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Abstract

Computing demands for large scientific experiments, such as the CMS experiment at
the CERN LHC, will increase dramatically in the next decades. To complement the
future performance increases of software running on central processing units (CPUs),
explorations of coprocessor usage in data processing hold great potential and inter-
est. Coprocessors are a class of computer processors that supplement CPUs, often
improving the execution of certain functions due to architectural design choices. We
explore the approach of Services for Optimized Network Inference on Coprocessors
(SONIC) and study the deployment of this as-a-service approach in large-scale data
processing. In the studies, we take a data processing workflow of the CMS experiment
and run the main workflow on CPUs, while offloading several machine learning (ML)
inference tasks onto either remote or local coprocessors, specifically graphics process-
ing units (GPUs). With experiments performed at Google Cloud, the Purdue Tier-2
computing center, and combinations of the two, we demonstrate the acceleration of
these ML algorithms individually on coprocessors and the corresponding through-
put improvement for the entire workflow. This approach can be easily generalized
to different types of coprocessors and deployed on local CPUs without decreasing
the throughput performance. We emphasize that the SONIC approach enables high
coprocessor usage and enables the portability to run workflows on different types of
COPTOCESSOTS.

Submitted to Computing and Software for Big Science

©?2024 CERN for the benefit of the CMS Collaboration. CC-BY-4.0 license

*See Appendix A for the list of collaboration members






1 Introduction

During the first two runs of the CERN LHC [1], the ATLAS [2] and CMS [3] Collaborations
have analyzed trillions of high-energy proton-proton or lead-lead collisions and produced an
extensive suite of physics results. Among these are the discovery of the Higgs boson [4-6] in
the standard model (SM) and stringent constraints on various beyond the SM physics scenar-
ios, such as supersymmetry [7-14] and exotic heavy-particle or dark matter candidate produc-
tion [15-21]. In order to measure the SM with higher precision and search for new processes
with lower cross sections, the amount of data that is delivered by the LHC and processed by the
experiments is expected to increase dramatically in ongoing and future physics runs [22, 23].

The high data-taking rates and increasing event complexity of the ATLAS and CMS experi-
ments present a significant computational challenge for data processing [24, 25]. A two-level
trigger system is employed to run fast algorithms and reduce the data rate from 40TB/s to
about 10 GB/s [26-28]. While this is a significantly smaller rate, it is still very challenging for
subsequent processing steps. As discussed in Refs. [29-31], even with optimistic expectations
for computing research and development, the projected computing needs for CMS will be only
narrowly satisfied.

At present, data processing is mainly carried out using central processing units (CPUs) but
their expected performance increase is limited [32]. Nevertheless, data processing can be sup-
ported with a variety of modern architectures, such as graphics processing units (GPUs), field-
programmable gate arrays (FPGAs), application-specific integrated circuits (ASICs), or Graph-
core intelligence processing units (IPUs) [33, 34], which can collectively be referred to as copro-
cessors. These architectures are becoming increasingly popular because of their large numbers
of processing units, inherent parallelization designs, and more energy-efficient and environ-
mentally friendly computing, especially suited for machine learning (ML) algorithm computa-
tions.

Within high-energy physics (HEP), deep-learning (DL) algorithms are already widely used for
regression and classification tasks, and their popularity is growing rapidly [35-39]. Because
of this growth, inference execution for these algorithms consumes increasingly large fractions
of the overall processing load. However, the processing load can be shared and accelerated
by using heterogeneous computing architectures. Therefore, developing a framework to en-
able and optimize the deployment and portability of coprocessors is of considerable interest to
HEP experiments [40]. As a proof of concept, this paper focuses on accelerating the inference
for ML algorithms in one of the CMS data processing stages, explained in Section 2.3. These
algorithms collectively take about 10% of the total processing time of that stage. For this ap-
proach to resolve the future computing challenge, ML algorithms would need to be used for
larger portions of CMS data processing. Utilizing ML for tasks such as tracking [41-44], cluster-
ing [45—47], particle reconstruction [48-52], and particle identification [53-59] is an active area
of research.

One of the approaches for the coprocessor deployment is to equip every CPU machine with
coprocessors, referred to as directly connected. In this scenario, every CPU thread within the
machine can communicate with the coprocessor. However, since the coprocessor-to-CPU ratio
must be determined before deployment, the coprocessor resources are unlikely to be optimally
utilized, leading to either unused resources when undersaturating, or decreased performance
when oversaturating. In addition, it is difficult to utilize additional or more advanced copro-
cessor resources after deployment.

An alternative approach is inference as a service (IaaS), where coprocessor resources are sepa-



rated from CPU machines. As illustrated in Fig. 1, in this scheme CPU-based clients can send
the computing request with the necessary information to coprocessor-based servers via net-
work calls. The servers running on coprocessor resources can perform computing tasks upon
request. This removes the restriction of a coprocessor only being used by the CPUs directly
connected to it, allowing it to accept processing requests from any CPUs (local or remote), as
long as network communications are available. Certain types of coprocessors can be allocated
for specific tasks, and the coprocessor-to-CPU ratio is flexible. Resource utilization can there-
fore be optimized based on specific tasks, as the number of client-side jobs using a single server
can be varied depending on the computational demands of a given task. Furthermore, at the
software level, since the support for coprocessors and CPU workflows is separated, it is easier
to support different types of coprocessors. This ensures algorithm portability with minimal
maintenance burden. The implementation of IaaS in experimental software frameworks can be
accomplished using the Services for Optimized Network Inference on Coprocessors (SONIC)
approach [60], as described in Section 3.
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Figure 1: An example inference as a service setup with multiple coprocessor servers. Clients
usually run on CPUs, shown on the left side; servers hosting different models run on coproces-
sors, shown on the right side.

The SONIC approach has previously been demonstrated using FPGAs [60, 61] and GPUs [62,
63] with a variety of ML algorithms. These studies demonstrated that offloading ML algorithms
with the SONIC approach adds little additional computational overhead from the client-server
communications and other operations. Therefore, a corresponding increase in the throughput
has been observed when offloading algorithms to these faster coprocessors.

Heterogeneous computing frameworks using GPUs have appeared recently in multiple non-
IaaS contexts in HEP as well. One of the first significant real-time applications was in the ALICE
high-level trigger (HLT) system [64], where GPUs were used to accelerate track reconstruction.
Similarly, a fully GPU-based first-level trigger has been implemented in LHCb [65], which runs
on 200 GPUs [66]. In CMS, a GPU-specific version of the pixel tracking domain (non-ML) algo-
rithm called PATATRACK was developed, along with several other reconstruction algorithms,
which are now employed in the HLT for Run 3 to reduce the processing time per event [67].
Further review of GPU usage in real-time applications for HEP can be found in Ref. [68].

In this paper, we take one data production workflow, called the Mini-AOD production work-
flow [69], as an example, and study the performance gains of applying the IaaS framework to



this workflow. The abbreviation “AOD” comes from a lower-level data format called Analy-
sis Object Data (AOD) discussed in Section 2. In the current Mini-AOD production workflow,
which is a data refinement and slimming step, about 10% of the computing time is consumed
by ML algorithm inference, which can be easily accelerated on GPUs. We first summarize
studies of the optimization and acceleration of the inference of each ML algorithm on GPUs.
Then we show that the IaaS scheme, which is implemented in the CMS software framework
CMSSW [70, 71] via the SONIC approach, not only decreases processing time but can also be ap-
plied in large-scale production to optimize GPU utilization. Finally, we show that the SONIC
approach can be easily ported to different types of coprocessors such as IPUs, and it can also
run on local CPUs without decreasing the throughput. The study of power, power savings,
and sustainability is also important, but is beyond the scope of this paper.

