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Signatures of ultralight bosons in the orbital eccentricity of binary black holes
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We show that the existence of clouds of ultralight particles surrounding black holes during their
cosmological history as members of a binary system can leave a measurable imprint on the dis-
tribution of masses and orbital eccentricities observable with future gravitational-wave detectors.
Notably, we find that for nonprecessing binaries with chirp masses M . 10M⊙, formed exclusively
in isolation, larger-than-expected values of the eccentricity, i.e. e & 10−2 at gravitational-wave
frequencies fGW ≃ 10−2 Hz, would provide tantalizing evidence for a new particle of mass between
[0.5, 2.5]× 10−12 eV in nature. The predicted evolution of the eccentricity can also drastically affect
the in-band phase evolution and peak frequency. These results constitute unique signatures of boson
clouds of ultralight particles in the dynamics of binary black holes, which will be readily accessible
with the Laser Interferometer Space Antenna, as well as future mid-band and Deci-hertz detectors.

Introduction. The birth of gravitational-wave (GW)
science [1] heralds a new era of discoveries in astrophysics,
cosmology, and particle physics [2]. Measuring the prop-
erties of GW signals with current and future observa-
tories, such as the Laser Interferometer Space Antenna
(LISA) [3], the Einstein Telescope (ET) [4] and Cosmic
Explorer (CE) [5], as well as other Mid-band [6] and Deci-
hertz detectors [7], not only will unravel the origins of bi-
nary black hole (BBH) mergers, it also opens the possibil-
ity to discover (very-weakly-coupled) ultralight particles
that are ubiquitous in theories of the early universe [8–
12]. Notably, the mass, spin alignment, and eccentricity
are expected to be correlated with formation channels,
isolated or dynamical, e.g. [13–31]; whereas boson clouds
(or “gravitational atoms” [8, 9]), formed around black
holes via superradiance instabilities [32–36], can produce
a large backreaction on the orbital evolution. Following
analogies with atomic physics [37], the cloud may en-
counter Landau-Zener (LZ) resonances [38], or ionization
effects [39–41]. The presence of a cloud then leads to large
finite-size effects [37, 42], floating/sinking orbits [38], as
well as other sharp features [40], that become unique sig-
natures of ultralight particles in the BBH dynamics.

For the most part, up until now backreaction effects
have been studied under the simplified assumption of
planar, quasi-circular orbits. The reason is twofold [37].
Firstly, several formation scenarios lead to spins that are
parallel to the orbital angular momentum [18]. Secondly,
the decay of eccentricity through GW emission in vac-
uum [43, 44] is expected to have circularized the orbit
in the late stages of the BBH dynamics. We retain here
the former but relax the latter assumption. As we shall
see, adding eccentricity not only introduces a series of
overtones [41, 45, 46], it can also have a dramatic in-
fluence in the orbital dynamics as the cloud transits a
LZ-type transition. Although the strength of the new
resonances is proportional to the eccentricity, depend-
ing on their position and nature (floating or sinking), a
small departure from circularity can lead to transitions
that not only would deplete the cloud, but also induce

a rapid growth of eccentricity towards a large critical
(fixed-point) value: ecr ∈ [0.3, 0.6]. As measurements
of the eccentricity are correlated with formation chan-
nels, the predicted increase can impact the inferred bi-
nary’s origins. Measurements of larger-than-expected ec-
centricities would then provide strong evidence for the
existence of a new ultralight particle in nature. In par-
ticular, because of the critical fixed point, a fraction of
the BBHs undergo a rapid growth of orbital eccentric-
ity to a common value. As a result, the distribution of
masses and eccentricities may feature a skewed correla-
tion by the time they reach the detector’s band. Further-
more, for chirp masses M < 10M⊙ and spin(s) aligned
with the orbital angular momentum—expected to exclu-
sively form in the field—the presence of a boson cloud
at earlier times can shift a fraction of the population to-
wards values of e & 10−2 at 10−2Hz, readily accessible
to LISA [3]. Furthermore, the GW-evolved eccentricity
may also be within reach of the planned mid-band [6] or
Deci-hertz [7] observatories. For all such events, a new
ultralight boson of mass [0.5, 2.5] × 10−12 eV forming a
cloud and decaying through a LZ-type transition prior to
detection, may be the ultimate culprit.

