X-ray-induced atomic transitions via machine learning: A computational investigation
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Intense x-ray free-electron laser pulses can induce multiple sequences of one-photon ionization
and accompanying decay processes in atoms, producing highly-charged atomic ions. Considering
individual quantum states during these processes provides more precise information about the x-ray
multiphoton ionization dynamics than the common configuration-based approach. However, in such
a state-resolved approach, extremely huge-sized rate-equation calculations are inevitable. Here we
present a strategy that embeds machine learning models into a framework for atomic state-resolved
ionization dynamics calculations. Machine learning is employed for the required atomic transition
parameters, whose calculations possess the computationally most expensive steps. We find for argon
that both feedforward neural networks and random forest regressors can predict these parameters
with acceptable, but limited accuracy. State-resolved ionization dynamics of argon, in terms of
charge-state distributions and electron and photon spectra, are also presented. Comparing fully-
calculated and machine-learning-based results, we demonstrate that the proposed machine-learning
strategy works in principle and that the performance, in terms of charge-state distributions and
electron and photon spectra, is good. Our work establishes a first step toward accelerating the

calculation of atomic state-resolved ionization dynamics induced by high-intensity x rays.

I. INTRODUCTION

The enormous peak brightness of x-ray free-electron
lasers (XFELs) [1-5], such as the European XFEL [6],
offers exciting new opportunities for the structure de-
termination of biomolecules with almost atomic resolu-
tion [7-13]. However, due to the high-intensity x rays
the electronic structure of the investigated sample is un-
avoidably damaged [14-17]. As a consequence, the sam-
ple undergoes structural disintegration [18], which limits
such applications.

A critical process, underlying these damages, is x-
ray multiphoton ionization dynamics in atoms and
molecules [19]. High-intensity x rays induce multiple se-
quences of one-photon ionization accompanied by Auger-
Meitner decay or x-ray fluorescence. As a result, atoms
or molecules often become very highly ionized during the
interaction with intense XFEL pulses [20-24]. A vali-
dated approach to simulate the x-ray multiphoton ion-
ization dynamics is by solving a coupled set of rate equa-
tions [20, 25, 26] describing the time-dependent popula-
tions of the electronic configurations visited during the
ionization dynamics. Such a configuration-based rate-
equation approach has been widely used and successfully
applied for interpreting and designing many XFEL ex-
periments [20—43].

However, the configuration-based approach does not
include individual quantum states and individual state-
to-state transitions and, thereby, cannot capture state-
resolved ionization dynamics. A state-resolved approach
delivers more detailed information about the x-ray mul-
tiphoton ionization dynamics, especially regarding res-
onant excitations and spectra. This has recently been

demonstrated for neon atoms [44]. To explore state-
resolved ionization dynamics based on time-dependent
quantum state populations, it is necessary to include all
possible electronic quantum states that may be formed
by removing zero, one, or more electrons from the ground
state of the neutral atom. The corresponding num-
ber of involved states is dramatically larger than the
number of electronic configurations. For example, even
for an isolated argon atom without considering resonant
or relativistic effects the number of involved states is
262144 [44], whereas only 1323 electronic configurations
are involved [34]. Thus, apart from very light atoms like
neon, solving rate equations in an extremely large space
of states is unavoidable. Therefore, the huge-sized rate
equation calculations are performed via a more efficient
Monte Carlo on-the-fly rate-equation method [21, 38].
However, even with such a Monte Carlo method, the
computational effort for the state-resolved ionization dy-
namics calculations is inevitably large (as will be demon-
strated in Sec. IIIC). The main bottleneck in the state-
resolved ionization dynamics calculations is the first-
principle calculation of all required atomic transition
parameters, i.e., transition energies, cross sections and
rates, which has to be performed on the fly.

With machine learning nowadays being a thriving and
actively investigated field, it is natural to ask whether
this critical challenge of high computational effort might
be addressed by applying a suitable machine learning
stategy. Machine learning, deep learning included, has
already successfully supported natural science in vari-
ous ways [45-47]. A prototype example is the appli-
cation to protein structure predictions with atomic ac-
curacy [48]. Other important applications of machine



learning include the prediction of x-ray absorption spec-
tra [49-52], the identification of phase transitions in con-
densed matter [53], the characterization and calibration
of laser pulses [54-57], as well as its use in electronic-
structure theory [58-63], just to name a few (for more
see, e.g., Refs. [45, 46] and references therein). One
high-impact role that machine learning has been play-
ing in electronic-structure theory so far is in speeding
up the construction of potential energy surfaces [64-67].
A recent review about the progress of machine learn-
ing in the context of potential energy surfaces can be
found in Ref. [68]. Furthermore, another interesting ap-
proach is to reduce the high computational effort in con-
figuration interaction calculations by preselecting only
the most important configurations via machine learning
models [69, 70].

In this work, we present a strategy that embeds ma-
chine learning models for predicting atomic transition
parameters into a Monte Carlo on-the-fly rate-equation
method for describing atomic state-resolved ionization
dynamics. Recently, a state-resolved Monte Carlo im-
plementation [44], based on a framework for perform-
ing quantum-state-resolved first-principle calculations of
atomic transition parameters [71], was introduced in
the ab initio electronic-structure and ionization dynam-
ics toolkit xATOM [16, 72, 73]. We here combine the
state-resolved Monte Carlo implementation with machine
learning models for predicting atomic transition parame-
ters. This machine-learning-based implementation can
reproduce the results for neon published in Ref. [44].
However, for neon, the computational effort is too small
to gain much with it. Therefore, here, we choose to focus
on the much more challenging problem of state-resolved
ionization dynamics of argon. To the best of the authors’
knowledge, they have not been investigated before. Our
work establishes a first step towards accelerating huge-
sized rate-equation calculations for easily examining x-
ray-induced ionization dynamics for a variety of atoms
and x-ray parameters.

The paper is organized as follows. In Sec. II, a de-
scription of the methods used to obtain the results pre-
sented in Sec. ITI can be found. In Sec. III A, we demon-
strate how to collect data of x-ray-induced atomic tran-
sitions via a Monte Carlo approach, before analyzing the
performance of the machine learning models (i.e., neu-
ral networks and random forest regressors) in Sec. III B.
The performance, in terms of charge-state distributions
(CSDs) and spectra, is the topic of Sec. IIIC. The pa-
per finishes with a conclusion and future perspectives in
Sec. V.

II. THEORETICAL DETAILS
A. State-resolved Monte Carlo calculations

We perform state-resolved x-ray multiphoton ion-
ization dynamics calculations using the state-resolved

Monte Carlo implementation [44] in the XATOM
toolkit [16, 72, 73]. This implementation is based
on a nonrelativistic quantum-state-resolved electronic-
structure framework [71], also embedded in XATOM. It
performs first-principle calculations of atomic first-order-
corrected transition energies as well as state-to-state
cross sections and transition rates.

To provide an overview of the accuracy of the
quantum-state-resolved electronic-structure framework
employed, we list selected K and L fluorescence and
KLL Auger-Meitner transition energies for Ar'* and
Ar?** (hypersatellites) in Table I. Transition energies
are calculated with two different orbital optimization
strategies within this framework: based on first-order-
corrected energies calculated with orbitals and orbital
energies optimized (i) for the initial electronic configura-
tion only and (ii) for the initial and final electronic con-
figurations individually. Both strategies are compared
to relativistic calculations [74-77] and experimental mea-
surements [76-79], which are in almost perfect agreement
with one another (see Table I). Relativistic, quantum-
electrodynamic, and finite-nuclear-size effects [77] are
not included in the quantum-state-resolved electronic-
structure framework employed. As a consequence, tran-
sition energies calculated with both strategies are less
accurate and exhibit no spin-orbit splitting. Nonethe-
less, the selected transitions in Table I demonstrate an
accuracy of more than 90% (initial optimization) or 97%
(individual optimization), respectively. The individual
optimization delivers more accurate results, however, at
the expense of computational efficiency. Therefore, in
what follows, we optimize for the initial electronic con-
figuration only (as done in Refs. [44, 71]). The main
focus in this work is on the usage of machine learning for
atomic transition parameters, whose accuracy does not
affect the general machine-learning approach.

