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We propose an ansatz quantum circuit for the variational quantum eigensolver (VQE), suitable
for exploring the phase structure of the multi-flavor Schwinger model in the presence of a chemical
potential. Our ansatz is capable of incorporating relevant model symmetries via constrains on
the parameters, and can be implemented on circuit-based as well as measurement-based quantum
devices. We show via classical simulation of the VQE that our ansatz is able to capture the phase
structure of the model, and can approximate the ground state to a high level of accuracy. Moreover,
we perform proof-of-principle simulations on superconducting, gate-based quantum hardware. Our
results show that our approach is suitable for current gate-based quantum devices, and can be
readily implemented on measurement-based quantum devices once available.

I. INTRODUCTION

In recent years, methods originating from quantum in-
formation theory have emerged as a promising alternative
for numerically investigating lattice field theories [1–5].
In particular, methods based on tensor network states, a
family of entanglement-based ansätze for the wave func-
tion of a quantummany-body system, have demonstrated
their potential for overcoming the limitations of conven-
tional Monte Carlo (MC) methods [1, 2]. Here, successful
computations have been performed for lattice field theo-
ries in the presence of a topological term [6–10] or chemi-
cal potentials [11–13], regimes in which conventional MC
approaches suffer from the sign problem.

Moreover, quantum technologies heavily improved dur-
ing recent years. This might provide another option for
computationally investigating lattice field theories, even
in potentially highly-entangled regimes such as out-of-
equilibrium dynamics where tensor networks have lim-
ited applicability [14]. Using the Hamiltonian lattice for-
mulation allows for directly simulating the theory under
consideration on a quantum device, thus bypassing limi-
tations of classical numerical methods. Several proof-of-
principle experiments have demonstrated that such pa-
rameter regimes can indeed be investigated via simula-
tions on quantum computers [3–5].

In order to fully utilize the potential of currently
available noisy intermediate-scale quantum (NISQ) de-

vices, appropriate algorithms in combination with cir-
cuit optimization and error mitigation techniques are re-
quired [15–22]. The VQE has proven itself to be par-
ticularly suited for NISQ devices [23, 24]. This hy-
brid quantum-classical algorithm tries to approximate
the ground state of a given Hamiltonian using a para-
metric quantum circuit as a variational ansatz, whose
parameters are optimized in order to minimze the energy
expectation value of the Hamiltonian. In order to achieve
a good performance of the VQE, it is essential to choose a
suitable ansatz. For an implementation on current NISQ
devices, the variational ansatz must be sufficiently sim-
ple while still being expressive enough to reach the target
ground state in the Hilbertspace. Additionally, it is de-
sirable to incorporate the relevant symmetries of the un-
derlying Hamiltonian in the variational ansatz to reduce
the number of parameters in the classical optimization
of the VQE. Very recently, it was shown that combin-
ing all these techniques carefully, a VQE for a (1+1)-
dimensional gauge theory could be realized on hardware
with up to 100 qubits [25].

In this work, we present an ansatz which is suitable for
VQE of the multi-flavor Schwinger model in the presence
of a chemical potential. This model is, in general, inac-
cessible with MC methods in the presence of a chemical
potential due to the sign problem. Focusing on the case
of three fermion flavors, we develop a suitable variational
ansatz circuit for the model. We show via classical sim-
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ulations of the VQE that the ansatz is able to capture
the relevant physics at a low circuit depth. Additionally,
we demonstrate how to incorporate symmetries of the
model in our ansatz, reducing the number of variational
parameters in the classical optimization. Besides present-
ing our ansatz in the circuit model, we demonstrate that
it also lends it to the formalism of measurement-based
quantum computation [26, 27] allowing for a future im-
plementation on a one-way quantum computer. Finally,
we show proof-of-principle results on IBM’s circuit-based
superconducting quantum hardware.

The paper is organized as follows. In Sec. II, we briefly
introduce the staggered Hamiltonian lattice formulation
for the multi-flavor Schwinger model. Moreover, we dis-
cuss its symmetries and the phase structure in the pres-
ence of a chemical potential. We proceed with presenting
our ansatz for the VQE in Sec. III. Finally, we show the
performance results of the ansatz in various parameter
regimes in Sec. IV, before concluding in Sec. V.

