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Stochastic modeling of x-ray superfluorescence
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An approach to modeling the dynamics of x-ray amplified spontaneous emission and superfluorescence, the
phenomenon of collective x-ray emission initiated by intense pulses of x-ray free-electron lasers, is developed
based on stochastic partial differential equations. The equations are derived from first principles, and the relevant
approximations, derivation steps, and extensions specific to stimulated x-ray emission are presented. The result-
ing equations take the form of three-dimensional generalized Maxwell-Bloch equations augmented with noise
terms for both field and atomic variables. The derived noise terms possess specific correlation properties that
enable the correct reconstruction of spontaneous emission. Consequently, the developed theoretical formalism
is universally suitable for describing all stages of stimulated x-ray emission: spontaneous emission, amplified
spontaneous emission, and superfluorescence. We present numerical examples that illustrate various properties
of the emitted field, including spatiotemporal coherence and spectral-angular and polarization characteristics.
We anticipate that the proposed theoretical framework will establish a robust foundation for interpreting
measurements in stimulated x-ray emission spectroscopy, modeling x-ray laser oscillators, and describing other
experiments leveraging x-ray superfluorescence.
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I. INTRODUCTION

X rays are naturally suited for studying the dynamical
structure of matter with atomic resolution and on subfem-
tosecond timescales. X-ray free-electron lasers (XFELs) [1–5]
create a paradigm shift, opening the realm of exploring
high-intensity, nonlinear x-ray–matter interaction phenom-
ena. The bright and femtosecond-short XFEL pulses can
drive matter into previously unexplored, highly excited states,
enabling unique insights into its structure and dynamics
[6–11].

For instance, focused XFEL beams can prepare atoms in
a state of sizable population inversion of core-valence transi-
tions through rapid inner-shell photoionization. In the optical
domain, a medium that is kept in a population-inverted state
and placed in a resonator forms a classical laser oscillator.
In the x-ray domain, sustaining a steady state of popula-
tion inversion is hampered by fast decay processes on the
femtosecond timescale. We consider the case of a transient
population inversion produced by a short x-ray pulse trav-
eling through a pencil-shaped medium. The x-ray emission
process starts from isotropic, spontaneous x-ray fluorescence,
which, upon propagating through the excited medium, is
exponentially amplified until saturation, resulting in short,
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directed x-ray emission bursts. We later refer to the expo-
nential amplification regime as the amplified spontaneous
emission (ASE) regime and the saturation as the superfluo-
rescence (SF) regime.

Soft x-ray SF was first realized in Ne gas [12,13], with
the observed emission also referred to as atomic x-ray las-
ing. Subsequent experiments demonstrated hard x-ray SF for
solid targets [14,15] and liquid jets [16,17]. Several appli-
cations for these types of x-ray pulses have been proposed.
The directivity and high intensity of SF pulses facilitate high
signal-to-noise ratio measurements, beneficial in x-ray spec-
troscopy. As experimentally demonstrated in [16], chemical
shifts are preserved in stimulated x-ray emission spectroscopy
(sXES). Furthermore, it has been shown that weaker x-ray
emission lines can be seeded and selected from other lines
[17]. The development of these sXES techniques is one of
the future directions at XFELs [9]. Furthermore, x-ray SF
may be used as a source of x-ray radiation with unique
characteristics. In [15], it was demonstrated that employ-
ing a self-amplified spontaneous emission (SASE) XFEL
pump pulse can result in double-pulse x-ray SF. Further
improvement of this technique may create x-ray sources
needed for coherent nonlinear spectroscopy techniques [18].
In Ref. [19], a lasing medium, operating in hard x-ray ASE
or SF regimes, is considered in a Bragg cavity, with the
ultimate goal of forming an x-ray laser oscillator (XLO)
resulting in spatially and temporally coherent x-ray pulses,
with properties comparable to planned cavity-based XFEL
pulses [20–23].
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The interpretation of sXES data and modeling of x-ray SF-
based sources strongly benefit from predictive, quantitative
modeling. In general, the phenomenon can be considered as a
particular case of superradiance, which historically attracted
significant interest [24–26]. A full quantum description of
the interaction between the continuum of electromagnetic
field modes and an ensemble of few-level emitters can be
performed for certain particular cases, assuming the per-
mutational invariance of emitters [27–29] or restricting the
evolution to early times [30,31]. However, these methods can-
not be directly applied to our setting since we are interested
in systems containing ∼1012 emitters. Therefore, we opt for a
coarse-grained description of the problem, approximating the
ensemble of atoms as a continuous medium. Our approach
encompasses, in the general case, the dynamics of pumping
and building up the transient population inversion, the initial
stage of spontaneous emission, subsequent propagation and
diffraction of the amplified emitted field, and the dynamics
in the nonlinear saturation regime. If quantum properties of
the electromagnetic field can be neglected, the description can
be done with the help of optical Maxwell-Bloch (MB) equa-
tions [32]. However, in the case of SF, no atomic coherences
nor emitted fields are initially present, hence, homogeneous
MB equations lack the source of spontaneous emission. Com-
bining the MB equations with quantum effects triggering SF
is necessary.

A rigorous description of both quantum and classical ef-
fects, e.g., diffraction, is possible in the ASE regime. In
this case, the emitted fields are not strong enough to cause
a change in the population inversion, and the equations for
field and atomic operators become linear. Under these con-
ditions, analytical expressions for emitted field properties
can be derived for various shapes of the inverted medium
[33–35]. Once the emitted field becomes strong, the ASE
regime transforms into the SF regime where nonlinear effects
play an important role, and the quantum fluctuations have
negligible contributions. In the case of instantaneous exci-
tation of atoms, the influence of quantum fluctuations can
be represented by a suitable distribution of initial conditions
for the MB equations. In two-level systems, the distribution
of initial conditions can be mapped onto the distribution of
tipping Bloch vectors from the pole of the Bloch sphere
[25,36]. The numerical modeling of SF including diffrac-
tion effects is possible in paraxial approximation [25,37] as
well as within rigorous finite-difference time-domain methods
[38,39]. However, in the x-ray domain, the rapid depopu-
lation of the core-excited states on fs timescale due to the
Auger-Meitner and radiative decays limits the approximation
of instantaneous excitation. In this case, pumping, decay, and
SF take place on the same timescale. In addition, different
regions of the medium may experience evolution in differ-
ent regimes, e.g., the central part may experience saturation,
while the edges may be still within ASE. Hence, a formalism
that enables a uniformly suitable description of both quantum
spontaneous emission and semiclassical MB-like behavior is
needed.

It is possible to modify semiclassical equations in a phe-
nomenologic way to include quantum effects responsible for
spontaneous emission by, for example, augmenting the MB
equations with noise terms in the field equations [40], or in

the atomic equations [41], by including stochastic relaxation
terms in the atomic equations and performing rescaling of
the electric field (so-called Ehrenfest+R method [42,43], and
other ways [44,45]). However, since those methods are not de-
rived from the first principles, they possess certain limitations.
Among those methods, the approach based on augmenting
the MB equations with phenomenological noise terms [41] is
widespread and has been applied for a series of applications
[15,16,46–50]. This approach has the same computational
complexity as MB equations and describes well the nonlinear
dynamics in the saturation stage, however, has deficiencies in
the description of the initial spontaneous-emission-dominated
stage. Namely, the resulting temporal profile of the sponta-
neous emission is not reproduced correctly [51,52]. A correct
description of the spontaneous emission and crossover to MB
equations can be realized based on solving equations for the
correlation function of the field and atomic coherences [52].
This approach has been applied to several systems [53,54],
but is computationally costly since two-point quantities need
to be computed. Moreover, extending this approach beyond
two-level systems is challenging since the factorization of
higher-order correlation functions into one- and two-point
correlation functions, which is crucial to obtain a closed
system of equations, becomes problematic even for the three-
level systems.

In this paper, we present an approach that is general enough
to describe spontaneous x-ray emission, ASE, and SF under
realistic conditions and is free from uncontrollable approxi-
mations. We build on the formalism presented in paper [55],
and apply it to the case of lasing in copper atoms. We consider
a typical XFEL pump pulse and parameters of the medium
that result in pencil-shaped geometry. In this case, we can
apply the paraxial approximation and, due to a short pump-
pulse duration as well as rapid level decay compared to the
propagation time, neglect the back-propagating wave and thus
take advantage of using a comoving frame by the concept of
retarded time. Under these simplifications, we obtain equa-
tions in the structure similar to MB augmented with noise
terms. The derived noise terms possess nontrivial correla-
tion properties and can correctly reproduce the spontaneous
emission.

In practical applications, when sampled in a Monte Carlo
fashion, the proposed formalism can often result in di-
verging statistical realizations, a characteristic shared with
similar phase-space methods [56–58]. In this article, we
introduce an empirical modification designed to mitigate
this divergent behavior. A more rigorous strategy address-
ing this issue will be explored and detailed in subsequent
publications.

The paper is organized as follows: In Sec. II, we formu-
late the master equation for Cu Kα1 lasing in a pencil-shape
medium. Specific details about the pumping, decay, and de-
coherence processes can be found in Appendixes A and B.
In Sec. III, the master equation is converted into a sys-
tem of stochastic differential equations. In Appendix H,
the numerical scheme for solving these equations is pre-
sented. Finally, in Sec. IV, we give an example of numerical
modeling and discuss the relationship between the output
of the stochastic equations and the physical observables of
interest.
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II. PROBLEM STATEMENT

A. Resonant interactions with the light

We consider an ensemble of many-level atoms in free space
interacting through the quantized electromagnetic field. Each
atom bears its own index a, to differ from the others. Its inner
structure is characterized by a set of levels {|p〉} and energies
h̄ωp. The free Hamiltonian of atom a has the form

Ĥa =
∑

p

h̄ωa,pσ̂a,pp. (1)

Here, we introduce operators σ̂a,pq = |p〉a〈q|a that measure
the occupations and transitions between states of a particular
atom a.

Prior to being excited by, for example, an XFEL beam, the
atoms are in their ground state. Being ionized, the atoms start
interacting with each other through the quantized electromag-
netic field, resonant to the open transitions. The Hamiltonian
of the field reads as

Ĥ f =
∑

k,s

h̄ωk â
†
k,s

âk,s. (2)

Each mode of the field is characterized by a wave vector k,
frequency ωk = |k|c, and polarization vector es. The pumping
by a focused XFEL beam typically results in a pencil-shaped
geometry of the excited medium. According to Ref. [59],
for Gaussian beams with beam waist w0 > 100λ (λ is radi-
ation wavelength), the difference between the solutions of full
Maxwell equations and the paraxial scalar wave equations is
less than a few percent. Since the XFEL focus size, even
for the best x-ray focusing optics, is much larger than the
wavelength [60,61], we can use the paraxial approximation.
In this case, the field propagating in the medium includes
only the paraxial modes whose wave vectors k are close to
the central carrier wave vector k0 = ω0/c. Its propagation
direction is denoted as z. The polarization vectors es remain
independent of the wave vectors k and are orthogonal to the
z axis, forming the basis for a two-dimensional space. In
this article, we employ right- and left-hand circular polarized
Jones vectors as the chosen polarization basis (see Ref. [62]):

e−1 = (ex − iey)/
√

2, e+1 = (ex + iey)/
√

2.

In addition to the field propagating along the z axis,
the atoms exhibit isotropic spontaneous emission. This phe-
nomenon cannot be accurately analyzed using the paraxial
approximation. Given the negligible interaction of this emis-
sion with the medium, we exclude it from the field variable
and consider it solely in the context of the lifetimes of the
excited states. See Sec. II B for more details.

The light is assumed to be resonant with the two manifolds
of atomic levels: upper levels {|u〉} and lower levels {|l〉},
whose transition energies ωuu′ = ωu − ωu′ and ωll ′ = ωl − ωl ′

are assumed to be much smaller than the carrier frequency ω0.
We reserve the indices u and l for the upper and lower states,
respectively. For the numerical example, we will consider
the level scheme corresponding to the Kα1 transition of Cu
atoms and stimulated emission following 1s ionization. SF on
this transition was observed in [14]. The Cu Kα1 transition

Ω+1 Ω+1 Ω
−1 Ω

−1

m = 1/2 m = −1/2

m = 1/2 m = −1/2

1s−1
1/2

2p−1
3/2

Γrad.

p
(pump)
i

ΓK, L3

Γ
(ion.)

FIG. 1. Illustration of the Kα1 system within a copper atom. Up-
per states 1s−1

1/2 experience radiative decay to lower states 2p−1
3/2 at a

spontaneous rate Ŵrad, and are coupled by two radiation modes (�±1).
All ionic states are generated through nonresonant photoionization
from the ground state (p

pump
i ). These ionic states can subsequently de-

cay either spontaneously (ŴK , ŴL3 ) or via photoionization triggered
by the pump and emitted fields (Ŵion).

is a candidate for the first implementation of the x-ray laser
oscillator concept [19]. To address the polarization properties
of the emitted field, we have to explicitly treat the degenerate
sublevels with different magnetic numbers. The manifolds of
upper and lower levels have the following explicit form:

{u} =
{

1s 1
2 ,m=− 1

2
, 1s 1

2 ,m= 1
2

}

,

{l} =
{

2p 3
2 ,m=− 3

2
, 2p 3

2 ,m=− 1
2
, 2p 3

2 ,m= 1
2
, 2p 3

2 ,m= 3
2

}

. (3)

The considered level scheme is sketched in Fig. 1.
The dynamics of the atomic populations is supposed to be

incomparably slower than the oscillations of the field; there-
fore, we neglect all nonresonant interactions. Based on these
assumptions, we write the following interaction Hamiltonian:

V̂ = −ig0 h̄
∑

a,u,l

dul σ̂a,ul

∑

k,s

âk,sese
ik·ra + H.c., (4)

where the indices u and l represent the upper and lower states,
g0 =

√
ω0/2V h̄ε0, V is the quantization volume, dpq are the

matrix elements of the dipole moment operators, and ra are
the coordinates of atom a. The size of the atoms is typically
assumed to be small in comparison with the wavelength of the
electromagnetic field in the system, allowing the application
of the dipole approximation. In the case of Kα transitions, the
wavelength is comparable to the atom size; however, it is still
much larger than the overlap between atomic orbitals involved
in Kα transitions. In this case, the dipole approximation could
be used as well.

We decompose dul into the product of the reduced dipole
moment d0 [63] and dimensionless coefficients Tul,s and Tlu,s:

dul · es = d0Tul,s, dlu · e∗
s = d0Tlu,s. (5)

The reduced dipole moment d0 defines the strength of the
transition, whereas the coefficients Tlu,s = T ∗

ul,s store the
directional information and are proportional to Clebsch-
Gordan coefficients. They can be calculated based on the
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Wigner-Eckart theorem (more in Appendix A 1):

{Tul,s=1} =

2p 3
2 , m=− 3

2
2p 3

2 , m=− 1
2
2p 3

2 , m= 1
2
2p 3

2 , m= 3
2

( )

0 0 1/3 0 1s 1
2 , m=− 1

2

0 0 0 1/
√

3 1s 1
2 , m= 1

2

, (6a)

{Tlu,s=−1} =

2p 3
2 , m=− 3

2
2p 3

2 , m=− 1
2
2p 3

2 , m= 1
2
2p 3

2 , m= 3
2

( )

1/
√

3 0 0 0 1s 1
2 , m=− 1

2

0 1/3 0 0 1s 1
2 , m= 1

2

, (6b)

where the index s describes the polarization of the emit-
ted field and takes the values −1 or 1, corresponding
to circular polarizations of the field traveling along the
sample. The remaining coefficients Tlu,s can be derived
by conjugation, namely, Tlu,s = T ∗

ul,s. The transitions corre-
sponding to nonzero Tul,s and Tlu,s are depicted in Fig. 1.
The analysis of possible transitions shows that the con-
sidered Kα1 level scheme is equivalent to two 	 sys-
tems, composed of levels {2p 3

2 ,m=− 3
2
, 1s 1

2 ,m=− 1
2
, 2p 3

2 ,m= 1
2
} and

{2p 3
2 ,m= 3

2
, 1s 1

2 ,m= 1
2
, 2p 3

2 ,m=− 1
2
}. Each of the 	 systems inter-

acts with fields of both polarizations; as a result, in the general
case, neither field polarization modes nor the 	 systems can
be decoupled from one another.

Finally, we note that by assuming g0 is independent
of ω, we disregard dipole-dipole interactions that can lead
to decoherence between neighboring atoms. The effect of
dipole-dipole interactions is local and solely determined by
the density of the atoms, while the collective behavior of
superfluorescence is mainly influenced by the total number
of atoms. A proper geometry of the system can minimize
the loss of coherence. Consequently, neglecting dipole-dipole
interaction is well justified for large, elongated systems.

B. Inclusion of the pump and decay processes

Superfluorescence in Cu is initiated by an intense and
focused pump pulse with an x-ray photon energy above the
1s ionization threshold. As a result, the Cu atoms are trans-
ferred from the neutral ground state to the core-ionized state,
predominantly leaving the Cu atom in the 1s−1

1/2 state. This
state can decay radiatively to the 2p−1 manifold of states or
undergo other radiative processes, as well as Auger-Meitner
decay. Equation (4) with levels from Eq. (3) describes the
evolution of a small subsystem of atomic levels conditioned
by the interaction with the resonance and paraxial fields.
Processes such as photoionization, Auger-Meitner decay, flu-
orescence, electron-impact ionization, shakeoff, and others
that follow the irradiation by an XFEL pulse [64] need to
be incorporated. Since the paraxial fields do not include all
spontaneous emission, it is necessary to consider their impact
at the level of lifetimes of the excited states.