Further, a Monte Carlo on-the-fly rate-equation
method [21, 38] is employed for describing the time evo-
lution of the atomic quantum state populations. The
number of coupled rate equations (= the number of in-
dividual states involved in the x-ray multiphoton ioniza-
tion dynamics) is extremely large. For instance, for argon
atoms, this number is 2'® when all subshells are acces-
sible for one-photon ionization, but relativistic and reso-
nant effects are not included [44]. Therefore, the Monte
Carlo method is critical since it permits us to efficiently
perform huge-sized rate-equation calculations by stochas-
tically sampling possible ionization pathways.

In the present work, we restrict the time propagation
of the x-ray multiphoton ionization dynamics to a time
interval of 1 ps. This implies that decay processes that
occur on time scales much longer than 1 ps are assumed
not to be of interest. Therefore, the rates are set to zero
when they are smaller than Tipres = 1077 a.u. (cor-
responding to the time scale of 240 ps). In what fol-
lows, these comparatively slow processes are referred to
as quasi-forbidden transitions. This is reasonable since
processes occurring later are actually modified by plasma



TABLE I. Accuracy of the underlying quantum-state-resolved electronic-structure framework in XATOM. Selected fluorescence
and Auger-Meitner (hypersatellite) transition energies for argon are calculated with this framework [71] based on orbitals and
orbital energies optimized (i) for the initial electronic configuration only and (ii) for the initial and final electronic configurations
individually. Results are compared to (iii) more accurate relativistic calculations and (iv) experimental data (references are
given next to values in the table), which contain energy splittings due to spin-orbit coupling.

transition energy Ei_ ;s (eV)

difference (%)

process (i) xATOM (ii) xATOM—ind. (iii) relativistic (iv) experiment (iv)-(i) (iv)-(ii)
Ar'™ 15'25%2p53523p° (25) 90315 9946 4 2957.9 [77] 2957.7 [77] 0.9 0.4
— 1522522p°3523p° (*P) : : 2955.9 [77] 2955.6 [77] 0.8 0.3
Artt) 15125%2p835%3p° (29) 3140.3 3180.4 3191.5 [77] 3190.5 [77] 1.6 0.3
— 15%25%2p%3523p° (2P) ' ' 3191.3 [77] 3190.5 [77] 1.6 0.3
Ar'T 15%25%2p53523p° (2 P) 902.4 915.3 219.5 [77] 220.2 [77] 8.8 2.3
— 1522522p°%35'3p° (25) : : 221.5 [77] 221.8 [77] 9.6 3.0
Ar?t) 15°25%2p%35%3p° (25)
) 1s'2s20p53523p8 (LP) 3105.9 3118.0 3131.5 [74] 3133.0 [78] 0.9 0.5
Ar'™ 15'25%2p53523p° (25)
) 1522522p43523,5 (D) 2646.9 2650.6 2661.8 [75] 2660.6 [79] 0.5 0.4
Ar't) 15125%22p%35%3p° (25)
12242213523 (L9) 2634.8 2638.6 2649.9 [75] 2650.6 [79] 0.6 0.5
Ar®T | 15925%2p53523p° (15)
) 1512522p13523,5 (2D) 2765.4 2766.4 2779.2 [76] 2779.6 [76] 0.5 0.5
Ar?t) 15°25%2p%35%3p° (1S)
15242213523, (29) 2752.5 2762.6 2769.6 [76] 2768.9 [76] 0.6 0.2

processes. Thus, the model of an isolated atom assumed
in our calculations breaks down after some time. Note
that at this point, the few-femtosecond ionizing pulse is
long over.

Let us briefly explain what we mean by an indi-
vidual quantum state and an individual state-to-state
transition in the following. In our state-resolved ap-
proach, a state I is defined by the electronic config-
uration, 1sV1s2sN2:2pN2r ... together with additional
quantum numbers (L, S, M, k) (that specify a so-called
zeroth-order LS eigenstate [71]). For each state, there is
a corresponding (term-specific) first-order-corrected en-
ergy Eps. that is the same for all states within a term
25+1[,(k). Note that the spin projection quantum num-
ber Mg is missing in the description of an individual
quantum state. Since in our approach none of the inter-
action Hamiltonians couples to the spin [44, 71], transi-
tion probabilities are independent of Mg and, thus, we
are not interested in spin projection quantum numbers.
From now on the index ¢ refers to the initial state (be-
fore a certain process is happening), while for the final
target state we shall use the index f. Then, an individ-
ual state-to-state transition is a transition from an indi-
vidual quantum state I’ to I/ with first-order-corrected

transition energy E;l)_”f, cross section oi_,rs for pho-
toabsorption or transition rate I'j:_, ;s for Auger-Meitner
decay or fluorescence, respectively. (The corresponding

equations are given in Ref. [71].)

B. The machine learning models

a. The tasks of the machine learning models are to
predict for a given transition from an individual quantum
state I' to I’ the first-order-corrected transition energy
Eg)_)lf (E model) and the cross section oj:_, ;s for pho-
toabsorption (P model) or the transition rate I'yi_, ;s for
Auger-Meitner decay (AM model) and fluorescence (F
model). These four tasks are solved by separate machine
learning models. All are regression problems [80] with the
following inputs, i.e., features, and outputs, i.e., labels.

b. The features are given by the following quantities
based on our definition of an individual quantum state

in Sec. ITA:
e occupation numbers nf.. of the initial electronic

configuration, i.e., (N{,, N3, N3,,---),

e quantum numbers gn; of the initial state, i.e.,
(LiaS’ivMLm"{i)a

e type of process p being considered, i.e., (involved
hole, first involved electron, second involved elec-
tron {for AM, otherwise zero}, kind of process {1:P,
2:AM, 3:F}),

e quantum numbers gny of the final state, i.e.,
(Lf,Sf,MLf7I€f).

The first case gives N,,1, features, where Ny, is the num-
ber of subshells involved in the initial electronic config-
uration, and the rest provides 4 features per each case.



Thus, the total number of features Nieatures in a feature
vector is given by

Nfeatures = Norp + 12. (1)

Note that the type of process being considered can be
interchanged with the occupation numbers nf_. of the fi-
nal electronic configuration. Here, the former is employed
in the feature vector to reduce the number of features,
which is especially important for heavy atoms and/or the
inclusion of resonant effects.

It is also worthwhile to mention that (as can be seen
from Ref. [71]) cross sections and decay rates are invari-
ant under a change of the angular momentum projec-
tion quantum numbers M, — —Mp,, and simultaneously
My, — —Mp,—a relation the machine learning models
fail to learn. Therefore, we force the machine learning
models to preserve this symmetry by using My, > 0 as
a feature only. More precisely,

> 0: M, and My,
=0: Mg, =0and |[Mg,| (2)
<0: |ML1| and _MLf

if My,

are taken as features for the projection quantum num-
bers.

Another important point is that the individual models
are not given all features as inputs, only those that are
relevant. Transition energies are independent of My, and
M}, ,—another relation the machine learning model fails
to learn. Hence, for the energy model, they are not used
and, therefore, NfEatures = Nfeatures — 2. Similarly, for
the other three models the kind of process (P, AM, or
F) is an unnecessary feature as it is fixed a priori by the
model used. Additionally, features for involved holes and
electrons are only important if they exist for the process
in question. Consequently, we have N = Neatures—

AM  _ F _
3, Nfeamres = Nreatures — 1, and Nfeatures = Nteatures — 2-
c. The label is always only one number since each

task has its own machine learning model:

E§1) in eV for E model,

tIf

pred _ ) Orinyps in a.au. for P model,

3)

Iriyrs in au. for AM model,
T'zi_7s in a.u. for F model.

d. Data preparation depends on the type of machine
learning model used.

For the neural networks, the widely recommended Z-
score normalization is applied to each feature zj [81],
ie.,

/ T — ,LLk‘
T, = ——o 4
k ok ) ( )
with mean p; and standard deviation oy of the kth fea-
ture with respect to all training data. Consequently, the
prepared input data form a distribution with zero mean

and unit standard deviation. For the random forest re-
gressors, however, no feature normalization is required
since it is not distance-based.