II. MODEL AND METHODS

A. Lattice Hamiltonian and spin formulation

For our study, we use a Hamiltonian lattice formulation
of the Schwinger model with staggered fermions, which
reads [11, 28, 29]

H =− i

2a

N−2
∑

n=0

F−1
∑

f=0

(

φn,fe
iθnφn+1,f − h.c.

)

+

N−1
∑

n=0

F−1
∑

f=0

(mf (−1)n + κf )φn,fφn,f

+
g2a

2

N−2
∑

n=0

L2
n,

(1)

for F fermion flavors on a lattice with N sites and spac-

ing a. In the expression above, φn,f (φ†n,f ) are single-

component fermionic fields annihilating (creating) a par-
ticle of flavor f at site n. The parameter g denotes the
coupling, while mf and κf correspond to the bare mass
and the bare chemical potential for flavor f . The oper-
ators Ln and eiθn act on the links in between two ad-
jacent matter sites n and n + 1, where Ln and θn are
canonical conjugate variables fulfilling the commutation
relation [θn, Ln′ ] = iδnn′ . Thus, in the eigenbasis of the
electric field operator Ln, e

iθn corresponds to the lower-
ing operator. The first line of the Hamiltonian in Eq. (1)
represents the kinetic term, corresponding to fermionic
hopping while simultaneously chaning the electric field.
The first summand in the second line corresponds to the
mass and the chemical potential term whereas the second
one represents the electric energy. The physical states |ψ〉
of the Hamiltonian in Eq. (1) have to fulfill Gauss law,

i.e., they have to be eigenstates of the operators

Gn = Ln − Ln−1 −Qn. (2)

The operators Gn are the generators for time-
independent gauge transformations, and Qn =
∑F−1

f=0 φ
†
n,fφn,f − F

2 (1 − (−1)n) is the staggered charge.
The integer eigenvalues qn of Gn correspond to static
external charges. For the rest of the paper, we choose
to work in the sector of vanishing external charges,
Gn |ψ〉 = 0, for each site n.
For open boundary conditions, Eq. (2) allows us to

reconstruct the electric field values purely from the
fermionic charge content of the sites after fixing the
value l−1 of the electric field on the left boundary, Ln =
l−1 +

∑n

k=0Qk. Inserting this into Eq. (1), applying a
residual gauge transformation, and making the resulting
Hamiltonian dimensionless [9, 29, 30], we find

W =− ix

N−2
∑

n=0

F−1
∑

f=0

(

φ†n,fφn+1,f − h.c.
)

+

N−1
∑

n=0

F−1
∑

f=0

(µf (−1)n + νf )φ
†
n,fφn,f

+

N−2
∑

n=0

(

n
∑

k=0

Qk + l−1

)2

.

(3)

In the expression above, we use the dimensionless quan-
tities x ≡ 1/(ag)2, µf ≡ 2

√
xmf/g, and νf ≡ 2

√
xκf/g.

The parameter l−1 represents a constant background
field, and corresponds to the lattice discretization of a
topological θ-term [6, 8, 31]. Here, we focus on the case
of a vanishing background field and set l−1 = 0 for the
rest of the paper. Note that in Eq. (3) the gauge fields
are no longer present. We therefore obtain a formulation
directly restricted to the gauge invariant subspace of the
theory. This comes at the expense of creating long-range
interactions between the fermionic degrees of freedom.
In this work, we aim at studying the phase structure

of the model using VQE. In order to measure the expec-
tation value of the dimensionless Hamiltonian W on a
quantum device, we choose to translate the fermionic de-
grees of freedom into spins using a Jordan-Wigner trans-
formation [11, 29]. The fermionic operators appearing in
the kinetic term, the mass term and the electric energy
term of the Hamiltonian are mapped according to

φ†n,fφn+1,f → σ+
n,f (iZn,f ) . . . (iZn+1,f−1)σ

−
n+1,f , (4)

φ†n,fφn,f → 1

2
(Zn,f + 1) . (5)

In the expression above, σ± ≡ (X ± iY )/2 and X, Y
and Z are the usual Pauli matrices. Inserting this trans-
formation into Eq. (3), we obtain a spin chain of length
NF . This allows for obtaining the expectation value of
the Hamiltonian by arranging the different Pauli terms
into commuting groups and measuring them individually.
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Regarding the symmetries of our model Hamiltonian,

note thatW conserves the total charge Qtot =
∑N−1

n=0 Qn.
We will therefore restrict ourselves to the sector of van-
ishing total charge, Qtot |ψ〉 = 0. Additionally, for
an odd number of flavors F and the special choice of
νf = −νF−1−f , µf = µF−1−f , f ≤ ⌊N/2⌋, the spin
Hamiltonian is invariant under flipping all spins, followed
by a spatial reflection around the lattice center. The cor-
responding unitary S implementing the transformation
acts on the Pauli matrices occurring in the Hamiltonian
as

SAjS
† = (XAX)NF−1−j , (6)

where A ∈ {X,Y, Z, σ±}. Note here that the index of
the spin operators does not correspond to the fermionic
sites, since each of the fermion flavors within a site is
mapped onto a spin degree of freedom by the Jordan-
Wigner transformation.

