000604455 001__ 604455
000604455 005__ 20250131111611.0
000604455 0247_ $$2doi$$a10.1038/s41563-023-01791-y
000604455 0247_ $$2ISSN$$a1476-1122
000604455 0247_ $$2ISSN$$a1476-4660
000604455 037__ $$aPUBDB-2024-01097
000604455 082__ $$a610
000604455 1001_ $$aFechner, M.$$b0
000604455 245__ $$aQuenched lattice fluctuations in optically driven SrTiO3
000604455 260__ $$aBasingstoke$$bNature Publishing Group$$c2024
000604455 3367_ $$2DRIVER$$aarticle
000604455 3367_ $$2DataCite$$aOutput Types/Journal article
000604455 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1710406427_2036239
000604455 3367_ $$2BibTeX$$aARTICLE
000604455 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000604455 3367_ $$00$$2EndNote$$aJournal Article
000604455 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000604455 542__ $$2Crossref$$i2024-02-01$$uhttps://creativecommons.org/licenses/by/4.0
000604455 542__ $$2Crossref$$i2024-02-01$$uhttps://creativecommons.org/licenses/by/4.0
000604455 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000604455 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000604455 7001_ $$0P:(DE-H253)PIP1007487$$aFörst, M.$$b1
000604455 7001_ $$00000-0002-0506-0446$$aOrenstein, G.$$b2
000604455 7001_ $$aKrapivin, V.$$b3
000604455 7001_ $$0P:(DE-H253)PIP1031232$$aDisa, A. S.$$b4
000604455 7001_ $$0P:(DE-H253)PIP1022192$$aBuzzi, M.$$b5
000604455 7001_ $$0P:(DE-H253)PIP1027188$$avon Hoegen, A.$$b6
000604455 7001_ $$ade la Pena, G.$$b7
000604455 7001_ $$aNguyen, Q. L.$$b8
000604455 7001_ $$aMankowsky, R.$$b9
000604455 7001_ $$aSander, M.$$b10
000604455 7001_ $$aLemke, H.$$b11
000604455 7001_ $$aDeng, Y.$$b12
000604455 7001_ $$aTrigo, M.$$b13
000604455 7001_ $$aCavalleri, A.$$b14
000604455 77318 $$2Crossref$$3journal-article$$a10.1038/s41563-023-01791-y$$bSpringer Science and Business Media LLC$$d2024-02-01$$n3$$p363-368$$tNature Materials$$v23$$x1476-1122$$y2024
000604455 773__ $$0PERI:(DE-600)2088679-2$$a10.1038/s41563-023-01791-y$$gVol. 23, no. 3, p. 363 - 368$$n3$$p363-368$$tNature materials$$v23$$x1476-1122$$y2024
000604455 8564_ $$uhttps://bib-pubdb1.desy.de/record/604455/files/s41563-023-01791-y.pdf$$yRestricted
000604455 8564_ $$uhttps://bib-pubdb1.desy.de/record/604455/files/s41563-023-01791-y.pdf?subformat=pdfa$$xpdfa$$yRestricted
000604455 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1007487$$aCentre for Free-Electron Laser Science$$b1$$kCFEL
000604455 9101_ $$0I:(DE-588b)2019024-4$$6P:(DE-H253)PIP1007487$$aMax-Planck-Gesellschaft zur Förderung der Wissenschaften$$b1$$kMPG
000604455 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1031232$$aCentre for Free-Electron Laser Science$$b4$$kCFEL
000604455 9101_ $$0I:(DE-588b)2019024-4$$6P:(DE-H253)PIP1031232$$aMax-Planck-Gesellschaft zur Förderung der Wissenschaften$$b4$$kMPG
000604455 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1022192$$aCentre for Free-Electron Laser Science$$b5$$kCFEL
000604455 9101_ $$0I:(DE-588b)2019024-4$$6P:(DE-H253)PIP1022192$$aMax-Planck-Gesellschaft zur Förderung der Wissenschaften$$b5$$kMPG
000604455 9101_ $$0I:(DE-H253)_CFEL-20120731$$6P:(DE-H253)PIP1027188$$aCentre for Free-Electron Laser Science$$b6$$kCFEL
000604455 9101_ $$0I:(DE-588b)2019024-4$$6P:(DE-H253)PIP1027188$$aMax-Planck-Gesellschaft zur Förderung der Wissenschaften$$b6$$kMPG
000604455 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000604455 9141_ $$y2024
000604455 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-24$$wger
000604455 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2023-10-24$$wger
000604455 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24
000604455 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24
000604455 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24
000604455 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-24
000604455 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-24
000604455 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24
000604455 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-24
000604455 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-24
