region is effected by external electric fields

originating from atoms in other regions. In the limit of infinitesimally small ∆V , this

naturally leads to Ito’s interpretation when performing integration along the z-axis. More

about Ito stochastic differential equations can be found in Appendix C.
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2. Bloch equations

Passing from one atom to another, the electric fields experience slight perturbations due

to diffraction and interactions with the atoms. It is primarily the propagation along the z-

axis that significantly affects these fields. As a result, the slowly varying variables Ω
(±)
s (r, τ)

remain uniform across individual regions, but this uniformity is exclusively observed for the

fixed retarded time that conveniently accounts for the propagation effects.

If the atomic dynamics is solely determined by the electric fields, the atoms within the

individual regions evolve identically. The only distinction is that the dynamics of the neigh-

bouring atoms is shifted in time due to the finite speed of light propagation. Consequently,

the individual atomic variables can be approximated by the corresponding collective vari-

ables. For example, in the case of the atomic coherence ρa,ul, we can express it as follows:

ρa,ul(τ + za/c) ≈ ρ
(i)
ul (τ)e

−iω0τ . (F4)

Here, ρ
(i)
ul (τ) corresponds to the region Ri encompassing the atom a.

However, in addition to the field variables in Eq. (D8), we must also consider the pump

fields in Eq. (D7) and, most importantly, the noise terms in Eq. (D15). Similar to the

variables Ω
(±)
s (r, τ), when examining small individual regions, the pump field is primarily

influenced by propagation along the z-axis, a factor that is conveniently addressed by the

concept of retarded time.

The situation with the noise terms requires more attention, since they completely change

their values from one atom to another. Note that the noise terms fa,s(t) and ga,s(t) do not

operate independently but always appear in groups as defined in Eq. (F2). Consequently,

there is no need for independent noise terms f †
a,s(t) and g†a,s(t) for each atom. Within the

region Ri, the following correlation properties apply to each atom:

〈f (i)
s (τ)f †

a,s(t
′)〉 = δss′δε(t

′ − za/c− τ)eiω0(t′−za/c)/∆V,

〈g(i)s (τ)g†a,s(t
′)〉 = δss′δε(t

′ − za/c− τ)e−iω0(t′−za/c)/∆V.

These correlation properties can be simultaneously restored for each atom by a single pair

of independent noise terms f
(i)†
s (τ) and g

(i)†
s (τ) defined for the entire region Ri:

f †
a,s(τ + za/c) = f (i)†

s (τ)eiω0τ , (F6a)

g†a,s(τ + za/c) = g(i)†s (τ)e−iω0τ . (F6b)
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The collective noise terms f
(i)
s (τ) and f

(i)†
s (τ) must exhibit the following correlation proper-

ties:

〈f (i)
s (τ)f

(i)
s′ (τ

′)〉 = 〈f (i)†
a,s (τ)f

(i)†
a′,s′(τ

′)〉 = 0, (F7a)

〈f (i)
s (τ)f

(i′)†
s′ (τ ′)〉 = δss′δii′δε(τ − τ ′)/∆V. (F7b)

The collective noise terms g
(i)
s (τ) and g

(i)†
s (τ) possess similar stochastic properties.

As the noise terms are found to be identical for atoms within the individual regions, we

can directly substitute the discrete variables ρa,pq(t) in Eqs. (D7), (D8), and (D15) with

the corresponding collective variables ρ
(i)
ul (τ), as indicated by Eq. (F4). Furthermore, in the

limit of infinitesimal ∆V , we introduce the following continuous variables:

ρ
(i)
pq (τ) ρpq(r, τ),

f
(i)†
s (τ) → f †

s (r, τ),

g
(i)†
s (τ) g†s(r, τ).

The final equations can be found in Section III B.

Expressing the correlation properties in Eq. (F7) with respect to the continuous noise

terms, we have:

〈fs(r, τ)fs′(r′, τ ′)〉 = 〈f †
s (r, τ)f

†
s′(r

′, τ ′)〉 = 0, (F8a)

〈fs(r, τ)f †
s′(r

′, τ ′)〉 = δss′δ(z − z′)δε(τ − τ ′)δε(r⊥ − r′⊥). (F8b)

The continuous noise terms gs(r, τ) and g
†
s(r, τ) exhibit similar stochastic properties. The

delta-function δ(z−z′) simply reflects the Ito’s interpretation of the integration along the z-

axis. As previously mentioned, δε(τ−τ ′) is a localized function that serves a purpose similar

to that of a delta-function. Its width is determined by the number of longitudinal modes

required for an accurate representation of the field. For further details, refer to Appendix E.