B. Mass renormalization for staggered fermions

In general, the bare fermion mass that is chosen as a
parameter in the lattice discretization of a field theory
does not correspond to the physical fermion mass, and
one has to consider renormalization effects to determine
the physical fermion mass. Recently, an analytical pre-
diction for the additive mass renormalization of staggered
fermions was derived for the lattice Schwinger model
with periodic boundary conditions, both for the single-
flavor [32] and the multi-flavor [33] case. This derivation
was based on enforcing a discrete spurious chiral symme-
try given by a translation of one lattice site followed by
shifting θ by π. The resulting mass shift (MS) in units
of the coupling is given by [32, 33]

MS

g
=

F

8
√
x
. (7)

Thus, the renormalized fermion mass mr is not equal to
the bare lattice fermion mass mf defined in the original
lattice Hamiltonian (1), but receives an additive mass
renormalization, such that (mr/g) = (mf/g) + (MS/g).
More generally, the additive mass renormalization for

the Schwinger model can be determined numerically us-
ing the method proposed in Refs. [9, 34], i.e., by iden-
tifying the point mr/g = 0 at which the electric field
density vanishes, independently of the boundary condi-
tions. This approach was demonstrated for the single-
flavor Schwinger model in Refs. [9, 34], where it was
found that the method can significantly improve the con-
vergence towards the continuum limit. Moreover, for suf-
ficiently large volumes, V = N/

√
x & 30, the results for

the mass shift obtained with open boundary conditions
were shown to agree with the theoretical prediction for
periodic boundary conditions [32]. Note that this tech-
nique can be straightforwardly extended to the multi-
flavor Schwinger model, because the condition that the

electric field density vanishes at the pointmr/g = 0 holds
true also for multiple fermion flavors [31]. In particular,
the method can be readily implemented in a VQE setting
by measuring the electric field density in the ground state
as a function of the lattice mass mf/g and by determin-
ing the point at which the electric field density vanishes.

C. Phase structure of the model

For the massless case, the phase structure of the con-
tinuum model in a finite volume with periodic boundary
conditions has been determined analytically in Refs. [35,
36]. It was found that the model undergoes an infinite
number of first-order phase transitions, whose locations
only depend on the difference of the chemical potentials
νf −νf ′ with respect to a single, arbitrarily chosen flavor
f ′. Each of the phases is characterized by the particle
numbers

Nf =

N−1
∑

n=0

φ†n,fφn,f (8)

of the different flavors f . For two flavors of fermions,
Ref. [11] showed that the picture also qualitatively per-
sists on a finite lattice with open boundary conditions.
Moreover, when taking the continuum limit, the results
obtained from the lattice calculations agreed with the
theoretical prediction of Ref. [35]. Additionally, it was
demonstrated for the case of two fermion flavors that
these first-order phase transitions also occur for nonvan-
ishing bare fermion mass [11], and also for quantum elec-
trodynamics in 2+1 dimensions [37]. Note that the phase
structure of the model can in general not be assessed nu-
merically with conventional MC methods, as these suffer
from a sign problem as soon as

∑

f κf 6= 0.
A theoretical prediction for the locations of the phase

transitions in the lattice model can be obtained following
the ideas in Ref. [11]. Since the Hamiltonian in Eq. (3)
commutes with Nf for each flavor, the energy eigenstates
are simultaneously eigenstates of the particle number op-
erators. Consequently, W has a block-diagonal form in
which each block can be labelled with (N0, · · · , NF−1).
In order to derive a theoretical prediction for the phase
transition points it will be convenient to rewrite W as

W =

F−1
∑

f=0

νfNf +Waux, (9)

where Waux contains all parts of W which are indepen-
dent of νf [11]. The minimum eigenvalue in a given block
is then