In addition to the states listed in Eq. (3), we also analyze
the population of the neutral ground state, which is required
for describing the pumping via photoionization. To describe
the absorption of the pump pulse, we will consider the cumu-
lative population of singly ionized states ρaux(r, τ ) that are

not explicitly mentioned in Eq. (3) (see Appendix A for more
details). The inclusion of pump, decay, and decoherence is
typically performed in Markov approximation with the help of
a master equation [52,65]. Assuming a separate independent
reservoir for each atom, the master equation is modified as
follows:

d ρ̂(t )

dt

∣

∣

∣

incoh
= L̂incoh[ρ̂(t )]

=
∑

i

p
pump
i (ra, t )σ̂a,i0ρ̂(t )σ̂a,0i

+ Ŵrad

∑

ik

Grad
ik σ̂a,ik ρ̂(t )σ̂a,ki

−
1

2

∑

i

Ŵi(ra, t )[ρ̂(t )σ̂a,ii + σ̂a,iiρ̂(t )]. (7a)

Here, Ŵi(r, t ) represents the inverse lifetime of the state
|i〉. The nonstationary pump field causes secondary ioniza-
tion, subsequently making the lifetimes nonstationary as well.
Without the time-dependent contributions, Ŵu = 2.24 fs−1

and Ŵl = 0.96 fs−1, both of which are comparable to the du-
ration of the pump pulse. p

pump
i (r, t ) represents the transition

rates from the neutral ground state |0〉 due to photoioniza-
tion, Grad

ik describes spontaneous radiative transitions between
levels listed in Eq. (3), and Ŵrad is the spontaneous radiation
emission rate calculated based on d0 and given by Ŵrad =
ω3

0d2
0 /[3πε0 h̄c3]. The explicit form of these coefficients as

well as further details on the implementation of incoherent
processes are discussed in Appendix A.

Finally, we consider the absorption of the quantized elec-
tromagnetic field through nonresonant transitions. This can
be described by the following additional terms in the master
equation:

d ρ̂(t )

dt

∣

∣

∣

absorp
= L̂absorp[ρ̂(t )]

=
c

2

∑

s

∫

dr([Âs(r)ρ(t ), A†
s (r)]

+ [Âs(r), ρ(t )Â†
s (r)])µs(r, t ). (7b)

Here, µs(r, t ) represents the absorption coefficients de-
fined for each polarization s. These coefficients are as-
sumed to be small compared to resonance absorption. To
simplify the notation, we introduce the operator Â(r) =
∑

k,s âk,sese
ik·r/

√
V , defined in coordinate space. It is im-

portant to note that µs(r, t ) varies with time to account for
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changes in the atomic states, which in turn affect the values
of the cross sections. The explicit form of the absorption
coefficient µs(r, t ) can be found in Appendix A 6.

III. STOCHASTIC DIFFERENTIAL EQUATIONS

A. Stochastic variables

Understanding the evolution of a macroscopic ensemble
of atoms coupled to a quantized electromagnetic field is a
complex and challenging topic. This complexity arises due to
the exponential growth in the number of degrees of freedom
associated with the underlying density matrix. In the study of
superfluorescence in compact systems [55], the density matrix
is represented as a factorized product of one-particle density
matrices, with the dynamics of these individual one-particle
density matrices described by Bloch equations. To account
for collective many-body effects, additional noise terms are
introduced. Each realization of these noise terms yields a
distinct density matrix, and the average of different density
matrices restores quantum effects, accurately reproducing the
phenomenon of collective spontaneous decay in compact en-
sembles of atoms.

Simplifying the analysis of superfluorescence in compact
systems involves tracing out the field degrees of freedom,
leading to a parametrization that includes only atomic vari-
ables. However, in elongated systems, explicit consideration
of the propagation of the field becomes necessary. The
parametrization from Ref. [55] is extended to include the field
variables:

ρ(t ) =

〈

∏

a

ρ̂a(t )
∏

k,s

	̂(αk,s(t ), α†
k,s

(t ))

〉

. (8a)

Here, each atom is characterized by a one-particle density
matrix ρ̂a:

ρ̂a =
∑

p,q

ρa,pq(t )σ̂a,pq. (8b)

To incorporate the electromagnetic field, we draw inspi-
ration from the concept of positive P representation (see
Refs. [56,57] for more details). We expand the field in the
basis of coherent states |αk,s(t )〉. In the density matrix for-
malism, the coherent states are combined into normalized
projectors 	̂(α, α†):

	̂(α, α†) = |α〉〈α†∗| exp

(

−α†α +
|α|2

2
+

|α†|2

2

)

. (8c)

The evolution of the one-particle density matrices ρa,pq(t )
and field mode amplitudes αk,s(t ) and α

†
k,s

(t ) is governed
by stochastic differential equations, which will be introduced
later. The presence of noise terms in these equations allows for
the restoration of quantum many-body effects. Different real-
izations of the noise terms lead to different density matrices
whose average is represented by the angle brackets in Eq. (8).
While the constituent density matrices can be factorized,
the resulting combination cannot be represented by a direct
product.

The variables αk,s(t ) and α
†
k,s

(t ) represent the field in recip-
rocal space. To analyze the propagation effects, we combine
these variables into slowly varying electric field amplitudes

denoted as �(±)
s (r, t ). In terms of Rabi frequency, these am-

plitudes have the following form:

�(+)
s (r, τ ) = id0

∑

k

g0αk,s(τ + z/c)eik·r+iω0τ , (9a)

�(−)
s (r, τ ) = −id0

∑

k

g0α
†
k,s

(τ + z/c)e−ik·r−iω0τ . (9b)

Here, we have introduced the retarded time τ = t − z/c,
which conveniently incorporates the propagation effects. Ad-
ditional information regarding the transition to the retarded
time is provided in Appendix E.

For Kα transitions in period-IV elements, the transient
core-shell population inversion state created by the pump
pulse relaxes on a femtosecond timescale due to the Auger-
Meitner effect and x-ray fluorescence. As a result, the
nontrivial dynamics of the atomic variables is mostly condi-
tioned by the presence of the pump fields. For typical media
of interest, such as solution jets and solid samples, the typical
thickness of the medium is on the order of 100 µm, while
the pump length is on the order of c × 10 fs, or about
3 µm. In the context of the original coordinates, the moving
pump fields cover a narrow diagonal strip in the (z, t ) plane.
To avoid simulating the trivial dynamics outside of this strip,
it is convenient to substitute the original time t with the re-
tarded time τ = t − z/c. In the (z, τ ) plane, the pump and SF
pulses remain stationary, and the region of relevant dynamics
is compressed into a narrow horizontal strip. Consequently,
introducing retarded time helps save computational resources.

Finally, numerical simulations assume discretizing the dy-
namic variables on a grid. A finite-grid step implies that we
expect the variables to change slowly between neighboring
nodes of the grid. When using the original time parameter t ,
the size of the coordinate grid step must be comparable to the
time step due to the finite speed of light; otherwise, atoms
within a single coordinate step may not evolve uniformly.
However, when employing the retarded time parameter τ , it
conveniently accounts for propagation phenomena, and the
coordinate step becomes constrained by other factors, such as
amplification by an inverted medium.

By analogy to the field variables in Eq. (9), we intend to
redefine Ŵi(r, t ), p

pump
i (r, t ), and µs(r, t ) involved in Eq. (7)

in terms of the retarded time τ . We perform the following
substitution:

Ŵi(r, τ + z/c)

p
pump
i (r, τ + z/c)

µs(r, τ + z/c)

→
Ŵi(r, τ ),

p
pump
i (r, τ ),

µs(r, τ ).

(10)

We will consistently use these redefined variables throughout
the article.

In Appendix F, we show that closely situated atoms can
be grouped into collective variables. We divide the medium
into small regions with a volume 
V and define collective
variables for each region. Given the assumption of a small

V , the resulting variables can be treated as continuous:

1


V

∑

a∈
V

ρa,u1u2 (τ + za/c) → ρu1u2 (r, τ ), (11a)

1


V

∑

a∈
V

ρa,l1l2 (τ + za/c) → ρl1l2 (r, τ ). (11b)
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Here, the indices ui and li represent the upper and lower states.
For the coherences between the upper and lower states, we
have to account for the frequently oscillating factor e−iω0τ :

1


V

∑

a∈
V

ρa,ul (τ + za/c)eiω0τ → ρul (r, τ ), (11c)

1


V

∑

a∈
V

ρa,lu(τ + za/c)e−iω0τ → ρlu(r, τ ). (11d)

In order to describe spontaneous emission, the equa-
tions for the atomic and field variables will incorporate
elementary noise terms fs(r, τ ), f †

s (r, τ ), gs(r, τ ), and
g†

s (r, τ ). The first pair is statistically independent of the sec-
ond pair. fs(r, τ ) and f †

s (r, τ ) possess distinct correlation
properties as follows:

〈 fs(r, t ) fs′ (r′, τ ′)〉 = 〈 f †
s (r, τ ) f

†
s′ (r′, τ ′)〉 = 0, (12a)

〈 fs(r, τ ) f
†
s′ (r′, τ ′)〉 = δss′δ(z − z′)δε(τ − τ ′)δε(r⊥ − r′

⊥).

(12b)

Similar stochastic characteristics apply to both gs(r, τ ) and
g†

s (r, τ ). The presence of the delta function δ(z − z′) simply
reflects Ito’s interpretation of integration along the z axis (see
Appendix C). Furthermore, δε(τ − τ ′) is a localized function
serving a purpose similar to that of a delta function. Its width
is determined by 1/[c
kz], where 
kz represents the range
of longitudinal wave vectors required for an accurate field
representation. In a similar fashion, the width of the transverse
correlator is determined by the range of relevant transverse
modes required for an accurate representation of the paraxial
fields. Consequently, δε(r⊥ − r′

⊥) is a bell-shaped function
with a waist of ∼λ0/

√

o, where 
o represents the solid

angle encompassing the paraxial modes. For more detailed
information, refer to Appendixes E and F.

B. Stochastic Bloch equations

The detailed derivations of the equations presented in this
section can be found in Appendixes D, E, and F. The Ito
stochastic differential equations for ρpq(r, τ ) have the form
of a semiclassical Bloch equation with additional noise terms.
Their incoherent parts read as follows:

∂

∂τ
ρpq(r, τ )|incoh = −[Ŵp(r, τ ) + Ŵq(r, τ )]ρpq(r, τ )/2 + δpq

(

ppump
p (r, τ )ρground(r, τ ) + Ŵrad

∑

k

Grad
pk ρkk (r, τ )

)

, (13a)

where ρground(r, τ ) represents the population of the neutral ground state |0〉. The following terms capture the unitary evolution:

∂

∂τ
ρpq(r, τ )|unitary = − i
ωpqρpq(r, τ ) + i

∑

r,s

[

�(+)
s (r, τ )(Tp>r,sρrq(r, τ ) − ρpr (r, τ )Tr>q,s)

+ �(−)
s (r, τ )

∑

r

(Tp<r,sρrq(r, τ ) − ρpr (r, τ )Tr<q,s)

]

, (13b)

where p > q means that index p corresponds to the subset of upper states {|u〉} whereas index q corresponds to the subset of
lower states {|l〉}. Additionally, we have introduced the following energy differences:


ωuu′ = ωu − ωu′ , 
ωul = ωu − ωl − ω0, 
ωlu = ωl − ωu + ω0, 
ωll ′ = ωl − ωl ′ ,

where the indices u and l represent the upper and lower states. In order to describe the spontaneous emission, we introduce the
following stochastic terms:

∂

∂τ
ρpq(r, τ )|noise =

∑

s





∑

r

ρpr (r, τ )Tr>q,s − ρpq(r, τ )
∑

u,l

Tul,sρlu(r, τ )



g†
s (r, τ )

+
∑

s





∑

r

Tp<r,sρrq(r, τ ) − ρpq(r, τ )
∑

u,l

Tlu,sρul (r, τ )



 f †
s (r, τ ), (13c)

that involve f †
s (r, τ ) and g†

s (r, τ ) defined in Sec. III A. In
addition to the previously mentioned approximations, we dis-
regard contributions from Eq. (24) that exhibit a quadratic
dependence on the atomic variables ρpq(r, τ ). These terms
are proportional to the coherences ρlu(r, τ ) and ρul (r, τ ),
which are notably smaller when compared to the atomic
populations during the pump stage. The coherences ρlu(r, τ )
and ρul (r, τ ) gain significance only after substantial growth
of the SF field. Given that noise terms play a critical
role only in the initial stages when a strong SF field has

not yet developed, it is justifiable to omit the quadratic
terms.

C. Stochastic wave equations for the field amplitudes

Similarly, the field variables are governed by traditional
wave equations augmented by noise terms. These equa-
tions are linear, allowing for the decomposition of �(±)

s (r, τ )
into two components:

�(±)
s (r, τ ) = �

(±)
s, det(r, τ ) + �

(±)
s, noise(r, τ ), (14a)
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where �
(±)
s, det(r, τ ) are influenced by the initial conditions and

deterministic parts, while the noise components �
(±)
s, noise(r, τ )

are driven by the noise terms fs(r, τ ) and gs(r, τ ). The spe-
cific equations for these two components are given by

[

∂

∂z
−

i

2k0

(

∂2

∂x2
+

∂2

∂y2

)

+
µs(r, τ )

2

]

(

�
(+)
s, det(r, τ )

�
(+)
s, noise(r, τ )

)

= i
3

8π
λ2

0Ŵrad

(

n(r)
∑

u, l Tlusρul (r, τ )
fs(r, τ )

)

, (14b)

[

∂

∂z
+

i

2k0

(

∂2

∂x2
+

∂2

∂y2

)

+
µs(r, τ )

2

]

(

�
(−)
s, det(r, τ )

�
(−)
s, noise(r, τ )

)

= −i
3

8π
λ2

0Ŵrad

(

n(r)
∑

u, l ρlu(r, τ )Tuls

gs(r, τ )

)

, (14c)

where the indices u and l represent the upper and lower
states, n(r) is the concentration of the atoms, and λ0 is the
wavelength of the carrier mode. From a qualitative stand-
point, the atoms can be described as simultaneously carrying
independent deterministic and stochastic dipole moments,
corresponding to ρul (r, τ ) and fs(r, τ ), respectively. The
deterministic dipoles give rise to the deterministic fields
�

(±)
s,det(r, τ ), resembling solutions to traditional Maxwell equa-

tions. In contrast, the stochastic dipole moments generate the
stochastic fields �

(±)
s,noise(r, τ ).

It is crucial to emphasize that the right-hand side may
encompass modes beyond the scope of the paraxial approx-
imation. To address this issue, damping is introduced to the
Laplace operator ∂2

/∂x2 + ∂2
/∂y2 for nonparaxial modes. By us-

ing spectral methods, damping is implicitly implemented by
considering a finite set of basis functions. Additionally, note
that the integration along the z axis should be carried out using
Ito’s interpretation.

D. The structure of the noise terms

During the initial phase, when coherences or fields are
absent, the deterministic terms in Eq. (13b) are zero. However,
the noise contribution for the coherences becomes nonzero
if the upper states are populated. Owing to the correlation
properties detailed in Eq. (12), the noise terms in the equa-
tions governing atomic variables remain uncorrelated, just as
the noise terms in the equations for field variables. Corre-
lations solely manifest between the noise terms associated
with field and atomic variables. This property allows for the
accurate capture of the temporal profile of emitted radiation in
the limit of pure spontaneous emission. For a more in-depth
exploration of this aspect, please refer to Sec. III F.

E. Expectation values

From a set of realizations of the stochastic variables, var-
ious expectation values can be constructed. The atoms are
characterized by the variables ρpq(r, τ ), which are directly
linked to one-particle properties:

Tr[σ̂a,uu′ ρ̂(t )] = 〈ρa,u′u(t )〉 = 〈ρu′u(ra, t − za/c)〉, (15a)

Tr[σ̂a,ll ′ ρ̂(t )] = 〈ρa,l ′l (t )〉 = 〈ρl ′l (ra, t − za/c)〉. (15b)

Constructing expectation values related to transitions between
upper and lower states, it is essential to restore the phase:

Tr[σ̂a,ul ρ̂(t )] = 〈ρa,lu(t )〉

= 〈ρlu(ra, t − za/c)〉eiω0 (t−za/c), (15c)

Tr[σ̂a,luρ̂(t )] = 〈ρa,ul (t )〉

= 〈ρul (ra, t − za/c)〉e−iω0 (t−za/c). (15d)

Recall that the continuous variables ρpq(r, τ ) represent the
collective atomic properties in the vicinity of coordinate r. To
replace the discrete atomic variables ρa,pq(t ), which pertain to
individual atoms, with their continuous analogs, we assume
that the atomic variables exhibit sufficient smoothness. Fur-
ther details can be found in Appendix F.

Let us provide an example of obtaining two-particle prop-
erties. The correlations between neighboring atoms can be
measured by the product of their coherences as follows:

Tr[σ̂a,ul σ̂a′,l ′u′ ρ̂(t )] = 〈ρa,lu(t )ρa′,l ′u′ (t )〉
= 〈ρlu(ra, t − za/c)ρul (ra, t − za/c)〉

× eiω0
z/c. (15e)

Since the atoms are close to each other, we do not dis-
tinguish their coordinates when using the slowly varying
continuous variables. The distance between the atoms, 
z =
za − za′ , is only involved in the frequently oscillating phase
multiplier eiω0
z/c.