However, some clarifications are needed regarding the transverse correlations represented

by δε(r⊥ − r′⊥).

Originally, in Eq. (F7), the transverse correlation properties are determined by the trans-

verse dimensions of the individual regions into which we have divided the medium. As the

size of these regions approaches zero, the transverse part of the total correlator in Eq. (F8)

is expected to become infinitely narrow. Nevertheless, note that the noise terms are part

of the wave equations for the fields, the solution of which is expected to be regularized by
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damping non-paraxial modes. This consideration allows us to ”smear out” the correlation

properties and define the width of the transverse correlator based on the span of relevant

transverse modes required for an accurate representation of the paraxial fields.

Appendix G: Noise terms reproducing the spontaneous emission

In this section, we provide a simplified illustration of how the interplay of the noise

terms, present in both the equations for the fields and the atomic variables, reproduces

the spontaneous emission that is subsequently amplified. Similarly to Sec. F, we split the

medium into small regions where atoms are assumed to evolve identically. For simplicity,

we analyze how one of these regions participates in the collective dynamics. For this reason,

we ignore the presence of all the other regions and consider a small, localized collection of

two-level atoms occupying a volume ∆V . All the comprising atoms are characterized by

the atomic variables ρpq(r, τ) → ρ
(1)
pq (τ), which are assumed to be identical for each atom.

Similarly, we have the same noise terms for the whole region, g(†)(r, τ) → g
(†)
1 (τ)/

√
∆V and

f
(†)
1 (τ) → f

(†)
1 (τ)/

√
∆V . Additionally, the fields Ω(±)(r, τ) have only one polarization.

Initially, the atomic coherences are zero. If there is no external field resonant with the

transition, the dynamics of the comprising atoms is defined by the incoherent processes and

the noise terms. Integrating Eq. (13), the coherences ρ
(1)
ul (τ) and ρ

(1)
lu (τ) take the following

form:

ρ
(1)
ul (τ) = Tul

∫ τ

0

dτ ′ρuu(τ
′)e−(Γu+Γl)(τ−τ ′)/2g†1(τ

′)/
√
∆V ,

ρ
(1)
lu (τ) = Tlu

∫ τ

0

dτ ′ρuu(τ
′)e−(Γu+Γl)(τ−τ ′)/2f †

1(τ
′)/

√
∆V ,

(G1a)

where we only consider one polarization and omit the index s. As mentioned in Sec. III B

after Eq. (13c), we have omitted the noise contributions that exhibit a quadratic dependence

on the atomic variables ρpq(r, τ). Since the noise terms g†1(τ) and f †
1(τ) are uncorrelated,

there is no macroscopic dipole moment:

〈ρ(1)lu (τ)〉 = 〈ρ(1)ul (τ)〉 = 〈ρ(1)ul (τ)ρ
(1)
lu (τ ′)〉 = 0,

which is absolutely coherent with the assumptions that the neighbouring atoms are inde-

pendent and do not experience any external influence. The change in the mean populations

of the atomic levels is solely caused by the finite lifetime and the pump, as the noise terms

average out to zero.
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As we can see, the noise terms do not directly affect the dynamics of the atoms. Their

primary purpose is to facilitate the generation of spontaneous fields. To demonstrate this, we

integrate Eq. (14), which leads to the following expressions for the fields Ω(±)(τ) generated

by the atoms in the small region:





Ω
(+)
det.(τ)

Ω
(+)
noise(τ)



 = i
3

8π
λ20Γrad.∆z





Tlunρ
(1)
ul (τ)

f1(τ)/
√
∆V



 ,





Ω
(−)
det.(τ)

Ω
(−)
noise(τ)



 = −i 3
8π
λ20Γrad.∆z





Tulnρ
(1)
lu (τ)

g1(τ)/
√
∆V



 ,

where n is the concentration. We have neglected the diffraction effects to simplify the

expressions. Substituting the coherences from Eq. (G1), we get the following expressions:





Ω
(+)
det.(τ)

Ω
(+)
noise(τ)



 = i
3

8π

λ20Γrad.∆z√
∆V





|Tlu|2n
∫ τ

0
dτ ′ρ

(1)
uu (τ ′)e−(Γu+Γl)(τ−τ ′)/2g†1(τ

′)

f1(τ)



 , (G3a)





Ω
(−)
det.(τ)

Ω
(−)
noise(τ)



 = −i 3
8π

λ20Γrad.∆z√
∆V





|Tul|2n
∫ τ

0
dτ ′ρ

(1)
uu (τ ′)e−(Γu+Γl)(τ−τ ′)/2f †

1(τ
′)

g1(τ)



 . (G3b)

We characterize the field by the first order correlation functions Js(r, τ, τ
′) defined in

Eq. (16). Adopting the notation from this section and omitting the polarization index, we

write:

J(τ, τ ′) =
〈Ω(+)(τ)Ω(−)(τ ′)〉

3
8π
λ20Γrad.