000604455 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-24
000604455 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT MATER : 2022$$d2023-10-24
000604455 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-24
000604455 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-24
000604455 915__ $$0StatID:(DE-HGF)9940$$2StatID$$aIF >= 40$$bNAT MATER : 2022$$d2023-10-24
000604455 980__ $$ajournal
000604455 980__ $$aEDITORS
000604455 980__ $$aI:(DE-H253)MPSD-20120731
000604455 980__ $$aI:(DE-H253)CFEL-QCM-20160914
000604455 9801_ $$aEXTERN4VITA
000604455 999C5 $$1J Zhang$$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-matsci-070813-113258$$p19 -$$tAnnu. Rev. Mater. Res.$$uZhang, J. & Averitt, R. D. Dynamics and control in complex transition metal oxides. Annu. Rev. Mater. Res. 44, 19–43 (2014).$$v44$$y2014
000604455 999C5 $$1DN Basov$$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat5017$$p1077 -$$tNat. Mater.$$uBasov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).$$v16$$y2017
000604455 999C5 $$1R Mankowsky$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.118.197601$$p197601 -$$tPhys. Rev. Lett.$$uMankowsky, R., von Hoegen, A., Först, M. & Cavalleri, A. Ultrafast reversal of the ferroelectric polarization. Phys. Rev. Lett. 118, 197601 (2017).$$v118$$y2017
000604455 999C5 $$1DM Juraschek$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevMaterials.1.014401$$p014401 -$$tPhys. Rev. Mater.$$uJuraschek, D. M., Fechner, M., Balatsky, A. V. & Spaldin, N. A. Dynamical multiferroicity. Phys. Rev. Mater. 1, 014401 (2017).$$v1$$y2017
000604455 999C5 $$1PG Radaelli$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.97.085145$$p085145 -$$tPhys. Rev. B$$uRadaelli, P. G. Breaking symmetry with light: ultrafast ferroelectricity and magnetism from three-phonon coupling. Phys. Rev. B 97, 085145 (2018).$$v97$$y2018
000604455 999C5 $$1AS Disa$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41567-020-0936-3$$p937 -$$tNat. Phys.$$uDisa, A. S. et al. Polarizing an antiferromagnet by optical engineering of the crystal field. Nat. Phys. 16, 937–941 (2020).$$v16$$y2020
000604455 999C5 $$1A Stupakiewicz$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41567-020-01124-9$$p489 -$$tNat. Phys.$$uStupakiewicz, A. et al. Ultrafast phononic switching of magnetization. Nat. Phys. 17, 489–492 (2021).$$v17$$y2021
000604455 999C5 $$1AS Disa$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41567-021-01366-1$$p1087 -$$tNat. Phys.$$uDisa, A. S., Nova, T. F. & Cavalleri, A. Engineering crystal structures with light. Nat. Phys. 17, 1087–1092 (2021).$$v17$$y2021
000604455 999C5 $$1TF Nova$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aaw4911$$p1075 -$$tScience$$uNova, T. F., Disa, A. S., Fechner, M. & Cavalleri, A. Metastable ferroelectricity in optically strained SrTiO3. Science 364, 1075–1079 (2019).$$v364$$y2019
000604455 999C5 $$1X Li$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aaw4913$$p1079 -$$tScience$$uLi, X. et al. Terahertz field–induced ferroelectricity in quantum paraelectric SrTiO3. Science 364, 1079–1082 (2019).$$v364$$y2019
000604455 999C5 $$1M Henstridge$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41567-022-01512-3$$p457 -$$tNat. Phys.$$uHenstridge, M., Först, M., Rowe, E., Fechner, M. & Cavalleri, A. Nonlocal nonlinear phononics. Nat. Phys. 18, 457–461 (2022).$$v18$$y2022
000604455 999C5 $$1Z Zhuang$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.107.224307$$p224307 -$$tPhys. Rev. B$$uZhuang, Z., Chakraborty, A., Chandra, P., Coleman, P. & Volkov, P. A. Light-driven transitions in quantum paraelectrics. Phys. Rev. B 107, 224307 (2023).$$v107$$y2023
000604455 999C5 $$1K Sokolowski-Tinten$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature01490$$p287 -$$tNature$$uSokolowski-Tinten, K. et al. Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit. Nature 422, 287–289 (2003).$$v422$$y2003
000604455 999C5 $$1R Mankowsky$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature13875$$p71 -$$tNature$$uMankowsky, R. et al. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature 516, 71–73 (2014).$$v516$$y2014