The energy values cover a wide range from 0 eV to
the energy of the incoming x rays, typically a few thou-
sand eV. For the neural network, they are also normalized
by Z-score normalization [see Eq. (4)] in order to keep
their values in a smaller range. For the random forest
regressor, the pure energy values are used.

Cross sections and rates cover several orders of mag-
nitude. Thus, logarithmic scaling might be useful and
is, in fact, applied for the random forest regressors. For
the neural networks, however, we prefer to use pure cross
section and rate values by, instead, respecting the wide
range in the loss function and the output activation (see
Sec. I1 C) without any scaling. The advantage is that this
avoids back-scaling, which in combination with Z-score
normalization is prone to errors, especially for very small
cross sections and rates.

C. Neural network

Neural networks [80, 82, 83] are the central tool of deep
learning. In general, they consist of a sequence of several
sets of linear transformations followed by nonlinear acti-
vations. Each step in this sequence is called a layer [59].
The number of layers in the neural network determines
its depth. Based on a chosen loss function and an opti-
mizer, they are trained via back-propagation [84]. The
basic idea of a (deep) neural network is that each layer
is effectively learning a more complex representation of
the raw input features and that this reduces the number
of parameters needed to be fitted [85].

a. Hyperparameter tuning. Before explaining the
neural network architecture and the hyperparameters
employed in the present work, let us briefly explain the
general way we have made these decisions. This will make
some of our reasoning in the following two paragraphs
clearer. The neural network architecture and hyperpa-
rameters are determined by ‘trial and error’. Due to high
training efforts and fluctuations in loss values from train-
ing to training, a more systematic and automated hyper-
parameter optimization, e.g., by a grid search [80], would
not be well suited for our purpose. It is especially worth-
while to note that our models are system-specific. As
will be explained in Sec. II E, for each machine-learning-
based Monte Carlo calculation, the models need to be re-
trained. If we also had to reoptimize the hyperparameters
for (almost) every machine-learning-based Monte Carlo
calculation, this would be in clear contrast to our goal
of speeding up the calculations. Moreover, for speeding
up calculations, models should also be chosen such that
training is not more time consuming than really neces-
sary. Consequently, our aim is not to find the perfect hy-
perparameters and the best possible model performance
for a given training set. Note that differences between dif-
ferent models are often anyhow only very small. Instead,



TABLE II. Neural network architecture: number of units
per layer for each neural network trained in this work (see
Sec. IIC).

model in 1 2 3 4 5 out
E 15 512 256 128 64 32 1
P 14 1024 512 256 128 64 1
AM 16 1024 512 256 128 64 1
F 15 1024 512 256 128 64 1

it is more critical to build models, hyperparameters in-
cluded, that allow us to train them for different training
sets and training set sizes with a good (but not necessar-
ily perfect) performance within an acceptable amount of
time.

b. Network architecture. For our neural networks,
we employ the popular deep learning library Keras [86] of
the TensorFlow machine learning platform [87]. Our neu-
ral networks are standard feedforward neural networks
with seven layers, input and output layer included, and
with the number of units given in Table II. This neu-
ral network architecture has sufficient model capacity to
approximately fit the data, but not enough to nearly per-
fectly interpolate the training data (see Sec. III B). For
argon, interpolating training data as suggested by the
‘modern’ interpolation hypothesis [88] is a tough task be-
cause it actually requires very large neural networks and,
concomitantly, very long training times (see Sec. IIIB).
Therefore, we have chosen this network architecture as a
compromise between computational effort and numerical
accuracy. Of course, other neural network architectures
with comparable capacity would work similarly well.

For the activation function, the hyperbolic tangent
(tanh) is chosen. Indeed, nowadays, in the deep learn-
ing community rectified linear units (ReLU) or variants
thereof are much more recommended [80, 89]. Nonethe-
less, in our numerical investigations we have found that
for the situations considered in this work, tanh matches
or sometimes even outperforms the other available activa-
tion functions. To improve the training process with tanh
activation, weights are initialized following the ‘GlorotU-
niform’ initializer explained in Ref. [90]. Energy values
are normalized to zero mean and are in principle un-
bounded. Thus, for the energy model a linear output
layer is a rational choice. On the other hand, cross sec-
tions and rates are unnormalized and cover a range be-
tween zero and unity. Hence, we chose a sigmoid output
layer. Of course, in the typical ranges of output val-
ues (~ 1073 to 10~7) sigmoid is almost constant. But
for the present models, this seems not to be a very seri-
ous problem. Overfitting to the training data is reduced
by regularizing the models with dropout [91] with a soft
probability of 0.01 (E) or 0.05 — 0.1 (P, AM, and F), re-
spectively. We do not regularize our models very strongly
due to the model capacity being too low for interpolating
training data.

c. Optimization. The neural networks are trained
on minibatches of size 2'! using the Adam optimization
algorithm [92] with early stopping and a maximum of
1200 epochs (i.e., forward and backward passes through
the neural network). We have chosen Adam as it is known
to be fairly robust to the choice of hyperparameters, like
the learning rate. The learning rate for Adam is set to
0.0005 (E) and 0.001 (P, AM, and F), respectively. Most
important for the learning is the loss function on which
the optimization is performed. For the energy model,
the mean squared error (MSE) on the training set is em-
ployed. MSE on a general data set D with size Np in
one dimension is given by

N
LMSE — i ZD(yqalc o yprcd)2 (5)
D ND = J j )

calc

where yi*¢ is the label value of the jth example in D

and y§’md is the prediction, respectively. However, MSE

only works well if labels cover a similar range. Otherwise,
errors in small label values will be overlooked. Therefore,
for the other three models, we define a mean squared
logarithmic error (MSLE) as

Np

1 calc re
o > (logyo[y5™ + €] —logyo [y +€])%, (6)
j=1

MSLE _
LD -

on which they are trained. In this expression, € = 10710
is used for numerical stability. Values smaller than e
are practically treated as zero. The value of 1071% makes
sense since smaller photoionization cross sections are neg-
ligible. Due to the choice of sigmoid output activation,
it is guaranteed that all y?md > 0. (They are set to
zero later if they are found to be very small). Note that
MSLE basically measures by how many orders of magni-
tude y5'° and y?md differ.

d. Performance measure. Finally, we need to eval-
uate how well the trained model behaves on a test set
not seen during training. A way of measuring the per-
formance of the model is to compute the MSE (for E)
or MSLE (for P, AM, and F), respectively, on the test
set. In addition to this, for each example in the test set

the absolute error y;?alc - y}’md or the logarithmic error

logo[y5° + €] — logm[y?red + €] can be calculated and
represented in a histogram. For the AM or F models,

however, there is one problem with the (quasi-)forbidden

transitions. If y§*¢ = 0 but yrred

J > 0 or vice versa,
the logarithmic error mainly depends on our choice of
€. As a consequence, MSLE can be quite large and (at
least) for a human-based interpretation loses its useful-
ness. Therefore, we perform the following. We measure
the accuracy on the whole test set (or any other data set

we are interested in). The accuracy,

__ # of correct predictions

A




here is a measure of how good the machine learning
model learns whether a transition is allowed or (quasi-
)forbidden, i.e., ‘4 of correct predictions’ includes the

cases in which yC‘llc > 0 and ypmd > 0 or yJCfdlC =0

pred — . Knowing the accuracy, all wrong pre-

and y;

dictions, i.e., yc‘llc = 0 but ypmd > 0 or y9a1° > 0 but

ypred = 0, can, then, be excluded from the computation

of MSLE and error hlstograms without any loss of infor-
mation. It should be stressed that during training only
MSLE is evaluated, but the accuracy is not. Embedding
accuracy into training by, e.g., using a preceding classifi-
cation model may be pursued in a future investigation.

D. Random forest regressor

A powerful alternative to neural networks is the ran-
dom forest regressor technique [93, 94]. They are known
to be much faster and much easier to tune with respect
to hyperparameters than neural networks. But they have
a limited capacity due to a lack of the depth that deep
neural networks can have [95].

Random forest regressors are a decision-tree-based en-
semble method. Briefly explained, the algorithm hierar-
chically separates the input space into subsets with re-
spect to a specific feature and relation operators, i.e., it
creates a decision tree. For each node (i.e., subset), the
most important feature and the best split are controlled
by a loss function; here we use MSE (for all models). To
improve generalization, several of these trees are built
and the final prediction is obtained as an average over all
trees.