The paper is organized as follows. Section 2 provides a brief overview of the CMS computing
architecture and different data tiers for production. Section 3 discusses the SONIC approach
in detail, including the technical implementation in CMSSW, the current inference servers, and
features of the approach. Section 4 includes the data set used for the studies and the algorithms
that can currently use the SONIC approach for inference. Sections 5 and 6 provide detailed
studies evaluating the computational performance of this approach in the Mini-AOD produc-
tion workflow. Finally, Section 7 summarizes the studies and discusses future plans.

2 The CMS detector, software, and computing

2.1 Introduction to the CMS experiment

The LHC provides countercirculating beams of high energy protons or heavy ions, such that
bunches of particles in these beams can interact with each other in the center of the CMS de-
tector [3] nearly every 25ns. When particles from the countercirculating beams collide, a large
variety of physical processes can occur, which lead to the creation of either fundamental or
composite particles. These particles, or their decay products, can then propagate into the CMS
detector, which is designed to measure their energy and momentum. In the context of this pa-
per, we will refer to a readout cycle of the detector as an event. The detector itself comprises
multiple layers including silicon pixels and strips, crystal electromagnetic calorimeters, sam-
pling hadron calorimeters, and muon spectrometers. Each component of the detector has active
elements that create electrical signals when particles interact with the detector. Each discrete
signal is called a hit.

Events of interest are selected using a two-tiered trigger system. The first level (L1), composed
of custom hardware processors, uses information from the calorimeters and muon detectors to
select events at a rate of around 100 kHz within a fixed latency of 4 us [72]. The second level,
known as the HLT, consists of a farm of processors running a version of the full event recon-
struction software optimized for fast processing, and reduces the event rate to around 1kHz
before data storage [28]. Processing in the trigger system is referred to as online computing,
while subsequent processing is known as offline computing.

2.2 The cmssw framework

The cMSSW framework is an open-source software framework that is used in triggering, data
formatting and processing, simulation, and offline analysis [70, 71]. Components of the frame-
work are used in combination to extract high-level physics information for each event from
detector hits. The CMSSW framework processes each event with a sequence of algorithms,
converting hits from electrical signals to position and energy measurements, linking these mea-



surements into clusters [73] and trajectories [74], combining trajectories and clusters into single-
particle representations or jets corresponding to hadronic showers [75]. Additional algorithms
in CMSSW, e.g. ML-based reconstruction algorithms, can be run to determine quantities such as
an overall imbalance of the momentum in the direction perpendicular to the beam or to tag jets
as containing or being produced by certain particles.

The cMSsw framework uses Intel Threading Building Blocks [76] to enable task-based mul-
tithreading. As explained in Ref. [77], this multithreading implementation allows for asyn-
chronous nonblocking calls to external resources, such as a GPU, via EXTERNALWORK. This
setup optimizes CPU resource utilization by minimizing downtime; the CPU is allowed to
continue executing algorithms that do not require a coprocessor or depend on the results of the
coprocessor-dependent algorithm while waiting for the external call to return.

2.3 The CMS data tiers

The cCMSSW framework is used both in online and offline contexts within CMS. While the L1
trigger is hardware-based, the HLT is composed of algorithms in CMSSW. The framework also
contains the algorithms that are used to process the raw data after they have been stored, de-
riving the higher-level information useful for a wide range of data analyses based on recon-
structed objects. The centralized CMS offline data processing flow involves three steps, which
are performed both for raw data and simulated data sets. In the first step, an AOD format
for every event is derived. This contains high-level information, such as reconstructed parti-
cles and jets, but the data size is large. In the second step, a slimmed, higher-level Mini-AOD
derivation is created [69]. Mini-AOD files are designed to be relatively small and accessible,
serving as an intermediate step and the standard foundation for a variety of CMS physics
analyses. Finally, in the third step, a further slimmed Nano-AOD format is created that con-
tains only very high-level physics observables [78]. This format is commonly used directly
for physics analyses. Data sets are reprocessed regularly to incorporate the latest Monte Carlo
event generator tunes [79], calibrations, and algorithm improvements. Table 1 summarizes
the average event size of these different data tiers with 20162018 (Run 2) data-taking condi-
tions [80].

Table 1: Average event size of different CMS data tiers with Run 2 data-taking conditions [69,
78, 81].

Data tier  Event size [kB/event]

Raw 1000
AOD 480
Mini-AOD 35-60
Nano-AOD 1-2

In the scope of the studies in this paper, we choose Mini-AOD production as our test case. Mini-
AOD files are derived from the AOD data format, reducing the size per event by an order of
magnitude. Mini-AOD processing involves a wide variety of algorithms that propagate, filter,
and reanalyze the AOD input objects.

3 The SONIC approach

This section describes the implementation of the SONIC approach in CMSSW and the server
technology currently used, which is the NVIDIA TRITON Inference Server (TRITON) [82]. The
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benefits of running inference with the SONIC approach along with additional complexity and
other implications are also discussed in this section.

3.1 Implementation in cmMSsSw

The SONIC approach is implemented in CMSSW through the EXTERNALWORK framework
component [77] and accesses coprocessor resources on remote servers via gRPC Remote Proce-
dure Calls (gRPCs), which is a cross-platform open-source high-performance remote procedure
call framework originally developed by Google [83]. An illustration of this procedure, where
client jobs make asynchronous, nonblocking gRPC calls to remote servers, is shown in Fig. 2.
Multiple servers can run on multiple coprocessors, with load balancers in between. An im-
portant aspect of this scheme is that the client-side code does not need to be able to run any
particular inference packages or frameworks; it simply has to collect the relevant input data
for a trained model, communicate that information to the server in the expected format, and
handle the output from the server.
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Figure 2: Illustration of the SONIC implementation of IaaS in cMSsw. The figure also shows
the possibility of an additional load-balancing layer in the SONIC scheme. For example, if
multiple coprocessor-enabled machines are used to host servers, a Kubernetes engine can be
set up to distribute inference calls across the machines [84]. Image adapted from Ref. [63].

The client-side framework code for the SONIC approach is split into two packages: a core pack-
age [85] containing class templates and other common infrastructure for the laaS approach,
and a dedicated package [86] to interact specifically with the TRITON server. SONIC modules
provide a similar interface to standard cCMssw modules. The partitioning into two packages
reflects that the SONIC approach can be implemented for multiple server backends. For exam-
ple, the first implementation [60, 87] used the Microsoft Brainwave service [88], which provides
FPGA resources. Another potential backend service is the TENSORFLOW as a Service frame-
work, which can provide access to TENSORFLOW-based ML models via the HTTP protocol [89].
This framework was introduced along with the Machine Learning as a Service pipeline for HEP
(MLaaS4HEP), which is a streamlined mechanism for training and deploying models from data
in ROOT data format files [90]. In practice, given the generality and openness of the protocols
used by TRITON, which are themselves an extension of the KServe standard [91], we expect
that future development of the SONIC approach will continue to use these protocols, even if
the backends or coprocessors change. Further discussion of different backends and coproces-
sors can be found in Section 6.

A central TRITONSERVICE is provided to keep track of all available servers and which models
each of them serves. By default, each client-side module only needs to specify the model it
needs, and the TRITONSERVICE will automatically find a server hosting that model. A client-
side module can optionally specify a preferred server, which the TRITONSERVICE will use if the
server is found and confirmed to serve the required model.