To analyze the properties of the emitted fields, we define
the following first-order correlation functions:

Js(r, τ1, τ2) =
〈�(+)

s (r, τ1)�(−)
s (r, τ2)〉

3
8π

λ2
0Ŵrad

. (16)

Thanks to the properly chosen multiplier, Js(r, τ, τ ) directly
provides the photon flux:

Is(r, τ ) =
dN

ph
s (r, τ )

dt dS
= Js(r, τ, τ ). (17)

F. Spontaneous emission within the stochastic methodology

The noise terms in the equations of motion manifest most
prominently in the case of spontaneous emission. The evolu-
tion due to spontaneous emission can be modeled by assuming
a low atomic density, denoted as n(r), which reduces the
chance of reabsorption. Practically, this limit is addressed by
retaining terms linearly dependent on n(r) in Eq. (16). It still
requires integration of the equations for the atomic variables.
We neglect deterministic parts of the fields �

(±)
s,det(r, τ ) in

Eq. (13) as they are proportional to n(r). Consequently, the
equations become linear and can be straightforwardly inte-
grated. Substituting the integrated expressions for the atomic
coherences ρul (r, τ ) and ρlu(r, τ ) into the field equations (14)
and utilizing the correlation properties in Eq. (12), we obtain

Js(r, τ1, τ2) ≈
3

8π
λ2

0Ŵrad e−γdec|τ1−τ2|
∫

dr′n(r′)

×
〈

ρupper
s (r′, min(τ1, τ2))

〉

|Gs(r − r′)|2 , (18)
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where we assume that the coherences decay with a rate γdec =
[Ŵu + Ŵl ]/2. Gs(r) is the Green function for the propagation
of the emitted field. ρ

upper
s (r, τ ) and ρ lower

s (r, τ ) are defined as

ρupper
s (r, τ ) =

∑

u,u′,l

Tlusρuu′ (r, τ )Tu′ls, (19a)

ρ lower
s (r, τ ) =

∑

l,l ′,u

Tulsρll ′ (r, τ )Tl ′us, (19b)

where the indices u and l represent the upper and lower
states. The difference between these two values, ρupper

s (r, τ ) −
ρ lower

s (r, τ ), can be interpreted as an effective population in-
version.

For a more comprehensive explanation of how the noise
terms accurately replicate spontaneous emission, please refer
to the details provided in Appendix G.

IV. NUMERICAL EXAMPLES AND DISCUSSION

In this section, we provide a detailed demonstration of x-
ray emission modeling, employing parameters closely aligned
with the anticipated experimental conditions for the XLO
project outlined in Ref. [19]. To achieve a sizable popula-
tion inversion through rapid photoionization, we require a
high pump-pulse energy and strong focusing. We assume an
XFEL-pulse energy of 250 µJ, with the pump focused down
to a 200 nm × 200 nm FWHM, and the x-ray photon energy
set at 9 keV (above the Cu K edge). The temporal profile of
the XFEL pulse is conditioned by the self-amplified sponta-
neous emission (SASE) process and is thus composed of a
large number of randomly generated spikes [66]. However,
for this demonstration, we aim to disentangle the stochasticity
inherent in the current simulation approach from the SASE
stochasticity. To achieve this, we use a Gaussian temporal
profile with an 11.7-fs FWHM.

As a medium that generates x-ray lasing, following [19],
we consider a 270-µm-thick jet of 8-molar solution of
Cu(NO3)2 in water. Our calculations are performed on a
900 × 900 nm spatial domain in the transverse direction,
with 64 × 64 grid points, 40 grid points in the longitudinal
direction, and 180 points for the 37-fs-long temporal moving
window. Unless otherwise stated, all numerical results shown
are based on these parameters.

For technical details about the implementation of the nu-
merical scheme, please refer to Appendix H. We discretized
the equations using a split-step method, where the noise and
deterministic parts of the fields are integrated by means of
different schemes. The separation of the fields in Eq. (14a)
into two parts becomes apparent.

A. Runaway trajectories and diffusion gauges

Before delving into the numerical results, it is essential to
address a challenge inherent in approaches based on stochastic
differential equations [57,58]. Apart from the stability re-
quirement of the numerical scheme, the stochastic differential
equations themselves should prevent unbounded, diverging
solutions. Given the exponential amplification involved in the
phenomenon under analysis, it is crucial to clarify the fol-
lowing: diverging trajectories grow at a rate faster than any
exponential function and reach infinity within a finite-time

interval. In Ref. [55], it was demonstrated that the freedom
in constructing noise terms for superfluorescence in compact
systems can be leveraged to suppress divergent behavior. This
approach extends to the paraxial geometry. Here, we outline
the main steps, with further details provided in Appendix H.

Diverging trajectories may arise when effective population
inversion for any polarization s is present:1

Re
[

ρupper
s (r, τ )

]

> Re
[

ρ lower
s (r, τ )

]

. (20)

For coordinates r and retarded time τ satisfying the condition
in Eq. (20), Eq. (14) should be modified to suppress divergent
behavior. This is achieved by replacing the density matrix
elements in Eq. (14) with their real parts:

ρlu(r, τ ) → 1
2 [ρlu(r, τ ) + ρ∗

ul (r, τ )], (21a)

ρul (r, τ ) → 1
2 [ρul (r, τ ) + ρ∗

lu(r, τ )]. (21b)

The consequences of the transformation in Eq. (21) for
the evolution of the field are discussed in the text following
Eq. (27). The justification for the transformation in Eq. (21)
is the generalized Girsanov theorem or application of the
stochastic drift gauge as described in Refs. [57,58]. In general,
the stochastic drift gauge transformation in Eq. (21) should be
accompanied by reweighting the stochastic trajectories when
computing expectation values in Sec. III E.

Unfortunately, for a large number of atoms, this weight
coefficient might cause instabilities and worsen convergence.
Therefore, we aim to neglect it in the current numerical imple-

mentation. A more rigorous approach is the subject of further
publications. To compensate for the absence of the weight
coefficient, we reduce the need for gauging by minimizing the
difference between atomic coherences ρul (r, τ ) and ρ∗

lu(r, τ ).
To minimize this difference, we take advantage of another de-
gree of freedom in the representation of noise terms known as
stochastic diffusion gauge analyzed in Refs. [57,58]. Namely,
since there is no unique way to define noise terms satisfy-
ing correlation properties (12), one can use this freedom to
minimize the difference between atomic variables ρeg(r, τ )
and ρ∗

ge(r, τ ). Our goal is to minimize the average squared
difference for each s, r, and τ :

〈∣

∣

∣

∣

∣

∑

eg

Tges[ρeg(r, τ ) − ρ∗
ge(r, τ )]

∣

∣

∣

∣

∣

2〉

, (22)

reducing the difference between the sources in the equa-
tions for �

(+)
det (r, τ ) and �

(−)∗
det (r, τ ). The explicit form of

the resulting noise terms used in the presented numerical
simulations can be found in Appendix H. In Sec. IV C,
we demonstrate that the modified equations, as proposed in
Appendix H and this section, accurately reproduce sponta-
neous emission, the seeding stage of the amplification process.

B. Pump propagation

The critical factor governing the dynamics of SF is the
population inversion in the Cu ion. This inversion, in turn, is

1In the proposed formalism, the populations are complex, so we
extract their real parts.
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FIG. 2. (a) Number of pump photons as a function of propagation distance in the copper solution, the solid line denotes the numerical result
of the simulation, and the dashed line denotes the number of photons obtained from the Beer-Lambert law; (b) spatiotemporal evolution of
the pump field intensity and (c) initial neutral state population along the target axis; longitudinal sections at y = 0 of (d) pump photon fluence
(number of pump photons per unit area) and (e) population of the initial neutral state after the end of the pump pulse.

influenced by the dynamics of the pump pulse and the popu-
lation of the neutral ground state. In Fig. 2, we illustrate the
evolution of these quantities, computed using the expressions
detailed in Appendix A.

Figure 2(a) presents the number of pump photons as a
function of propagation distance. Notably, it displays a slower
decline than anticipated by Beer’s law, indicating substantial
bleaching [67–69]. In our formalism, this phenomenon is
mainly driven by the reduction of the neutral ground-state
population, which possesses the largest absorption cross sec-
tion. As depicted in Fig. 2(c), the ground-state population
diminishes to zero within the front part of the pump pulse,
causing stronger absorption in this region compared to the tail
of the pulse. This leads to pulse shortening [70] and a shift
of its peak to later times, as observed in Fig. 2(b) and exper-
imentally demonstrated in [71]. Additionally, the transverse
profile of the pump pulse changes with propagation distance,
as shown in Fig. 2(d). Since bleaching is less pronounced for
lower intensity pulses, the outer regions of the pulse experi-
ence stronger absorption than the central parts. As the pump
pulse propagates, it decreases in energy, shrinks in transverse
size, its duration shortens, and its peak shifts to a later time.
These changes are reflected in the population of the ground
state of the atoms, as illustrated in Figs. 2(c) and 2(e). The
product of the pump flux and ground-state population is the
dominant contribution in Eq. (13a), setting the stage for SF
emission.

C. Spontaneous emission

Before delving into the analysis of SF simulation, it is
advantageous to explore pure spontaneous emission, which

serves as a valuable benchmark for our framework. To iso-
late spontaneous emission, we modify Eqs. (13) and (14) by
eliminating the field variables in Eq. (13b). In other words, we
exclude the stimulation responsible for amplification. Figure 3
compares the solutions of these modified equations to the pho-
ton number value derived from Eq. (18). Since the analysis of
spontaneous emission properties necessitates averaging over a
large number of stochastic realizations, and as this study does
not focus on angular properties, a smaller grid has been used

FIG. 3. Numerically (N�σ
) and analytically (N an

�σ
) calculated

average numbers of emitted photons as functions of propagation
distance in a Cu solution. Stimulated emission has been disregarded.
Thin lines denote real and imaginary parts of the photon numbers
for single realizations. The analytical solution is independent of the
polarization s = ±1.
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FIG. 4. Comparison of the numerically and analytically calcu-
lated field correlation function (16) at the target exit integrated over
transverse spatial directions x, y for s = 1.

for Figs. 3–5. Specifically, we employ a (350 × 350)-nm2

spatial domain, with 6 × 6 grid points, with 20 grid points
in the longitudinal direction, 50 points for the 30-fs temporal
moving window, and average over 105 stochastic realiza-
tions. To simplify the analysis, the absorption of the emitted
field was omitted. The number of emitted photons varies
significantly for different trajectories; moreover, it can take
negative, as well as complex-valued, values. This is expected
from the structure of Eq. (14). In the general case, the field
variable representing the positive-frequency component �(+)

s

is not the complex conjugate of �(−)
s . This is an inherent

property of the developed approach, directly related to the
quantum-mechanical commutation relation of the field. The
resulting doubling of the number of field variables, stemming
from treating the variables corresponding to amplitudes of
positive- and negative-frequency components as independent
complex numbers, is typical for phase-space methods based
on positive-P representation. A more in-depth discussion can
be found in [56]. Single trajectories do not have a direct
physical meaning and need to be averaged. As Fig. 3 shows,

after averaging over 105 trajectories, the imaginary part of
photon numbers vanishes, and the real part agrees with the
analytically calculated values.

The dependence of the number of spontaneously emitted
photons on the propagation distance z is primarily defined
by the behavior of the Green function in the paraxial ap-
proximation. For large distances z, the Green function can be
approximated as

|G(r − r′)| ≈
1

λz
. (23)

By substituting this asymptotic form of the Green function
into Eqs. (17) and (18), we obtain the following expression
for the number of spontaneously emitted photons with polar-
ization s traversing cross section S:

dN
ph
s

dτ
=

3

8π

S

z2
Ŵrad

∫

n(r)
〈

ρupper
s (r, τ )

〉

dr. (24)

The number of emitted photons is proportional to the amount
of excited atoms within the volume and the solid angle S/z2 in
which the spontaneous radiation is collected. The prefactor
agrees with quantum-mechanical calculations based on the
Weisskopf-Wigner approximation [72] (see also the discus-
sion in [52]).

For short propagation distances, the Green’s function turns
into a “broadened” delta function:

G(r − r′) ≈ δ(r⊥ − r′
⊥), (25)

meaning that the light travels almost parallel to the z axis.
The width of this delta function is defined by the number
of considered paraxial modes. Consequently, the number of
spontaneously emitted photons of polarization s traversing the
cross section of the sample is

dN
ph
s

dτ
=

3

8π

oŴrad

∫

n(r)
〈

ρupper
s (r, τ )

〉

dr, (26)

where 
o is the solid angle spanned by the considered parax-
ial wave vectors.

The transition between the asymptotic behaviors of
Eqs. (25) and (23) determines the dependence of the number
of spontaneously emitted photons on the propagation dis-
tance: for a small distance, the dependence is linear since the
Green function in Eq. (25) is constant; for a larger propagation
distance, the descending Green function results in the decel-
eration of the growth.

Figure 4 shows the correlation function of the field inte-
grated2 over the simulation domain of the exit surface. The
diagonal of the time correlation function determines the av-
eraged temporal profile of the emitted intensity, while the
width along the counterdiagonal is a measure of the tempo-
ral coherence. Averaging over stochastic realizations results
in agreement between the numerically calculated values and

2In the spontaneous emission regime, the contribution from each
voxel is conditioned by the noise terms and is independent of other
voxels. Consequently, the transversely integrated quantities require
fewer trajectories to obtain a given S/N level compared to the case
of quantities at a specific transverse coordinate x, y.
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FIG. 5. (a) Temporal profile of the averaged field intensity emitted at the target exit, integrated over transverse directions. (b) Numerically
calculated spectrum of the two radiation modes emitted at the target exit, along with the spectrum calculated from the analytical field correlation
function (an) and Lorentzian with the width corresponding to 2γdec (Lorentz). The latter is scaled to the peak intensity of the analytical spectrum.

calculations based on the analytical expression (18). The tem-
poral profile of the emitted radiation is presented in Fig. 5(a).
Similarly to the case shown in Fig. 3, after averaging over tra-
jectories, the imaginary part of the intensity vanishes, and the
real part agrees with the analytical expressions obtained from
(18), following the population of the upper state. According
to the Wiener-Khinchin theorem, the Fourier transform with
respect to τ1 − τ2 provides the spectrum of the emitted radia-
tion. Figure 5(b) shows the resulting spectrum, which agrees
well with the analytical expression based on (18) and is close
to the Lorentzian profile with γdec HWHM. Also, as expected,
Figs. 3 and 5 show that the behavior of spontaneous emission
does not depend on polarization.

The ability to reproduce the field correlation function (18)
in the limit of spontaneous emission by means of the noise
terms is a distinctive feature of the presented formalism, as
opposed to the formalism in Ref. [41] based on phenomeno-
logical noise terms, which is not capable of reproducing the
analytical results. The agreement in both spectral and tempo-
ral profiles is achieved by the nontrivial structure of the noise
terms of the applied stochastic formalism.

D. Field evolution and transverse properties

The propagation of spontaneously emitted radiation, as dis-
cussed in Sec. IV C, within the pumped medium, as discussed
in Sec. IV B, leads to the amplification of the radiation and
subsequent saturation. Figure 6 illustrates the number of emit-
ted photons as a function of the propagation distance within
the medium. The calculation of emitted photons is based on
the photon flux in Eqs. (16) and (17), integrated over time and
the transverse simulation domain.

In the beginning of the medium, the evolution is condi-
tioned by spontaneous emission, with the noise terms playing
a dominant role. Here, similar to Fig. 3, individual trajectories
exhibit a large scatter and comparable values of real and
imaginary parts. For larger propagation distances, an approx-
imate exponential growth of the emitted photon number is
observed. This regime is sometimes referred to as the linear
gain regime or ASE [73–75]. In this regime, the emitted field
and coherences are still small. Consequently, in the equa-

tions governing the evolution of the upper and lower states,
terms proportional to the field-coherence product can be ne-
glected. At larger distances, the evolution of upper and lower
states is conditioned by pump and decay terms only. Under
these conditions, Eqs. (13) become linear in time- and space-
dependent coefficients. Considering, for simplicity, the case
of a large decoherence rate γdec, the produced linear response
of the coherences to the field results in amplification with the
following gain coefficient gs(r, τ ):

gs(r, τ ) =
3

8π
n(r)λ2 Ŵrad

γdec

[

ρupper
s (r, τ ) − ρ lower

s (r, τ )
]

. (27)

Thanks to the modification of Eq. (14) discussed in Sec. IV A,
the combinations �(±)

s + �(∓)∗
s are amplified with the gain

coefficient defined in Eq. (27), while the nonphysical com-
binations �(±)

s − �(∓)∗
s are not amplified. As a result, the spu-

rious imaginary component of the photon number, computed

FIG. 6. The total number of emitted photons as a function of
propagation distance z. The thin lines represent individual trajecto-
ries, with orange and blue colors denoting the real and imaginary
parts, respectively. The thick red line represents the mean value
obtained from 300 trajectories. All lines correspond to polarization
s = 1.
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exclusively from individual stochastic realizations, does not
exhibit growth in the ASE regime, as demonstrated in Fig. 6.

The exponential growth of the photon number is eventually
limited by nonlinear effects. When the produced field and
the generated coherences become large enough, the corre-
sponding terms in Eq. (13) can no longer be neglected. As a
result, the population inversion decreases, and saturation sets
in. Depending on the parameters of the system, spatiotemporal
ringing (due to Rabi oscillations in the population) of the
emitted field intensity may be observed [52]. As depicted in
Fig. 6, the imaginary part of the photon number increases
as the beam propagates. Nevertheless, it consistently remains
negligible compared to the real part. In both ASE and satu-
ration regimes, the noise terms are smaller than the regular
terms in Eqs. (13) and (14). As a consequence, the scatter
of the real part of individual realizations of the number of
photons exhibits, upon propagation, approximately the same
width on the logarithm scale. This observation suggests that,
within logarithmic accuracy, a few trajectories are sufficient
to determine the mean photon number in the deep ASE and
saturation regimes.