For our random forest regressors, we made use of the
scikit-learn implementation [96] with 100 trees in the for-
est. In accordance with the ‘modern’ interpolation hy-
pothesis [88], we barely regularize our models (i.e., the
whole training dataset is used for building each tree and
nodes are expanded in an unrestricted manner). This
enables us to perfectly fit the training data and does not
bound the test performance by a poor training perfor-
mance. The only regularization performed here is that
only Nf?aot?lis — 6 features are randomly chosen at each
node. As for the neural networks, these regularizations
are determined by ‘trial and error’ with respect to the
model performance, the time efficiency, and the robust-
ness to different training sets. Performance is measured
in the same manner as for the neural networks (using
MSE for the E model and MSLE for the P, AM, and F
models).

E. Machine-learning-based state-resolved Monte
Carlo implementation

The state-resolved Monte Carlo calculations, described
in Sec. ITA, are computationally very expensive for sit-
uations in which a large number of orbitals is involved

(i.e., for heavier atoms or when resonant excitations are
included), caused by an exponentially large number of
states involved in the x-ray multiphoton ionization dy-
namics (see Ref. [44]). We approach this challenge by em-
ploying a machine learning strategy to support the high-
level Monte Carlo calculations. For this, we implement
a machine-learning-based version of the state-resolved
Monte Carlo implementation within XATOM [73], which
closely couples the Monte Carlo calculation (Sec. ITA)
with a machine learning algorithm (Sec. IIC or IID). Tt is
sketched in Fig. 1. The state-resolved Monte Carlo imple-
mentation written in Fortran is coupled to the machine
learning part written in Python via FIFO (first-in-first-
out) special files. This enables a hand-in-hand exchange
of the most important information or data without stor-
ing them physically on the disk.

We separate the Monte Carlo part into two iterative
phases: (i) an initial training and test phase and (i)
a final production phase. During the first NtraLJ Monte
Carlo trajectories (training and test phase, where TT in-
dicates training and test phase), the electronic structure
as well as the atomic transition parameters, i.e., tran-
sition energies, cross sections and rates, are explicitly
calculated via quantum-state-resolved first-principle cal-
culations. The calculated atomic transition parameters
are collected and redirected to a FIFO file as a combined
set of training and test data. The data are split up ran-
domly into training data (85% of the data calculated)
and test data (15% of the data calculated). Based on
these data, the machine learning models are trained and
their performance is evaluated. The trained model pa-
rameters are redirected into another FIFO file. Based on
them the machine learning algorithms are reconstructed
in Fortran. This does not include any complicated train-
ing procedures. It just means evaluating the sequence of
linear functions and activation functions, whose parame-
ters are determined by the read-in parameters. Using re-
constructed machine learning models eliminates the need
for further calls of the machine learning part in Python.
Hence, no further communication between Fortran and
Python, requiring further data sharing, is necessary in
the final production phase. In the production phase a lot
of further Monte Carlo trajectories (Nj;194) are run until
either the maximum number of trajectories is reached or
CSDs are converged. During these Monte Carlo trajecto-
ries no further quantum-state-resolved first-principle cal-
culations are performed. On the one hand, atomic tran-
sition parameters stored in memory are employed. This
is the case when the transition at hand, for which we
want to know the atomic transition parameters, has al-
ready been visited during the training and test phase and
atomic transition parameters are stored. On the other
hand, atomic transition parameters for transitions newly
visited and, thus, not stored yet are predicted on the fly
via the reconstructed machine learning models.

Results of x-ray multiphoton ionization dynamics cal-
culations in Sec. IIIC are obtained in a way that all
Monte Carlo trajectories add up to a total number of
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TABLE III. Number of training and test Monte Carlo tra-
jectories Ng;} as well as the corresponding training and test
data set size (Nja,) for the three different cases considered
in this work for argon at 5 keV.

label N;‘EEJ N(gfa
(i) 4000 2 686 711
(ii) 9000 4 680 860
(iii) 28000 8 965 379
80000 (= N&E} + Nt};;‘j)d).

III. RESULTS AND DISCUSSION

We examine the performance of the machine-learning-
based state-resolved Monte Carlo implementation for
atomic argon at a photon energy of 5 keV. For such a
photon energy, in principle all electrons can be ionized
via x-ray sequential multiphoton ionization, i.e., a re-
peated sequence of one-photon ionization and inner-shell
relaxation events. Therefore, no resonant excitation is
involved in the x-ray multiphoton ionization dynamics.
Following Ref. [44], we use a temporal Gaussian pulse en-
velope with 10 fs (full width at half maximum) and a flu-
ence of 1012 photons/um?. Neither relativistic effects[34],
nor nonsequential two-photon absorption, higher-order
many-body processes such as shake-off, nor volume in-
tegration are included in the calculations (see Ref. [44]
and references therein). Due to the lack of volume in-
tegration, a quantitative comparison with experimental
results is not directly possible.

A. Data collection

Before exploring the machine-learning-based results,
we start by considering how to choose the number of
Monte Carlo trajectories for the training and test phase
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FIG. 2. Number of atomic transition parameters Ngata col-
lected as a function of the number of Monte Carlo trajectories
Niraj for argon at 5 keV. The arrows indicate the three dif-
ferent cases considered in this work (see Table III).

and the production phase. For the machine-learning-
based state-resolved Monte Carlo implementation, the
quantity that can easily be tuned in order to determine
the size of the training and test data sets is the number
of Monte Carlo trajectories during the training and test
phase (Ntrl;;-;) Figure 2 shows the number of atomic tran-
sition parameters (Ngata) collected as a function of the
number of Monte Carlo trajectories (Niraj). Of course,
this relation slightly varies from one Monte Carlo calcu-
lation to another, but, nonetheless, Fig. 2 gives a very
good orientation on Ngata. As can be seen, for argon
at 5 keV, Ngata is very high (~ 107). This is related
to the huge number of individual states involved in the
calculations (Sec. ITA). Moreover, Ngat. seems not to
be saturated as Ni;aj increases, within the range of Niyaj
we used (up to Niraj=80000). This makes successfully
training the machine learning models a tough task, as
we are going to demonstrate in Sec. IIIB. On the other
hand, this presents a situation in which a successful im-
plementation of machine learning can be really helpful,
in contrast to light atoms like neon. For our studies in
Secs. III B and III C, we have chosen three different Nggj
such that they cover a wide range of the curve in Fig. 2,
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FIG. 3. Convergence behavior of argon CSDs as a function

of the number of Monte Carlo trajectories Niaj. Results are

obtained with the state-resolved Monte Carlo implementation

of Ref. [44] (no machine learning). The error bars indicate the
statistical error.

ie., NTT=4000, 9000, and 28000 as listed in Table III.

traj

To gain an overview of the remaining number of Monte
Carlo trajectories in the production phase, in Fig. 3
we show argon CSDs obtained using the state-resolved
Monte Carlo implementation (no machine learning) [44]
with different numbers of Monte Carlo trajectories Niyaj.
The error bars represent the statistical error estimate of
the Monte Carlo calculation for each charge state ¢, given
by € = \/Py(1 — P;)/(Niraj — 1), where, P, is the pop-
ulation probability of the charge state q. Note the pro-
portionality of the Monte Carlo error to 1/1/Niraj — 1,
causing comparably large errors for small Niy,j. Figure 3
demonstrates that for 10000 Monte Carlo trajectories the
CSD is almost converged. It should be mentioned that
more Monte Carlo trajectories are necessary for conver-
gence of state-resolved quantities such as spectra. Due
to this and in order to be safely sure that Monte Carlo
errors are sufficiently small for our purpose, we utilize
here 80000 Monte Carlo trajectories in total (i.e., train-
ing and test plus residual production trajectories). Note
further that CSDs in Fig. 3 are converged when Ngaa
is still far away from a saturation point (Fig. 2). This
demonstrates that only a small fraction of frequently vis-
ited transitions is critical for the ionization dynamics cal-
culations. This is also the reason why the Monte Carlo
method is so powerful [38] and why the machine-learning-
based state-resolved Monte Carlo implementation works
(see Sec. II1C).