The more drastic evidence is given when the resonant
transition occurs in band with measurable frequency evo-
lution. Plethora of phenomena are discussed in [37, 38]
for circular orbits. In addition to overtones, the increase
in eccentricity would imply that higher harmonics be-
come more relevant, which in turn affects the peak fre-
quency of the GWs, even for floating orbits. We point
out here some salient features and elaborate further on
the details elsewhere [46].

The gravitational atom. Ultralight particles of
mass µ can form a cloud around a rotating black hole
of mass M , via superradiant instabilities [8, 9]. The typ-
ical mass of the (initial) cloud scales as Mc,0/M ≃ α,

whereas its typical size is rc ≃ rg
α2 , with rg ≡ GM

c2 , and

α =
GMµ

~c
≃ 0.1

(

M

15M⊙

)

( µ

10−12eV

)

. (1)
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The (scalar) cloud evolves according to a Schrödinger-
like equation [47, 48], with eigenstates |a〉 ≡ |nalama〉,
and (n, l,m) the principal, orbital and azimuthal angular
momentum, “quantum numbers”. (For vector clouds [38,
48, 49], we must include the total angular momentum.)

The energy eigenvalues of the cloud scale as ǫnlm =

µ
(

1− α2

2n2 + fnl α
4 + hnl ãmα5

)

, with ã the dimension-

less spin of the black hole, see [48]. At saturation, we
have ã ≃ α, whereas the combined system black hole plus
cloud may still be rapidly rotating. One of the main dif-
ference w.r.t. ordinary atoms, however, is the presence
of a decay/growing time, Γ−1

nlm ∝ µα4l+5, for a given
eigenstate [9, 47, 48, 50]. The (scalar) cloud may be
populated by the dominant growing mode, |211〉, or an
excited state, |322〉. Depending on α, they may be robust
to GW emission (from the cloud itself) on astrophysical
scales [9, 51–55]. They can also deplete through reso-
nant transitions in binaries [37, 38], as we discuss here.
In what follows we work with G = ~ = c = 1 units.

Gravitational collider goes eccentric. Following
[37, 38] we consider a boson cloud around a black hole
of mass M in a bound orbit with a companion object of
mass M⋆, with q ≡ M⋆/M the mass ratio. The coordi-
nates are centered at the black hole plus cloud system,
with R⋆ the radial distance to the perturber, and ϕ⋆ the
azimuthal angle. We consider planar motion with the
spin parallel to the orbital angular momentum, with the
orbit described by the semi-major axis a and the eccen-
tricity e, while ϕ⋆ corresponds to the true anomaly. We
take the orbital frequency to be positive such that the
two, co-rotating and the counter-rotating, orientations
are identified by ϕ̇⋆ = s|ϕ̇⋆|, with s = ±1.

The gravitational perturbations of the companion in-
duce mixing of the atomic levels. For a perturber outside
of the cloud r ≫ rc the off-diagonal matrix elements of
the Hamiltonian, 〈b|V⋆ |a〉, are given by a multipole ex-
pansion that can be written as an harmonic series [37, 38]

〈b|V⋆ |a〉l⋆ =
∑

|m⋆|≤l⋆

η
(m⋆)
ab e−im⋆ϕ⋆ , (2)

with η
(m⋆)
ab ∝ R

−(l⋆+1)
⋆ . The matrix elements obey selec-

tion rules which determine possible transitions, which we
refer as hyperfine (only ∆m 6= 0), fine (∆ℓ 6= 0,∆n = 0),
and Bohr (∆n 6= 0), respectively [37, 38].