Within CMSsW, a mechanism has been implemented to account for the possibility that a client
job cannot access a specified server for whatever reason. In this case, a “fallback” server is au-
tomatically created using either local GPU resources if they are available or the CPU resources
allocated to the client job in question. The client then makes gRPC calls to that local fallback
server, which introduces negligible latency. Detailed studies related to these fallback servers
are discussed later in Section 6.1. In general, the server overhead consumes very little of the
CPU resources beyond what would be used for conventional inference, such that the per-event
processing time is not strongly affected by the SONIC approach relative to running without it.
Fallback servers are automatically shut down when the job finishes.

3.2 The NVIDIA TRITON Inference Server

As shown in Fig. 2, the server-side implementation of the SONIC approach in CMSSW currently
uses TRITON for inference on coprocessors [82, 92]. TRITON is an open-source solution whose
protocols are public and extensible, as noted above. It supports inference of ML algorithms,
called models, in most modern formats, including PYTORCH [93], TENSORRT (TRT) [94], ONNX
RUNTIME (ONNX) [95], TENSORFLOW [96], and XGBOOST [97]. It also supports custom back-
ends for alternative tasks, such as classical rule-based domain algorithms and inference on
different types of coprocessors. Several features of TRITON are worth highlighting:

e Multiple model instances: A single server can host multiple models at the same time
or even multiple instances of the same model to allow concurrent inference requests.

o Dynamic batching: Usually coprocessors have many processing units and the number
of operations from one inference call is not enough to fully utilize the coprocessors.
With dynamic batching, if multiple inference calls are made within a window of
time, the server can concatenate the inputs of all calls into a single batch, which im-
proves the GPU utilization and therefore increases the overall throughput. In prac-
tice, the time window is typically chosen to be about the client-side CPU processing
time per event, such that the inference can be processed in time without delay.

e Model analyzer: Parameters like the number of model instances on a single server,
the length of a batching window, and the optimal batch size are tunable and can be
optimized on a case-by-case basis. TRITON provides a model analyzer tool to aid in
this optimization [98]. It can mimic the clients and send randomized inputs or some
pre-saved data to the server. The server performance is measured, and the optimal
deployment configuration can be determined by scanning the parameter space.

o Ragged batching: Traditionally, inference can be performed on a batch of multiple
inputs as long as each input is of the same size. In HEP data, the size of the in-
put for inference can vary from one instance to another, making it harder to batch
them together. For example, if an algorithm uses information from every particle in
an event as input, it is difficult to batch inference requests from multiple events be-
cause events can have a wide range of numbers of particles. Ragged batching allows
inference requests with different sizes to be batched together, thereby improving the
performance. This feature is relatively new and not yet fully studied in this paper.

TRITON servers can use one or multiple GPUs on the same machine with a built-in load bal-
ancer. They can also run purely on CPU resources when there are no GPU resources available.
For other types of coprocessors, TRITON servers can also be used with the help of custom
backends. A server requires a trained model file and a configuration file specifying input and
output variable names, shapes, types, and model versions, along with the preferred batch size
and other details that can be acquired through the inference optimizations. These model and
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configuration files are currently accessible through the CernVM-File System (CVMES) [99], and
are tracked by the CMSSW release management system.

3.3 Advantages of the SONIC approach

Inference as a service, as implemented in the SONIC approach, provides several advantages
and benefits, which are summarized here. Many of these features arise from the differences
between the IaaS approach and the more traditional approach of HEP software frameworks to
use only local computing resources. These features include:

o Containerization: The SONIC approach factorizes ML frameworks out of the client
software stack, i.e., CMSSW, reducing the workload to support a wide variety of ML
models. With the SONIC approach, one can use any framework supported by TRI-
TON, including custom backends, without needing to modify the CMSSW software
stack to resolve library dependencies and ensure compatibility between all external
packages. This allows us to pick the best inference backend for one algorithm, with
less concern for the implementation details.

o Simplicity: Because of the containerization discussed above, SONIC client-side code
is simpler and more general than the corresponding direct inference code. SONIC
modules need only implement the conversion of input data into the server’s desired
format and the reverse operation for output data.

o Flexibility: In the SONIC paradigm, the connections between client CPUs and server
coprocessors are not fixed. The servers can be physically located nearby or far from
clients. Clients from many machines can access a single server running on either
one or multiple coprocessors. Similarly, a single client can access multiple different
servers running on multiple different machines.

o Efficiency: The SONIC approach enables balanced utilization of coprocessor resources.
By optimizing the coprocessor-to-CPU ratio for different tasks, it is easier to fully
utilize coprocessor resources without oversaturating them.

e Portability: Through the use of the SONIC approach, client-side code does not have
to be modified to take advantage of different types of coprocessors. Only a consistent
protocol for communicating with the inference server is required, regardless of the
underlying hardware: CPU, GPU, FPGA, IPU, or any other architecture.

o Accessibility: If GPUs or other coprocessors are not available locally, the only way to
accelerate workflows is to access those resources remotely, as a service. The SONIC
architecture implements this use case for CMS, allowing the use of remote coproces-
SOrS.

3.4 Limitations and production requirements

However, with these advantages come additional complexity and changes in resource usage.
Production jobs using the SONIC approach rely on a separate server running different software,
compared to the existing scheme in which jobs only execute CMSSW on local hardware. This
implies several additional considerations:

e Server failures: Inference servers, remote or local, may experience software or hard-
ware failures that prevent them from running. These new failure modes are mostly
independent from existing known sources of failures, potentially leading to an over-
all increase in the rate of job failures. However, these failures can be mitigated with
server-side technology, such as the load balancer Kubernetes [84], and client-side



protocols, like the local fallback server.

e Network usage: The use of remote inference servers necessarily implies an increase in
network traffic, as input and output data must be communicated over the network.
Typically, input data are much larger than output data; the total usage depends on
the algorithm. For the Mini-AOD production workflow tests presented here, the
network usage is discussed in Section 5.3. High network usage can be mitigated us-
ing compression, with some tradeoff in throughput from the additional operations
to compress and decompress the data. In the studies done here, we have not ob-
served significant issues with network usage, and as a result, analysis of the tradeoff
between compression and network usage is not included.

e Memory usage: The use of remote inference servers reduces the local memory us-
age of production jobs, compared to the direct inference approach. However, the
use of local fallback servers, whether to mitigate remote server failures or take ad-
vantage of the containerization and portability of the SONIC approach, implies in-
creased memory usage. Running the server process locally is generally expected to
use more memory than the corresponding direct inference libraries. Measurements
of memory usage are presented in Section 6.1.

These potential drawbacks, especially uncorrelated failures and network usage, are similar to
those from other distributed services used in CMS production, such as the conditions database
or XROOTD [100, 101]. These can potentially impact the processing performance and should
be studied more intensively.

Handling this additional complexity requires new components to be deployed in the CMS
workflow management system. We provide below several examples of such operational con-
cerns.

o Server discovery: The SONIC approach allows the use of remote coprocessor re-
sources, which requires the information of servers running on these resources, e.g.,
IP addresses, port numbers, served models, and number of GPUs, etc. to be avail-
able to the client jobs. Such information can be collected in the site configurations
and provided by the job submission system or a central service. For the studies pre-
sented in this paper, servers are launched manually, and their addresses are written
into the CMSSW configuration files.

o Load balancing: Different production jobs running on different data sets have differ-
ent coprocessor resource demands. A load balancer, such as Kubernetes, can be set
up to dynamically load and unload models on different servers and distribute client
inference requests to these servers. The load balancing for large-scale inference re-
quests is tested and discussed in Section 5.3.

e Versioning: CMS production requires the versions of CMSsW, servers, ML models,
and ML backends to be controlled and recorded for proper provenance tracking.
The ML model versions are already tracked by the CMSSW release management sys-
tem; the server and backend versioning should be included in the same system for
consistency. For the studies presented in this paper, the prebuilt TRITON server pro-
vided by NVIDIA was used.

o Optimization procedure: While the SONIC approach enables the benefits described in
Section 3.3, it does not necessarily make them trivially attainable. Some use-case-
specific optimizations are required before large-scale deployment, as explained in
more detail in Section 5. For example, each model should be analyzed individually
to find a preferred batch size. Similarly, while the flexible coprocessor-to-CPU ratio



permits more efficient utilization of resources, one must first determine an appropri-
ate coprocessor-to-CPU ratio. This is further complicated by the fact that the ratio
can depend on the hardware used, such as CPU or GPU type, and on the physics
content of the data set being processed.