E(N0,··· ,NF−1)(ν0, · · · , νF−1) =

=

F−1
∑

f=0

νfNf + Emin(Waux|(N0,··· ,NF−1)),
(10)
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where Emin(Waux|(N0,··· ,NF−1)) is a block-dependent con-
stant. Therefore, measuring the ground-state energy
E(N0,··· ,NF−1)(ν0, · · · , νF−1) as well as all particle num-
bers Nf at one point (ν0, · · · , νF−1) is sufficient to de-
termine this constant for the whole block. We can now
simplify Eq. (10) to the case of three fermion flavors,
F = 3, considered throughout the rest of the paper and
set ν2 = −ν01, which yields

E(N0,N1,N2)(ν0, ν1) =ν0(N0 −N2) + ν1N1

+ Emin(Waux|(N0,N1,N2)).
(11)

In the following, we will consider ν0 as a variable to scan
through the phase diagram and ν1 to be a constant. This
allows us to derive an analytical expression for the tran-
sition points ν0|jump. During a first-order phase transi-
tion, it becomes energetically favorable to go from one
block characterized by (N0, N1, N2) to a neighbouring
block with (N̄0, N̄1, N̄2). Directly at the critical point,
the energy levels of the neighbouring blocks are degener-
ate, E(N0,N1,N2)(ν0, ν1) = E(N̄0,N̄1,N̄2)(ν0, ν1). Using this

equality together with Eq. (11), we obtain the following
expression for the critical point:

ν0|jump=
Emin(Waux|(N̄0,N̄1,N̄2))− Emin(Waux|(N0,N1,N2))

(N0 − N̄0)− (N2 − N̄2)

− ν1(N1 − N̄1)

(N0 − N̄0)− (N2 − N̄2)
.

As outlined above, the block-dependent constants
Emin(Waux|(N0,N1,N2)) can be obtained from measuring
E(N0,N1,N2) and Nf at an arbitrary point (ν∗0 , ν

∗
1 ) inside

each block. In particular, the point can be far away from
the transition point. Considering this in the above equa-
tion, we find for the transition point

ν0|jump=
E(N̄0,N̄1,N̄2)(ν̄

∗
0 , ν1)− ν̄∗0 (N̄0 − N̄2)

(N0 − N̄0)− (N2 − N̄2)

− E(N0,N1,N2)(ν
∗
0 , ν1)− ν∗0 (N0 −N2)

(N0 − N̄0)− (N2 − N̄2)
.

(12)

Alternatively, we can label each block of W with the
differences in the particle numbers ∆Nf = Nf−Nf ′ with
respect to a single, arbitrarily chosen flavor f ′ and the
total particle number

∑

f Nf . Equation (12) can thus
be rewritten in terms of the particle number differences
∆Nf = Nf −N1 for f ′ = 1, yielding

ν0|jump=
E(∆N̄0,∆N̄1,∆N̄2)(ν̄

∗
0 , ν1)− ν̄∗0 (∆N̄0 −∆N̄2)

(∆N0 −∆N̄0)− (∆N2 −∆N̄2)

− E(∆N0,∆N1,∆N2)(ν
∗
0 , ν1)− ν∗0 (∆N0 −∆N2)

(∆N0 −∆N̄0)− (∆N2 −∆N̄2)
.

(13)

1 This restriction is contained in the considered symmetry sub-
space as introduced in Sect. II A, see Eq. (6), but it is also used
in our simulations outside of this symmetry subspace for simplic-
ity (cf. Sec. IVC).

We will use Eq. (13) in Sec. IVD to predict the relevant
phase transition points from our hardware data.

III. VQE PROTOCOL

In the following, we will introduce our parametric
ansatz circuit for the VQE protocol. After introducing
the ansatz, we will show how to incorporate the symme-
tries of the model into the ansatz, which allows for reduc-
ing the number of variational parameters. We will give a
general description of the ansatz, which can be straight-
forwardly realized on any circuit-based quantum device,
in Sect. IIIA. Additionally, we show that our ansatz lends
itself also to the one-way model of quantum computation
in Sect. III B, which opens up the possibility of imple-
menting our algorithm on measurement-based quantum
computers in the future.