B. Performance of machine learning models

Let us next discuss machine learning results for argon,
employing both neural networks (Sec. IIC) and random
forest regressors (Sec. IID). We examine also how the
machine learning performance depends on the training
set size. In particular, the three different data set sizes
(i.e., combined set of training and test data) listed in
Table III are considered. According to the feature for
the kind of process (p =1,2,or 3; see Sec. IIB), each data
set is separated into the individual subdata sets for the P
model (25%—28% of NLT ), the AM model (57%—59% of
NIT), and the F model (15% — 16% of NI ). For the
E model, duplications with respect to the energy label
are removed. (Thus, 29% — 35% of N1 are left over
for the subdata sets for the E model.) Moreover, 85% of
randomly selected data are employed as data for training
a model, while the remaining 15% serve as test data.

To inspect the model’s performance on the unseen test
data set, we show three dimensional scatter plots of pre-
dicted data in Figs. 4(a)—(d) and 5(a)-(d) and the dis-
tribution of absolute or logarithmic errors in Figs. 4(e)-
(h) and 5(e)-(h). For Figs. 4(a)—(d) and 5(a)—(d), the
vertical axis is the predicted energy in eV [(a)] or the
predicted cross section [(b)] or rate [(¢)—(d)] in logarith-
mic scaling, while the horizontal axis is the underlying
calculated value. For both, 100-eV bins [(a)] or 0.1 bins
[(b)—(c)], respectively, are used. The colorbar shows the
relative number of scatter points, scaled by 1072 [(a)]
or 1073 [(b)—(c)], i.e., the number of pairs of calculation
and prediction within a bin divided by the total num-
ber of test data for the model in question. The three di-
mensional plots supplement the common two dimensional
scatter plots by futher information about the distribution
of scatter points, which is sensible when the number of
data is large, i.e., here, in the order of 10°. Moreover,
for brevity, only results for the case (ii) are given in the
figures (for the other cases see below in the context of
Table IV).

It becomes evident from Figs. 4(e) and 5(e) that tran-
sition energies are mostly predicted with better than
10-eV accuracy [i.e., the sum of error bars within the
10-eV window yields 99% (NN) or 94% (RF) for case
(ii)] and with at most around 50 eV difference. The good
energy model’s performance is underlined by Figs. 4(a)
and 5(a), looking very similar to the identity mapping of
yPred = yeale Tn contrast to the energy model, cross sec-
tion and rate models perform less accurately for argon.
Most predictions [85%-98% for case (ii)] deviate from
the calculation by less than an order of magnitude [see
1-order windows in Figs. 4(f)—(h) and 5(f)—(h)] . How-
ever, deviations up to 4 orders of magnitude are possible.
Comparably poor predictions can occur for all cross sec-
tions or rates, even though higher calculated values seem
to be a little bit less inaccurate [see Figs. 4(b)—(d) and
5(b)—(d)]. Nonetheless, of course, a better accuracy is
actually needed the higher the calculated cross section
or rate. Using MSLE loss during training, the models



|/
0 2500 5000

ycalc V)

0.3 ©F

f 10eV
NN

Probability
o
N

o©
—

0.0
-50 0

| g 50
ycac _ ypre V)

O [~
-1

0 -8 6 -4

log(y®3+¢)

0.20

@ P 1 order 0.3(g) AM 1 order () F 1 order

(NN) NN) | | 0.6 (NN)
0.15

0.2

0.10 0.4
0.05 0.1 0.2
0.00 0 0.0

420 2 4 4 2 0 2 4 2 2
log(y®®%+e) - log(y*®*+¢) log(y®™°+e) - log(y®®*+) log(y*™*+e) - log(y?"*+¢)

FIG. 4. Performance of the neural networks (NN) in terms of scatter plots [(a)—(d)] and of error histograms [(e)—(h)]: (a)
and (e) the transition energy (E) in eV, (b) and (f) the photoionization cross section (P) in logarithmic scaling, (c¢) and (g)
the Auger-Meitner decay rate (AM) in logarithmic scaling, and (d) and (h) the fluorescence rate (F) in logarithmic scaling,

respectively. The colorbar in (a)—(d) shows the relative number of pairs (y°!¢, yP™?), scaled by 10~

The dotted white line indicates the identity mapping. We consider the test data set of case (ii).

5000
a

2500

pred

§|500
¥y (eV)

5000

©®E i1 10ev
(RF) P+

Probability
o
N

o
—

o
o

-50I 0 g 50
yCa C _ ypre (e\/)

* [(a)] or 107 [(b)~(d)].

calc -2
Iog(y +e)

0.20

0.3 (9) AM 1 order (h F 1 order

0.2
0.10 0.4
0.05 0.1 0.2
0.00 0.0 0.0

4 20 2 4 4 2 0 2 4 2 2

log(y®¥®+e) - log(yP™®%+¢) log(y®®®+c) - log(y®®%+e)  log(y®®C+e) - log(yP™®%+e)

FIG. 5. Performance of the random forest regressors (RF) in terms of scatter plots [(a)—(d)] and of error histograms [(e)—(h)]:
the panels show the same quantities as in Fig. 4.



TABLE IV. Test error statistics for the neural networks (NN)
and random forest regressors (RF): MSE loss (LM5F) [Eq. (5)]
in eV? for the energy model (E) and MSLE loss (LMS"F)
[Eq. (6)] for the photoionization cross section (P), Auger-
Meitner decay rate (AM), and fluorescence rate (F) models,
evaluated on the test data sets of all three cases (Table III).
For the AM and F models, additionally the accuracy (A)
[Eq. (7)] is given, in %.

NN RF
model LorA (i) (i) (i) (1) (1) (i)
E Lress 131 122 94 304 27.0 24.8
P Lress 042 041 043 036 032 0.26

AM Lrrest, 0.44 046 049 032 032 0.29
Atest  87.7 86.6 843 87.7 876 87.9

F Lrrest 0.13 0.14 0.15 0.11 0.10 0.09
ATest 909 91.0 89.5 89.0 89.3 89.6

cannot respect this in the model training and evalua-
tion. Moreover, we observe that fluorescence rates are
predicted the best, while Auger-Meitner decay rates pos-
sess the largest deviations. Interestingly, for photoioniza-
tion and Auger-Meitner decay, there is a tendency that
predictions are smaller than the calculated cross sections
or rates [see Figs. 4(b)—(c) and 5(b)—(c)].

It is also worthy to note that 84%-91% of transitions
for Auger-Meitner or fluorescence decay are classified
as allowed or (quasi-)forbidden when also being allowed
or (quasi-)forbidden, respectively. The test accuracy is
listed in Table IV for both the neural network and the
random forest regressor. For the other transitions that
are classified incorrectly, the corresponding rates, i.e.,
those the transition actually has or the one the actu-
ally (quasi-)forbidden transition receives, are mostly also
small (~ 1075 a.u.). Some of them are, however, compa-
rably high with up to 1073 a.u. (not shown for brevity).
Recall that these wrongly classified transitions are not
included in any other quantity to measure the test per-
formance, like the error distribution, to stress that this
does not cause alone the deviations from a perfect per-
formance.