The knowledge of the transverse field distribution is es-
sential for the applications of SF, as it is directly related to
the angular distribution of the emitted intensity. In Ref. [17],
the larger angular spread of seeded-SF emission compared to
the angular spread of the seed pulse enabled the detection of
the seeded Mn Kβ signal. Another example for which the
angular properties of the SF are crucial is the XLO: in this
case, the angular divergence determines the efficiency of the
in coupling of the SF radiation into the crystal cavity.

Figure 7 illustrates the transverse distribution of the field.
Each row corresponds to a different propagation distance,
representing qualitatively distinct regimes: spontaneous
emission (SE), ASE, and saturation or superfluorescence (SF).
Figures 7(a), 7(d), and 7(g) show the intensity distribution
for a single run of the numerical scheme (a single trajectory).
In the case of SE represented by Fig. 7(a), the spontaneously
emitted intensity varies stochastically from pixel to pixel.
Upon propagation, due to diffraction, neighboring pixels
establish a correlation resulting in a specklelike pattern. As
Figs. 7(d) and 7(g) show, the size of the speckles grows
upon propagation. As discussed for Figs. 3 and 6, a single
realization does not, strictly speaking, have a direct physical
meaning: an ensemble of realizations is needed to determine
the observable. In our case, one of the properties of interest
is the transverse size of the emitted field, which can be
deduced from the intensity profile shown in Figs. 7(b), 7(e),
and 7(h). Averaging over several trajectories results in a
smooth and axially symmetric distribution. Another property
of interest is the transverse coherence of the emitted radiation.
A rough estimate of this property can be obtained based on
the average size of the speckles. As an observable quantifying
the transverse coherence, we can consider the transverse
correlation function [72]:

Ŵs(r⊥, z, τ ) =
∫

〈�(+)
s (r′, z, τ )�(−)

s (r′
⊥ + r⊥, z, τ )〉dr′

⊥

(28)

shown in Figs. 7(c), 7(f), and 7(i). As expected, the size of the
transverse correlation function approximately agrees with the

size of the speckles. Initially, in the SE regime [Fig. 7(c)], the
transverse coherence has the size of just one pixel and grows
upon propagation. Since the transverse size of the correlation
function is smaller than the transverse width of the intensity
profile, the SF field is not fully transversely coherent, as also
the speckle structure of single trajectories suggests. The ratio
of the transverse width of the intensity profile to speckle size
gives an estimate of the effective number of transverse modes.

The evolution of the transverse field profile is conditioned
by the distribution of the population inversion as well as
diffraction effects. Figure 8(a) shows the photon flux as a
function of the propagation distance at several transverse posi-
tions. As expected, the center of the beam exhibits the highest
flux, which gradually decreases towards the edges, in accor-
dance with the distribution of the population inversion shown
in Fig. 8(b). The population inversion decreases as the beam
propagates due to the combined effects of pump-pulse absorp-
tion and nonlinear (saturation) effects. In the ASE regime,
a larger population inversion leads to larger amplification of
the emitted radiation. As a result, the beam experiences gain
guiding [76] and decreases in size. However, as Fig. 8(a)
shows, for the inner parts of the beam, the transition from ASE
to saturation takes place at a shorter propagation distance than
for the outer parts. As a result, after the saturation regime sets
in for the on-axis part of the beam, the beam size increases, as
the middle column of Fig. 7 also illustrates.

E. Spectral-angular properties

The direct experimental measurement of the transverse
and temporal profiles of the emitted x-ray field poses con-
siderable difficulty. X-ray fields are typically measured in the
far field, providing the angular distribution of the emission.
The temporal properties of the x-ray pulse are often inferred
from spectral analysis using a grating or crystal spectrometer.
For example, in [15], fringes in the spectrum were used to
reconstruct the temporal separation between the peaks of the
underlying field temporal profile. If a two-dimensional de-
tector is used to measure the field after the analyzer crystal,
the detector provides a spectral and angular distribution of
the emission. To obtain this distribution from the presented
formalism, we first perform the Fourier transform of the fields
�(±)

s (r, τ ):

�̄(±)
s (θx, θy, z, ω) =

∫

dx dy dτ

(2π )3
�(±)

s (r, τ )

× exp[±ik0(xθx + yθy) ∓ iωτ ].

Similarly to Eqs. (16) and (17), we express the spectral and
angular distribution Īs(θx, θy, z, ω) as follows:

Īs(θx, θy, z, ω) =
〈�̄(+)

s (θx, θy, z, ω)�̄(−)
s (θx, θy, z, ω)〉

3
8π

λ2
0Ŵrad

. (29)

Figure 9(a) displays a typical spectral-angular distribu-
tion for a single realization in the SE regime. As expected,
it exhibits isotropy in the angular direction and is highly
stochastic. Figure 9(d) corresponds to the ASE regime and
reveals multiple spikes associated with the field modes emerg-
ing from spontaneous emission noise. In Fig. 9(g), we observe
a similar distribution at a greater propagation distance in the

033725-12



STOCHASTIC MODELING OF X-RAY … PHYSICAL REVIEW A 109, 033725 (2024)

FIG. 7. Transverse field distribution: (a), (d), (g) Intensity distribution of the emitted radiation for a single realization. (b), (e), (h) The same
quantity calculated by averaging over an ensemble of realizations. (c), (f), (i) Field correlation function in the transverse direction calculated
according to Eq. (28). The rows of (a)–(c), (d)–(f), and (g)–(i) correspond to propagation distances of z = 0 µm (SE regime), z = 135 µm
(ASE regime), and 270 µm (SF regime), with peak intensity observed at times τpeak = 11, 15, and 17 fs, respectively. For averaging, 20 000
numerical realizations are used for the SE regime and 1300 for the ASE/SF regimes.
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FIG. 8. (a) Emitted flux (time-integrated number of photons per unit area) as a function of propagation distance z for several positions in
the transverse direction: on the axis (|r⊥| = 0) and progressively further from the axis (|r⊥| = 84, 119, and 169 nm). (b) Transverse cuts of the
effective population inversion for propagation distances z = 0, 135 µm, 270 µm and times τpeak = 11, 15, and 17 fs, respectively. The number
of numerical realizations is 1300.

SF regime. Here, the most intense modes are further am-
plified, while less intense modes diminish. This behavior is
reminiscent of the well-known mode clearance phenomena in
FEL physics [77].

To confirm these observations at a single-trajectory level,
spectral-angular intensity profiles are averaged over an en-
semble of realizations, as shown in Figs. 9(b), 9(e), and
9(h). Specifically, the angular distribution remains isotropic
for the SE case [Fig. 9(b)], becomes narrower in the ASE
case [Fig. 9(e)], and further narrows down in the SF regime
[Fig. 9(h)].

The temporal-spectral properties of the emitted field can
be conveniently characterized in terms of the Wigner distribu-
tion:

Ws(r, ω, τ ) =
∫

dτ ′

2π
〈�(+)

s (r⊥, z, τ + τ ′/2)

× �(−)
s (r⊥, z, τ − τ ′/2)〉 eiωτ ′

. (30)

The projection of the Wigner distribution on the time axis
gives the averaged temporal intensity profile, and the pro-
jection on the frequency axis gives the spectral profile.
Figures 9(c), 9(f), and 9(i) show the Wigner distribution for
propagation distances corresponding to the SE, ASE, and SF
regimes. The profile on the time axis is influenced by the time
dependence of the population inversion, while the profile on
the frequency axis is influenced by the decoherence rate of
the transition. As a result, the spectral width of the produced
radiation is broadened compared to the width determined
by assuming a Fourier-limited pulse. The radiation is not

transform limited. If the radiation were fully coherent, and
the field amplitude had a constant phase across the pulse, the
connection between the spectrum

Is(r, ω) =
∫

dτ Ws(r, ω, τ )
3
4λ2

0Ŵrad

and temporal intensity profiles

Is(r, τ ) =
∫

dωWs(r, ω, τ )
3

8π
λ2

0Ŵrad

for transform-limited pulses would be given by

Is(r, ω) =
∣

∣

∣

∣

∫

dτ

2π
eiωτ

√

Is(r, τ )

∣

∣

∣

∣

2

. (31)

The spectral profile calculated according to Eq. (31) is de-
picted as a dashed line in Figs. 9(c), 9(f), and 9(i). During the
propagation, the spectral profile becomes narrower due to the
gain-narrowing effect of the ASE regime [74], as shown in
the comparison of Figs. 9(c) and 9(f). Deep in the SF regime,
the emitted field eventually becomes so large that the induced
dynamics, similar to Rabi oscillations, may cause additional
broadening and splitting [53]. In the presented example, this
regime, however, is not pronounced.

F. Field polarization properties

The scheme presented in Eq. (3) includes all the energy
levels involved in the Cu Kα1 emission. By considering the
degeneracy of these states, we gain complete access to the
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FIG. 9. Spectral-angular properties of the emitted radiation. (a), (d), (g) Spectral-angular distribution of the emitted radiation integrated
over the θy direction for a single realization. (b), (e), (h) The same quantity, calculated by averaging over an ensemble of realizations. (c), (f),
(i) Wigner distribution (30) at the center of the beam (x = y = 0). The solid red lines represent projections of the Wigner function onto the
time and energy axes, providing the temporal intensity profile and spectrum. The dashed red line illustrates how the spectrum would appear if
calculated according to Eq. (31). The series of figures (a)– (c), (d)–(f), and (g)–(i) correspond to propagation distances of z = 0 (SE regime),
z = 135 µm (ASE regime), and z = 270 µm (SF regime). The number of numerical realizations is 1000 for the SE regime and 100 for the ASE
and SF regimes, respectively.
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FIG. 10. Field polarization of the emitted radiation. Left side: (a) polarization states represented on the Poincaré sphere; (b) color coding
of polarization states. Right side: (c), (e), (g) transverse cross section of polarization state for a single realization. (d), (f), (h) Correlation of
the polarization state quantified according to Eq. (33). The black dashed line represents the area of noticeable pulse intensity. The row of
figures (c), (d), (e), (f), and (g), (h) correspond to propagation distance of z = 0 (SE regime), z = 135 µm (ASE regime), and z = 270 µm (SF
regime) and time τpeak = 11, 15, and 17 fs respectively.

polarization properties of the emitted radiation. For a quantita-
tive analysis of polarization, we employ the Stokes parameters
Si(r, τ ), with i = 0, 1, 2, 3, as introduced in Ref. [78].
Specifically, to quantify the presence of circularly polarized
components in the field, we focus on S3(r, τ ), defined as

S3(r, τ ) = �
(+)
−1 (r, τ )�(−)

−1 (r, τ ) − �
(+)
+1 (r, τ )�(−)

+1 (r, τ ).
(32a)

It is simply the difference in intensity between two distinct
circular polarizations, reaching its maximum and minimum
values when the field is solely represented by right- or
left-hand polarization, respectively. Intermediate values of
S3(r, τ ) signify the presence of linearly polarized components
that can be quantified by S1(r, τ ) and S2(r, τ ) defined as

follows:

S1(r, τ ) = �
(+)
+1 (r, τ )�(−)

−1 (r, τ ) + �
(+)
−1 (r, τ )�(−)

+1 (r, τ ),
(32b)

S2(r, τ ) = i[�(+)
+1 (r, τ )�(−)

−1 (r, τ ) − �
(+)
−1 (r, τ )�(−)

+1 (r, τ )].
(32c)

Similarly to S3(r, τ ), S1(r, τ ) is the difference in intensities
carried by horizontal and vertical polarizations while S2(r, τ )
corresponds to diagonal polarizations. The introduced pa-
rameters Si(r, τ ) form a vector S(r, τ ). Its length S(r, τ )
equals the last Stokes parameter S0(r, τ ) defined as follows:

S0(r, τ ) = S(r, τ ) = �
(+)
−1 (r, τ )�(−)

−1 (r, τ )

+ �
(+)
+1 (r, τ )�(−)

+1 (r, τ ), (32d)
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FIG. 11. Spatiotemporal evolution on the axis (x = y = 0) of (a) effective population inversion, (b) two-particle correlation between atomic
coherences, and (c) emitted radiation intensity based on averaging over 1300 numerical realizations; transverse profiles for a single realization
at propagation distance z = 270 µm and corresponding τpeak = 17 fs of (d) effective population inversion and (e) two-particle correlation
between atomic coherences; (f), (g) same quantities as (d), (e) averaged over 1300 numerical realizations.

which is proportional to the total intensity of the field.
To eliminate information about the intensities, which is ir-
relevant for this section, and to exclusively focus on the
polarization state, normalizing the vector S(r, τ ) is a con-
venient step. For individual realizations, S(r, τ )/S(r, τ ) can
be represented on the Poincaré sphere [see Fig. 10(a)]. To
visualize S(r, τ )/S(r, τ ), each point on the Poincaré sphere
is associated with a distinct color, as shown in Fig. 10(b).

For a single realization, the emitted field is fully polar-
ized; the polarization state changes randomly from speckle to
speckle. This behavior can be observed in Figs. 10(c), 10(e),
and 10(g) as the appearance of colorful speckles. On average,
the emitted field is unpolarized. This behavior agrees with the
one-dimensional (1D) analysis presented in [79], where it was
concluded that the single shots of the emitted SF radiation
are fully polarized but with a random polarization direction.
However, in our case, in contrast to the 1D case, there are
several spatial modes; thus, the polarization direction varies
within the transverse cross section.

The speckles of colors observed in Figs. 10(c), 10(e), and
10(g) suggest that the field polarization properties between
neighboring points in the transverse cross section are corre-
lated. To quantify this kind of correlation, let us consider the
fourth-order moment of the field taken in two points in space:

C(r⊥, z, τ ) =
∫

dr′
⊥

〈S(r′
⊥, z, τ ) · S(r⊥ + r′

⊥, z, τ )〉
〈S(r′

⊥, z, τ )〉〈S(r⊥ + r′
⊥, z, τ )〉

. (33)

For a classical light field, the expression under the integral
gives a scalar product of two vectors on the Poincaré sphere;
each of the vectors describes the polarization state of light at
points r′

⊥ and r′
⊥ + r⊥. In this way, the quantity C(r⊥, z, τ )

describes the proximity of the polarization state at two points
separated by a distance r⊥ in the transverse direction. The

quantity C(r⊥, z, τ ) is shown in Figs. 10(d), 10(f), and 10(h).
As expected for a quantity averaged over the ensemble of
realizations, C(r⊥, z, τ ) is azimuthally symmetric. By con-
struction, the width in the transverse direction r⊥ of the
quantity C(r⊥, z, τ ) reflects the average size of the coher-
ent region (speckle) within which the polarization properties
of the radiation are close. As Fig. 10 shows, the extent of
C(r⊥, z, τ ) indeed reflects the size of the speckle observed
in single realizations. Similarly to the dynamics observed in
Fig. 7, the size of the coherent region starts from a single
pixel for the SE regime and grows upon propagation, as the
comparison of Figs. 10(d), 10(f), and 10(h) shows.

G. Population inversion and polarization fields

of the gain medium

Previously, we discussed the properties of the emitted field
that can be observed in experiments. In addition to the field
variables, numerical modeling gives access to atomic proper-
ties that cannot be directly measured.

In accordance with Eq. (27), the effective population
inversion ρ

upper
s (r, τ ) − ρ lower

s (r, τ ) directly determines the
amplification dynamics. Figure 11(a) displays its spatiotem-
poral evolution on the axis. During the amplification stage,
the population inversion is primarily conditioned by the pump.
Starting from z ≈ 150 µm, the population inversion exhibits
faint Rabi oscillations, signifying the transition to the satu-
ration regime, where the dynamics of the atomic variables is
noticeably influenced by the emitted radiation. This influence
is confirmed by the analysis of Fig. 11(d), displaying the
population inversion in the cross section for a single stochastic
realization. Indeed, the nonuniform distribution in the cross
section cannot be caused by the axially symmetrical pump,
supporting the conclusion that it is influenced by the emitted
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stochastic field. Note that this nonuniformity can be discerned
only at the level of a single realization. As shown in Fig. 11(f),
when the population inversion is averaged over many statisti-
cal realizations, the axial symmetry is recovered.

In two-level atomic systems with a single pair of upper and
lower states |u〉 and |l〉, Rabi oscillations can be conveniently
illustrated as a rotation of the Bloch vector:

ρBloch =





ρul + ρlu

i(ρul − ρlu)
ρuu − ρll



.

When decoherence is disregarded, this vector retains its length
and rotates at a frequency defined by the field amplitude.
Although this interpretation does not apply to multilevel
systems, Figs. 11(d) and 11(e) show strong anticorrelations
between the effective population inversion and polarization
fields defined as follows:

P
(+)
s (r, τ ) =

∑

u,l

Tlusρul (r, τ ), (34a)

P
(−)
s (r, τ ) =

∑

u,l

ρlu(r, τ )Tuls, (34b)

where the indices u and l represent the upper and lower
states. Since the dynamics is triggered by stochastic spon-
taneous emission, single stochastic realizations of the po-
larization field have random phases. Consequently, the
mean polarization field vanishes, namely, 〈P (±)

s (r, τ )〉 =
0. To remove the insignificant random phases, we can
look at the correlation function 〈P (+)

s (r, τ )P (−)
s (r, τ )〉 de-

picted in Fig. 11(b). According to Eq. (14), the intro-
duced polarization fields directly affect the determinis-
tic evolution of the fields. As the saturation regime is
reached, the impact of the noise terms becomes com-
pletely negligible. Consequently, starting from z ≈ 150 µm,
the dynamics of the field is fully determined by the polariza-
tion fields, as confirmed by comparing Figs. 11(b) and 11(c).