A. Quantum circuit model

The VQE utilizes a parametric circuit ansatz real-
ized on a quantum device, in conjunction with a closed
feedback-loop with a classical optimization routine find
an approximation for the ground state of our model
Hamiltonian W [23]. The quantum device is capable of
efficiently preparing a set of trial states {|Ψ(θk)〉} de-
pending on the variational parameters θk ∈ R

p, start-
ing from a fixed initial state |Ψ0〉. After the state
preparation, the energy 〈Ψ(θk)|W |Ψ(θk)〉 is measured
and handed to the classical optimizer as a cost func-
tion. The optimizer attempts to minimize this cost func-
tion by iteratively adjusting the algorithm parameters,
θk → θk+1, and handing them back to the quantum de-
vice (cf. Fig.1a)).

The ansatz we propose, consists of a series of L layers.
Each layer l realizes the following unitary operation on
the NF qubits corresponding to a system with N sites

Ul(θ
l) =

NF−1
∏

i=0

Rz
i (θ

l
NF−1+i)

∏

i odd

Uxy
i,i+1(θ

l
i)

∏

i even

Uxy
i,i+1(θ

l
i),

(14)

where

Uxy
ij (θ) = e−i θ

2
(XiXj+YiYj), (15)

Rz
i (θ) = e−i θ

2
Zi . (16)

and θ
l is a real vector representing the parameters of

layer l. One layer thus consists of two-qubit entangling
gates arranged in an odd-even pattern, followed by local
Rz-rotations on all qubits (cf. Fig. 1b) for an illustration).
All L layers are applied sequentially to the initial state
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and the second qubit is measured in the rotated X-basis,
{|θ±〉}. As illustrated in Fig. 6a) and 6b), one has to
change the sign of the measurement in the rotated X-
basis based on the outcome of the Pauli-X measurement,
which corresponds to an adaptive measurement. The
state of the third output qubit after both measurements
are performed is given by

Xm1Zm0HRz(α)H |ψ〉 = Xm1Zm0Rx(α) |ψ〉 , (25)

where two leftmost Pauli operations in the equation
above depend on the measurement outcomes m0, m1 ∈
{0, 1} of the first two qubits. Note that, Fig. 6b) looks
very similar to Fig. 3b) with only the measurement ba-
sis of qubits 0 and 1 being interchanged, which in turn
makes the rotated X-basis measurement adaptive. The
adaptive choice is indicated by the possible minus sign of
the rotated basis angle depending on the measurement
outcome m0 in Fig. 6a). The required graph state with
the necessary measurement pattern is shown in Fig. 6b).
Note that for α = −π/2 the rotated basis {|α±〉} co-
incides with the Pauli Y eigenbasis {|L〉 , |R〉} and that
Rx(π/2) = XRx(−π/2). Hence, for the implementation
of Rx(±π/2) the rotated basis measurement becomes a
non-adaptive Pauli Y measurement with an additional
Pauli X correction for Rx(+π/2) (cf. Fig. 6c)).
Next, the teleportation scheme of Uxz

ij (θ) is shown in
Fig. 7, together with the corresponding one-way compu-
tation. The final state of the output qubits 6, 7 in Fig. 7a)
is given by

|ψout〉67 = UPCU
xz
67 (θ) |ψin〉67 , (26)

with the Pauli correction

UPC =
(

Xm2Zm0+m4

)

6

(

Xm5+m2+m3Zm4+m1

)

7
. (27)

The one-way computation of the whole ansatz layer can
be obtained by concatenating the individual one-way
computations of Uxz

ij (θ), Rx(±π/2) and Rz(θ) according
to Eq. (14) and Fig. 5.

Finally, Fig. 8 shows our algorithm layer for six input
qubits in the gate set {H, Rz, Rx, CZ} (cf. Fig. 8a)) and
the corresponding one-way implementation (cf. Fig. 8b)).
In Fig. 8b), the adaptive basis choice and the resulting
Pauli corrections of the whole algorithm layer can be ob-
tained by concatenating the output states of the indi-
vidual sub-operations in the one-way scheme accordingly
and than permute all Pauli corrections to the outer left.
Note that in general all non-adaptive measurements in
a one-way quantum computation can be performed in
parallel and in the first step of the computation. All
adaptive measurements have to be performed in a tem-
poral order prescribed by the measurement dependencies
in the adaptive basis choice. The number of qubits Qowqc

in the one-way computation of the whole ansatz layer
scales with the number of input qubits NF (qubits on
which the ansatz layer is applied) as

Qowqc = 13×NF − 6. (28)