For illustrative purposes, we consider a two-level
model. The Hamiltonian equation is given by

i

(

ċa
ċb

)

=







−∆ǫ
2 η0

(

R⋆

R0

)−(l⋆+1)

ei∆mϕ⋆

c.c. ∆ǫ
2 − iΓb







(

ca
cb

)

,

(3)
with ∆ǫ ≡ ǫb − ǫa the energy split, Γb the width of the
decaying mode, and η0 the value of the perturbation at
a reference point R0. For the purpose of analytical un-

derstanding, we use a small-eccentricity approximation,

ϕ⋆ ≃ ϑ+ 2e sinϑ , R∗ ≃ a(1− e cosϑ) , (4)

ϑ̇ ≡ sΩ , Ω =
√

M(1 + q)/a3 , (5)

in terms of ϑ, the mean anomaly [56], and apply the
Jacobi-Anger expansion into Bessel functions. Hence, the
Hamiltonian in (3) becomes

H = D +

∞
∑

k=−∞





ηke
−i(k+∆m)ϑ

ηke
i(k+∆m)ϑ



 , (6)

D =





−∆ǫ
2

∆ǫ
2 − iΓb



 , ηk ∼ η0f
2
3
(l⋆+1) e

|k|

|k|! , f ≡ Ω

Ω0
,

where we traded distance for orbital frequency. The case
(e,Γb) = 0 was studied in [38]. The slow GW-induced
evolution of the orbital frequency, Ω(t) ≃ Ω0 + γ0t with

γ0 = 96
5 qM

5/3 Ω
11/3
0

(1+q)1/3
, leads to a LZ transition [57, 58]

between the energy levels. The transition is triggered for

Ω0 = s
∆ǫ

∆m
> 0 . (7)

This value, dictated by the spectrum of the cloud, will
serve as our reference point in the evolution. Ignoring
backreaction effects (see below), the LZ solution is con-

trolled by z0 ≡ η20/(γ0|∆m|) and v0 ≡ Γb/
√

γ0|∆m|.
Yet, somewhat surprisingly [59], starting asymptotically
from the |a〉 state, and independently of the value of v0,
in the limit 2πz0 ≫ 1 one then finds a complete popula-
tion transfer into the (decaying) |b〉 mode.

For eccentric orbits, the evolution in (6) also features
a transition at Ω0 (for k = 0). However, it introduces a
series of overtones

Ωk = fk Ω0 , fk =
∆m

∆m+ k
, k ∈ Z . (8)

Provided each k-resonance is sufficiently narrow, we can
ignore the other (k′ 6= k) terms in (6). As in [38], we can
linearize the orbital evolution near the transition, Ω(t) =

Ωk+f(e)γkt, where f(e) =
1+ 73e2

24
+ 37e4

96

(1−e2)7/2
and γk ≡ γ0f

11/3
k ,

such that the LZ solution now depends on the modified

zk ≡ η2
k

f(e)γk|∆m+k| and vk ≡ Γb√
f(e)γk|∆m+k|

, respectively.

Orbital backreaction. Dissipative effects, such as
GW emission, from the binary [38, 60] or the cloud itself
[51–55], ionization [39–41, 60], and decay widths [59, 61,
62], strongly influence the LZ phenomenology, and vice
versa. We focus here on the prevailing case of two-body
GW emission, with the companion outside the cloud, thus
focusing on (hyper)fine resonances, combined with a two-
level LZ transition into a decaying mode.

The orbital dynamics is governed by flux-balance equa-
tions at infinity [38, 41, 44, 46, 62, 63], and at the black
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hole’s horizon [8, 64, 65]:

Ėo + Ėc + Ṁ = FGW ≡ −32f(e)

5

M5q2(q + 1)

a5
, (9)

L̇o + s(L̇c + Ṡ) = TGW ≡ FGW

Ω

g(e)

f(e)
, (10)

Ṁ = 2ΓbEc(b) , Ṡ = 2ΓbLc(b) , (11)

with g(e) =
1+ 7e2

8

(1−e2)2 , and Ṁ , Ṡ the change of mass and

spin due to the decay of the |b〉 state onto the black hole.
The orbital energy and angular momentum are given by

Eo = −M2q
2a and L2

o = (M5q3)(1−e2)
2(q+1)|Eo| , while for the cloud is

a sum over the populated states, Ec(i) ≡ (Mc,0/µ)ǫi|ci|2,
and similarly for Lc(i) with ǫi → mi.