4 Physics data sets, algorithms, and benchmark setup

This section describes the physics data set, the ML algorithms in CMSSW that can currently use
the SONIC approach for inference, and the computing resources used in the studies.

4.1 Data set and software versions

In the studies, we chose to process a simulated Run 2 data set of events with one top quark and
one anti-top quark (tt), as it includes many types of physics objects, including leptons, heavy-
flavor jets, and missing transverse momentum. Here, a heavy-flavor jet is one that originates
from a charm or bottom quark, and missing transverse momentum, or ﬁ%‘iss, is defined as the
negative vector sum of the transverse momenta of all of the reconstructed particles in an event,
and its magnitude is denoted as p%‘iss [102]. The data set was copied to local disk to factor out
the effects of remote input-output (I/O) limitations for the benchmarks. The CMSSW version

CMSSW_12_0_0_pre5 and Triton server version 21.06 were used for the studies.

4.2 Algorithms supported by the SONIC approach

Adapting an ML algorithm to work with the SONIC approach requires a small effort to write
code to prepare the network inputs and save the network outputs within CMSSw. A compar-
ison of the producers used for direct inference and for the SONIC approach can be found in
Refs. [103, 104]. Most of the pre- and post-processing steps are the same, while the operations
that send inference requests to the ML backends directly or to the servers are different.

In these studies, we tested three independent and computing-intensive ML-based algorithms
in the Mini-AOD workflow. These algorithms were chosen to illustrate the performance of the
SONIC approach for models with differing input and output sizes, physics applications, and
backends, as detailed below.

4.2.1 The ParticleNet algorithm

Graph neural networks (GNNSs) have been demonstrated to achieve state-of-the-art perfor-
mance for identifying jets as arising from specific particles, a task known as jet tagging [53-55].
ParticleNet [54] is a GNN-based algorithm for jet tagging and regression that represents jets
as “particle clouds.” This algorithm was trained in PYTORCH [93] and exported to the ONNX
format. With the SONIC approach, it is possible to perform inference with ParticleNet in the
following formats: ONNX; PYTORCH; and PYTORCH with TRT [94], which optimizes model
performance on NVIDIA devices.

There are four different trained versions of ParticleNet currently running in the Mini-AOD
workflow for different purposes:

1. tagging anti-kt jets [105], clustered with the FASTJET package [106], with a radius param-
eter of 0.4 (AK4 jets), abbreviated PN-AK4 [107],

2. tagging anti-kt jets with a radius parameter of 0.8 (AKS jets) [108],
3. mass-decorrelated tagging for AKS jets [108], and
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4. mass regression for AKS8 jets [109].

The three AKS8 ParticleNet algorithms are abbreviated PN-AKS in the following sections. All
ParticleNet variations can be hosted on TRITON servers.

The inputs to ParticleNet are the kinematic and flavor properties of the particle constituents
of each jet and the secondary vertices associated with the jet, including 20 features for one
particle and 11 features for one vertex. Up to 100 particles and 10 vertices are used in the
inputs for AKS jets; if there are more than 100 particles in a jet, the 100 particles with the
highest transverse momenta are used, and if there are more than 10 vertices, then the 10 with
the highest displacement from the beamline are used. For AK4 jets, the maximum numbers of
particles and vertices are 50 and 5, respectively. For the three tagging versions of ParticleNet,
the outputs of each inference are category probabilities for a variety of predefined jet categories,
such as the presence of a Higgs boson or the presence of a top quark. For the mass regression,
the output is a single value: the predicted jet mass.

In Mini-AOD processing, inference is performed separately for each jet in a given event, so
the number of ParticleNet inferences depends on the specific physics processes and can vary
substantially from event to event. When running the standard CMSSW version of ParticleNet,
no inference batching is performed, so each inference is truly performed separately. In this
context, each inference can have a variable number of inputs with no padding involved. When
using the SONIC approach for ParticleNet, it is simplest to batch all jets in an event into a sin-
gle inference request, such that input particle and secondary vertex information for each jet
in an event is sent to the server in a single request. Because ragged batching is not yet fully
implemented in the inference server, the different inference requests must have the same num-
ber of inputs per batch. Therefore, in subsequent performance studies, we adopt a maximally
padded approach, where zeros are added to the vectors of particles and vertices for AK8 (AK4)
jets such that they have consistent lengths of 100 (50) and 10 (5), respectively.

An illustration of the jet content of the Run 2 simulated tt data set is given in Fig. 3. The
distributions of the number of jets per event and particles per jet are provided for both AK4
and AKS jets. As shown in the figure, the number of jets can vary dramatically from event to
event, indicating the importance of dynamic batching.

In the configuration where all AK4 jets are padded to 50 particles and 5 vertices and all AK8
jets are padded to 100 particles and 10 vertices, a single four-threaded job processing a Run 2
tt event will generate about 140 kB/s of server input for AK4 jets and about 10kB/s of server
input for each of the AKS8 jet versions of ParticleNet. At a processing rate of about 4 events per
second, with about 16 AK4 jets per event, this corresponds to about 2 kB of information per jet,
which is consistent with the number of float inputs per jet.

4.2.2 The DeepMET algorithm

DeepMET [110] is a TENSORFLOW-based deep neural network model that estimates the pIiss
in an event. The vector P is associated with either the production of neutrinos or potential
beyond the SM particles that could propagate through the detector interacting only weakly. The
inputs to DeepMET are 11 features from each particle [75] in an event, with zero-padding up
to 4500 particle candidates for a given event. This zero padding is used for both the standard
version of DeepMET and its SONIC implementation. In both cases, only one inference is made
per event. DeepMET outputs two values for each event: the pIsS components in the transverse
plane. Because every event necessarily has the same number of inputs, dynamic batching is

automatically available via the SONIC approach, aiding inference efficiency in cases where
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Figure 3: Illustration of the jet information in the Run 2 simulated tt data set used in subsequent
studies. Distributions of the number of jets per event (left) and the number of particles per jet
(right) are shown for AK4 jets (upper) and AKS8 jets (lower). For the distributions of the number
of particles, the rightmost bin is an overflow bin.
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many client jobs make concurrent requests within a certain time window (each client thread
will make a request about once per second). A single four-threaded job processing a Run 2 tt
event will generate about 1.3 MB/s of server input for DeepMET.