Thus, a large number of qubits is required to implement
our ansatz layer in a one-way computation, which is cur-
rently beyond any physical realization of graph states.
In principle, one could reduce the number of qubits
by using the fact that the non-adaptive Pauli measure-
ments in a one-way quantum computation correspond to
a Clifford operations [38, 40]. Hence, they can all be
performed in parallel in the first step of the computa-
tion [38, 40]. Furthermore, instead of performing those
Pauli measurements on the graph state, they can also be
efficiently simulated classically beforehand thanks to the
Gottesman-Knill Theorem [40]. More specifically, since
all Pauli measurements on a graph state yield a state
which is local-unitary-equivalent (LU-equivalent) to an-
other graph state, the classical simulation of Pauli mea-
surements on graph states can be reformulated in a set
of graph modification rules. These transform the ini-
tial graph state to the graph state LU-equivalent to the
state after the Pauli measurements [43, 45]. Since all the
previously measured qubits are disentangled from the re-
sulting graph state, this procedure reduces the size of the
required graph state in the experiment. On the result-
ing state, only the adaptive measurements (non-Clifford
part of the computation) have to be executed. However,
as pointed out in Ref. [38], the resulting graph states
get additional (possibly long-ranged) CZ connections be-
tween the remaining qubits, which destroy the geometric
structure within the graph representation. While such
unstructured graph states require a smaller number of
vertices and correspondingly a smaller number of qubits,
they become increasingly complicated to realize experi-
mentally with growing system size due the unstructured
CZ connections.

IV. RESULTS

To benchmark our ansatz, we consider the Schwinger
model with three fermion flavors with flavor-dependent
chemical potentials. We simulate our VQE protocol clas-
sically assuming a perfect quantum computer without
any hardware or shot noise, and compare the results
to the ones obtained from exact diagonalization. As a
classical optimizer for the VQE, we choose the L-BFGS
algorithm [46]. For each value of the chemical poten-
tial, ten different runs of the simulation with randomly
chosen initial parameters are carried out. Subsequently
we post-process our data, and mark simulations with a
final energy that is 30% higher than the lowest value
obtained within the ten runs as outliers. To assess the
performance of our ansatz, we study various parameter
regimes, in particular, we investigate (i) vanishing bare
fermion mass (ii) non-vanishing bare fermion mass, and
(iii) a sign-problem afflicted regime for conventional MC
simulations. In addition, to demonstrate the feasibility
of our approach on quantum hardware, we also carry out
inference runs for six qubits (corresponding to N = 2 for
F = 3) on an actual IBM quantum hardware. To this
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end, we take the optimal variational parameters obtained
from the classical simulations for two ansatz layers and
execute a pre-transpiled version of our ansatz with those
parameters, measuring the relevant observables directly
on the quantum device.
Since our primary focus lies on investigating the per-

formance of our ansatz for the lattice system and do not
intend to take the continuum limit, we will not take the
additive mass renormalization into account in our simu-
lations.

A. Vanishing bare fermion mass

To begin with, we focus on the case of vanishing bare
fermion mass, µf = 0, and consider ν2 = −ν0 with
ν1 = 0. Thus, we are in a regime in which the model
has the reflection symmetry discussed in Sec. II, allowing
us to constrain the parameters in the ansatz according
to Eqs. (17) and (18). Figure 9 shows our results for the
ground state energy, the particle number and the overlap
obtained by simulating the VQE classically for system
sizes N = 2, 4 and 6, which correspond to 6, 12 and 18
qubits respectively. For the entire range of system sizes
and chemical potentials we study, we generally observe
good agreement between the VQE results and the exact
solution computed with exact diagonalization. Focusing
on the overlap with the exact solution in Figs. 9(c), 9(f)
and 9(i), we see that in most cases we achieve overlaps
with the exact ground state of more than 95%, and the
values only decrease marginally with increasing system
size, although we use a constant number of 5 layers in
the ansatz for all system sizes. The cases in which the
overlap is significantly lower than 95% correspond to out-
liers according to our criterion that the energy is at least
30% higher than the lowest one obtained within the ten
runs, as the panels for the energy in the first column of
Fig. 9 reveal. While the exact ground state energy as a
function of the chemical potential already indicates the
onset of first-order quantum phase transitions in form of
cusps, these are harder to detect from the VQE results for
the energy, as one would need an extremely fine resolu-
tion in the chemical potential. In contrast, the first-order
quantum phase transitions manifest themselves clearly in
the particle number in form of characteristic jumps when
going from one phase to another, as the panels in the
middle column of Fig. 9 show. The different phases are
all well captured by the VQE results and can be reliably
identified with a modest number of data points.
Looking at the outliers in Fig. 9, we see that these can