The above equations can then be rewritten as

dΩ

dt
= rγ0f

11/3f(e) , (12)

r ≡ Ėo

FGW
= 1− b

sgn(s∆m)f−11/6

√

f(e)γ0|∆m+ k|
d|ca|2
dt

, (13)

de2

dt
=

2

3
f8/3

γ0
Ω0
f(e)

√

1− e2 × (14)

[

r
(

f−
√

1− e2
)

− f+
g(e)

f(e)

]

,

in terms of the orbital parameters, where

b ≡ 3Mc,0

M

|∆m|f−3/2

|∆m+ k|−1/2

(1 + q)1/3

αq

(MΩ0)
1/3

Ω0√
γ0

, (15)

parameterises the backreaction effects on the orbit due
to the cloud. As anticipated in [38], “effective” LZ pa-

rameters emerge: ζk(t) ≡ zk/r(t) and wk(t) ≡ vk/
√

r(t),
making it a fully nonlinear system. We can nonethe-
less estimate the value of the energy-momentum transfer
near the resonance by self-consistently solving the con-
dition ζk = zk/rk(ζk). For moderate-to-large population
transfer (ζk & 1), we find the limiting results:

rk ≃
(

1− sgn(s∆m)
bk

4
√
zk

)−1

, (wk ≪ ζk) (16)

rk ≃ 2

(

1 +

√

1− sgn(s∆m)
bk
zkvk

)−1

, (wk ≫ ζk) .

As discussed in [38], the orbital evolution branches into
either floating (r ≃ 0), for s∆m < 0, or sinking orbits
(r & 1), for s∆m > 0. However, except for the the triv-
ial case when ζk ≪ 1, due to the nonlinear nature of
the problem the transfer of energy and angular momen-
tum from the cloud to the orbit does not simply reduce
to the quest for adiabaticity of the LZ transition, not
even for wk ≪ ζk. For instance, for extreme cases, with
zk ≫ 1, the (unperturbed) transition spreads over long

time scales, ∆tLZ ≃ 4
√

zk/γk [66], which in turn reduces

the orbital impact, as we see in (16). As it turns out, in
the large backreaction scenario, the sweet spot for float-
ing orbits occurs when bk ≫ √

zk. Even though, due to
the properties of the LZ solution, a strong decay width
(wk ≫ ζk) does not alter this picture, the impact on the
orbit evolution as well as the population transfer becomes
suppressed by 1/vk, as shown in (16). On the other hand,
for the sinking case, the largest values of rk are obtained
for nonadiabatic transitions.

Eccentric fixed point. For the GW-dominated
epochs, with r ≃ 1, the leading order term in (14) van-
ishes, and the first contribution is at O(e2). Likewise for
the k = 0 (main) resonance, for which the first term is
∝
(

r
2 − 11

3

)

e2. As a result, the eccentricity is damped un-
less the orbit gets a large kick (r & 7.3). As the influence
of the cloud increases, the RHS of (14) asymptotes (mod-
ulo a positive prefactor) to (fk−1)(r−1), in which case it
enters at leading order. Moreover, the differences in the
GW fluxes in (9) and (10) generate a distinction between
the early and late resonances. In the floating case, with
r ≃ 0, the eccentricity grows for the early resonances
(fk < 1) and decays for the late ones (fk > 1). This

can be understood by noticing that, when Ėo ≃ 0, we

have L̇o ∝
(

Ω−Ω0

ΩΩ0
+O(e2)

)

, and using d(L2
o) ∝ −d(e2)

the eccentricity grows for Ωk < Ω0 and decays whenever
Ωk ≥ Ω0. This trend is reversed in the sinking case.