. (G4)

Analysing Eq. (G3), we notice that Ω
(−)
det. and Ω

(+)
det. are not correlated. Same with Ω

(−)
noise and

Ω
(+)
noise. J(τ, τ

′) reads then as follows:

J(τ, τ ′) =

[

3

8π
λ20Γrad.

]−1
(〈

Ω
(−)
det.(τ)Ω

(+)
noise(τ

′)
〉

+
〈

Ω
(−)
noise(τ)Ω

(+)
det.(τ

′)
〉)

. (G5)

Eq. (G5) shows, how the noise terms from the atomic and field equations can finally meet and

give non-zero correlations: Ω
(±)
det.(τ) include the integrated noise terms from the equations for

the atomic variables f †
1(τ) and g

†
1(τ) and Ω

(±)
noise.(τ) contain f1(τ) and g1(τ). Incorporating

Eq.(G3) into Eq. (G5) yields the following correlator:

J(τ, τ ′) =
3

8π

λ20
∆x∆y

Γrad.n∆z|Tge|2ρ(1)uu (min(τ, τ ′))e−(Γu+Γl)|τ−τ ′|/2, (G6)
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which is the Lorentzian spectrum of the spontaneous emission. Summing up the spontaneous

emission from the other regions yields Eq. (18). Here, λ20/[∆x∆y] represents the solid angle

over which the spontaneous emission propagates.

The spontaneous emission interacts with the atoms in neighboring regions, stimulating

them to decay faster, which results in increased emission. This leads to the phenomenon of

amplified spontaneous emission.

Appendix H: Numerical realization

1. Noise terms, atomic and field variables on a grid

For the current implementation, we use a uniform rectangular grid with step size

∆x,∆y,∆z,∆τ and follow the atomic and field variables at grid nodes denoted by a

four-dimensional index xyzτ

ρij(r, τ) → ρij,xyzτ, Ω(±)
s (r, τ) → Ω(±)

s,xyzτ. (H1)

The noise contributions are modelled with the help of Gaussian random numbers with

the following correlation properties

〈ξ(±)
s,xyzτξ

(±)∗
s′,x′y′z′τ′〉 = δss′ δxx′ δyy′ δzz′ δττ′ , (H2a)

〈ξ(±)
s,xyzτξ

(±)
s′,x′y′z′τ′〉 = 〈ξ(∓)

s,xyzτξ
(±)
s′,x′y′z′τ′〉 = 0, (H2b)

that can be directly used to discretize the noise terms














fs(r, τ)

f †
s (r, τ)

gs(r, τ)

g†s(r, τ)















→















ξ
(+)
s,xyzτ

ξ
(+)∗
s,xyzτ

ξ
(−)
s,xyzτ

ξ
(−)∗
s,xyzτ















/
√

∆z∆x∆y∆τ . (H3)

2. Diffusion gauges

In section IVA, we proposed to use the drift gauges for removing run-away realiza-

tions from the stochastic differential equations. The rigorous application of the drift gauges

requires re-weighting trajectories from the final statistical sample. We aim to skip the re-

weighting procedure. To mitigate the effect of this approximation, we attempt to minimize
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the need of the substitution in Eq. (21). We achieve this by reducing the difference between

atomic coherences ρul(r, τ) and ρ
∗
lu(r, τ) through the use of the diffusion gauge discussed in

Sec. IVA. Throughout this appendix, we use indices u and u′ to denote the upper excited

states, while l and l′ represent the lower excited states.

Note that the correlation properties in Eq. (H2) do not change under the following trans-

formation:

ξ(±)
s,xyzτ → ξ(±)

s,xyzτRs,xyzτ, (H4)

ξ(±)∗
s,xyzτ → ξ(±)∗

s,xyzτ/Rs,xyzτ,

where Rs,xyzτ must be statistically independent from the the noise terms ξ
(±)
s,x′y′z′τ′ for z

′ ≥ z.