be easily identified via the energy and the particle num-
bers, observables which can be efficiently measured on
actual quantum hardware. They consistently show non-
integer particle numbers and high energy values, giving
a strong indication that they are unphysical. This is
confirmed by the almost vanishing overlaps with the ex-
act ground states. Moreover, within our ten experiments
only a small fraction of simulations produced outliers,

showing that that our setup is very likely to produce a
good approximation for the ground state of the model.
Consequently, in the regime of vanishing bare fermion
mass our VQE protocol is able to reliably capture the
phase structure of the model, and occasional outliers can
be determined easily from the observables considered.

B. Non-vanishing bare fermion mass

As a next step, we consider a nonzero bare fermion
mass of µf = 0.1 while still keeping ν1 = 0 and ν2 = −ν0.
Moreover, we focus on the largest system size we stud-
ied in the previous section, N = 6 corresponding to 18
qubits. Figure 10 shows our VQE results for the ground-
state energy and the particle number in comparison to
the results from exact diagonalization as well as the over-
lap with the exact solution. Focusing on the exact re-
sults energy and the particle number in Figs. 10(a) and
10(b), we observe qualitatively the same behavior as for
the case of vanishing fermion mass, the particle number
shows again abrupt discontinuities indicating the first-
order phase transitions which are accompanied by cusps
in the energy. Our VQE results for the energy and the
particle number are in general in good agreement with
the exact solution, which is also corroborated by looking
at the overlap between the VQE solution and the exact
wave function in Fig. 10(c). Again, we are able to obtain
overlaps that are around 95% for most of the simulations
we carry out.
Similar to the previous case of vanishing bare fermion

mass, for µf = 0.1 we also see some data points that
are identified as outliers according to our criterion. A
direct comparison between Figs. 9 and 10 shows that for
µf = 0.1 we observe an even smaller fraction of sim-
ulations that produced outliers than for µf = 0, and
our VQE converges with high probability. These outliers
can again reliably be identified by looking at the physi-
cal observables, and manifest themselves in high values
for the energy and noninteger particle numbers. This is
likely caused by the classical optimization routine get-
ting stuck in a local minimum, as in these cases the final
VQE wave function has almost vanishing overlap with
the exact wave function, despite the ansatz being capa-
ble of approximating it to a good precision, as the other
successfull runs demonstrate.

C. Sign-problem afflicted regime

Next, we investigate a regime which is inaccessible with
MC methods, due to the sign problem. To this end, we
consider again µf = 0 and ν2 = −ν0, but now we ad-
ditionally set ν1 = 24. This results in

∑

f νf 6= 0, thus
triggering a sign problem for the conventional MC ap-
proach. In addition, for this case the reflection symme-
try of the model is no longer present, and we cannot
constrain the variational parameters in the ansatz any-
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Hamiltoinan by simply restricting certain parameters in
each layer. Moreover, we demonstrated that the ansatz
lends itself to both both circuit-based and measurement-
based quantum hardware.
Focusing on the case of three fermion flavors, we simu-

lated the VQE using our ansatz classically for various
parameter regimes, assuming a perfect quantum com-
puter without any noise. This performance benchmark
of the ansatz demonstrated that it can approximate the
ground state of the model well, even in regimes where
conventional MC methods suffer from the sign problem.
Specifically, we can resolve the first-order phase transi-
tions that are present in the model and reliably capture
the phase structure with our ansatz circuit. Moreover,
our results for different system sizes indicate that the
number of layers required to achieve a good performance
scales only moderately with the number of lattice sites
in the model.
To demonstrate the suitability of our ansatz for gate-

based quantum hardware, we performed inference runs
on IBM’s superconducting quantum devices. To this end
we used a set of parameters obtained from classically sim-
ulating the VQE, and prepared the resulting state on the
quantum hardware to measure the energy and the par-
ticle number. To compensate for part of the hardware
noise, we used ZNE to mitigate some of these effects. De-
spite ZNE not being able to fully mitigate the hardware
noise, we were still able to reliably identify the differ-
ent phases in the investigated area of the phase diagram
via the particle numbers. Moreover, we were able to de-
termine the critical points using the quantum hardware
results. The resulting numerical values lie very close to
the exact critical points, allowing us to determine them
with good accuracy from the noisy hardware results.
In our proof-of-principle run on a quantum hardware