4.2.3 The DeepTau algorithm

The DeepTau algorithm [111] is a TENSORFLOW-based deep neural network model to identify
hadronically decaying 7 leptons from the jet collections. The inputs to the network include
low-level particle features of electrons/photons, muons, and hadrons, and high-level features
such as the 7 lepton candidate kinematic information. The algorithm splits nearby cones into
grid cells, and loops over the cells to collect the particle features. The low-level particle features
are then processed by a convolutional neural network (CNN) to extract the particle-level infor-
mation. The high-level features are processed by a fully connected neural network (FCNN) to
extract the T lepton candidate-level information. The outputs of the CNN and FCNN are com-
bined and processed by a final FCNN to produce a four-dimensional vector that represents the
probability that the candidate originates from a genuine T lepton, a muon, an electron, or a
quark or gluon jet. In the implementation of direct inference in CMSSW, the network is split
into three sub-models. The first two networks process the lower-level input information sep-
arately, and the third network combines the information from the first two models with the
high-level information and outputs the discriminator values. In the SONIC implementation,
we use a combined model with zero-padded inputs, so that dynamic batching can be used and
GPUs can be utilized more efficiently. A single four-threaded job processing a Run 2 tt event
will generate about 4.7 MB/s of server input for DeepTau, making it the most demanding al-
gorithm explored in this study in terms of server input.

4.3 Average processing time

The processing time is defined as the real-world time spent between starting and finishing pro-
cessing one event. The processing time breakdown for the three algorithms highlighted above
in the Run 2 tt events is presented in Table 2, measured with 1-thread jobs using one single
CPU core. The per-event per-thread average processing time is about 1s; PN-AK4 consumes
about 4.3% of this time and PN-AKS8 about 1.1%, while DeepMET and DeepTau take about
1.3 and 2.1%, respectively. Thus, for this collection of events, the algorithms supported by the
SONIC approach account for about 9% of the total processing time. This fraction is dependent
on the type of events. For example, if there are fewer jets per event, ParticleNet will consume
a smaller fraction of the total processing time. While the fraction of the total workflow accel-
erated with the SONIC approach in this paper is less than 10%, an increasing number of ML
algorithms are being integrated into CMS data processing. Because of this, it will be possible to
accelerate a larger fraction of the total processing time with the SONIC approach in the future.

4.4 Computing resources

Fermilab, via the LHC Physics Center, provides CPU-only batch resources and a set of inter-
active machines with NVIDIA Tesla T4 GPUs [112]. Through Fermilab, we were also able to
steer the allocation of cloud resources (see below) using the HEPCloud [113] framework. These
resources are physically located in Illinois.

The Google Cloud Platform (GCP) provides virtual machines (VMs) that are either CPU-only
or enabled with NVIDIA Tesla T4 GPUs. By default, the CPUs are a mix of Skylake, Broad-
well, Haswell, Sandy Bridge, and Ivy Bridge architectures [114]. In GCP, we created cus-
tomized machines with specified numbers of CPU threads or different ratios of CPU threads
to numbers of GPUs. Similarly, a customized, dynamic SLURM [115] cluster was created that
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Table 2: The average time of the Mini-AOD processing (without the SONIC approach) with one
thread on one single CPU core. The average processing times of the algorithms supported by
the SONIC approach are listed in the column labeled “Time.” The column labeled “Fraction”
refers to the fraction of the full workflow’s processing time that the algorithm in question con-
sumes. Together, the algorithms currently supported by the SONIC approach consume about
9% of the total processing time. This table also contains the expected server input for each
model type created per event in Run 2 tt events in the column labeled “Input.”

Algorithm Time [ms] Fraction [%] Input [MB]

PN-AK4 42 4.3 0.04

PN-AKS 11 1.2 0.01

DeepMET 13 1.3 0.33

DeepTau 21 2.1 1.18
PN-AK4+PN-AK8+DeepMET+DeepTau 88 8.9 1.55
Full workflow 990 100.0 —

could instantiate and deplete four-thread VMs on demand for medium-scale tests that ran jobs
across 0(1000) CPUs. The cluster’s four-thread configuration was chosen so that four-threaded
CMSSW jobs would saturate the node’s resources, improving the reproducibility of timing tests.
CPU-only VMs could also be instantiated through HEPCloud. In GCP, we also maintained
GPU-enabled VMs running TRITON servers that both the SLURM and HEPCloud client nodes
could access. These resources are physically located in Iowa.

At the Purdue CMS Tier-2 computing cluster, tests were performed with reserved CPU-only
and GPU-enabled machines. The CPU-only machines are 20-core Intel E5-2660 v3 machines,
and the GPU-enabled machines each have two AMD EPYC-7702 CPUs [116] with an NVIDIA
Tesla T4 GPU. Reserving these nodes allowed for controlled resource utilization, leading to
more reproducible timing tests. These resources are physically located in Indiana.

The diversity of resource locations used in these studies demonstrates one of this approach’s
key features, namely that it enables the use of nonlocal resources. We were able to start a server
in one location and have client jobs running at another site. One such study is presented in
Section 5.2.

Within a GCP project, VMs do not have ingress bandwidth limits other than machine limits.
These are above 10 GB/s, which, based on the scans in Section 5.1 and Table 2, is far above the
amount of information that can be sent from client VMs to a server-hosting machine without
saturating GPU resources. For example, in GCP, if a single GPU is used to host all model
types, then in a typical running scenario, it can service about 33 simultaneous four-threaded
client jobs, or 132 client cores. A single client core generates about 1.55MB/s of traffic, so a
total of 200 MB/s of ingress is expected per GPU at the saturation point. Similarly, the ingress
bandwidth from the server into the client VMs will be very small, as inference results are no
more than O(10) float values per algorithm. The GCP does impose VM egress bandwidth
limits, which is typically 0.25GB/s per CPU for a VM to an internal IP address. However,
given that a single client-side core will generate about 1.55MB/s of network traffic, this is also
well within the allowed limit. There are slightly more stringent restrictions for GCP bandwidth
to external IP addresses. However, when we performed such tests as in Section 5.2, typically
only one external machine was involved, with levels of network traffic well within that allowed
by the restrictions.
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5 Performance

In this section, we discuss the performance of running the Mini-AOD production workflow
with the SONIC approach. We compare to direct inference, which refers to the standard ap-
proach where the inference is performed using the ML backends integrated into CMSSW on

CPUs.

As mentioned in Section 3.2, we first optimize the per-algorithm workflows to find the optimal
configurations for the full production workflow. Next we check the impact of deploying servers
on different sites. Finally, we mimic the real production jobs by running scale-up tests and
evaluating the performance.

5.1 Per-algorithm inference optimization

To maximize the resource efficiency and throughput benefits of the SONIC approach, we first
perform single-model characterization studies independent of CMSsw. For example, to maxi-
mize GPU usage without oversaturation, we need to find the optimal ratio of client-side CPUs
to server-side GPUs, batch size for inference in the TRITON server, and model configuration
that will provide the highest throughput.

The latter two optimizations can be performed with the TRITON Model Analyzer tool [98].
This tool feeds inputs in the correct tensor format (either randomized numbers or real data) to
a loaded model hosted on a server, allowing for robust characterization of processing time per
inference or exploration of the impact of batch size. As an example, we measure the processing
time and throughput of the ParticleNet algorithm for AK4 jet tagging on one NVIDIA Tesla T4
GPU, with different inference backends supported in TRITON: ONNX, ONNX with TRT, and
PYTORCH [93] (labeled PT in the figures). The results are shown in Fig. 4.
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Figure 4: Average processing time (left) and throughput (right) of the PN-AK4 algorithm
served by a TRITON server running on one NVIDIA Tesla T4 GPU, presented as a function
of the batch size. Values are shown for different inference backends: ONNX (orange), ONNX
with TRT (green), and PYTORCH (red). Performance values for these backends when running
on a CPU-based TRITON server are given in dashed lines, with the same color-to-backend cor-

respondence.