Due to the changes in the time evolution of the eccen-
tricity across different resonances, it is instructive to look
at the opposite limit e→ 1. In that case, the RHS of (14)
becomes ∝ r−1

(1−e)3 . Let us consider the case of a floating

orbit. Since the sign of de
dt is positive for Ωk < Ω0, but

turns negative when the eccentricity approaches e ≃ 1,
this implies the existence of a critical “attractor” fixed
point, ecr, given by the condition g(ecr)/f(ecr) = fk
[cf. (14)]. For instance,

ecr = {0.46, 0.35, 0.29}, for |∆m| = {1, 2, 3} , (17)

with k = −1. Similarly, an unstable fixed point develops
for the earlier and main sinking resonances.

For the case of floating orbits (with s∆m < 0), if the
backreaction is sufficiently effective to enforce rk ≃ 0
while the eccentricity approaches the critical point, one
can then estimate the floating time ∆tFL ≃ bk/

√
γk, left-

over population |ca(∞)|2 . rk, and notably the growth
of the eccentricity upon exiting the resonant transition,

efin ≃ ecr
√

1− e−Ck , with Ck ∼
√
γk

Ωk
bk . (18)

Although we have derived various analytic results under
simplifying assumptions, we have demonstrated through
numerical studies that the above behavior remains valid
for generic (planar) orbits. See [46] and the supplemental
material for details.

The cloud’s eccentric fossil. As it was argued in the
literature [15–17], the distribution of masses and eccen-
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with Cnl ≡ 24l+1(n+l)!
n2l+4(n−l−1)!

[

l!
(2l)!(2l+1)!

]2

, glm(ã, α, ω) ≡
∏l

k=1

(

k2(1− ã2) + (ãm− 2r+ω)
2
)

and r̃+ ≡ 1 +√
1− ã2, r̃+ ≡ r+/M , and ΩH ≡ ã/(2r+); whereas for

the cloud itself decaying into GWs, we use the (non-
relativistic) approximation in [51].

Appendix B: Tidal interactions

For equatorial orbits and resonances triggered away
from the cloud, the tidal interaction is given by [37, 38]

〈b|V⋆ |a〉 ≡
∞
∑

l⋆=2

∑

|m⋆|≤l⋆

η
(⋆)
ab , (B1)

η
(⋆)
ab = −qα

rc
R
−(l⋆+1)
⋆

4π

2l⋆ + 1
Y ∗
(⋆)

(π

2
, ϕ⋆

)

IrIΩ ,

Ir ≈
∫ ∞

drr2R̂bR̂ar
l⋆ (B2)

IΩ ≡
∫

dΩY ∗
b (θ, φ)Y(⋆)(θ, φ)Ya(θ, φ) , (B3)

where (⋆) ≡ (l⋆,m⋆), r ≡ r/rc, R̂c = r
3/2
c Rc is the (di-

mensionless) hydrogenic radial wavefunction, Ylm is the
spherical harmonic. We leave to [46] the discussion on
resonances “inside the cloud”, including dipole-mediated
transitions [60, 84, 85].

The Jacobi-Anger expansion,

e±i∆m(ϑ+2e sin(ϑ)) =
∞
∑

k=−∞
(±1)kJk(2e∆m)ei(k±∆m)ϑ ,

(B4)
can be applied to the off-diagonal terms of the Hamilto-
nian [cf. (3) in the main text]. Using the properties of
the Bessel function 4, the tidal perturbation [cf. (6) of
the main text] becomes

η
(⋆)
ab,k = η0f

2
3
(l⋆+1) (∆me)

|k|

|k!|

(

1 +
(l⋆ + 1)k

2∆m

)

+O(e|k|+1) ,

η
(⋆)
ab,0 =

qα

rc
R
−(l⋆+1)
0

4π

2l⋆ + 1

∣

∣

∣Y ∗
(⋆)

(π

2
, ϕ⋆

)∣

∣

∣ IrIΩ . (B5)

This interaction is nonzero only if the selection rules are
satisfied [37, 38]: −mb +m⋆ +ma = 0, lb + l⋆ + la = 2p,
|la− lb| ≤ l⋆ ≤ la+ lb. Furthermore, for equatorial orbits,
for even (odd) l⋆ only the spherical harmonics even (odd)
in m⋆ 6= 0 are nonzero.