V. CONCLUSIONS AND OUTLOOK

We have presented the application of stochastic quantum
approach for collective light-matter interaction for the case
of x-ray superfluorescence initiated by a strongly focused
XFEL pump pulse. The properties of the cylindrical medium
of high aspect ratio and the short pump pulse allow for a num-
ber of simplifying approximations, such as the description
based on the slowly varying envelope functions, application of
the paraxial approximation, and neglecting back-propagating
wave. Under these assumptions, a system of stochastic dif-
ferential equations (13) and (14) has been obtained with
a structure resembling Maxwell-Bloch equations augmented
with appropriate noise terms for both field and atomic vari-
ables. A numerical scheme based on Eqs. (H7)–(H14) has
been proposed to model the resulting stochastic differential
equations. The analysis presented in Sec. IV C shows that the
proposed noise terms are able to reproduce the temporal and
spectral properties of the spontaneous emission in the forward
direction, the critical quantum phenomenon that triggers ASE
and SF evolution.

While the spontaneous emission has been accurately re-
produced, verifying the dynamics in the ASE and SF regimes

poses a challenge. Assuming that the workaround to avoid
divergent trajectories proposed in Sec. IV A may impact this
dynamics, a benchmark for this aspect would be highly useful.
A more rigorous alternative modification is the subject of
future publications.

In addition, we have extended the atomic level scheme to
include the states that interact with the XFEL pump pulse.
Similarly to the superfluorescence, the evolution of the XFEL
pump pulse itself has been analyzed within paraxial approx-
imation. As illustrated in Sec. IV, the proposed formalism
allows for an extended statistical analysis of various expec-
tation values.

The developed numerical approach is suitable for de-
signing and analyzing x-ray SF experiments. Its general
formulation allows for straightforward extension to complex
level schemes, enabling the development of a quantitative
theoretical model that can be compared to sXES experiments
[16,17]. Moreover, the capability to address the transverse
properties of the emitted radiation can aid in interpreting com-
plex patterns that correlate frequency and angular-emission
properties of x-ray SF [15]. As a result, it can improve the
understanding and facilitates the optimization of x-ray pulse
pairs production.

In the context of modeling the XLO setup [19], the devel-
oped numerical scheme provides the necessary information
about spectral, angular, and polarization properties needed to
model the in coupling of the x-ray SF radiation burst into the
Bragg-crystal cavity. For the radiation that has made one trip
within the cavity, the ability of the numerical scheme to de-
scribe the crossover from spontaneous to stimulated emission
will enable the determination of the lower threshold needed
for the circulated radiation to overcome the spontaneous emis-
sion. Investigating the parameter space of the geometry of the
gain medium and the pump-pulse properties, optimal condi-
tions for obtaining bright and coherent x-ray pulses can be
determined and will be the subject of a future study.
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APPENDIX A: DIPOLE MOMENT: INCOHERENT

PROCESSES

1. Dipole moment calculations

Following [80], the dipole matrix element for tran-
sition from state |n′l ′s′ j′m′〉 to |nls jm〉, where l (l ′)
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and s(s′) denote the orbital angular momentum and
spin, j ( j′) and m (m′) the total angular momentum
and its projection, and n (n′) any additional quantum
numbers, can be calculated as 〈nls jm|D̂q|n′l ′s′ j′m′〉 =
(−1) j−m

√
2 j + 1

(

j 1 j′

−m q m′

)

〈nls j||D||n′l ′s′ j′〉, where D̂q

is a component of the electric dipole operator, and
〈nls j||D||n′l ′s′ j′〉 is the reduced dipole matrix element, which
in notation from Eq. (5) corresponds to d0/

√
3 due to normal-

ization.

2. Isotropic fluorescence

Apart from the spontaneous emission that travels along
the z axis and is resonant with the upper and lower states
[as presented in Eq. (3)], there is also spontaneous emission
occurring in all other directions. However, since this emission
does not strongly interact with the medium, it is unnecessary
to consider it explicitly at the level of the fields. Nevertheless,
we still need to account for the population change caused by
this isotropic emission. For this reason we define isotropic
fluorescence decay widths, defined as follows:

γi j =
ω3

0

3π h̄ε0c3
0

1
∑

q=−1

|〈i|D̂q| j〉|2. (A1)

These coefficients enter Eq. (13a) in two forms: the dimen-
sionless coefficients Grad

i j and the inverse lifetime Ŵi(r, t ). The
dimensionless coefficients Grad

i j characterize the increase in
the populations of the lower states and are defined as the
normalized spontaneous isotropic fluorescence decay widths
γi j/Ŵrad. The explicit form of Grad

i j is given by

{

G
rad)
lu

}

=

1s 1
2 , m=− 1

2
1s 1

2 , m= 1
2

















1/3 0 2p 3
2 , m=− 3

2

2/9 1/9 2p 3
2 , m=− 1

2

1/9 2/9 2p 3
2 , m= 1

2

0 1/3 2p 3
2 , m= 3

2

. (A2)

Since the coefficients Ŵi(r, t ) are influenced by other pro-
cesses, we discuss them in more detail later in Appendix A 4.

3. Photoionization

To incorporate incoherent pumping and photoionization
into Eq. (13a), we have introduced additional terms repre-
sented by the coefficients p

pump
i (r, t ). These coefficients are

defined as follows:

p
pump
i (r, τ ) =

∑

F

JF (r, τ )Sground
F ,i

. (A3)

Here, JF (r, τ ) represents the flux of the electromagnetic field,
and the coefficients S

ground
F ,i

are the cross sections for ioniza-
tion that promote an atom from the ground state to one of
the excited states |i〉 (refer to Appendix B). The process of
photoionization is frequency dependent, which requires the
separate treatment of different frequency components of the
electromagnetic field. This is why we introduced the index F

to distinguish between various frequency components. Specif-
ically, F = P if the photoionization is induced by the pump,

and F = �s if the photoionization is caused by the emitted SF
field, where the index s represents its polarization. As defined
in Eq. (17), the flux J�s

(r, τ ) of the SF radiation is related to
the Rabi frequencies �s(r, τ ) in the following way:

J�s
(r, τ ) =

�(+)
s (r, τ )�(−)

s (r, τ )
3

8π
λ2

0Ŵrad
. (A4)

The expression for the flux JP (r, τ ) of the pump field can be
found in Appendix A 5.

Apart from the flux of the field, the change in the popula-
tions in Eq. (13a) depends on the population of the neutral
ground state ρground(r, τ ). Its evolution is governed by the
following equation:

∂

∂τ
ρground(r, τ ) = −

∑

F ,i

S
ground
F ,i

JF (r, τ )ρground(r, τ ). (A5)

4. Lifetime of the states

The lifetime of the states Ŵi(r, τ ) in Eq. (13a) is defined
primarily by three processes: Auger-Meitner effect, fluores-
cence, and photoionization. The first two processes can be
ensembled into the so-called natural decay width Ŵnatural

i . The
degenerate states share the same natural decay widths:

Ŵnatural
u = ŴK = 2.24 fs−1, (A6a)

Ŵnatural
l = ŴL3 = 0.92 fs−1. (A6b)

Here, the indices u and l represent the upper and lower
states. The decay caused by subsequent photoionization of the
ionized atoms can be represented in the following manner:

Ŵion
i (r, τ ) =

∑

F

Sion
F ,iJF (r, τ ), (A7)

where the cross sections Sion
F ,i are defined in Appendix B.

5. Pump propagation

The propagation of the pump radiation through the medium
results in absorption, and change of its temporal [71] and
spatial profile. This change has a significant effect on the
evolution of the x-ray superfluorescence; hence, modeling of
the pump-pulse propagation is essential. To account for the
propagation effects, we analyze the pump at the level of its
electric field P (r, t ). Similarly to the SF field, we introduce
the concept of retarded time τ = t − z/c and slowly varying
amplitude P (+)(r, τ ), and apply paraxial approximation:

P (r, t ) = P
(+)(r, t − z/c)ei(kP z−ωP t )êy + H.c. (A8)

Here, ωP = kPc is the pump carrier frequency. Additionally,
we have assumed that the FEL radiation is linearly polarized
along the y axis. The flux of the pump field can be defined in
the following way:

JP (r, τ ) =
2ε0c

h̄ωP

|P (+)(r, τ )|2. (A9)

Since we suppose that the pump field interacts with the
atoms via nonresonant photoabsorption, it is sufficient to
describe response of the atoms in terms of the absorption
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coefficient µP (r, τ ):
[

∂

∂z
∓

i

2kP

(

∂2

∂x2
+

∂2

∂y2

)]

P
(±)(r, τ )

= −
1

2
µP (r, τ )P (r, τ ). (A10)

The coefficient µP (r, τ ) is assumed to be real, ensuring
that P (±)(r, τ ) = P (∓)∗(r, τ ) and thus maintaining the elec-
tric field P (r, t ) as a real quantity, in contrast to the SF
fields.

6. Absorption of the fields

The absorption coefficients for the pump field P (r, τ ) and
the SF fields �s(r, τ ) can be generally represented by the
following expression:

µF (r, τ ) = n(r)
∑

i

Re
(

ρground(r, τ )Sground
F ,i

+ ρaux(r, τ )Saux
F + ρii(r, τ )Sion

F ,i + σ
compound
F

)

.

(A11)

In this expression, the index F distinguishes different field
components, as explained after Eq. (A3). σ

compound
F

represents
the photoionization cross sections for elements in the medium
other than copper (for more details, refer to Appendix B).
It is important to note that we take the real part of the ex-
pression within the brackets, which removes the imaginary
contributions from elements of the density matrix that can
have arbitrary complex values. The nonlinear dependence of
the absorption coefficient cannot be included in the stochas-
tic formalism without additional approximations. Given that

absorption is a classical effect and the model with constant ab-
sorption coefficients is exact, our proposed absorption model
must be sufficiently accurate for our purposes.

The absorption of the fields is also influenced by the cumu-
lative population of auxiliary singly ionized states ρaux(r, τ ).
Its evolution is governed by the following equation:

∂

∂τ
ρaux(r, τ ) = −

∑

F

ρaux(r, τ )Saux
F

JF (r, τ )

+
∑

F

ρground(r, τ )Sground
F , auxJF (r, τ ). (A12)

To describe ionization that promotes atoms from the ground
state to one of the auxiliary states, we introduce ionization
cross sections denoted as S

ground
F ,aux . Their numerical values can

be found in the last column of the cross-section matrix in
Eq. (B1). Subsequent ionization of atoms in the auxiliary
states is accounted for by the cross sections Saux

F
given in

Eq. (B2).

APPENDIX B: PHOTOIONIZATION CROSS SECTIONS

Photoionization cross sections included in the Cu Kα1

superfluorescence model are calculated using the GRASP

[81] and RATIP [82] atomic codes. In our case, additional
calculations are required to determine the partial cross sec-
tions corresponding to individual magnetic sublevels. In
accordance with the six-level model of the Cu Kα1 system
presented in Eq. (3), the valence 4s electron is omitted. The
initial ground-state configuration of the copper atom in this
approximation is [Ar] 3d10 1S0, and the ionic states of interest
are [Ar] 3d10 1s−1 2S1/2 and [Ar] 3d10 2p−1 2P3/2.

1. Partial photoionization cross sections for magnetic sublevels

Photoionization of the ground state, which causes the population inversion, is described in terms of partial ionization cross
sections encompassed in the following matrix:

{

S
ground
F ,i

}

=

2p 3
2 ,m=− 3

2
2p 3

2 ,m=− 1
2

2p 3
2 ,m= 1

2
2p 3

2 ,m= 3
2

1s 1
2 ,m=− 1

2
1s 1

2 ,m= 1
2

aux. i/F
















0.27 σ
(g)
P,2p

0.23 σ
(g)
P,2p

0.23 σ
(g)
P,2p

0.27 σ
(g)
P,2p

0.5 σ
(g)
P,1s

0.5 σ
(g)
P,1s

σ
(g)
P,a

P

0.12 σ
(g)
�,2p 0.18 σ

(g)
�,2p 0.28 σ

(g)
�,2p 0.42 σ

(g)
�,2p 0 0 σ

(g)
�,a �−1

0.42 σ
(g)
�,2p0.28 σ

(g)
�+1,2p0.18 σ

(g)
�,2p 0.12 σ

(g)
�,2p 0 0 σ

(g)
�,a �+1

. (B1)

In this matrix, F = P if the photoionization is caused by the pump field, and F = �s if the photoionization is induced by the
emitted SF field. σ

(g)
P, j

and σ
(g)
�, j represent the cross sections for photoionization. The index i defines the orbital of the electron

that was removed from the atom due to ionization. When i is denoted as “aux,” it refers to additional states that do not directly
participate in the formation of SF emission and are accounted for as a single auxiliary state.

The second photoionization of the ionized atoms is described by the following partial cross sections:

{

Sion
F ,i

}

=

2p 3
2 ,m=− 3

2
2p 3

2 ,m=− 1
2

2p 3
2 ,m= 1

2
2p 3

2 ,m= 3
2

1s 1
2 ,m=− 1

2
1s 1

2 ,m= 1
2

i/F
















1.05 σ
(i)
P,2p

0.95 σ
(i)
P,2p

0.95 σ
(i)
P,2p

1.05 σ
(i)
P,2p

σ
(i)
P,1s

σ
(i)
P,1s

P

0.70 σ
(i)
�,2p 0.83 σ

(i)
�,2p 1.06 σ

(i)
�,2p 1.41 σ

(i)
�,2p0.75 σ

(i)
�,1s1.25 σ

(i)
�,1s �−1

1.41 σ
(i)
�,2p 1.06 σ

(i)
�,2p 0.83 σ

(i)
�,2p 0.70 σ

(i)
�,2p1.25 σ

(i)
�,1s0.75 σ

(i)
�,1s �+1

. (B2)

Here, σ
(i)
P, j

and σ
(i)
�, j denote the total photoionization cross section of an atom in the level j.
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TABLE I. Values of photoionization cross sections included in
the model of the Cu Kα1 system.

Parameter Value (nm2) Parameter Value (nm2)

σ
(g)
P,1s 2.53 × 10−6 σ

(i)
P,1s 4.75 × 10−7

σ
(g)
P,2p 1.04 × 10−7 σ

(i)
P,2p 3.02 × 10−7

σ
(g)
P,a 3.23 × 10−7 σ

(i)
�,1s 6.53 × 10−7

σ
(g)
�,2p 1.52 × 10−7 σ

(i)
�,2p 4.15 × 10−7

σ
(g)
�,a 4.34 × 10−7 σ

(a)
P

3.27 × 10−7

σ
(a)
� 4.58 × 10−7

σP,O 2.00 × 10−8 σP,N 1.11 × 10−8

σ�,O 2.75 × 10−8 σ�,N 1.55 × 10−8

Photoionization of the atom in the states represented by the
effective auxiliary state is accounted for via cross sections Saux

F

given in the following:

{

Saux
F

}

=

aux i/F












σ
(a)
P

P

σ
(a)
� �−1

σ
(a)
� �+1

. (B3)

Since the target medium consists of a copper nitrate solution,
we must consider the photoionization of atoms other than
copper. It leads to significant absorption of both the pump and
emitted fields, necessitating its inclusion in the model. How-
ever, the cross sections for ionization of additional elements
in the solution are smaller than those for copper. As such,
we assume that only a small fraction of these atoms becomes
ionized, maintaining a population of 1 throughout the target at
all times.

The effective photoionization cross section due to the
compound elements other than copper can be expressed as
follows:

σ
compound
F

=
∑

el.

NelσF ,el. (B4)

In this equation,
∑

el represents the sum over these additional
elements, Nel denotes the number of atoms of a given element
per one copper atom, and σF ,el is the corresponding cross
section for ionization with field mode F . The elements present
in the compound are hydrogen, oxygen (denoted as el = O),
and nitrogen (denoted as el = N). However, since the photon
energy of the pump and emitted fields is approximately 8–9
keV, nearly three orders of magnitude above the ionization
threshold of hydrogen, the corresponding cross sections for
hydrogen can be considered negligible.

The numerical values of photoionization cross sections for
all the processes included in the simulation of the Cu Kα1

system are provided in Table I. In the case of an eight-molar
solution of copper nitrate, the number of atoms in the com-
pound per one copper atom is NO = 13 and NN = 2. Further
details of the calculations are outlined below.

2. Calculation of the partial photoionization cross sections

The wave function of the outgoing electron can be ex-
panded in terms of partial waves as [83]

|ψc〉 =
∞
∑

l=0

l
∑

ml =−l

|lmlsms〉Y ∗
lml

(ϑk, ϕk )

=
∞
∑

l=0

l
∑

ml =−l

l+s
∑

j f =|l−s|

j f
∑

m f =− j f

〈 j f m f |lmlsms〉

× |(ls) j f m f 〉Y ∗
lml

(ϑk, ϕk ), (B5)

where s = 1
2 is the electron spin and ms its projection, l orbital

angular momentum and ml its projection, and ϑk and ϕk are
the polar and azimuthal angles associated with the wave vector
of the electron. The final-state product function combining the
ion and electron can then be expanded in terms of the total
angular momentum of the system as [80]

|ψc〉|J f M f 〉 =
∑

l,ml

∑

j f ,m f

〈 j f m f |lmlsms〉

×
j f +J f
∑

J=| j f −J f |

J
∑

M=−J

〈JM| j f m f J f M f 〉

× |
[

(ls) j f J f

]

JM〉Y ∗
lml

(ϑk, ϕk ), (B6)

where J f is the total angular momentum of the ion and M f

its projection, j f and m f are the total angular momentum of
the electron and its projection, and J and M correspond to the
combined system of the ion and electron. The photoionization
cross section is proportional to the absolute square of pho-
toionization amplitudes 〈J f M f |〈ψc|D̂q|JiMi〉, where Ji is the
total angular momentum of the initial state, Mi its projection,
and D̂q is a component of the electric dipole operator.