For smaller batch sizes, the TRT version of the ParticleNet algorithm leads to the highest
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throughput in total inferences per second, while at higher batch sizes, the PYTORCH version
gives higher throughput. In the version of ParticleNet supported by SONIC in cMSsWw, all the
jets in a single event are batched together, and there are on average 16 AK4 jets per event in
our tt data set. To achieve higher batch sizes in a production scenario, multiple CMSSW clients
would need to make an inference request to the same server within a relatively narrow time
window. TRITON allows us to specify a preferred batch size, such that if many inference re-
quests are queued within the time window, the server will perform inference with batches of
approximately the specified size. For example, the peak throughput seems to plateau around a
batch size of 100 for the PYTORCH version of ParticleNet.
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Figure 5: Average processing time (left) and throughput (right) of one of the AK8 ParticleNet
algorithms served by a TRITON server running on one NVIDIA Tesla T4 GPU, presented as a
function of the batch size. Values are shown for different inference backends: ONNX (orange),
ONNX with TRT (green), and PYTORCH (red). Performance values for these backends when
running on a CPU-based TRITON server are given in dashed lines, with the same color-to-
backend correspondence.

Similar studies can be performed on other models as well. Figures 5, 6, and 7 show the pro-
cessing time and throughput scans of PN-AKS jet tagging, DeepMET, and DeepTau models,
respectively. Some backend tests are skipped due to the model availability.

The model analyzer can also determine approximately how many inferences per second a sin-
gle GPU can perform before saturation. For example, for the PYTORCH version of ParticleNet
for AK4 jets, a single Tesla T4 GPU can perform about 5500 inferences per second without sat-
urating. This corresponds to about 350 events per second, given the typical number of jets per
event. Based on this, we can estimate how many CPU clients one GPU can support in par-
allel. A typical production configuration runs four-threaded Mini-AOD jobs, each of which
processes about 3.9 events per second. Therefore, a single GPU should be able to handle about
90 four-threaded jobs in parallel running asynchronously, assuming it is being used exclusively
for a single server hosting the PYTORCH PN-AK4 model.

This expected saturation point can be tested directly by running the Mini-AOD workflow in
CMSSW and scanning the throughput as a function of the number of CMSsw CPU clients ping-
ing one GPU server. Figure 8 shows such tests for the PN-AK4, PN-AKS jet tagging, DeepMET,
and DeepTau models, which were performed in GCP using a custom SLURM cluster. For each
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Figure 6: Average processing time (left) and throughput (right) of the DeepMET algorithm
served by a TRITON server running on one NVIDIA Tesla T4 GPU, presented as a function of
the batch size. Similar performance when running on a CPU-based TRITON server is given in
dashed lines.

model, a single server running on one NVIDIA T4 GPU was started on one cloud VM, and
client-side jobs were executed in VMs that had 4 CPU threads. The tests for each model class
were performed separately, and as one model class was being tested, the direct-inference ver-
sions of the other models were used.

The accelerated versions of the workflow can be compared with the dashed black line, which
represents the average throughput of the workflow when the direct-inference versions of all the
models were used. In this case, jobs were also started in the VMs with 4 CPU threads, but there
was no communication with an external server. As there were no shared resources between
jobs, there is no expected dependence on the number of synchronized jobs. The average pro-
cessing time for this setup was determined very accurately by simply running a large number
of jobs, so no associated error is shown in Fig. 8.

When offloading PN-AK4 inference to the GPU, we expect an improvement in the overall
throughput of about 4% compared with direct inference, corresponding to the fraction of time
taken by the total PN-AK4 processing shown in Table 2. Such an improvement is observed
before saturation, where the throughput is stable as a function of the number of simultane-
ous CPU clients. The throughput decreases as the GPU starts to saturate because individual
client-side jobs have to wait longer for inference requests to complete and return. The point
where the throughput starts to decrease is the saturation point, where the GPU is running at
the maximum throughput and cannot handle any additional incoming requests. The through-
put becomes lower than CPU-only inference slightly above 160 four-threaded parallel jobs, i.e.,
equivalent to 640 single-threaded jobs, comparable with the expected saturation point from the
model analyzer.

Similar analyses were performed for the other models. When all three variants of ParticleNet
for AKS jets are hosted on a single GPU, that GPU can serve about 190 simultaneous four-
threaded client jobs. For DeepTau and DeepMET, a single GPU hosting only one of the algo-
rithms could serve about 64 and 520 client jobs, respectively. The differences between these
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Figure 7: Average processing time (left) and throughput (right) of the DeepTau algorithm
served by a TRITON server running on one NVIDIA Tesla T4 GPU, presented as a function of
the batch size. Values are shown for different inference backends: TENSORFLOW (TF) (orange),
and TENSORFLOW with TRT (blue). Performance values for these backends when running on
a CPU-based TRITON server are given in dashed lines, with the same color-to-backend corre-
spondence.

saturation points are primarily due to different model sizes and numbers of objects per event.
From these saturation values, it is possible to determine the number of GPUs needed to serve a
production job that uses many client-side CPUs, and thus to determine the ratio of the number
of GPUs hosting different models. For ParticleNet and DeepTau, the saturation points will de-
pend on the number of jets and tau leptons in the processed events, such that the ratio of GPUs
hosting different models and the required ratio of GPUs to CPUs is dependent on the type of
events. If dynamic batching is enabled, the number of GPUs required for a model scales ap-
proximately linearly with the number of objects per event that require an ML inference. For
example, if there are half as many jets per event, it would require about half as many GPUs to
serve ParticleNet, while the number of GPUs required for DeepMET should not change, as that
model makes one inference per event.

A single GPU can host multiple models such as DeepTau and DeepMET. In practice, it was
found that loading only a single model on each GPU (split-model) led to about a 3-5% increase
in the overall performance relative to loading every model on each GPU (all-on-one). If a 10%
improvement in throughput is observed in the split-model configuration, one would expect
better than a 9.5% improvement in the all-on-one configuration. Because of this slight im-
provement, the split-model configuration was used in subsequent large-scale tests. However,
in scenarios where different physics processes are combined into a single data set, using the all-
on-one configuration may be the most straightforward deployment option. Preparatory model
profiling should still be performed to ensure that enough GPUs and model instances will be
available, but the difference in performance between model partitioning schemes is small.

5.2 Cross-site tests

A potential bottleneck in the SONIC paradigm is the increased inference latency caused by
the physical distance between client and server and other network traffic. While a previous
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Figure 8: The GPU saturation scan performed in GCP, where the per-event throughput is shown
as a function of the number of parallel CPU clients for the PYTORCH version of PN-AK4 (black),
DeepMET (blue), DeepTau optimized with TRT (red), and all PYTORCH versions of PN-AK8
on a single GPU (green). Each of the parallel jobs was run in a four-threaded configuration.
The CPU tasks ran in four-threaded GCP VMs, and the TRITON servers were hosted on sep-
arate single GPU VMs also in GCP. The line for direct-inference jobs represents the baseline
configuration measured by running all algorithms without the use of the SONIC approach or
any GPUs. Each solid line represents running one of the specified models on GPU via the
SONIC approach.

study observed that the average processing time difference between remote and on-premises
servers is negligible [62], we tested this observation explicitly with the Mini-AOD workflow,
with results presented in Fig. 9. In this test, client-side jobs were executed at Purdue’s Tier-2
computing cluster in Indiana. All the models are loaded into one server running on a single
GPU for simplicity. The blue points and lines show the throughput improvement in the Mini-
AOD workflow when the client jobs communicate with TRITON servers hosting all the models
at the same time, running on a single GPU also physically located at Purdue. The improvement
is shown as a function of the number of simultaneous four-threaded client-side jobs running
at once. The single GPU server begins to saturate when about 10 client-side jobs are sending
requests at once and the Mini-AOD workflow running with the SONIC approach becomes
slower than the CPU-only workflow if more than about 17 four-threaded client-side jobs are
running at once. The direct-inference line in Fig. 9 was made in the same way discussed in
Section 5.1 for Fig. 8, though the CPU-only jobs were run at Purdue rather than GCP in Iowa.