4 Parity Jk(−x) = J−k(x) = (−1)kJk(x), recurrence formulas
x (Jk+1(x) + Jk−1(x)) = 2kJk(x) and the asymptotic expansion

J|k|(x) ∼ (x/2)|k||k|!, x ≪ 1.

Appendix C: Atomic resonances

As the populated state has a maximal azimuthal num-
ber mmax = n − 1, at the (hyper)fine resonances, it can
only transition into states with lowerm. Such transitions
are only possible on co-rotating orbits, where they obey
s∆m < 0, yielding floating-type motion5. From the se-
lection rules for the tidal interactions, the |211〉 state has
only one hyperfine transition to |21− 1〉, while the only
possible fine transition, to |200〉, can only occur inside
the cloud. Furthermore, for small values of α, we find
that the floating time of the hyperfine transition would
take longer than a Hubble time, preventing them to reach
the LISA band. At the same time, (barring a precise
fine tuning of the birth frequency of the BBH+cloud)
for large values of α we expect the |211〉 component of
the cloud to decay through its own GW emission before
reaching the resonant transition (see also [62, 86]). On
the other hand, the (longer-lived) |322〉 state may expe-
rience various types of resonances. In contrast to early
and late resonances with k = ±1, all of the k = 0 hyper-
fine transitions to |32m〉 happen at the same frequency
(∆m drops out of the ratio). The dominant main (hy-
perfine) transition is the one to |320〉, with l⋆ = 2 [as
the |322〉 → |32− 2〉 resonance can only be mediated by
the hexadecapole (l⋆ = 4), making it extremely weak and
nonadiabatic]. Transitions to the |32± 1〉 states are not
possible for equatorial orbits. The fine resonances from
the excited state are (octopolar) to the |31− 1〉, |311〉
and (quadrupolar) |300〉 states, in that order in the fre-
quency domain. We show a succession of transitions in
Fig. 4. We ignored the (sinking) high-l⋆ Bohr resonances
that can overlap with the range of frequencies that we
consider here, since they do not significantly affect the
dynamical evolution. We postpone the general analysis
of Bohr transitions to [46].

Appendix D: Nonlinear Landau-Zener transition

Linear solution

The solution of the (linear) LZ transition with Ω̇k ≃
f(e)γk ≃ const, including a decaying width, is given
by [59, 61, 62] (see also [38, 58])

|ca|2 = exp
(

−vkτ −
π

2
zk

) ∣

∣

∣Dizk

(

ei
3π
4 (τ − ivk)

)∣

∣

∣

2

(D1)

|cb|2 = exp
(

−vkτ −
π

2
zk

)

zk

∣

∣

∣Dizk−1

(

ei
3π
4 (τ − ivk)

)∣

∣

∣

2

,

5 Notice that for the k > |∆m| overtones, sinking transitions are
possible on counter-rotating orbits (s = −1). The lowest one, at
k = 2, occurs for ∆m = −1.
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Figure 5. (Negative) derivative of the parent state occupancy,
evaluated for a linear LZ transition. Brackets in the legend
correspond to (zk, vk). Note the decrease, and shift to the
left, of the amplitude, as well as the widening of the function
and damping of the late-time oscillations, as the ratio vk/zk
increases.

leading to

−d|ca|
2

dτ

∣

∣

∣

τ=−ζkwk

=

√

zk
ζk
ψk(ζk, wk) , (D10)

ψk ≡ 1

2
e−

1
2
(πζk)

[

2wk

∣

∣

∣

∣

CHiζ

(Cwk∆wk

2

)∣

∣

∣

∣

2

−

(

CH1−iζ

(C∗∆w∗
k

2

)

Hiζ

(C∆wk

2

)

+ c.c.

)

]

,

where C = 1 + i, ∆wk = wk(1 − iζk) and H is the Her-
mite function. In what follows, for the sake of nota-
tion brevity, we take the small-eccentricity approxima-
tion, with f(e) ≃ 1. This is also justified by the fact that
the eccentricity before the LZ transition is typically small
across the parameter space, which we use to evaluate the
type of transition the cloud will experience.