000604455 999C5 $$1T Huber$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.113.026401$$p026401 -$$tPhys. Rev. Lett.$$uHuber, T. et al. Coherent structural dynamics of a prototypical charge-density-wave-to-metal transition. Phys. Rev. Lett. 113, 026401 (2014).$$v113$$y2014
000604455 999C5 $$1S Gerber$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aak9946$$p71 -$$tScience$$uGerber, S. et al. Femtosecond electron-phonon lock-in by photoemission and X-ray free-electron laser. Science 357, 71–75 (2017).$$v357$$y2017
000604455 999C5 $$1M Buzzi$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41578-018-0024-9$$p299 -$$tNat. Rev. Mater.$$uBuzzi, M., Först, M., Mankowsky, R. & Cavalleri, A. Probing dynamics in quantum materials with femtosecond X-rays. Nat. Rev. Mater. 3, 299–311 (2018).$$v3$$y2018
000604455 999C5 $$1M Kozina$$2Crossref$$9-- missing cx lookup --$$a10.1038/s41567-018-0408-1$$p387 -$$tNat. Phys.$$uKozina, M. et al. Terahertz-driven phonon upconversion in SrTiO3. Nat. Phys. 15, 387–392 (2019).$$v15$$y2019
000604455 999C5 $$1M Porer$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevResearch.1.012005$$p012005 -$$tPhys. Rev. Research$$uPorer, M. et al. Ultrafast transient increase of oxygen octahedral rotations in a perovskite. Phys. Rev. Research 1, 012005 (2019).$$v1$$y2019
000604455 999C5 $$1B Casals$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.120.217601$$p217601 -$$tPhys. Rev. Lett.$$uCasals, B. et al. Low-temperature dielectric anisotropy driven by an antiferroelectric mode in SrTiO3. Phys. Rev. Lett. 120, 217601 (2018).$$v120$$y2018
000604455 999C5 $$1S Wall$$2Crossref$$9-- missing cx lookup --$$a10.1126/science.aau3873$$p572 -$$tScience$$uWall, S. et al. Ultrafast disordering of vanadium dimers in photoexcited VO2. Science 362, 572–576 (2018).$$v362$$y2018
000604455 999C5 $$1KA Müller$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.19.3593$$p3593 -$$tPhys. Rev. B$$uMüller, K. A. & Burkard, H. SrTiO3: an intrinsic quantum paraelectric below 4 K. Phys. Rev. B 19, 3593–3602 (1979).$$v19$$y1979
000604455 999C5 $$1D Rytz$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.22.359$$p359 -$$tPhys. Rev. B$$uRytz, D., Höchli, U. T. & Bilz, H. Dielectric susceptibility in quantum ferroelectrics. Phys. Rev. B 22, 359–364 (1980).$$v22$$y1980
000604455 999C5 $$1M Itoh$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.82.3540$$p3540 -$$tPhys. Rev. Lett.$$uItoh, M. et al. Ferroelectricity induced by oxygen isotope exchange in strontium titanate perovskite. Phys. Rev. Lett. 82, 3540–3543 (1999).$$v82$$y1999
000604455 999C5 $$1T Mitsui$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.124.1354$$p1354 -$$tPhys. Rev.$$uMitsui, T. & Westphal, W. B. Dielectric and X-ray studies of CaxBa1−xTiO3 and CaxSr1−xTiO3. Phys. Rev. 124, 1354–1359 (1961).$$v124$$y1961
000604455 999C5 $$1JH Haeni$$2Crossref$$9-- missing cx lookup --$$a10.1038/nature02773$$p758 -$$tNature$$uHaeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO3. Nature 430, 758–761 (2004).$$v430$$y2004
000604455 999C5 $$1U Aschauer$$2Crossref$$uAschauer, U. & Spaldin, N. A. Competition and cooperation between antiferrodistortive and ferroelectric instabilities in the model perovskite SrTiO3. J. Phys.: Condens. Matter 26, 122203 (2014).$$y2014
000604455 999C5 $$1M Trigo$$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys2788$$p790 -$$tNat. Phys.$$uTrigo, M. et al. Fourier-transform inelastic X-ray scattering from time- and momentum-dependent phonon–phonon correlations. Nat. Phys. 9, 790–794 (2013).$$v9$$y2013
000604455 999C5 $$1G Ingold$$2Crossref$$9-- missing cx lookup --$$a10.1107/S160057751900331X$$p874 -$$tJ. Synchrotron Radiat.$$uIngold, G. et al. Experimental station Bernina at SwissFEL: condensed matter physics on femtosecond time scales investigated by X-ray diffraction and spectroscopic methods. J. Synchrotron Radiat. 26, 874–886 (2019).$$v26$$y2019
000604455 999C5 $$2Crossref$$uWarren B. E. X-Ray Diffraction (Dover Books on Physics, 1990).