These cross-site tests were performed before model configuration optimization as discussed in
the preceding section. The exact model configuration is less important for this test, as long as
the near and far servers have the same type of GPUs and host the same models. Here, the non-
TRT version of DeepTau was used, which saturated close to 40 synchronized four-threaded
jobs. When all the models are loaded on a single GPU server, the approximate saturation point
can be found with reciprocal addition. With the saturation points of 90 (AK4 jet ParticleNet),
190 (AKS jet ParticleNet, 3 models), 40 (DeepTau), and 520 (DeepMET, 2 models), the expected
saturation point is around 18 synchronized four-threaded jobs, when running all the models to-
gether on one GPU. As noted in the previous section, this estimate is often about 5% high. The
saturation point seen in Fig. 9 is lower than expected from the above analysis due to the differ-
ent configurations of the CPU machines in each scenario. Twenty-threaded, hyperthreading-
disabled Intel Xeon Processor E5-2660 v3 units were used at Purdue, which are more powerful
processors than those used in the GCP-based tests. The faster the client-side resources process
events, the lower the saturation point is for a given type of GPU.
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The blue points and line in Fig. 9 show the throughput improvement when the client-side jobs
are once again run at Purdue, while the TRITON server hosting all the models on a single GPU
is run on GCP resources, which were physically located in Iowa for this test. Both the observed
throughput increase and observed GPU saturation point are about the same for both server
locations, so we conclude that the client-to-server distance has little impact on performance
up to a few hundred kilometers. In the future, it will be important to monitor the impact of
distance, especially beyond a few hundred kilometers.
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Figure 9: Production tests across different sites. The CPU tasks always run at Purdue, while
the servers with GPU inference tasks for all the models run at Purdue (blue) and at GCP in
Iowa (red). The throughput values are higher than those shown in Fig. 8 because the CPUs at
Purdue are more powerful than those comprising the GCP VMs.

5.3 Large-scale tests

Finally, we perform large-scale tests to emulate realistic Mini-AOD production scenarios. These
tests were performed exclusively using GCP resources. Here, 24 NVIDIA Tesla T4 GPUs were
used to host the PYTORCH version of ParticleNet for AK4 jets, 20 GPUs were used to host
the PYTORCH version of all three ParticleNet models for AKS8 jets, 48 GPUs were used to host
DeepTau, and 10 GPUs were used to host DeepMET. The ratios of the number of GPUs hosting
each model do not exactly match those expected from Section 5.1; this was done for multiple
reasons. First, a larger number of GPUs than strictly necessary were used in the tests to ensure
that the performance would meet the expectations described in Section 5.1, and thereby avoid
the cost of repeating the test multiple times. For instance, based on a single-GPU saturation
point of 150 four-threaded jobs, one would expect that only about 17 GPUs would be needed to
serve the AK4 jet ParticleNet model. It is worth noting that while the demonstration illustrated
here uses a CPU-to-GPU ratio of 9820:102 (about 1 GPU per 96 CPU cores), achieving a higher
ratio is likely possible as we could have safely decreased the number of GPUs used. Second,
it was more practical to instantiate VMs with factors of 4 GPUs. This had the added benefit
of maximizing the allowed I/O bandwidth for VMs, which in GCP is restricted for VMs with
fewer CPU cores. A maximal CPU-to-GPU ratio for VMs in GCP is achieved for machines
with 4 GPUs. While I/O bandwidth was not expected to create problems for this large test,
a conservative approach was taken to mitigate the risk of needing repeated trials. Thus, the
GPU allocation approach was to find the minimum number of GPUs expected based on single
saturation scans (17 for the AK4 jet ParticleNet model, 14 for the AKS jet ParticleNet models,
42 for DeepTau, and 5 for DeepMET), find the next largest number divisible by 4, then add one
extra server corresponding to 4 additional GPUs. For DeepMET, two 4-GPU VMs were used
along with one 2-GPU machine, as DeepMET is a relatively lightweight algorithm, and the
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approach used for the other algorithms would have more than doubled the number of GPUs
allocated for the algorithm.

A separate Kubernetes load-balancer was used for each model type to distribute inference re-
quests evenly among server-hosting, GPU-enabled VMs. Thus, client VMs used separate IP ad-
dresses for each model type, and each inference for a particular model type was passed through
a single load-balancing machine, allowing for network monitoring for each model separately.

Client-side jobs also ran on CPU-only GCP resources, using HEPCloud to dynamically allocate
preemptible resources and assign jobs to the client-side VMs. Each client job was run in a
four-threaded configuration, with input data files stored locally, and each VM created in this
HEPCloud setup had 32 cores and 160 GB of memory, meaning up to 8 simultaneous jobs could
run in a single VM.

The largest test had 2500 simultaneous client-side jobs, which amounts to 10000 CPU cores.
Because these jobs were run on preemptible resources, Google reserves the right to reallocate
any VM to higher-priority requests from other GCP users. Of the 2500 jobs, 2455 jobs completed
successfully without preemption, so in total 9820 client-side CPUs were used.

The results of this large-scale test are shown in Fig. 10. The jobs running with the SONIC
approach achieved an average throughput of 4.0 events/s, while CPU-only benchmarking jobs
had a throughput of 3.5events/s. This 13% increase in throughput matches the expectation of
completely removing the ParticleNet, DeepTau, and DeepMET inference from the total Mini-
AOD per-event processing time. The throughput values for this test are slightly different from
those shown in Figs. 8 and 9. As noted previously, this is due to the difference in the CPUs
used in the tests.

As mentioned before, server-side VMs were optimized to allow maximal input and output
bandwidth. No bottlenecks due to bandwidth were observed in this scale-out test. We noted
that the maximum data input rate received by one of the Kubernetes load-balancers was
11.5GB/s, which was for DeepTau. The next-highest data input rate was 3.3 GB/s for Deep-
MET, and less than 500 MB/s of input was needed for all ParticleNet models combined. These
values are consistent with expectations from Table 2, as there were roughly 10000 CPU cores
running simultaneously, each processing about 1 event per second. The output rate was sig-
nificantly smaller for each model, as most return only one or a few floating-point values as the
inference result. In the future, more algorithms will be able to be run on coprocessors. These
could have larger I/0O sizes than the algorithms considered here, so continuing to monitor the
network usage will be important.

6 Portability

While the inference servers discussed so far have exclusively utilized GPU resources, servers
are easily portable and can run on other processing platforms. Previous uses of the SONIC
approach with FPGAs are reported in detail in Refs. [60, 61], where the portability was demon-
strated by changing the coprocessor technology and server backend without modifying the
client-side software. In the new studies reported here, we have additionally run the Mini-AOD
workflow with servers using both CPUs and Graphcore IPUs [33, 34].

6.1 The CPU fallback server

When running with remote servers, one potentially common and important failure mode is
communication errors between clients and servers. To support automatic local CPU inference
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Figure 10: Scale-out test results on Google Cloud. The average throughput of the workflow
with the SONIC approach is 4.0events/s (solid blue), while the average throughput of the
direct-inference workflow is 3.5 events/s (dashed red).

as a backup option when communication failures occur with remote servers, the SONIC im-
plementation includes a service that can launch a TRITON server using local CPU resources
for any SONIC approach-compatible models, referred to as a fallback server. Fallback servers
can also be used for inference when third-party ML frameworks are not supported for direct
inference in CMSSW.