In the case of photoionization from the initial neutral state
to a selected state of Cu+ with given J f and M f by field with
polarization mode q, Ji = Mi = 0 and the cross sections of
interest are

σ (J f , M f , q) = ξ
∑

ms

∫

d�k|〈J f M f |〈ψc|D̂q|00〉|2

= ξ
∑

l

∑

j f

〈1q| j f (q − M f )J f M f 〉2

× |〈[(ls) j f J f ]1||D||0〉|2, (B7)

where d�k = sin ϑkdϑkdϕk , and ξ is a constant factor that
depends on the specific form of the dipole transition operator
and unit system used in the calculation (conventions differ
between different references and atomic codes). This expres-
sion determines the individual cross sections in the last two
rows of S

ground
F i

corresponding to ionization with the circularly
polarized modes of the emitted field. In the derivation of
Eq. (B7) the following properties of spherical harmonics and
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Clebsch-Gordan coefficients were used [80]:
∫

d�kYlml
(ϑk, ϕk )Y ∗

l ′m′
l
(ϑk, ϕk ) = δl,l ′δml ,m

′
l
, (B8a)

∑

m1,m2

〈JM| j1m1 j2m2〉〈 j1m1 j2m2|J ′M ′〉 = δJ,J ′δM,M ′ , (B8b)

〈 j1m1 j2m2|JM〉 �= 0 ⇔ m1 + m2 = M. (B8c)

In the chosen coordinate system, the pump pulse is linearly
polarized along the y axis. cross sections for ionization with
the pump field can be expressed as

σ (J f , M f , y)

= ξ
∑

ms

∫

d�k|〈J f M f |〈ψc| (D̂−1 + D̂+1)/
√

2 |00〉|2

=
1

2
[σ (J f , M f , q = −1) + σ (J f , M f , q = +1)], (B9)

and correspond to the individual cross sections in the first row
of S

ground
F i

.
Reduced dipole matrix elements 〈[(ls) j f J f ]1||D||0〉 (also

called photoionization amplitudes) are part of the output of the
RATIP code [82], and can be used to calculate the prefactors in
matrix S

ground
F i

. The code also outputs cross sections, which are
calculated for unpolarized light and are averaged over initial
states and summed over final states. Unpolarized light can
be treated as a linear combination of two incoherent linearly
polarized beams of equal intensity [84]. The calculated cross
sections, which correspond to the total cross sections σ

(g)
F ,i

, can
in our notation be written as

σ (J f ) =
1

2

∑

q=−1,1

∑

M f

σ (J f , M f , q)

= ξ
∑

l

∑

j f

|〈[(ls) j f J f ]1||D||0〉|2. (B10)

In the case of Cu+ to Cu++ ionization, the cross sections of
interest are

σ (Ji, Mi, q) = ζ
∑

J f

∑

M f

∑

ms

∫

d�k|〈J f M f |〈ψc|D̂q|JiMi〉|2

= ζ
∑

J f

∑

l

∑

j f

∑

J

〈J (Mi + q)|JiMi1q〉2

× |〈[(ls) j f J f ]J||D||Ji〉|2, (B11)

where Ji is the total angular momentum of the initial ionic
state of Cu+ and Mi its projection. These cross sections corre-
spond to the individual cross sections in the last two rows of
Sion
F i . The cross section for ionization with the pump pulse can

similarly as above be expressed as

σ (Ji, Mi, y) = 1
2 [σ (Ji, Mi, q = −1) + σ (Ji, Mi, q = +1)],

(B12)

and corresponds to the individual cross sections in the first
row of Sion

F i . Again, the photoionization cross sections and
amplitudes are calculated with the RATIP code. In our notation

these cross sections can be expressed as

σ (Ji ) =
1

2

∑

q=−1,1

1

2Ji + 1

∑

Mi

σ (Ji, Mi, q)

= ζ
1

3(2Ji + 1)

∑

J f

∑

l

∑

j f

∑

J

(2J + 1)

× |〈[(ls) j f J f ]J||D||Ji〉|2, (B13)

in the derivation of which the following symmetry relation
was used [80]:

〈 j1m1 j2m2|JM〉 = (−1) j2+m2

√

2J + 1

2 j1 + 1
〈 j2(−m2)JM| j1m1〉.

(B14)

These cross sections also correspond to the total cross sec-
tions σ

(i)
F ,i

. Because of the averaging over the initial states,
the relation between the partial and total cross sections is
∑

Mi
σ (Ji, Mi, q) = (2Ji + 1)σ (Ji ).

APPENDIX C: STOCHASTIC DIFFERENTIAL EQUATIONS

IN THE ITO FORM

Consider a system of stochastic differential equations for a
vectorial stochastic variable x(t ) in the Ito form:

dxi(t )

dt
= Ai(x, t ) +

∑

j

Bi j (x, t ) fi(t ). (C1)

Here fi(t ) are normalized Gaussian white-noise terms

〈 fi(t ) f j (t
′)〉 = δi jδ(t − t ′). (C2)

The stochastic Ito equation can be related to the following
finite-difference scheme:


x
(t )
i = A

(t )
i 
t +

∑

j

B
(t )
i j ε

(t )
j

√

t, (C3)

where ε
(t )
j are normalized Gaussian random numbers. Note,

that the equations in Sec. III A involve complex noise terms
in contrast to the examples given in this section. The complex
noise term fcom(t ) can be expressed through two real noise
terms

fcom(t ) =
1

√
2

[ f1(t ) + i f2(t )].

The convenience of the Ito form lies in the ease of the numer-
ical implementation. According to the Ito interpretation (C3),
the stochastic integration requires a new independent random
contribution every time increment and involves dynamic vari-
ables from the previous time step.

APPENDIX D: DERIVATION OF THE STOCHASTIC

DIFFERENTIAL EQUATIONS

1. Bloch equations

Before deriving the stochastic equations used to simulate
x-ray superfluorescence, we begin by formulating the deter-
ministic Maxwell-Bloch equations. These equations can be
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derived by employing a fully factorized ansatz for the density
matrix of the system

ρ(t ) =
∏

a

ρ̂a(t )
∏

k,s

	̂(αk,s(t ), α†
k,s

(t )). (D1)

In this context, each atom is characterized by an inde-
pendent one-particle density matrix denoted as ρ̂a(t ) =
∑

p,q ρa,pq(t )σ̂a,pq, while the field modes are described using

projectors 	̂(αk,s(t ), α†
k,s

(t )) as defined in Eq. (8). Conse-
quently, the state of the system is defined by the variables
ρa,pq(t ) representing the elements of the atomic one-particle
density matrices, and αk,s(t ) as well as α

†
k,s

(t ) play the role of
the field amplitudes. To derive the equations of motion for
these variables, we employ the decomposition presented in
Eq. (D1) and substitute it into the following master equation:

˙̂ρ(t ) = L[ρ̂(t )] =
i

h̄

[

ρ̂(t ), Ĥ f +
∑

a

Ĥa + V̂

]

+ L̂incoh[ρ̂(t )] + L̂absorp[ρ̂(t )].

(D2)

This allows us to construct equations for the expectation val-
ues as follows:

α̇k,s(t ) = Tr(âk,s
˙̂ρ(t )) = Tr(âk,sL[ρ̂(t )]),

α̇
†
k,s

(t ) = Tr(â†
k,s

˙̂ρ(t )) = Tr(â†
k,s
L[ρ̂(t )]),

ρ̇a,pq(t ) = Tr(σ̂a,pq
˙̂ρ(t )) = Tr(σ̂a,pqL[ρ̂(t )]).

To create a closed system of equations, it is important to note
that the ansatz in Eq. (D1) factorizes second-order correlators
as follows:

Tr(σ̂a,pqâk,sρ̂(t )) = ρa,qp(t )αk,s(t ), (D3a)

Tr(σ̂a,pqâ
†
k,sρ̂(t )) = ρa,qp(t )α†

k,s(t ). (D3b)

The equations for the field variables αk,s(t ) and α
†
k,s(t ) can

be divided into two parts: one arising from unitary evolution
and the other from absorption. The unitary evolution is de-
scribed as follows:
α̇k,s(t )|unitary = −iωkαk,s(t ) + d0g0

∑

u,l

Tlu,sρa,ul (t )e−ik·ra ,

(D4a)

α̇
†
k,s

(t )|unitary = iωkα
†
k,s

(t ) + d0g0

∑

u,l

Tul,sρa,lu(t )eik·ra ,

(D4b)

where the indices u and l represent the upper and lower states.
Apart from that, we have employed Eq. (5). To describe ab-
sorption, we define the electric fields E (±)

s (r, t ):
E

(+)
s (r, t ) = ih̄

∑

k

g0αk,s(t )eik·r, (D5a)

E
(−)
s (r, t ) = −ih̄

∑

k

g0α
†
k,s(t )e−ik·r. (D5b)

Then, the absorption enters the equations of motion in the
following way:

∂

∂t
E

(±)
s (r, t )|absorp = −

µs(r, t )

2
E

(±)
s (r, t ). (D6)

For the sake of convenience, we have also divided the equa-
tions pertaining to the atomic variables into two parts. The

part responsible for incoherent processes can be expressed as

ρ̇a,pq(t )|incoh

= −[Ŵp(r, t ) + Ŵq(ra, t )]ρpq(ra, t )/2

+ δpq

(

ppump
p (ra, t )ρground

a (t ) + Ŵrad

∑

k

Grad
pk ρa,kk (t )

)

.

(D7)

This equation is essentially a discrete version of Eq. (13a)
in original time t . The unitary evolution is described by the
following part:

ρ̇a,pq(t )|unitary

= −iωpqρa,pq(t )

+
id0

h̄

∑

r,s

[

E
(+)
s (ra, t )(Tp>r,sρa,rq(t ) − ρa,pr (t )Tr>q,s)

+ E
(−)
s (ra, t )

∑

r

(Tp<r,sρa,rq(t ) − ρa,pr (t )Tr<q,s)

]

,

(D8)

where p > q means that index p corresponds to the subset of
upper states {|e〉} whereas index q to the subset of ground
states {|g〉}. In the equations, we have employed the electric
fields E (±)

s (r, t ) that conveniently assemble the field ampli-
tudes αk,s(t ) and α

†
k,s

(t ).
Truncation of the second-order correlators presented in

Eq. (D3) and used in the derivations of Eqs. (D4)–(D8) shows
that the resulting equations are valid only for the systems with
strong classical behavior. Let us find the neglected terms in
the master equation and analyze their structure. If we insert
the decomposition from Eq. (D1) in the master equation (D2)
and apply Eqs. (D4)–(D8), we notice that the right-hand side
L[ρ̂(t )] of Eq. (D2) is restored only partially:

L[ρ̂(t )] − ˙̂ρ(t ) =
∑

b, k, s

χ̂b;k,s(t )
∏

a �=b

ρ̂a(t )

×
∏

k′ �=k,
s′ �=s

	̂(αk′,s′ (t ), α†
k′,s′ (t )). (D9)

The time derivative of Eq. (D1) can give rise to terms where
either a single atomic one-particle density matrix ρ̂a or a
single field projector 	̂(αk,s(t ), α†

k,s
(t )) is modified. Conse-

quently, the remaining terms in Eq. (D9) intertwine the atomic
and field degrees of freedom. These terms can be expressed as

χ̂a;k,s(t ) =
∑

p, q

[

χ
(+)
a,pq;k,s(t )

∂

∂αk,s(t )
+ χ

(−)
a,pq;k,s(t )

∂

∂α
†
k,s

(t )

]

× σ̂a,pq 	̂(αk,s(t ), α†
k,s

(t )), (D10a)

where

χ
(+)
a,pq;k,s

(t ) = d0g0

(

∑

r

Tp<r,sρrq(t ) − ρpq(t )
∑

u,l

Tlu,sρul (t )

)

× e−ik·ra , (D10b)

χ
(−)
a,pq;k,s

(t ) = d0g0

(

∑

r

ρpr (t )Tr>q,s − ρpq(t )
∑

u,l

Tul,sρlu(t )

)

× eik·ra . (D10c)

033725-23



STASIS CHUCHURKA et al. PHYSICAL REVIEW A 109, 033725 (2024)

Here, the indices u and l represent the upper and lower
states.

2. Noise terms

While χ̂a;k,s(t ) may initially seem complex, the uncom-
pensated right-hand side of Eq. (D9) essentially entangles
individual atoms and single field modes and does not in-
troduce additional intricate higher-order correlations. As
demonstrated in Ref. [55], the terms in Eq. (D10) can be
correctly recaptured by introducing suitable stochastic terms
into Eqs. (D4)–(D8) in the following manner:

α̇k,s(t )|noise = ξk,s(t ), α̇
†
k,s

(t )|noise = ξ
†
k,s

(t ), (D11a)

ρ̇a,pq(t )|noise = ηa,pq(t ). (D11b)

Here, we introduce a set of Gaussian white-noise terms,
namely, ξk,s(t ), ξ

†
k,s

(t ), and ηa,pq(t ), with the following corre-
lation properties:

〈ξk,s(t )ηa,pq(t ′)〉 = κ
(+)
a,pq;k,s(t )δ(t − t ′), (D12a)

〈ξ †
k,s

(t )κa,pq(t ′)〉 = κ
(−)
a,pq;k,s

(t )δ(t − t ′), (D12b)

which we will determine later. We assume that the correlators
of the remaining pairs of noise terms are zero. Two nonzero
correlators in Eq. (D12) prove sufficient for reproducing the
missing terms in Eq. (D9). Additionally, we treat the noise
terms as integrated in the Ito sense. See Appendix C for more
details.

Typically, stochastic equations are solved using the Monte
Carlo approach. The proper statistics of the dynamic vari-
ables ρa,pq(t ), αk,s(t ), and α

†
k,s

(t ) are reconstructed by solving
multiple equations with a randomly sampled stochastic contri-
bution in accordance with their statistical properties. Since the
equations do not couple the variables from different realiza-
tions, their integration can be parallelized, offering significant
performance advantages compared to methods based on the
direct decomposition of the wave function into some basis
set. To sample the density matrix, we insert each realiza-
tion of the dynamic variables ρa,pq(t ), αk,s(t ), and α

†
k,s

(t )
into the decomposition in Eq. (D1) and combine the re-
sulting factorized density matrices into a normalized linear

combination:

ρ(t ) =

〈

∏

a

ρ̂a(t )
∏

k,s

	̂(αk,s(t ), α†
k,s

(t ))

〉

, (D13)

resulting in a nonfactorizable density matrix. Similar to the
approach in Ref. [55], this linear combination serves to re-
store the missing entangled terms in Eq. (D9). Although the
stochastic ansatz does not alter the expression for the first
term L[ρ̂(t )], it does modify the derivative ˙̂ρ(t ) by introducing
additional terms proportional to κ

(+)
a,pq;k,s

(t ) and κ
(−)
a,pq;k,s

(t ), a
concept known as Ito’s lemma.

Consider an arbitrary function S that depends on the
stochastic variables ρa,pq, αk,s, and α

†
k,s

. Ito’s lemma reads as

dS

dt
=
∑

a,p,q

∂S

∂ρa,pq

dρa,pq

dt
+
∑

k,s

∂S

∂αk,s

dαk,s

dt
+
∑

k,s

∂S

∂α
†
k,s

dα
†
k,s

dt

+
∑

a,p,q
k,s

[

∂2S

∂ρa,pq∂αk,s

κ
(+)
a,pq;k,s

+
∂2S

∂ρa,pq∂α
†
k,s

κ
(−)
a,pq;k,s

]

.

(D14)

As a result, the complete derivative of the density ma-
trix presented in Eq. (D13) gains the following additional
components:

d ρ̂(t )

dt

∣

∣

∣

∣

noise

=

〈

∑

a,p,q
k,s

[

κ
(+)
a,pq;k,s

(t )
∂

∂αk,s(t )
+ κ

(−)
a,pq;k,s

(t )
∂

∂α
†
k,s

(t )

]

× σ̂a,pq

∏

b�=a

ρ̂b(t )
∏

k,s

	̂(αk,s(t ), α†
k,s

(t ))

〉

,

that entangle pairs of atoms and have exactly the same form as
the right-hand side of Eq. (D9). Consequently, the correlators
of the noise terms have the form

κ
(+)
a,pq;k,s

(t ) = χ
(+)
a,pq;k,s

(t ), κ
(−)
a,pq;k,s

(t ) = χ
(−)
a,pq;k,s

(t ).

Equations (D4)–(D8) accompanied by the noise terms in
Eq. (D11) fully satisfy master equation (D2).

