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We propose an ansatz quantum circuit for the variational quantum eigensolver (VQE), suitable
for exploring the phase structure of the multi-flavor Schwinger model in the presence of a chemical

potential.

Our ansatz is capable of incorporating relevant model symmetries via constrains on

the parameters, and can be implemented on circuit-based as well as measurement-based quantum
devices. We show via classical simulation of the VQE that our ansatz is able to capture the phase
structure of the model, and can approximate the ground state to a high level of accuracy. Moreover,
we perform proof-of-principle simulations on superconducting, gate-based quantum hardware. Our
results show that our approach is suitable for current gate-based quantum devices, and can be
readily implemented on measurement-based quantum devices once available.

I. INTRODUCTION

In recent years, methods originating from quantum in-
formation theory have emerged as a promising alternative
for numerically investigating lattice field theories [1-5].
In particular, methods based on tensor network states, a
family of entanglement-based ansétze for the wave func-
tion of a quantum many-body system, have demonstrated
their potential for overcoming the limitations of conven-
tional Monte Carlo (MC) methods [1, 2]. Here, successful
computations have been performed for lattice field theo-
ries in the presence of a topological term [6-10] or chemi-
cal potentials [11-13], regimes in which conventional MC
approaches suffer from the sign problem.

Moreover, quantum technologies heavily improved dur-
ing recent years. This might provide another option for
computationally investigating lattice field theories, even
in potentially highly-entangled regimes such as out-of-
equilibrium dynamics where tensor networks have lim-
ited applicability [14]. Using the Hamiltonian lattice for-
mulation allows for directly simulating the theory under
consideration on a quantum device, thus bypassing limi-
tations of classical numerical methods. Several proof-of-
principle experiments have demonstrated that such pa-
rameter regimes can indeed be investigated via simula-
tions on quantum computers [3-5].

In order to fully utilize the potential of currently
available noisy intermediate-scale quantum (NISQ) de-

vices, appropriate algorithms in combination with cir-
cuit optimization and error mitigation techniques are re-
quired [15-22]. The VQE has proven itself to be par-
ticularly suited for NISQ devices [23, 24]. This hy-
brid quantum-classical algorithm tries to approximate
the ground state of a given Hamiltonian using a para-
metric quantum circuit as a variational ansatz, whose
parameters are optimized in order to minimze the energy
expectation value of the Hamiltonian. In order to achieve
a good performance of the VQE, it is essential to choose a
suitable ansatz. For an implementation on current NISQ
devices, the variational ansatz must be sufficiently sim-
ple while still being expressive enough to reach the target
ground state in the Hilbertspace. Additionally, it is de-
sirable to incorporate the relevant symmetries of the un-
derlying Hamiltonian in the variational ansatz to reduce
the number of parameters in the classical optimization
of the VQE. Very recently, it was shown that combin-
ing all these techniques carefully, a VQE for a (1+1)-
dimensional gauge theory could be realized on hardware
with up to 100 qubits [25].

In this work, we present an ansatz which is suitable for
VQE of the multi-flavor Schwinger model in the presence
of a chemical potential. This model is, in general, inac-
cessible with MC methods in the presence of a chemical
potential due to the sign problem. Focusing on the case
of three fermion flavors, we develop a suitable variational
ansatz circuit for the model. We show via classical sim-



ulations of the VQE that the ansatz is able to capture
the relevant physics at a low circuit depth. Additionally,
we demonstrate how to incorporate symmetries of the
model in our ansatz, reducing the number of variational
parameters in the classical optimization. Besides present-
ing our ansatz in the circuit model, we demonstrate that
it also lends it to the formalism of measurement-based
quantum computation [26, 27] allowing for a future im-
plementation on a one-way quantum computer. Finally,
we show proof-of-principle results on IBM’s circuit-based
superconducting quantum hardware.

The paper is organized as follows. In Sec. 11, we briefly
introduce the staggered Hamiltonian lattice formulation
for the multi-flavor Schwinger model. Moreover, we dis-
cuss its symmetries and the phase structure in the pres-
ence of a chemical potential. We proceed with presenting
our ansatz for the VQE in Sec. III. Finally, we show the
performance results of the ansatz in various parameter
regimes in Sec. IV, before concluding in Sec. V.