Suitable gauging coefficients Rs,xyzτ must minimize the following expression for each po-

larization s, time t and coordinates r:

〈∣

∣

∣

∑

eg

Tges
(

ρeg(r, τ)− ρ∗ge(r, τ)
)

∣

∣

∣

2〉

. (H5)

Assuming coherences ρuu′(r, τ) and ρll′(r, τ) to be small, coefficients Rs,xyzτ can be expressed

in the following way:

Rs,xyzτ =

√

16πgs,xyzτ
3λ2Γrad.∆z

where gs,xyz depends on the discretized version of ρ
(up.)
s (r, τ) and ρ

(low.)
s (r, τ) from equation

(19):

gs,xyzτ =
ρ
(up.)
s,xyzτ

ρ
(up.)
s,xyzτ − ρ

(low.)
s,xyzτ

. (H6)

Inter-level coherences ρuu′(r, τ) and ρll′(r, τ) are not created during the pump stage; they

develop during the interaction with the SF field. Since the noise terms are significant during

spontaneous emission and ASE stages when a strong SF field has not yet developed, the

full consideration of the inter-level coherences for noise-term calculations would be a small

correction compared to the populations of the levels at the stages under consideration.

3. Numerical scheme for the field variables

Given the atomic variables at grid nodes ρpq,xyzτ, we can propagate the field variables

using multislicing approach [85, 86]. To simplify the differentiation along the x- and y-axis
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and achieve spectral accuracy, we make use of Fourier transform in the xy-plane




Ω
(±)
s, det.

Ω
(±)
s, noise





kxkyzτ

=
∑

x,y

F xy
kxky





Ω
(±)
s, det.

Ω
(±)
s, noise





xyzτ

,

here, F xy
kxky denotes the components of the Fourier transfrom, and kx and ky indicate the

Fourier components of the fields. To denote the inverse Fourier transform, we swap the

indices, namely (F−1)
xy

kxky
= Fkxky

xy . Assuming the introduced notation, the integrating

scheme takes the following form:





Ω
(+)
s, det.

Ω
(+)
s, noise





xy(z+1)τ

= Gxyzτ

∑

kx,ky

Fkxky
xy Kkxky





Ω
(+)
s, det.

Ω
(+)
s, noise





kxkyzτ

+ i







γnxyz∆V
∑

u, l

Tlusρul,xyzτ

2
√

γgs,xyzτ
2∆τ

ξ
(+)
s,xyzτ






, (H7)





Ω
(−)
s, det.

Ω
(−)
s, noise





xy(z+1)τ

= G∗
xyzτ

∑

kx,ky

Fkxky
xy K∗

kxky





Ω
(−)
s, det.

Ω
(−)
s, noise





kxkyzτ

− i







γnxyz∆V
∑

u, l

Tulsρlu,xyzτ

2
√

γgs,xyzτ
2∆τ

ξ
(−)
s,xyzτ






. (H8)

Here, we have already performed the transformation (H4) and introduced the gauging func-

tion gs,xyzτ from equation (H6). For brevity, we have also introduced an effective radiative

decay rate

γ =
3

8π
× λ2

∆x∆y
× Γrad., (H9)

where λ2/∆x∆y represent the solid angle over which the paraxial modes propagate. The

ratio γ/Γrad. defines the proportion of the spontaneous emission participating in the ampli-

fication process. This coefficient turns out to be a universal constant further appearing in

the equations for the discrete atomic variables. Apart from that, we have also introduced

the elementary volume ∆V = ∆x∆y∆z, the atomic density nxyz defined on the grid, and

two additional matrices describing absorption and diffraction upon propagation along the

medium

Gxyzτ = exp
[(µxyzτ

2
∓ iδxyzτk0

)

∆z
]

, Kkxky = exp

[

−i
k2x + k2y
2k0

∆z

]

, (H10)
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where µxyzτ and δxyzτ represent µ(r, τ) and δ(r, τ) on a grid.

To remove run-away trajectories, we have to adopt the strategy from Sec. IVA to

Eqs. (H7) and (H8). At each time step, we find xyz-points satisfying the condition in

Eq. (20) and transform Eqs. (H7) and (H8) in accordance with Eq. (21).

With the proposed scheme, we can achieve high stability and first-order accuracy for the

integration of the deterministic part along the z-axis. In addition, Eqs. (H7) and (H8) can

also be used for integrating pump fields.

According to Section IIIA, the noise terms should exhibit finite correlations in time and

along the transverse directions. However, the proposed discretized noise terms associated

with distinct nodes on the grid are completely independent. This lack of correlation in the

transverse direction is not a problem, as the propagation along the z-axis will introduce

these correlations by cutting the non-paraxial modes. To restore finite correlations in time,

the variables used to construct observables must be averaged over neighboring time nodes.