Next, we examine how the machine learning models’
performance depends on the training set size. Table IV
reports test loss and accuracy for all three data set cases
in Table III and for both the neural network and the ran-
dom forest regressor. (For more details on these quanti-
ties see Sec. IIC.) More training data improve the en-
ergy model, which is already quite good, whereas the
cross section and rate models only marginally profit for
the random forest regressor or do not profit at all for the
neural networks. A possible explanation for the lack of
improvement, especially for the neural networks, might
be a too low model capacity that slows down the gain
of better generalization (see below in the context of Ta-
ble VI). In this context, it is important to emphasize
that using more data for training does not have an es-
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TABLE V. Training times, real and CPU, in minutes for the
neural networks (NN) and the random forest regressors (RF)
for all four models. We consider the training data sets of all
three cases (Table III).

real time (min) CPU time (min)

data set model NN RF NN RF
(1) E 92 5 2674 5
P 112 4 4339 4
AM 228 9 8904 9
F 40 2 1549 2
(ii) E 153 9 4401 9
P 187 8 7233 8
AM 399 22 15733 22
F 102 4 3965 4
(iii) E 247 16 7526 16
P 346 15 13833 15
AM 691 45 28627 45
F 211 8 8523 8

TABLE VI. Training and validation performance of the neu-
ral networks (NN): MSE loss (LMSE) [Eq. (5)] in eV? for the
energy model (E) and MSLE loss (LMS'™®) [Eq. (6)] for the
photoionization cross section (P), Auger-Meitner decay rate
(AM), and fluorescence rate (F) models, evaluated on the
training (Tr) and validation (V) data sets of all three cases
(Table III). For the AM and F models, additionally the ac-
curacy (A) [Eq. (7)] is given, in %.

model  LorA () NN (i) NN (i) NN
E L 8.2 8.0 5.9
Ly 11.6 10.7 8.1

P Lt 0.22 0.29 0.36
Ly 0.42 0.42 0.43

AM Ly 0.39 0.42 0.48
Are 91.4 88.7 85.3

Ly 0.44 0.46 0.50

Ay 87.8 86.6 84.3

F Ly 0.09 0.11 0.13
Are 96.5 95.2 91.9

Ly 0.14 0.14 0.15

Av 90.9 90.6 89.6

sential impact on the machine learning model’s perfor-
mance, but enhances training times more than linearly.
Table V compares training times for all three different
data set cases (Table IIT). Calculations are performed on
AMD EPYC 7302 16-Core processors with a maximum
number of 64 virtual cores (threads).

We now contrast the neural network and the random
forest regressor. As expected, both behave generally
fairly similarly (compare Figs. 4 and 5). From the results
in Table IV, we conclude that neural networks are better
suited for predicting energies. However, for cross sections
and rates, the random forest regressors outperform the
neural networks. Random forest regressors for cross sec-
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FIG. 6. Loss curves of the neural networks (NN): loss eval-
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four models. In (a) the MSE loss [Eq. (5)] in Z-score scaling
and in (b)—(d) the unscaled MSLE loss [Eq. (6)] is shown. We
consider the training data set of case (ii).

tion and rate predictions exhibit an improvement with
more data, while those for neural networks decline. As
a consequence, this increases the difference between neu-
ral networks and random forest regressors with increas-
ing training set sizes. Most importantly, neural networks
have a critical disadvantage. Training is very expensive
(see Table V). Tt can cost several hours for a single neu-
ral network, though multiple cores are utilized (real time
<< CPU time). Unlike neural networks, random forest
regressors are trained in less than an hour even for the
largest training sets on a single core (real time = CPU
time).

In order to complete our understanding of the neu-
ral networks’ performance, we finally briefly examine the
training and validation losses in Table VI. (For the ran-
dom forest regressors, those investigations are not possi-
ble since training data are interpolated and, thus, always
have near zero loss.) Note that per default in TensorFlow
some of the data are separated from the training data
and are used as validation data. Here, we use 10% of
the training data for validation. The results in Table VI
demonstrate that the capacities of the cross section and
rate models are too low to nearly perfectly fit the train-
ing data. The task of predicting cross sections and rates
is too complex. This can be seen by the large training
losses, increasing with more training data. As a conse-
quence, validation and test data cannot be predicted very
accurately either. Whether a network architecture with
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a higher model capacity can significantly overcome this
limitation remains an open question at the moment (that
might be answered in the future). However, it is most
likely that a higher model capacity will lead to a sub-
stantial increase in training time. Therefore, the chosen
network architecture is a compromise between computa-
tional effort and numerical accuracy. In contrast, for the
energy model, the capacity seems to be sufficient since
predicting transition energies is an easier task. In addi-
tion, Fig. 6 shows the evolution of training and validation
losses with the number of epochs trained for the case (ii)
only. We remark that using dropout during training in-
creases the training loss and, hence, it is normal that
validation losses can be smaller than training losses. For
the final loss, dropout is not included. Thus, the training
losses in Table VI are smaller than in Fig. 6. Moreover,
we note that the losses for the Auger-Meitner decay and
fluorescence rate models are clearly larger in Fig. 6 than
in Table VI due to wrongly classified transitions. As can
be seen, loss curves are quite smooth and almost con-
verged. Even early stopping before the maximal number
of 1200 epochs due to increasing validation loss is possi-
ble [see Fig. 6(d)]. Especially for the cross section and
rate models, the losses decrease only by a few percent
(< 10%) during the last 600 epochs. As a consequence,
training longer would not have a notable effect on train-
ing, validation, and test performances. Since training
times are approximately linear in the number of epochs
trained, we may, on the contrary, save some training time
by using fewer epochs without a noticeable reduction in
performance.

C. Results for machine-learning-based
state-resolved Monte Carlo calculations

Having investigated the performance of different ma-
chine learning models in the previous subsection, we now
study the performance of x-ray multiphoton ionization-
dynamics calculations carried out with the machine-
learning-based state-resolved Monte Carlo implementa-
tion introduced in Sec. ITE. For simplicity, we only em-
ploy the neural networks of Sec. ITI B as machine learning
models in the production phase. Random forest regres-
sors perform comparably to neural networks, as shown
in Sec. III B. However, they are a bit harder to embed
in the state-resolved Monte Carlo implementation due to
the large number of individual trees, which all need to
be redirected to the FIFO file and reconstructed in For-
tran (see Sec. IIE). We compare machine-learning-based
state-resolved Monte Carlo calculations for argon with
state-resolved Monte Carlo calculations using the imple-
mentation introduced in Ref. [44] (in which no machine
learning is employed).

Figure 7 compares argon CSDs for all three previously
considered data set cases, which correspond to differ-
ent numbers of training and test Monte Carlo trajecto-
ries (Table IIT). All machine-learning-based CSDs match
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FIG. 8. Similar to Fig. 7, but all atomic transition parameters
are predicted by the previously trained neural networks for
the different data sets (Table III).

the overall behavior of the fully-calculated CSD (i.e., in
which no machine learning is employed). Especially for
low charge states (i.e., ¢ < 7), the agreement is good for
all three machine-learning cases. For larger charge states,
however, deviations beyond the Monte Carlo errors can
be observed, which are enhanced the smaller the num-
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ber of training and test Monte Carlo trajectories [cases
(i) and (ii)]. This is because of the machine-learning
predictions of atomic transition parameters for the tran-
sitions newly visited in the production phase. As seen
in Sec. III B, the predictions for cross sections and rates
made by the neural networks are not very accurate. Since
the transitions newly visited in the production phase are
not directly sampled from the same distribution as the
training and test data used in Sec. III B, they are gen-
erally expected to be predicted even less accurately (not
shown for brevity) [49, 80]. The fact that the machine-
learning-based CSDs are, nonetheless, quite good relies
on the use of atomic transition parameters already calcu-
lated. For ~ 14% [case (i)], ~ 24% [case (ii)], or ~ 40%
[case (iii)] of individual initial states all possible atomic
transition parameters are calculated in the training and
test phase, and are used in the production phase (see
Sec. ITE). It also explains the improvement with more
training and test Monte Carlo trajectories attributed to
more calculated atomic transition parameters.

To illustrate this point, in Fig. 8, we show compar-
isons of CSDs where the machine-learning-based CSDs
are obtained by using only machine learning predictions
for atomic transition parameters. In particular, we do
not use the machine-learning-based implementation as
described in Sec. I1 E, combining both calculated and pre-
dicted atomic transition parameters. Instead, for Fig. 8,
only the production phase is run with all atomic transi-
tion parameters being predicted by the previously trained
neural networks. As can be seen, when only predicted
atomic transition parameters are used the overall be-
havior of the machine-learning-based CSDs still roughly
matches that of the fully-calculated CSD. But the agree-
ment is no longer close to being quantitative.

In this context, let us briefly come back to the ran-
dom forest regressors (Sec. III B), which perfectly inter-
polate the training data. Thus, employing random for-
est regressors, it would barely make a difference whether
atomic transition parameters already calculated are used
or whether all atomic transition parameters are predicted
by the random forest regressors. In particular, Figs. 7
and 8 would look very similar to each other and this
would make the above investigation impossible. More-
over, having at hand the atomic transition parameters
already calculated in the training and test phase (see
Sec. IIE), we do not consider this as an advantage of the
random forest regressors.