To simulate ξk,s(t ), ξ †
k,s

(t ), and ηa,pq(t ), we have to decom-
pose them in terms of independent noise terms. There is no
unique decomposition, however, the structure of Eq. (D10)
suggests the most compact one:

α̇k,s(t )|noise = ξk,s(t ) = d0g0

∑

a

fa,s(t )e−ik·ra , (D15a)

α̇
†
k,s

(t )
∣

∣

noise = ξ
†
k,s

(t ) = d0g0

∑

a

ga,s(t )eik·ra , (D15b)

ρ̇a,pq(t )|noise = ηa,pq(t )

=
∑

s

(

∑

r

ρa,pr (t )Tr>q,s − ρpq(t )
∑

u,l

Tul,sρa,lu(t )

)

g†
a,s(t )

+
∑

s

(

∑

r

Tp<r,sρa,rq(t ) − ρa,pq(t )
∑

u,l

Tlu,sρa,ul (t )

)

f †
a,s(t ), (D15c)
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where fa,s(t ), f †
a,s(t ), ga,s(t ), and g†

a,s(t ) are Gaussian white-
noise terms independent of the variables αk,s(t ), α

†
k,s(t ), and

ρa,pq(t ). The noise terms fa,s(t ) and f †
a,s(t ) are statistically

independent of ga,s(t ) and g†
a,s(t ). These elementary noise

terms have the following correlation properties:

〈 fa,s(t ) fa′,s′ (t ′)〉 = 〈 f †
a,s(t ) f

†
a′,s′ (t ′)〉 = 0, (D16a)

〈 fa,s(t ) f
†
a′,s′ (t ′)〉 = δss′δaa′δ(t − t ′), (D16b)

that can only be sampled by complex-valued Gaussian white-
noise terms. Similar stochastic properties hold for ga,s(t ) and
g†

a,s(t ).

3. Fields in the coordinate space

The deterministic unitary evolution of the atomic vari-
ables is characterized by Eq. (D8) which incorporates the
field variables αk,s(t ) and α

†
k,s

(t ) combined into electric fields
E (±)

s (r, t ) as indicated in Eq. (D5). Instead of explicitly track-
ing the dynamics of the variables αk,s(t ) and α

†
k,s

(t ), we derive
the equations for E (±)

s (r, t ).
In the paraxial approximation, the field modes propagate

nearly parallel to the z axis. Furthermore, we assume that only
the field traveling along with the pump pulse significantly
contributes to the dynamics of the atomic variables. Conse-

quently, we make the assumption that ωk = kc ≈ [kz + k2
⊥

2k0
]c.

We apply this approximation to Eq. (D4), along with the noise
terms presented in Eq. (D15). The resulting equations are
then summed over the paraxial wave vectors, yielding the
following expression:
[

∂

c∂t
+

∂

∂z
∓

i

2k0

(

∂2

∂x2
+

∂2

∂y2

)

+
µs(r, t )

2

]

E
(±)
s (r, t )

= ±i
k0d0

2ε0
P(±)

s (r, t ), (D17)

where we have introduced polarization fields containing both
the deterministic atomic variables ρa,pq(t ) and noise terms
ga,s(t ) and fa,s(t ):

P(+)
s (r, t ) =

∑

a





∑

u,l

Tlu,sρa,ul (t ) + fa,s(t )





× eik0 (z−za )δε(r − ra),

P(−)
s (r, t ) =

∑

a





∑

u,l

Tul,sρa,lu(t ) + ga,s(t )





× e−ik0 (z−za )δε(r − ra).

Here, δε(r − ra) represents the sum
∑

k ei(k−k0 )·(r−ra )/V .
The summation is carried out over a relatively large set of
paraxial wave vectors k ≈ k0 included in the electric fields.
The resulting function is localized, resembling the functional-
ity of a delta function. Further, we assume that the transverse
part of δε(r − ra) is infinitely small behaving as a true delta
function for the transverse coordinates. In exchange, we in-
troduce damping to the Laplace operator ∂2

/∂x2 + ∂2
/∂y2 for

nonparaxial modes. Consequently, we replace δε(
r) into a

product of two components as follows:

δε(
r) → δ(
r⊥)δε(
z).

The number of longitudinal modes included in the electric
field defines the spatial and temporal scale at which the fields’
envelopes remain constant. The corresponding spatial scale
defines the width of the delta function δε(
z).

APPENDIX E: FIELD VARIABLES IN RETARDED TIME

As motivated in Sec. III A, it is convenient to replace the
original time variable t with the retarded time τ = t − z/c,
which effectively incorporates the propagation effects. How-
ever, it slightly modifies the correlation properties of the
noise terms. To provide a more detailed demonstration, let
us formally integrate Eq. (D17), which yields the following
expression for the field E (+)

s (r, t ):

E
(+)
s (r, t ) = ± i

k0d0

2ε0

∫

z′<z

Gs(r, r′)P(+)
s (r′, t − (z − z′)/c)dr′.

(E1)

Here, we express the solution in terms of the Green functions
Gs(r, r′) corresponding to the following equation:
[

∂

∂z
−

i

2k0

(

∂2

∂x2
+

∂2

∂y2

)

+
µs(r)

2

]

Gs(r, r′) = δ(r − r′),

(E2)

where δ(r − r′) is the proper delta function. In this section,
we assume a stationary absorption coefficient µs(r), which
simplifies the derivations without affecting the final result.
Apart from the omitted time derivative and time dependence
of the absorption coefficient µs(r), the left-hand side of this
equation retains the same form as the original equation (D17).

Let us examine the field E (+)
s (r, t ) generated by an indi-

vidual atom positioned at point ra. For z < za, there is no
field since we have neglected back-propagation. However, for
z > za, the field can be described as follows:

E
(+)
s (r, t ) = i

k0d0

2ε0

∫ ∞

−∞
dz′Gs(r, r′)

×

(

∑

u,l

Tlu,sρa,ul (t − z/c + z′/c)

+ fa,s(t − z/c + z′/c)

)

× eik0 (z′−za )δε(z′ − za)|r′
⊥=r⊥,a

. (E3)

Here, we have replaced z with infinity in the upper integra-
tion limit. This is justified by the paraxial approximation,
which reproduces the field only at a sufficient distance from
the atom, where δε(z′ − za) is negligibly small. On the other
hand, within the paraxial approximation, the self-interaction
of a single atom mediated by the field, a cause of sponta-
neous decay, cannot be accurately reproduced. It must be
treated separately at the level of lifetimes. See Sec. II B and
Appendix A 2 for more details.

The deterministic part of Eq. (E3) can be significantly
simplified. Since the atomic coherence ρa,ul is driven by the
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field with the carrier frequency ω0, multiplying it by eik0 (z′−za )

results in a slowly varying function. Consequently, for a suffi-
ciently small width of δε(z′ − za), the integration sign together
with the longitudinal delta function in the deterministic part
can be easily omitted:

E
(+)
s (r, t )|det = i

k0d0

2ε0
Gs(r, ra)

∑

u,l

Tlu,sρa,ul [t − (z − za)/c].

(E4)

More care is required when integrating the noise terms.
There is no timescale on which the noise terms change slowly,
making it impossible to approximate the integral. For the sake
of brevity, we can define the following “smoothed” noise
terms:

f̃a,s(t ) =
∫ ∞

−∞
fa,s(t − t ′)e−iω0t ′

δε(t ′)dt ′,

g̃a,s(t ) =
∫ ∞

−∞
ga,s(t − t ′)eiω0t ′

δε(t ′)dt ′,

where the effective delta function δε(t ′) has the width of
δε(
z) divided by the speed of light. The new function δε(
t )
is consequently involved in the following correlation func-
tions:

〈 f̃a,s(t ) f̃a′,s′ (t ′)〉 = 〈 f †
a,s(t ) f

†
a′,s′ (t ′)〉 = 0, (E5a)

〈 f̃a,s(t ) f
†
a′,s′ (t ′)〉 = δss′δaa′δε(t − t ′)e−iω0 (t−t ′ ). (E5b)

The stochastic properties of g̃a,s(t ) and g†
a,s(t ) are similar,

with the only difference being a change in the sign of i. As
a result, the noise contribution in Eq. (E3) gets the following
form:

E
(+)
s (r, t )|noise = i

k0d0

2ε0
Gs(r, ra) f̃a,s[t − (z − za)/c]. (E6)

In contrast to the correlation properties in Eq. (D16) that re-
quire a specific Ito’s interpretation of the time integration (see
Appendix C), the noise terms that conform to the correlation
properties in Eq. (E5) can be sampled using smooth functions
and possess a simpler physical interpretation.

Note that both the deterministic part in Eq. (E4) and the
noise part in Eq. (E6) depend on the retarded time t − z/c.
We can explicitly imprint it into the field variables with the
following redefinition:

�(±)
s (r, τ ) =

d0

h̄
E

(±)
s (r, τ + z/c)e±iω0τ . (E7)

Here, we express the field variables in terms of the Rabi
frequency to simplify the equations and figure out the
characteristic parameters of the problem. Besides, we com-
pensate frequently oscillating multipliers e±iω0τ , so the fields
�(±)

s (r, τ ) represent the slowly varying envelopes.
To account for more then one atom, we add a summation

over index a to Eqs. (E4) and (E6). Using the definition of the

Rabi frequencies, we arrive at the expression

�(+)
s (r, τ ) = i

3

8π
λ2

0Ŵrad

∑

a: za<z

Gs(r, ra)

×

(

∑

u,l

Tlu,sρa,ul (τ + za/c)

+ f̃a,s(τ + za/c)

)

eiω0τ , (E8)

where λ0 is the carrier wavelength and Ŵrad is the spontaneous
emission rate calculated based on d0 and given by Ŵrad =
ω3

0d2
0 /3πε0 h̄c3. The resulting fields, including �(−)

s (r, τ ), can
be interpreted as solutions of the following equations:

[

∂

∂z
∓

i

2k0

(

∂2

∂x2
+

∂2

∂y2

)

+
µs(r, τ )

2

]

�(±)
s (r, τ )

= i
3

8π
λ2

0ŴradP(±)
s (r, τ ), (E9)

where the polarization fields P(±)
s (r, τ ) read as follows:

P(+)
s (r, τ ) =

∑

a





∑

u,l

Tlu,sρa,ul (τ + za/c) + f̃a,s(τ + za/c)





× eiω0τ δ(r − ra), (E10a)

P(−)
s (r, τ ) =

∑

a





∑

u,l

Tul,sρa,lu(τ + za/c) + g̃a,s(τ + za/c)





× e−iω0τ δ(r − ra). (E10b)

Note, that we have reintroduced the time dependence of the
absorption coefficient µs(r, τ ) in Eq. (E9). By following the
rules outlined in Eq. (10), this absorption coefficient is now
explicitly dependent on the retarded time τ .

APPENDIX F: COLLECTIVE AND CONTINUOUS

VARIABLES

1. Wave equations

Since the Green function Gs(r, r′) in Eq. (E8) exhibits
slow change from one atom to another, it becomes possible
to group closely situated atoms into collective variables. We
can divide the entire medium into small regions {Ri}, each
with a volume 
V , and containing 
N atoms. Equation (E8)
suggests the following definition of the collective coherences
for each region Ri:

ρ
(i)
ul

(τ ) = eiω0τ
∑

a∈
V

ρa,ul (τ + za/c)/
N, (F1a)

ρ
(i)
lu

(τ ) = e−iω0τ
∑

a∈
V

ρa,lu(τ + za/c)/
N. (F1b)

Indices u and l represent upper and lower excited states.
As mentioned before, the atomic coherences ρa,ul are driven
by the field with the carrier frequency ω0, so this carrier
frequency is also imprinted in the coherences. To counter-
act these frequent oscillations and obtain the slowly varying
amplitudes, we have multiplied the coherences by e±iω0τ . Sim-
ilarly to Eq. (F1), we define collective atomic variables for the
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remaining density matrix elements:

ρ (i)
u1u2

(τ ) =
1


V

∑

a∈
V

ρa,u1u2 (τ + za/c), (F1c)

ρ
(i)
l1l2

(τ ) =
1


V

∑

a∈
V

ρa,l1l2 (τ + za/c). (F1d)

Here, the indices ui and li represent the upper and lower
states. By analogy, we define similar collective noise terms
for each region Ri:

f (i)
s (τ ) = eiω0τ

∑

a∈
V

f̃a,s(τ + za/c)/
V, (F2a)

g(i)
s (τ ) = e−iω0τ

∑

a∈
V

g̃a,s(τ + za/c)/
V. (F2b)

Incorporating the collective variables into Eq. (E8) yields
the following expression:

�(+)
s (ri, τ ) = i

3

8π
λ2

0Ŵrad

∑

j: z j<zi

Gs(ri, r j )

×
(

n(r j )
∑

u,l

Tlu,sρ
( j)
ul

(τ ) + f ( j)
s (τ )

)


V,

(F3)

where z j and zi represent the location of the regions R j and Ri.
The condition z j < zi implies that the atoms within the region
R j do not interact with each other but are solely influenced
by the external fields generated by the atoms from the other
regions.

In the limit of infinitesimally small 
V , we can introduce
the continuous variables as follows:

ρ (i)
pq (τ )

f (i)
s (τ )

g(i)
s (τ )

→
ρpq(r, τ ),

fs(r, τ ),

gs(r, τ ).

In terms of these continuous variables, both the fields
�(+)

s (r, τ ) in Eq. (F3) and �(−)
s (r, τ ) can be described by

the partial-differential equations outlined in Sec. III C. As
mentioned before, we make the assumption that a given region
is effected by external electric fields originating from atoms
in other regions. In the limit of infinitesimally small 
V , this
naturally leads to Ito’s interpretation when performing inte-
gration along the z axis. More about Ito stochastic differential
equations can be found in Appendix C.

2. Bloch equations

Passing from one atom to another, the electric fields expe-
rience slight perturbations due to diffraction and interactions
with the atoms. It is primarily the propagation along the z

axis that significantly affects these fields. As a result, the
slowly varying variables �(±)

s (r, τ ) remain uniform across
individual regions, but this uniformity is exclusively observed
for the fixed retarded time that conveniently accounts for the
propagation effects.

If the atomic dynamics is solely determined by the elec-
tric fields, the atoms within the individual regions evolve
identically. The only distinction is that the dynamics of the
neighboring atoms is shifted in time due to the finite speed of

light propagation. Consequently, the individual atomic vari-
ables can be approximated by the corresponding collective
variables. For example, in the case of the atomic coherence
ρa,ul , we can express it as follows:

ρa,ul (τ + za/c) ≈ ρ
(i)
ul

(τ )e−iω0τ . (F4)

Here, ρ
(i)
ul

(τ ) corresponds to the region Ri encompassing the
atom a.

However, in addition to the field variables in Eq. (D8), we
must also consider the pump fields in Eq. (D7) and, most
importantly, the noise terms in Eq. (D15). Similar to the vari-
ables �(±)

s (r, τ ), when examining small individual regions,
the pump field is primarily influenced by propagation along
the z axis, a factor that is conveniently addressed by the
concept of retarded time.

The situation with the noise terms requires more attention
since they completely change their values from one atom to
another. Note that the noise terms fa,s(t ) and ga,s(t ) do not
operate independently but always appear in groups as defined
in Eq. (F2). Consequently, there is no need for independent
noise terms f †

a,s(t ) and g†
a,s(t ) for each atom. Within the region

Ri, the following correlation properties apply to each atom:
〈

f (i)
s (τ ) f †

a,s(t
′)
〉

= δss′δε(t ′ − za/c − τ )eiω0 (t ′−za/c)/
V,
〈

g(i)
s (τ )g†

a,s(t
′)
〉

= δss′δε(t ′ − za/c − τ )e−iω0 (t ′−za/c)/
V.

(F5)

These correlation properties can be simultaneously re-
stored for each atom by a single pair of independent noise
terms f (i)†

s (τ ) and g(i)†
s (τ ) defined for the entire region Ri:

f †
a,s(τ + za/c) = f (i)†

s (τ )eiω0τ , (F6a)

g†
a,s(τ + za/c) = g(i)†

s (τ )e−iω0τ . (F6b)

The collective noise terms f (i)
s (τ ) and f (i)†

s (τ ) must exhibit
the following correlation properties:

〈

f (i)
s (τ ) f

(i)
s′ (τ ′)

〉

=
〈

f (i)†
a,s (τ ) f

(i)†
a′,s′ (τ ′)

〉

= 0, (F7a)
〈

f (i)
s (τ ) f

(i′ )†
s′ (τ ′)

〉

= δss′δii′δε(τ − τ ′)/
V. (F7b)

The collective noise terms g(i)
s (τ ) and g(i)†

s (τ ) possess sim-
ilar stochastic properties.

As the noise terms are found to be identical for atoms
within the individual regions, we can directly substitute the
discrete variables ρa,pq(t ) in Eqs. (D7), (D8), and (D15) with
the corresponding collective variables ρ

(i)
ul

(τ ), as indicated by
Eq. (F4). Furthermore, in the limit of infinitesimal 
V , we
introduce the following continuous variables:

ρ (i)
pq (τ )

f (i)†
s (τ )

g(i)†
s (τ )

→
ρpq(r, τ ),

f †
s (r, τ ),

g†
s (r, τ ).

The final equations can be found in Sec. III B.
Expressing the correlation properties in Eq. (f7) with re-

spect to the continuous noise terms, we have

〈 fs(r, τ ) fs′ (r′, τ ′)〉 = 〈 f †
s (r, τ ) f

†
s′ (r′, τ ′)〉 = 0, (F8a)

〈 fs(r, τ ) f
†
s′ (r′, τ ′)〉 = δss′δ(z − z′)δε(τ − τ ′)δε(r⊥ − r′

⊥).