Negligible-decay regime

The ψk function simplifies in the asymptotic regime

lim
ζ→0

ψk ∼
√
πζ , & lim

ζ→∞
ψk ∼ 1

4
√
ζ

(wk ≪ ζk) ,

in which

ζk ∼ zk

(

1− sgn(s∆m)
bk

4
√
zk

)

, (D11)

and the value of rk given in (16) of the main text. As
advertised, the energy transfer for the adiabatic floating
(s∆m < 0), is extremised by large values of bk with mod-
erate zk parameters. In contrast, sinking (s∆m > 0) is
consistent with large adiabaticity only for moderate back-
reaction bk < 4

√
zk. Furthermore, the large backreaction

limit (bk ≫ 1) of the weakly-adiabatic regime

ζk ∼ sgn(s∆m)

(

zk
b2kπ

)1/3

, rk ∼ sgn(s∆m)(πb2kz
2
k)

1/3 ,

is only possible for sinking orbits. In such scenarios, the
strong backreaction then mostly leads to nonadiabatic
sinking transitions, with a potentially significant impact
on the orbit

Strong-decay regime

In general, the impact of the decay width depends on
the dynamical timescale of the LZ transition and should
be compared with the strength of the coupling. More-
over, for eccentric orbits, even if z0 > v0 at f0 = 1, this
hierarchy may be reversed for fk 6= 1, due to the e2|k|

suppression in zk. Similarly to the case of negligible de-
cay, we can also obtain approximate relations in the limit
described by (D3), yielding

ψk ∼ 2ζke
−ζk[π−2 arctan(ζk)]

wk(ζ2k + 1)
, (D12)

rk ∼ 1± 2bkzk
e−ζk[π−2 arctan(ζk)]

vk(ζ2k + 1)
. (D13)

In general, this regime shares various qualitative behav-
ior as in the wk ≪ ζk case, but with the adiabatic-
ity gain/loss and orbital impact suppressed by the ratio
bk/vk. In particular, large adiabaticity is consistent only
for floating orbits, where we have

ζk ≃
√
2

e

√

bkzk
vk

, rk =
zk
ζk

→ 0 . (bk ≫ 1)

In contrast, for sinking orbits, the strong backreaction
requires a small population transfer, and we find

ζk ≃ vk
2bk

, rk ≃ 2bkzk
vk

≫ 1 . (bk ≫ 1)

Notice that, somewhat counter-intuitively, a strong-
decay width not only does not necessarily imply the total
depletion of the cloud, instead it suppresses rk, hence the
ability of the system to float, resulting in a lesser amount
of the cloud being transferred to the decaying mode (see
(E9) below).

Appendix E: Floating

For values of the energy transfer rk . 0.2, the growth
of the orbital frequency is sufficiently suppressed to allow
for the possibility of floating. In that case, the growth
of (initially small) eccentricity is given, in units of the
dynamical time introduced in (D5), by

e(t) ≃
√

e2in + Ieτ(1− fk) , (fk 6= 1) (E1)

e(t) ≃ ein exp

{

−11

6
Ieτ

}

, (fk = 1) (E2)

Ie ≡
2

3

√
γ0

Ω0

f
5/6
k

|∆m+ k|1/2 .
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The critical points of the evolution of the eccentric-
ity depend both on |∆m| and |k|. For the first few
values of |k| they are described by the polynomial fit
ecr = g0 + g1k + g2k

2, where g0 = {0.3, 0.2, 0.16},
g1 = {0.18, 0.16, 0.14}, g2 = {2, 1.6, 1.3} × 10−2, all for
|∆m| = {1, 2, 3} in respective order.