Figure 9 shows the photoelectron [(a)—(b)], the Auger-
Meitner electron [(¢)—(d)], and the fluorescence [(e)—(f)]
spectra with an energy resolution of 1 eV. At that en-
ergy resolution, the Auger-Meitner electron and the x-ray
fluorescence spectra form a quasi-continuum over most
parts of the energy ranges shown. Likewise to the CSD,
fully-calculated results obtained with the implementation
of Ref. [44] are compared to machine-learning-based re-
sults obtained with the implementation of Sec. IIE, as
well as those that are based only on machine learning
predictions. (For brevity, only case (i) of Table III is
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FIG. 9. Comparison of machine-learning-based (ML-based) and fully-calculated spectra for (a)—(b) photoelectron (P), (c)—
(d) Auger-Meitner electron (AM), and (e)—(f) fluorescence (F). Calculations obtained with the state-resolved Monte Carlo
implementation without machine learning [44] (blue) are compared to those obtained with the machine-learning-based state-
resolved Monte Carlo implementation [Sec. IIE] for case (i) in Table III (magenta). Additionally, results with all atomic
transition parameters being predicted by the previously trained neural networks (pink) are given. The peak labels are explained

in Tables VII-IX.

shown.) Some of the dominant peaks that can be as-
signed to at most two dominant processes are labeled
with roman numbers; the corresponding transitions are
specified in Table VII [for Figs. 9(a)—(b)], Table VIII [for
Figs. 9(c)—(d)], and Table IX [for Figs. 9(e)—(f)].

Most importantly, we observe in Fig. 9 that the
machine-learning-based spectra obtained with the im-
plementation of Sec. IIE (magenta lines) are in over-
all very good agreement with the fully-calculated ones,
apart from small details. This is due to the fact that
spectral features are dominated by peaks belonging to
very low charge states (see Tables VII-IX). But for low
charge states, the corresponding atomic transition pa-
rameters are mostly all already calculated in the training
and test phase. Thus, they are unaltered by machine
learning and the good agreement mainly relies on atomic
transition parameters already calculated. The small de-
viations in the spectra are caused by the influence of the
error between predictions and calculations on the x-ray
multiphoton ionization dynamics; here mostly indirectly
via the impact on the population of the underlying initial
states, so that there is no energy shift [e.g., peak (ix) in
Fig. 9(d) or peak(v) in Fig. 9(f)]. Shifts in energy affect
peaks that are too small to be visible.

Let us also examine the machine-learning-based spec-

tra obtained by using predicted atomic transition param-
eters only (pink lines in Fig. 9). Interestingly, even in this
situation the spectra roughly capture the overall behavior
of the fully-calculated spectra. Indeed, peak positions are
shifted in energy, however, mostly within less than 10 eV
(see Tables VII-IX and Sec. ITI B). Also the peak heights
do not match very well. Nonetheless, the neural networks
are good enough to recognize general tendencies in the
x-ray multiphoton ionization dynamics, e.g., more Auger-
Meitner decay than fluorescence decay [compare peak (i)
in Fig. 9(c) to peak (i) in Fig. 9(e)]. Furthermore, it
is worth mentioning that for high charge states LLM
Auger-Meitner decay [i.e., 2s — 2p3l (I = s,p)] is often
actually forbidden due to calculated transition energies
being smaller than zero. However, the neural network
is unable to learn this. Consequently, actually forbid-
den transitions can take place in the machine-learning-
based calculations [see, e.g., peak (x) in Fig. 9(d)]. In
the present situation, this has only a minor impact.

Next, we investigate the time effort of the produc-
tion phase in the machine-learning-based state-resolved
Monte Carlo implementation (Sec. IIE). Table X lists
the computational times for a production phase consist-
ing of 5000 Monte Carlo trajectories based on the three
cases in Table III. For comparison, a fully-calculated
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TABLE VII. Peak assignment in the photoelectron spectra [Figs. 9(a) and 9(b)]. Calculated transition energies, £, and
transition energies predicted by the neural network [case (i)], Efir:dj ¢, are listed for the underlying process.
label process ES¥e 5 (eV) E?fe_flf (eV)
(i) Ar, 15%25%2p%3573p° (19) — 15'2572p%3523p° (29) 1792 1784
(ii) Ar'T 15%25%2p53523p° (2P) — 1s'25%2p° 3523p (P) 1737 1734
Ar3T) 15225%2p53s'3p* (°D) — 15'25%2p%3s'3p* (D) 1731
(iii) Ar'T 15'2522p53523p°% (25) — 15°25%2p%3523p° (19) 1555 1593
(iv) Ar?t) 15225%2p*35%3p° (1 D) — 15'25%2p*3523p° (2D) 1672 1671
Ar?T) 1522522p*35%3p° (1S) — 15725%2p*35%3p° (29) 1679
(v) Ar, 1522522p%35%3p5 (19) — 15225'2p%3523p% (29) 4675 4666
(vi) Ar, 15%2522p%3523p° (1S) — 1522522p°35%3p5 (2P) 4751 4746
(vii) Ar, 1522522p°35%3p5 (19) — 1522522p%35'3p° (29) 4968 4961
(viii) Ar, 15%2522p°35%3p° (19) — 15%25%2p%35%3p° (*P) 4987 4967
(ix) Ar'T) 1512522p535%3p8 (25) — 15725'2p%35%3p° (19) 4629 4638

TABLE VIIIL. Peak assignment in the Auger-Meitner electron spectra [Figs. 9(c) and 9(d)].

Ecalc

751+, and transition energies predicted by the neural network [case (i)], &

Calculated transition energies,

pred are listed for the underlying process.

Ii—1f
label process ES¥ 5 (eV) E;rflf (eV)
(i) Ar' T 1512522p835%3p° (25) — 15225%2p*35%3p° (1 D) 2647 2634
(ii) Ar”, 15'25%2p53523p° (2S5) — 15225'2p°35%3p° (1 P) 2561 2564
(iii) Artt) 15'2522p%35%3p° (29) — 15%25%2p%35%3p° (1S) 2498 2503
(iv) Ar'T) 1512522p535%3p8 (25) — 15225%2p°35%3p° (1 D) 2902 2903
(v) Ar®T 15925%2p53523p°% (1S) — 15'25%2p*3523p° (°D) 2765 2762
(vi) Ar'T) 1522572p535%3p8 (25) — 15225%2p°35'3p° (1 P) 27 16
(vii) Ar*T | 1522572p%3523p° (1 P) — 15%25%2p*3523p® (°P) 36 32
(viii) Ar?T) 1522522p*35%3p° (1 D) — 15%25%2p°3523p* (2D) 211 212
(ix) Ar7T) 1522522p°35%3p° (2P) — 15225%2p%35%3p° (19) 98 104
(x) Ar'ot ) 15225'2p%35'3p° (3D) — 1522522p*35°3p° (°D) <0 47

state-resolved Monte Carlo calculation (i.e., using the im-
plementation in Ref. [44]) is also included with the same
number of 5000 Monte Carlo trajectories. All calcula-
tions are performed on Intel Xeon E5-2630L with a single
core. A significant reduction in the computational times
can be found for the production phases. Using atomic
transition parameters already calculated and machine
learning predictions for those not already calculated is
on average 6 to 10 times faster than the full calculation.
The more atomic transition parameters are already cal-
culated, the faster is the production phase [compare cases
(i)—(iii) in Table X] since fewer predictions made by the
machine learning models are required. [But note that this
gain is at the expense of a more expensive training and
test phase and machine learning model training (see Ta-
ble V).] Although machine learning models are employed
in the production phase, there is still a nonnegligible time
effort of about 2 hours for just 5000 Monte Carlo trajecto-
ries. Predicting a single transition via the reconstructed

deep neural networks is indeed fast (< 5 ms). However,
predicting a huge number of transitions (order of 109) is
notably expensive.