000604455 999C5 $$1Y Yamada$$2Crossref$$9-- missing cx lookup --$$a10.1080/00150197408237947$$p37 -$$tFerroelectrics$$uYamada, Y. X-ray critical diffuse scattering at a structural phase transition. Ferroelectrics 7, 37–43 (1974).$$v7$$y1974
000604455 999C5 $$1G Shirane$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.177.858$$p858 -$$tPhys. Rev.$$uShirane, G. & Yamada, Y. Lattice-dynamical study of the 110°K phase transition in SrTiO3. Phys. Rev. 177, 858–863 (1969).$$v177$$y1969
000604455 999C5 $$1SR Andrews$$2Crossref$$9-- missing cx lookup --$$a10.1088/0022-3719/19/20/009$$p3721 -$$tJ. Phys. C: Solid State Phys.$$uAndrews, S. R. X-ray scattering study of the R-point instability in SrTiO3. J. Phys. C: Solid State Phys. 19, 3721–3743 (1986).$$v19$$y1986
000604455 999C5 $$1CNW Darlington$$2Crossref$$9-- missing cx lookup --$$a10.1088/0022-3719/9/19/010$$p3561 -$$tJ. Phys. C: Solid State Phys.$$uDarlington, C. N. W. & O’Connor, D. A. The central mode in the critical scattering of X-rays by SrTiO3. J. Phys. C: Solid State Phys. 9, 3561–3571 (1976).$$v9$$y1976
000604455 999C5 $$1T Gu$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.120.197602$$p197602 -$$tPhys. Rev. Lett.$$uGu, T. et al. Cooperative couplings between octahedral rotations and ferroelectricity in perovskites and related materials. Phys. Rev. Lett. 120, 197602 (2018).$$v120$$y2018
000604455 999C5 $$1GA Garrett$$2Crossref$$9-- missing cx lookup --$$a10.1364/OE.1.000385$$p385 -$$tOpt. Express$$uGarrett, G. A., Whitaker, J. F., Sood, A. K. & Merlin, R. Ultrafast optical excitation of a combined coherent-squeezed phonon field in SrTiO3. Opt. Express 1, 385–389 (1997).$$v1$$y1997
000604455 999C5 $$1C Verdi$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevMaterials.7.L030801$$pL030801 -$$tPhys. Rev. Mater.$$uVerdi, C., Ranalli, L., Franchini, C. & Kresse, G. Quantum paraelectricity and structural phase transitions in strontium titanate beyond density functional theory. Phys. Rev. Mater. 7, L030801 (2023).$$v7$$y2023
000604455 999C5 $$1AJ Heeger$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.123.1652$$p1652 -$$tPhys. Rev.$$uHeeger, A. J., Beckman, O. & Portis, A. M. Magnetic properties of KMnF3. II. Weak ferromagnetism. Phys. Rev. 123, 1652–1660 (1961).$$v123$$y1961
000604455 999C5 $$1G Kresse$$2Crossref$$9-- missing cx lookup --$$a10.1016/0927-0256(96)00008-0$$p15 -$$tComput. Mater. Sci.$$uKresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).$$v6$$y1996
000604455 999C5 $$1G Kresse$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.47.558$$p558 -$$tPhys. Rev. B$$uKresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).$$v47$$y1993
000604455 999C5 $$1G Kresse$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.54.11169$$p11169 -$$tPhys. Rev. B$$uKresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).$$v54$$y1996
000604455 999C5 $$1A Togo$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.scriptamat.2015.07.021$$p1 -$$tScr. Mater.$$uTogo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).$$v108$$y2015
000604455 999C5 $$1N Marzari$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.56.12847$$p12847 -$$tPhys. Rev. B$$uMarzari, N. & Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847–12865 (1997).$$v56$$y1997
000604455 999C5 $$1G Kresse$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.59.1758$$p1758 -$$tPhys. Rev. B$$uKresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).$$v59$$y1999
000604455 999C5 $$1JP Perdew$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.100.136406$$p136406 -$$tPhys. Rev. Lett.$$uPerdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).$$v100$$y2008
000604455 999C5 $$1HJ Monkhorst$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.13.5188$$p5188 -$$tPhys. Rev. B$$uMonkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).$$v13$$y1976
000604455 999C5 $$1X Gonze$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.55.10355$$p10355 -$$tPhys. Rev. B$$uGonze, X. & Lee, C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355–10368 (1997).$$v55$$y1997