4. Numerical scheme for the atomic variables

We use an approach similar to split-step method, and treat the increment of the regular

part of the equations for atomic variables with suitable explicit high order algorithm, while

for the noise part we use an explicit Euler-Murayama scheme

ρpq,xyz(τ+1) = ρpq,xyzτ +∆ρpq,xyzτ|det. +∆ρpq,xyzτ|noise.

In the present article, the time integration of the regular part of the atomic variables is

performed separately for each xyz-point with Runge-Kutta 4-th order algorithm

∆ρuu′, xyzτ

∆τ

∣

∣

∣

det.
=

[

−i∆ωuu′ρuu′ + i
∑

l, s

(

Ω
(+)
s, det.Tulsρlu′ − Ω

(−)
s, det.ρulTlu′s

)

]

RK, xyzτ

(H11)

∆ρul, xyzτ
∆τ

∣

∣

∣

det.
=

[

−i∆ωulρul − i
∑

s

Ω
(+)
s, det.

(

∑

u′

ρuu′Tu′ls −
∑

l′

Tul′sρl′l

)]

RK, xyzτ

(H12)

∆ρlu, xyzτ
∆τ

∣

∣

∣

det.
=

[

i∆ωulρlu + i
∑

s

Ω
(−)
s, det.

(

∑

u′

Tlu′sρu′u −
∑

l′

ρll′Tl′us

)]

RK, xyzτ

(H13)

∆ρll′, xyzτ
∆τ

∣

∣

∣

det.
=

[

−i∆ωll′ρll′ + i
∑

u, s

(

Ω
(−)
s, det.Tlusρul′ − Ω

(+)
s, det.ρluTul′s

)

]

RK, xyzτ

(H14)
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Note that the equations only contain the deterministic fields Ω
(±)
s, det.(r, τ). The noise parts

of the fields Ω
(±)
s, noise(r, τ) must be taken into account together with the other noise terms at

the level of Euler-Murayama scheme

∆ρuu′,xyzτ

∆τ

∣

∣

∣

noise
=i
∑

l, s

(

Ω
(+)
s, noiseTulsρlu′ − Ω

(−)
s, noiseρulTlu′s

)

xyzτ
(H15)

∆ρul,xyzτ
∆τ

∣

∣

∣

noise
=
∑

s

[

iΩ
(+)
s, noise

(

∑

l′

Tul′sρl′l −
∑

u′

ρuu′Tu′ls

)

(H16)

+

√

γg−1
s

2∆τ
ξ(−)∗
s

∑

u′

ρuu′Tu′ls

]

xyzτ

∆ρlu,xyzτ
∆τ

∣

∣

∣

noise
=
∑

s

[

iΩ
(−)
s, noise

(

∑

u′

Tlu′sρu′u −
∑

l′

ρll′Tl′us

)

(H17)

+

√

γg−1
s

2∆τ
ξ(+)∗
s

∑

u′

Tlu′sρu′u

]

xyzτ

∆ρll′,xyzτ
∆τ

∣

∣

∣

noise
=
∑

u, s

[

i
(

Ω
(−)
s, noiseTlusρul′ − Ω

(+)
s, noiseρluTul′s

)

(H18)

+

√

γg−1
s

2∆τ

(

ξ(+)∗
s Tlusρul′ + ξ(−)∗

s ρluTul′s
)

]

xyzτ

As mentioned in Sec. III B after Eq. (13c), we have omitted the noise contributions that

exhibit a quadratic dependence on the atomic variables ρpq(r, τ).

5. Qualitative analysis of the noise terms

The proportionality of the noise-term increments to
√
∆t in equations for atomic vari-

ables (H15) – (H18) is inherent for stochastic differential equations.

In contrast to the deterministic source, the noise source in equations (H7) – (H8) is not

proportional to grid size ∆z. Consequently, the ratio between the noise and deterministic

contribution is inversely proportional to ∆z. This inverse proportionality can be understood

following the arguments presented for superradiance of distributed systems [25]: the smaller

the grid size is, the larger the quantum fluctuations of atomic coherence are due to the finite

number of the emitters within the grid voxel. In our case, the higher spatial resolution we

would like to achieve, the larger the noise-term values reflecting the larger relative role of

quantum effects would be, and the larger amount of realizations we would need to run in
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order to achieve smooth profiles for observables of interest.
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Gärtner, Romain Ganter, Terence Garvey, Zheqiao Geng, Ishkhan Gorgisyan, Christopher

Gough, Andreas Hauff, Christoph Hauri, Nicole Hiller, Tadej Humar, Stephan Hunziker, Ger-

hard Ingold, Rasmus Ischebeck, Markus Janousch, Pavle Juranić, Mario Jurcevic, Maik Kaiser,
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