To evaluate the overall saving in computational times
for the machine-learning-based state-resolved Monte
Carlo implementation, timings for the training and test
phase, for the training of the machine learning models,
and for the production phase must be compared to the
full state-resolved Monte Carlo calculation. However,
such timings mainly depend on the available computer
architecture (i.e., parallelization of the calculations, clus-
ter usage, number of available cores). Therefore, we do
not further discuss this point here. Having at hand Ta-
bles V and X enables us to estimate for a given computer
architecture whether the embedding of machine learning
is more time efficient than the full calculation.

Finally, another advantage of the machine-learning-
based state-resolved Monte Carlo implementation should
be stressed. In the production phase it is not necessary
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TABLE IX. Peak assignment in the fluorescence spectra [Figs. 9(e) and 9(f)]. Calculated transition energies, E7i",;, and

transition energies predicted by the neural network [case (i)], Efir:dj ¢, are listed for the underlying process.

label process ES¥C ; (eV) Ei.re_flf (eV)
(1) Ar'T) 1512522p535%3p8 (25) — 15225%2p°35%3p° (2 P) 2931 2935
(ii) Ar'T) 15'25%2p53523p°% (25) — 15725%2p%35%3p° (2 P) 3140 3153
(iii) Ar®T | 1592522p°%3523p° (1S) — 15'25%2p"3523p° (1 P) 3106 3111
(iv) Ar3T) 1512522p*35%3p° (°D) — 15%25%2p*3523p° (2D) 2973 2973
(v) Ar®T ) 15%25'2p5353p! (1 D) — 1522522p°35%3p" (2P) 359 357

to perform electronic-structure calculations [71], which
are the fundamental basis for the calculation of indi-
vidual state-to-state cross sections and transition rates.
In order to reduce the computational time, electronic-
structure information is stored in memory. However,
storing electronic-structure information for argon uses
more than 100 times more memory than for storing just
atomic transition parameters. In particular, the amount
of memory used for storing the relevant information,
i.e., electronic-structure information and atomic transi-
tion parameters, during 5000 Monte Carlo trajectories is
on the order of 10* megabytes. As a consequence, with
the machine-learning-based state-resolved Monte Carlo
implementation the memory usage can be dramatically
reduced. In particular, the amount of memory used for
storing the relevant information, i.e., only atomic transi-
tion parameters, in the production phase is on the order
of 10?2 megabytes.

IV. CONCLUSION

In this paper, we have presented a machine-learning-
based state-resolved Monte Carlo implementation for
computing x-ray multiphoton ionization dynamics us-
ing the XATOM toolkit. The objective of machine learn-
ing is here to accelerate the extremely time-consuming
state-resolved calculations of atomic transition parame-
ters. In particular, in an initial training and test phase
of the Monte Carlo calculation, quantum-state-resolved
first-principle calculations of atomic transition parame-
ters are carried out and these data serve the training and

TABLE X. Timings for the production phase of the machine-
learning-based state-resolved Monte Carlo implementation
based on the cases in Table III and for Nﬁ;‘;d = 5000. Av-
erage real times are compared to the full calculation with
Niraj = 5000 using the implementation in Ref. [44] [no ma-

chine learning (ML)].

no ML ML (i) ML (i) ML (iii)

Average

. 15h 27min
real time

2h 28min  2h 06min  1h 30min

testing of the machine learning models. The trained and
tested machine learning models are then employed in a
final production phase for predicting atomic transition
parameters for transitions newly visited in this phase.

We have compared the performance of neural networks
and random forest regressors as possible machine learning
models. Both types of machine learning models exhibit
a similar accuracy for the prediction of atomic transi-
tion parameters, though neural networks have the critical
disadvantage of very expensive training. Subsequently,
we have discussed state-resolved CSDs as well as elec-
tron and photon spectra for argon, which have not been
presented before. We compare results obtained by the
machine-learning-based state-resolved Monte Carlo im-
plementation embedding the neural networks to fully-
calculated results obtained with the implementation in
Ref. [44]. Our work demonstrates that the proposed
machine-learning-based state-resolved Monte Carlo im-
plementation works in principle and that the perfor-
mance, in terms of CSDs and spectra, is good. The
achieved level of accuracy in CSDs and spectra is satis-
factory in view of the fact that, for instance, higher-order
many-body processes are neglected [44] and that calcu-
lated cross sections and rates are not perfect either [71].
Once the machine learning models are trained, the final
production phase can be performed faster than the full
calculation. However, two main shortcomings have be-
come evident: (i) the accuracy of the machine learning
predictions is limited, especially for less likely transitions,
and (ii) training the neural networks is also quite time-
consuming.

In summary, let us briefly answer the question whether
state-resolved ionization dynamics calculations can be ac-
celerated by the presented machine-learning-based state-
resolved Monte Carlo implementation. When a com-
puter cluster is available, running several fully-calculated
Monte Carlo calculations—each with only a small num-
ber of trajectories—in parallel on several cluster nodes is
indeed the more powerful method. This is attributed to
large training times of the machine learning models, lim-
ited prediction accuracy, and the need for fully-calculated
training and test Monte Carlo trajectories anyhow in the
machine-learning-based calculations. But, if the compu-
tational resources are restricted, i.e., only a single or few
computers and/or rather limited memory are available,



then the machine-learning-based state-resolved Monte
Carlo implementation is a promising option. After an
expensive training and test phase, state-resolved ioniza-
tion dynamics calculations can be performed more eas-
ily for a sufficiently large number of Monte Carlo tra-
jectories. Another optional application of the machine-
learning-based state-resolved Monte Carlo implementa-
tion would be its use in an x-ray parameter scan, i.e.,
performing a lot of x-ray multiphoton ionization dynam-
ics calculations with different fluence and/or pulse dura-
tion values. In this case, the advantage is that machine
learning models need to be trained only a single time and
can then be reused in all other calculations. Note that for
a scan of the photon energy, this would not be possible
because cross sections are photon energy specific.

There are several promising perspectives for future de-
velopments of the machine-learning-based state-resolved
Monte Carlo implementation. First, an important point
is further feature engineering by adding more features
and then sending the resulting feature vectors through,
for instance, autoencoders [97] or using principal com-
ponent analyses [80]. A better suited feature represen-
tation might help the machine learning models to learn
and, thus, can improve the performance. Other interest-
ing directions for improving the machine learning mod-
els would be ensemble methods, like gradient boosted
trees [98], batch normalization [80], advanced random
forest methods [95], inclusion of feedback, like in recur-
rent neural networks [80], or combining the power of neu-
ral networks and random forest regressors [94, 99]. Train-
ing times for neural networks are often reduced by using
GPUs instead of CPUs [80]. A further point is that for
a new Monte Carlo calculation using a different atomic
species and/or a different photon energy in principle the
machine learning models have to be reoptimized on the
newly collected atomic transition parameters. A question
here is whether information gained from previous Monte
Carlo calculations can be transferred to a new Monte
Carlo calculation and whether this can accelerate train-
ing and/or improve the machine learning models’ per-
formance. Lastly, another interesting aspect is that the
main computational effort of the state-resolved Monte
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Carlo calculations is due to the extremely huge number of
atomic transition parameters that need to be calculated
or predicted. But are atomic transition parameters for all
transitions really required? Or could a machine-learning
model maybe select the most dominant transitions for a
visited initial state, so that predictions (or calculations)
could be restricted to this subset of dominant transitions
(in spirit of proposals made in Refs. [69, 70, 100] for con-
figuration interaction calculations)? Such developments
are crucial before many practical applications can really
profit from the presented machine-learning-based state-
resolved Monte Carlo implementation.

An attractive application of great scientific interest
is the extension of the machine-learning-based state-
resolved Monte Carlo implementation to atoms as heavy
as xenon. Especially for heavy atoms, relativistic,
quantum-electrodynamic, and finite-nuclear-size effects
play an important role [34]. It is, therefore, desirable to
embed them into the quantum-state-resolved electronic-
structure calculations [44, 71], though this further ex-
pands substantially the number of atomic transition pa-
rameters required and the computational effort. Conse-
quently, accelerating huge-sized ionization dynamics cal-
culations will be a promising perspective for the realiza-
tion of more accurate calculations. It is also an impor-
tant step toward the quantitative exploration of a wide
variety of different atomic systems and toward the op-
timization of x-ray beam parameters for applications of
x-ray free-electron lasers.
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