Ideally, the use of fallback servers should have minimal impact on per-event throughput rela-
tive to running direct-inference jobs without the SONIC approach. This is contingent on two
factors. First, the latency introduced by sending data to or from local servers must be neg-
ligible. Second, servers should introduce minimal overhead to maximize the CPU resources
used to perform inference. The first concern can be resolved using the shared-memory option,
which skips the gRPC communication and directly passes the data in certain memory chunks
between the server and client. The gRPC overhead in most cases is found to be negligible. Re-
garding the second concern, local servers are running on the same CPUs as the other modules
in the workflow, so scheduling efforts must be made to avoid CPU thread contention between
the two. This implies that the synchronous server mode is preferred for local CPU fallback
servers. Additionally, inference tasks should not create extra threads to avoid contention. In
our experiments, we found that using more inference threads in the server than the number of
threads allocated for the CMSSW job will slow processing down dramatically.

Having thus explored potential configurations, for the local CPU inference, we run our servers
in synchronous mode, with the number of model instances set to the number of threads per
job, and the number of inference threads always set to one. This configuration mimics direct
inference and avoids thread over-subscription as much as possible. We compare the through-
put between direct inference and the SONIC approach with local CPU fallback servers using
this configuration. Tests were performed using resources at the Purdue Tier-2 cluster with the
CPU-only nodes. There are ncpy = 20 Intel E5-2660 CPU cores on one node, and hyperthread-
ing is disabled to ensure more stable results. For all tests, we always saturate the CPU nodes by
requiring the product of the number of jobs (1) and number of threads per job (n7) to be equal
to the number of CPU cores: njnt = ncpy = 20. For example, to test a configuration where a
single job occupies four threads (nt = 4), we would run five synchronized jobs (1; = 5), while
a two-threaded configuration would require 10 synchronized jobs. We scan the throughput
as a function of the number of threads, as shown in Fig. 11. The throughput of running with
local CPU fallback servers is similar to direct inference. The higher throughput in some cases
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Figure 11: Throughput (upper) and throughput ratio (lower) between the SONIC approach
and direct inference in the local CPU tests at the Purdue Tier-2 cluster. To ensure the CPUs are
always saturated, the number of threads per job multiplied by the number of jobs is set to 20.

Table 3: Memory usage with direct inference and the SONIC approach in the local CPU tests at
the Purdue Tier-2 cluster. The last column is calculated as the sum of client and server memory
usage divided by the direct inference memory usage. To ensure the CPUs are always saturated,
the number of threads n per job multiplied by the number of jobs is set to 20.

nr CMSSW with cMssw with SONIC  SONIC app. .
perjob direct inference [MB]  app. (client) [MB] server [MB] SONIC/direct

1 1850 1700 200 103%

2 2000 1800 400 110%

5 2200 1950 800 125%

10 2500 2200 1200 136%

20 2900 2500 2000 155%

is a result of optimizations in more recent versions of ONNX RUNTIME installed on the server,
which can be controlled in real production jobs.

Memory usage was also monitored with the TOP command during the studies and provided in
Table 3. As the number of threads per job increases, the number of model instances increases as
well, leading to higher memory usage in the SONIC approach compared with direct inference.
On the other hand, if the number of model instances is fixed to one, the server memory usage
is always around 300 MB, so the total memory usage is similar to direct inference, but the
throughput decreases by 5-10%, depending on the tasks. Further simultaneous optimization
of the throughput and memory usage will be explored in the future.

6.2 Studies with Graphcore IPUs

As discussed in Sections 3.2 and 3.3, NVIDIA TRITON inference servers support custom back-
ends to run with different coprocessors and different (e.g., ML) backends. Since the SONIC
approach’s client code only depends on the TRITON protocols, algorithms implemented in this
way can easily be ported to different types of coprocessors. One of the Mini-AOD production
tests was run together with the Graphcore IPU team, where a custom backend was prepared
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by the developer team to support running ML inference with IPUs. The supported ML frame-
works on IPUs when the tests were performed included TENSORFLOW, ONNX, and PYTORCH.
PYTORCH-GEOMETRIC support was in development at that time and is now available. With
TENSORFLOW custom backend available for the server, we can easily run DeepMET and Deep-
Tau inference with the SONIC approach in CMSSW on IPUs.

First, a per-algorithm throughput scan was carried out. Comparing running inference on MK2
GC200 IPUs with NVIDIA Tesla V100s, a chip-to-chip factor of 3 throughput improvement was
found, with larger gains expected for more computing-intensive models. Running the entire
Mini-AOD workflow was also tested. We adapted the workflow configuration to point the
CMSSW clients running at the Purdue Tier-2 cluster to IPU servers on the Graphcloud cloud.
Without any other modifications on the client side, the workflow ran successfully, performing
inference of the DeepMET and DeepTau models on the cloud and the other parts of the work-
flow on the client local CPUs. Outputs were checked and found to be consistent with direct
inference, within 10~ differences for floats due to precision limits.

7 Summary

Within the next decade, the data-taking rate at the LHC will increase dramatically, straining
the expected computing resources of the LHC experiments. At the same time, more algo-
rithms that run on these resources will be converted into either machine learning or domain
algorithms that are easily accelerated with the use of coprocessors, such as graphics process-
ing units (GPUs). By pursuing heterogeneous architectures, it is possible to alleviate potential
shortcomings of available central processing unit (CPU) resources.

Inference as a service (laaS) is a promising scheme to integrate coprocessors into CMS comput-
ing workflows. In IaaS, client code simply assembles the input data for an algorithm, sends that
input to an inference server running either locally or remotely, and retrieves output from the
server. The implementation of IaaS discussed throughout this paper is called the Services for
Optimized Network Inference on Coprocessors (SONIC) approach, which employs NVIDIA
TRITON Inference Servers to host models on coprocessors, as demonstrated here in studies on
GPUs, CPUs, and Graphcore Intelligence Processing Units (IPUs).

In this paper, the SONIC approach in the CMS software framework (CMSSW) is demonstrated
in a sample Mini-AOD workflow, where algorithms for jet tagging, tau lepton identification,
and missing transverse momentum regression are ported to run on inference servers. These
algorithms account for nearly 10% of the total processing time per event in a simulated data
set of top quark-antiquark events. After model profiling, which is used to optimize server
performance and determine the needed number of GPUs for a given number of client jobs,
the expected 10% decrease in per-event processing time was achieved in a large-scale test of
Mini-AOD production with the SONIC approach that used about 10000 CPU cores and 100
GPUs. The network bandwidth is large enough to support high input-output model inference
for the workflow tested, and it will be monitored as the fraction of algorithms using remote
GPUs increases.

In addition to meeting performance expectations, we demonstrated that the throughput results
are not highly sensitive to the physical client-to-server distance, at least up to distances of hun-
dreds of kilometers. Running inference through TRITON servers on local CPU resources does
not affect the throughput compared with the standard approach of running inference directly
on CPUs in the job thread. We also performed a test using GraphCore IPUs to demonstrate the
flexibility of the SONIC approach.
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The SONIC approach for IaaS represents a flexible method to accelerate algorithms, which is
increasingly valuable for LHC experiments. Using a realistic workflow, we highlighted many
of the benefits of the SONIC approach, including the use of remote resources, workflow ac-
celeration, and portability to different processor technologies. To make it a viable and robust
paradigm for CMS computing in the future, additional studies are ongoing or planned for mon-
itoring and mitigating potential issues such as excessive network and memory usage or server
failures.
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