(F8b)
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The continuous noise terms gs(r, τ ) and g†
s (r, τ ) exhibit

similar stochastic properties. The delta function δ(z − z′) sim-
ply reflects the Ito’s interpretation of the integration along
the z axis. As previously mentioned, δε(τ − τ ′) is a local-
ized function that serves a purpose similar to that of a delta
function. Its width is determined by the number of longitu-
dinal modes required for an accurate representation of the
field. For further details, refer to Appendix E. However, some
clarifications are needed regarding the transverse correlations
represented by δε(r⊥ − r′

⊥).
Originally, in Eq. (f7), the transverse correlation properties

are determined by the transverse dimensions of the individual
regions into which we have divided the medium. As the size
of these regions approaches zero, the transverse part of the
total correlator in Eq. (F8) is expected to become infinitely
narrow. Nevertheless, note that the noise terms are part of
the wave equations for the fields, the solution of which is
expected to be regularized by damping nonparaxial modes.
This consideration allows us to “smear out” the correlation
properties and define the width of the transverse correlator
based on the span of relevant transverse modes required for
an accurate representation of the paraxial fields.

APPENDIX G: NOISE TERMS REPRODUCING

THE SPONTANEOUS EMISSION

In this section, we provide a simplified illustration of
how the interplay of the noise terms, present in both the
equations for the fields and the atomic variables, reproduces
the spontaneous emission that is subsequently amplified. Sim-
ilarly to Appendix F, we split the medium into small regions
where atoms are assumed to evolve identically. For simplicity,
we analyze how one of these regions participates in the collec-
tive dynamics. For this reason, we ignore the presence of all
the other regions and consider a small, localized collection of
two-level atoms occupying a volume 
V . All the comprising

atoms are characterized by the atomic variables ρpq(r, τ ) →
ρ (1)

pq (τ ), which are assumed to be identical for each atom.
Similarly, we have the same noise terms for the whole region,
g(†)(r, τ ) → g

(†)
1 (τ )/

√

V and f

(†)
1 (τ ) → f

(†)
1 (τ )/

√

V .

Additionally, the fields �(±)(r, τ ) have only one polarization.
Initially, the atomic coherences are zero. If there is no

external field resonant with the transition, the dynamics of the
comprising atoms is defined by the incoherent processes and
the noise terms. Integrating Eq. (13), the coherences ρ

(1)
ul

(τ )
and ρ

(1)
lu

(τ ) take the following form:

ρ
(1)
ul

(τ ) = Tul

∫ τ

0
dτ ′ρuu(τ ′)e−(Ŵu+Ŵl )(τ−τ ′ )/2g

†
1(τ ′)/

√

V ,

ρ
(1)
lu

(τ ) = Tlu

∫ τ

0
dτ ′ρuu(τ ′)e−(Ŵu+Ŵl )(τ−τ ′ )/2 f

†
1 (τ ′)/

√

V ,

(G1)

where we only consider one polarization and omit the index
s. As mentioned in Sec. III B after Eq. (13c), we have omitted
the noise contributions that exhibit a quadratic dependence on
the atomic variables ρpq(r, τ ). Since the noise terms g

†
1(τ )

and f
†
1 (τ ) are uncorrelated, there is no macroscopic dipole

moment:
〈

ρ
(1)
lu

(τ )
〉

=
〈

ρ
(1)
ul

(τ )
〉

=
〈

ρ
(1)
ul

(τ )ρ (1)
lu

(τ ′)
〉

= 0,

which is absolutely coherent with the assumptions that the
neighboring atoms are independent and do not experience any
external influence. The change in the mean populations of the
atomic levels is solely caused by the finite lifetime and the
pump, as the noise terms average out to zero.

As we can see, the noise terms do not directly affect the
dynamics of the atoms. Their primary purpose is to facilitate
the generation of spontaneous fields. To demonstrate this, we
integrate Eq. (14), which leads to the following expressions
for the fields �(±)(τ ) generated by the atoms in the small
region:

(

�
(+)
det (τ )

�
(+)
noise(τ )

)

= i
3

8π
λ2

0Ŵrad
z

(

Tlunρ
(1)
ul

(τ )
f1(τ )/

√

V

)

,

(

�
(−)
det (τ )

�
(−)
noise(τ )

)

= −i
3

8π
λ2

0Ŵrad
z

(

Tulnρ
(1)
lu

(τ )
g1(τ )/

√

V

)

, (G2)

where n is the concentration. We have neglected the diffraction effects to simplify the expressions. Substituting the coherences
from Eq. (G1), we get the following expressions:

(

�
(+)
det (τ )

�
(+)
noise(τ )

)

= i
3

8π

λ2
0Ŵrad
z
√


V

(

|Tlu|2n
∫ τ

0 dτ ′ρ (1)
uu (τ ′)e−(Ŵu+Ŵl )(τ−τ ′ )/2g

†
1(τ ′)

f1(τ )

)

, (G3a)

(

�
(−)
det (τ )

�
(−)
noise(τ )

)

= −i
3

8π

λ2
0Ŵrad
z
√


V

(

|Tul |2n
∫ τ

0 dτ ′ρ (1)
uu (τ ′)e−(Ŵu+Ŵl )(τ−τ ′ )/2 f

†
1 (τ ′)

g1(τ )

)

. (G3b)

We characterize the field by the first-order correlation func-
tions Js(r, τ, τ ′) defined in Eq. (16). Adopting the notation
from this section and omitting the polarization index, we write

J (τ, τ ′) =
〈�(+)(τ )�(−)(τ ′)〉

3
8π

λ2
0Ŵrad

. (G4)

Analyzing Eq. (G3), we notice that �
(−)
det and �

(+)
det are not

correlated. Same with �
(−)
noise and �

(+)
noise. J (τ, τ ′) reads then

as follows:

J (τ, τ ′) =
[

3

8π
λ2

0Ŵrad

]−1
(

〈�(−)
det (τ )�(+)

noise(τ ′)〉

+〈�(−)
noise(τ )�(+)

det (τ ′)〉
)

. (G5)

Equation (G5) shows how the noise terms from the atomic
and field equations can finally meet and give nonzero corre-
lations: �

(±)
det (τ ) include the integrated noise terms from the
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equations for the atomic variables f
†
1 (τ ) and g

†
1(τ ) and

�
(±)
noise(τ ) contain f1(τ ) and g1(τ ). Incorporating Eq. (G3) into

(G5) yields the following correlator:

J (τ, τ ′) =
3

8π

λ2
0


x
y
Ŵradn
z|Tge|2ρ (1)

uu [min(τ, τ ′)]

× e−(Ŵu+Ŵl )|τ−τ ′|/2, (G6)

which is the Lorentzian spectrum of the spontaneous emis-
sion. Summing up the spontaneous emission from the other
regions yields Eq. (18). Here, λ2

0/[
x
y] represents the solid
angle over which the spontaneous emission propagates.

The spontaneous emission interacts with the atoms in
neighboring regions, stimulating them to decay faster, which
results in increased emission. This leads to the phenomenon
of amplified spontaneous emission.

APPENDIX H: NUMERICAL REALIZATION

1. Noise terms, atomic and field variables on a grid

For the current implementation, we use a uniform rect-
angular grid with step size 
x,
y,
z,
τ and follow the
atomic and field variables at grid nodes denoted by a four-
dimensional index xyzτ :

ρi j (r, τ ) → ρi j,xyzτ , �(±)
s (r, τ ) → �(±)

s,xyzτ . (H1)

The noise contributions are modeled with the help of Gaus-
sian random numbers with the correlation properties

〈ξ (±)
s,xyzτ ξ

(±)∗
s′,x′y′z′τ ′〉 = δss′ δxx′ δyy′ δzz′ δττ ′ , (H2a)

〈ξ (±)
s,xyzτ ξ

(±)
s′,x′y′z′τ ′〉 = 〈ξ (∓)

s,xyzτ ξ
(±)
s′,x′y′z′τ ′〉 = 0, (H2b)

that can be directly used to discretize the noise terms








fs(r, τ )
f †
s (r, τ )

gs(r, τ )
g†

s (r, τ )









→













ξ (+)
s,xyzτ

ξ (+)∗
s,xyzτ

ξ (−)
s,xyzτ

ξ (−)∗
s,xyzτ













/

√


z
x
y
τ. (H3)

2. Diffusion gauges

In Sec. IV A, we proposed to use the drift gauges for
removing runaway realizations from the stochastic differen-
tial equations. The rigorous application of the drift gauges
requires reweighting trajectories from the final statistical sam-
ple. We aim to skip the reweighting procedure. To mitigate the
effect of this approximation, we attempt to minimize the need
of the substitution in Eq. (21). We achieve this by reducing the
difference between atomic coherences ρul (r, τ ) and ρ∗

lu(r, τ )
through the use of the diffusion gauge discussed in Sec. IV A.
Throughout this Appendix, we use indices u and u′ to denote
the upper excited states, while l and l ′ represent the lower
excited states.

Note that the correlation properties in Eq. (H2) do not
change under the following transformation:

ξ (±)
s,xyzτ → ξ (±)

s,xyzτ Rs,xyzτ , (H4)

ξ (±)∗
s,xyzτ → ξ (±)∗

s,xyzτ/Rs,xyzτ ,

where Rs,xyzτ must be statistically independent from the the
noise terms ξ

(±)
s,x′y′z′τ ′ for z′ � z.

Suitable gauging coefficients Rs,xyzτ must minimize the
following expression for each polarization s, time t , and co-
ordinates r:

〈∣

∣

∣

∣

∣

∑

eg

Tges[ρeg(r, τ ) − ρ∗
ge(r, τ )]

∣

∣

∣

∣

∣

2〉

. (H5)

Assuming coherences ρuu′ (r, τ ) and ρll ′ (r, τ ) to be small,
coefficients Rs,xyzτ can be expressed in the following way:

Rs,xyzτ =

√

16πgs,xyzτ

3λ2Ŵrad
z
,

where gs,xyz depends on the discretized version of ρ
upper
s (r, τ )

and ρ lower
s (r, τ ) from Eq. (19):

gs,xyzτ =
ρ

upper
s,xyzτ

ρ
upper
s,xyzτ − ρ lower

s,xyzτ

. (H6)

Interlevel coherences ρuu′ (r, τ ) and ρll ′ (r, τ ) are not created
during the pump stage; they develop during the interaction
with the SF field. Since the noise terms are significant during
spontaneous emission and ASE stages when a strong SF field
has not yet developed, the full consideration of the interlevel
coherences for noise-term calculations would be a small cor-
rection compared to the populations of the levels at the stages
under consideration.

3. Numerical scheme for the field variables

Given the atomic variables at grid nodes ρpq,xyzτ , we
can propagate the field variables using multislicing approach
[85,86]. To simplify the differentiation along the x and y

axes and achieve spectral accuracy, we make use of Fourier
transform in the xy plane:

(

�
(±)
s, det

�
(±)
s, noise

)

kxkyzτ

=
∑

x,y

F
xy

kxky

(

�
(±)
s, det

�
(±)
s, noise

)

xyzτ

,

where F xy

kxky
denotes the components of the Fourier transfrom,

and kx and ky indicate the Fourier components of the fields.
To denote the inverse Fourier transform, we swap the indices,
namely, (F−1)xykxky

= F
kxky

xy . Assuming the introduced nota-
tion, the integrating scheme takes the form
(

�
(+)
s, det

�
(+)
s, noise

)

xy(z+1)τ

=Gxyzτ

∑

kx,ky

F
kxky

xy Kkxky

(

�
(+)
s, det

�
(+)
s, noise

)

kxkyzτ

+ i





γ nxyz
V
∑

u, l Tlusρul,xyzτ

2
√

γ gs,xyzτ

2
τ
ξ (+)

s,xyzτ



,

(H7)
(

�
(−)
s, det

�
(−)
s, noise

)

xy(z+1)τ

=G
∗
xyzτ

∑

kx,ky

F
kxky

xy K
∗
kxky

(

�
(−)
s, det

�
(−)
s, noise

)

kxkyzτ

− i





γ nxyz
V
∑

u, l Tulsρlu,xyzτ

2
√

γ gs,xyzτ

2
τ
ξ (−)

s,xyzτ



.

(H8)

Here, we have already performed the transformation (H4) and
introduced the gauging function gs,xyzτ from Eq. (H6). For
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brevity, we have also introduced an effective radiative decay
rate

γ =
3

8π
×

λ2


x
y
× Ŵrad, (H9)

where λ2/
x
y represent the solid angle over which the
paraxial modes propagate. The ratio γ /Ŵrad defines the pro-
portion of the spontaneous emission participating in the
amplification process. This coefficient turns out to be a univer-
sal constant further appearing in the equations for the discrete
atomic variables. Apart from that, we have also introduced the
elementary volume 
V = 
x
y
z, the atomic density nxyz
defined on the grid, and two additional matrices describing ab-
sorption and diffraction upon propagation along the medium,

Gxyzτ = exp
[(µxyzτ

2
∓ iδxyzτ k0

)


z
]

,

Kkxky
= exp

[

−i
k2

x + k2
y

2k0

z

]

, (H10)

where µxyzτ and δxyzτ represent µ(r, τ ) and δ(r, τ ) on a grid.
To remove runaway trajectories, we have to adopt the strat-

egy from Sec. IV A to Eqs. (H7) and (H8). At each time step,
we find xyz points satisfying the condition in Eq. (20) and
transform Eqs. (H7) and (H8) in accordance with Eq. (21).

With the proposed scheme, we can achieve high stability
and first-order accuracy for the integration of the deterministic
part along the z axis. In addition, Eqs. (H7) and (H8) can also
be used for integrating pump fields. According to Sec. III A,
the noise terms should exhibit finite correlations in time and
along the transverse directions. However, the proposed dis-
cretized noise terms associated with distinct nodes on the
grid are completely independent. This lack of correlation in
the transverse direction is not a problem, as the propagation
along the z axis will introduce these correlations by cutting
the nonparaxial modes. To restore finite correlations in time,
the variables used to construct observables must be averaged
over neighboring time nodes.

4. Numerical scheme for the atomic variables

We use an approach similar to split-step method, and treat
the increment of the regular part of the equations for atomic
variables with suitable explicit high-order algorithm, while for
the noise part we use an explicit Euler-Murayama scheme

ρpq,xyz(τ+1) = ρpq,xyzτ + 
ρpq,xyzτ |det. + 
ρpq,xyzτ |noise.

In this article, the time integration of the regular part of the
atomic variables is performed separately for each xyz point
with Runge-Kutta fourth-order algorithm


ρuu′, xyzτ


τ

∣

∣

∣

det
=



−i
ωuu′ρuu′ + i
∑

l, s

(

�
(+)
s, detTulsρlu′ − �

(−)
s, detρul Tlu′s

)





RK, xyzτ

, (H11)


ρul, xyzτ


τ

∣

∣

∣

det
=

[

−i
ωulρul − i
∑

s

�
(+)
s, det

(

∑

u′

ρuu′Tu′ls −
∑

l ′

Tul ′sρl ′l

)]

RK, xyzτ

, (H12)


ρlu, xyzτ


τ

∣

∣

∣

det
=

[

i
ωulρlu + i
∑

s

�
(−)
s, det

(

∑

u′

Tlu′sρu′u −
∑

l ′

ρll ′Tl ′us

)]

RK, xyzτ

, (H13)


ρll ′, xyzτ


τ

∣

∣

∣

det
=



−i
ωll ′ρll ′ + i
∑

u, s

(

�
(−)
s, detTlusρul ′ − �

(+)
s, detρluTul ′s

)





RK, xyzτ

. (H14)

Note that the equations only contain the deterministic fields �
(±)
s, det(r, τ ). The noise parts of the fields �

(±)
s, noise(r, τ ) must be taken

into account together with the other noise terms at the level of Euler-Murayama scheme


ρuu′,xyzτ


τ

∣

∣

∣

noise
=i
∑

l, s

(

�
(+)
s, noiseTulsρlu′ − �

(−)
s, noiseρulTlu′s

)

xyzτ
, (H15)


ρul,xyzτ


τ

∣

∣

∣

noise
=
∑

s

[

i�
(+)
s, noise

(

∑

l ′

Tul ′sρl ′l −
∑

u′

ρuu′Tu′ls

)

+
√

γ g−1
s

2
τ
ξ (−)∗

s

∑

u′

ρuu′Tu′ls

]

xyzτ

, (H16)


ρlu,xyzτ


τ

∣

∣

∣

noise
=
∑

s

[

i�
(−)
s, noise

(

∑

u′

Tlu′sρu′u −
∑

l ′

ρll ′Tl ′us

)

+
√

γ g−1
s

2
τ
ξ (+)∗

s

∑

u′

Tlu′sρu′u

]

xyzτ

, (H17)


ρll ′,xyzτ


τ

∣

∣

∣

noise
=
∑

u, s

[

i
(

�
(−)
s, noiseTlusρul ′ − �

(+)
s, noiseρluTul ′s

)

+
√

γ g−1
s

2
τ

(

ξ (+)∗
s Tlusρul ′ + ξ (−)∗

s ρluTul ′s

)

]

xyzτ

. (H18)

As mentioned in Sec. III B after Eq. (13c), we have omitted the noise contributions that exhibit a quadratic dependence on the
atomic variables ρpq(r, τ ).
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5. Qualitative analysis of the noise terms

The proportionality of the noise-term increments to
√


t

in equations for atomic variables (H15)–(H18) is inherent for
stochastic differential equations.

In contrast to the deterministic source, the noise source
in Eqs. (H7) and (H8) is not proportional to grid size 
z.
Consequently, the ratio between the noise and determinis-
tic contribution is inversely proportional to 
z. This inverse
proportionality can be understood following the arguments

presented for superradiance of distributed systems [25]: the
smaller the grid size is, the larger the quantum fluctuations of
atomic coherence are due to the finite number of the emitters
within the grid voxel. In our case, the higher spatial resolution
we would like to achieve, the larger the noise-term values
reflecting the larger relative role of quantum effects would
be, and the larger amount of realizations we would need to
run in order to achieve smooth profiles for observables of
interest.
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