we only used ZNE to mitigate hardware noise, yielding
results are in good agreement with the theoretical ex-
pectation. Thus, carefully using more elaborate error

mitigation methods such as Pauli twirling, readout error
mitigation, measurement error mitigation and dynamical
decoupling, we expect that our ansatz can be scaled up
to larger system sizes on current quantum hardware. A
systematic investigation of our ansatz for larger system
sizes and performing a full VQE on quantum hardware
will be done in future work. Moreover, while the effects
of hardware noise and error mitigation can be straight-
forwardly studied in the circuit model, error mitigation
for measurement-based quantum computers is a lot less
explored. In the future, we also plan to investigate the
potential of our ansatz for realistic, noisy measurement-
based devices and to explore the possibility to mitigate
errors on such quantum hardware.

ACKNOWLEDGMENTS

S.K. acknowledges financial support from the Cyprus
Research and Innovation Foundation under the project
“Quantum Computing for Lattice Gauge Theories
(QC4LGT)”, contract no. EXCELLENCE/0421/0019.
This work is funded by the European Union’s Horizon
Europe Framework Programme (HORIZON) under the
ERA Chair scheme with grant agreement no. 101087126
and by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) – Project-ID 429529648 –
TRR 306 QuCoLiMa (“Quantum Cooperativity of Light
and Matter”). This work is supported with funds from
the Ministry of Science, Research and Culture of the
State of Brandenburg within the Centre for Quantum
Technologies and Applications (CQTA).
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puting the mass shift of wilson and staggered fermions in
the lattice schwinger model with matrix product states,
Phys. Rev. D 108, 014516 (2023).

[10] L. Funcke, K. Jansen, and S. Kühn, Exploring the cp-
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Renormalization of the Schwinger Model with Wilson
and Staggered Fermions in the Hamiltonian Lattice For-
mulation, PoS (LATTICE2022), 046 (2023).

[35] R. Narayanan, Two flavor massless schwinger model on
a torus at a finite chemical potential, Phys. Rev. D 86,
125008 (2012).

[36] R. Lohmayer and R. Narayanan, Phase structure of
two-dimensional qed at zero temperature with flavor-
dependent chemical potentials and the role of multi-
dimensional theta functions, Phys. Rev. D 88, 105030
(2013).

[37] J. Bender, P. Emonts, and J. I. Cirac, Variational monte
carlo algorithm for lattice gauge theories with continuous
gauge groups: A study of (2 + 1)-dimensional compact
qed with dynamical fermions at finite density, Phys. Rev.
Res. 5, 043128 (2023).

[38] F. K. Marqversen and N. T. Zinner, Applications and
resource reductions in measurement-based variational
quantum eigensolvers, Quantum Science and Technology
8, 045001 (2023).

[39] M. A. Nielsen, Optical quantum computation using clus-
ter states, Phys. Rev. Lett. 93, 040503 (2004).

[40] R. R. Ferguson, L. Dellantonio, K. Jansen, A. A. Balushi,
W. Dür, and C. A. Muschik, Measurement-Based Vari-
ational Quantum Eigensolver, Phys. Rev. Lett. 126,
220501 (2021).

[41] A. Chan, Z. Shi, L. Dellantonio, W. Dür, and
C. A. Muschik, Hybrid variational quantum eigensolvers:
merging computational models, arXiv:2305.19200 ,
(2023).

[42] M. A. Nielsen, Cluster-state quantum computation, Re-
ports on Mathematical Physics 57, 147 (2006).

[43] P. Kok and B. W. Lovett, Introduction to Optical
Quantum Information Processing (Cambridge University
Press, Cambridge New York, 2010).

[44] A. Smith, M. S. Kim, F. Pollmann, and J. Knolle, Simu-
lating quantum many-body dynamics on a current digi-
tal quantum computer, npj Quantum Information 5, 106
(2019).

[45] M. Hein, J. Eisert, and H. J. Briegel, Multiparty entan-
glement in graph states, Phys. Rev. A 69, 062311 (2004).

[46] J. Nocedal and S. J. Wright, Numerical Optimization
(Springer New York, NY, 2006).

[47] Error suppression and error mitigation



17

with qiskit runtime, https://qiskit.

org/ecosystem/ibm-runtime/tutorials/

Error-Suppression-and-Error-Mitigation.html,
accessed: 2023-09-26.