To calculate the evolution of the eccentricity towards
the fixed point, we change the time variable in the evo-
lution equations [cf. (14)], from t to e2(t), yielding

∫ e2fin

e2
in

d(e2)
√
1− e2

[

g(e)
f(e) − fk

] = Iebk
(

1− |ca(∞)|2
)

,(E3)

The result can then be approximated by (18) in the main
text, where

Ck = c∆m,k

[

Iebk
(

1− |ca(∞)|2
)

+
e2in

1− fk

]

, (E4)

and c∆m,−1 = {2.37, 2, 1.37} for ∆m = {−1,−2,−3}.
From the value of e2fin in (E3), we can also estimate the
duration of the floating period

∆τFl =
1

Ie

∫ e2fin

e2
in

d(e2)
1

√

f(e)
√
1− e2

[

g(e)
f(e) − fk

] ,

≃ Ck

c̃∆m,kIe
,

c∆m,k

c̃∆m,k
=

1
√

f(ecr)
. (E5)

An exemplary parameter space of final eccentricity and
floating time is shown in Fig. 6.

Strong floating provides a distinct phase of the non-
linear LZ transition, during which typically most of the
population transfer occurs. From (12) of the main text,
we have

d|ca|2
dτ

=
r(τ)− 1

bk
, (E6)

yielding a linear-in-time decay of the population during
floating, and a transfer of population given by

|ca(∞)|2 ≃ |ca(τ < Fl)|2 − (1− rk)
∆τFl
bk

. (E7)

In the strong decay regime, the condition r(t) → 0 at
the resonance is necessary at each point in time, but not
sufficient to guarantee a steady floating-type period. In
addition, there must be enough of the cloud left to sus-
tain a small r(t). Following [62], one can estimate the
sufficient condition by considering the minimum amount
of cloud needed to “startjump” a floating period. Apply-
ing the linear LZ solution (D3) in (13) of the main text,
we find

|ca|2min ≃ vk
√

f(ein)

2bkzk(ein)
(1− rk) . (E8)

The left hand side can be interpreted as the minimal

amount of cloud needed to start floating at a particular
resonance. In turn, if the right hand side is larger than
one, floating cannot start. The same condition can also
be used to estimate the amount of cloud left when floating
stops, by matching into the linear LZ solution backwards,
from the end of the floating time,

|ca(∞)|2 ≃ vk
√

f(efin)

2bkzk(efin)
(1− rk) , (E9)

which then becomes the portion of the cloud surviving
after floating stops. Strong decay and small zk could in
principle interrupt the floating period and leave a mod-
erate amount of the cloud intact.7

However, at the overtones we have zk ∼ e|2k|, which
is increasing during floating. Hence, as the eccentricity
approaches the critical point, for instance at the k = −1
overtone, the value of zk increases by a factor (ecr/ein)

2 ≃
102−103, thus significantly extending the floating period,
and reducing the amount of cloud left after the transition,
in comparison with the näıve estimate in (E8).

In general, the equations in (E3), (E5) and (E9) must
be solved self-consistently in order to determine the end
state of floating. As an estimate, we may apply (E1)
to (E9), and assuming ein ≪ 1, we have

∆τFl

bk/
√

f(ecr)
≃
(

x− 1

2x
+

√

(x+ 1)2

4x2
− λ

x

)

, (E10)

λ =
vk

2bkzk(ein)
, x =

Iebk(1− fk)

e2in
.

Notice that for the k = −1 overtone, the dependence
on ein drops out from the ratio λ/x. In this case λ ≪
x, and we find the longest periods of floating, ∆τFl ≃
bk/
√

f(ecr), and largest depletion of the |ca(∞)|2 . rk.
Depending on the resonances and the parameter space,
such hierarchy may be also valid for higher overtones.

Appendix F: Numerical validation

For generic orbits, the instantaneous position can be
expressed as R⋆ = a(1− e cosu), as a function of the ec-
centric anomaly u. The eccentric anomaly is then related
to the mean anomaly via Kepler’s equation u−e sin(u) =
ϑ (e.g. [56]). We have validated the analytic results ob-
tained using the small-eccentricity approximation by nu-
merically solving the Schrödinger equation for arbitrary
(planar) orbits, coupled with the energy-momentum bal-
ance equations [cf. (3),(9)-(11) of the main text], for a
number of representative examples. We use the NDSolve

7 This is consistent with the “resonance breaking” phenomena dis-
cussed in [73]. We thank the authors of [73] for bringing it to
our attention.
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