II. MODEL AND METHODS
A. Lattice Hamiltonian and spin formulation

For our study, we use a Hamiltonian lattice formulation
of the Schwinger model with staggered fermions, which
reads [11, 28, 29]
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for F' fermion flavors on a lattice with N sites and spac-
ing a. In the expression above, ¢y ¢ ((bl f) are single-
component fermionic fields annihilating (creating) a par-
ticle of flavor f at site n. The parameter g denotes the
coupling, while m¢ and kf correspond to the bare mass
and the bare chemical potential for flavor f. The oper-
ators L,, and en act on the links in between two ad-
jacent matter sites n and n + 1, where L, and 6,, are
canonical conjugate variables fulfilling the commutation
relation [0, L] = i6pns. Thus, in the eigenbasis of the
electric field operator L,, e?» corresponds to the lower-
ing operator. The first line of the Hamiltonian in Eq. (1)
represents the kinetic term, corresponding to fermionic
hopping while simultaneously chaning the electric field.
The first summand in the second line corresponds to the
mass and the chemical potential term whereas the second
one represents the electric energy. The physical states |1))
of the Hamiltonian in Eq. (1) have to fulfill Gauss law,

i.e., they have to be eigenstates of the operators

Gn = Ln - Ln—l - Qn (2)
The operators G, are the generators for time-
independent gauge transformations, and @, =

Zf;(} ¢L,,f¢"»f — (1= (=1)") is the staggered charge.
The integer eigenvalues ¢, of G, correspond to static
external charges. For the rest of the paper, we choose
to work in the sector of vanishing external charges,

n [t) =0, for each site n.

For open boundary conditions, Eq. (2) allows us to
reconstruct the electric field values purely from the
fermionic charge content of the sites after fixing the
value [_; of the electric field on the left boundary, L, =
l_1+ Y ;_oQk. Inserting this into Eq. (1), applying a
residual gauge transformation, and making the resulting
Hamiltonian dimensionless [9, 29, 30], we find
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In the expression above, we use the dimensionless quan-
tities z = 1/(ag)?, uy = 2\/xmy/g, and vy = 2\/Tky/g.
The parameter [_; represents a constant background
field, and corresponds to the lattice discretization of a
topological #-term [6, 8, 31]. Here, we focus on the case
of a vanishing background field and set [_; = 0 for the
rest of the paper. Note that in Eq. (3) the gauge fields
are no longer present. We therefore obtain a formulation
directly restricted to the gauge invariant subspace of the
theory. This comes at the expense of creating long-range
interactions between the fermionic degrees of freedom.

In this work, we aim at studying the phase structure
of the model using VQE. In order to measure the expec-
tation value of the dimensionless Hamiltonian W on a
quantum device, we choose to translate the fermionic de-
grees of freedom into spins using a Jordan-Wigner trans-
formation [11, 29]. The fermionic operators appearing in
the kinetic term, the mass term and the electric energy
term of the Hamiltonian are mapped according to
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In the expression above, 0¥ = (X +iY)/2 and X, Y
and Z are the usual Pauli matrices. Inserting this trans-
formation into Eq. (3), we obtain a spin chain of length
NF. This allows for obtaining the expectation value of
the Hamiltonian by arranging the different Pauli terms
into commuting groups and measuring them individually.



Regarding the symmetries of our model Hamiltonian,
note that W conserves the total charge Qoy = ij;ol Qn-
We will therefore restrict ourselves to the sector of van-
ishing total charge, Qiot|¥Y) = 0. Additionally, for
an odd number of flavors F' and the special choice of
Vg = —Vp-1-f, Uf = HFP-1-%, f < \_N/2J7 the spin
Hamiltonian is invariant under flipping all spins, followed
by a spatial reflection around the lattice center. The cor-
responding unitary S implementing the transformation
acts on the Pauli matrices occurring in the Hamiltonian
as

SA;ST = (XAX)Np-1-j, (6)

where A € {X,Y,Z,0%}. Note here that the index of
the spin operators does not correspond to the fermionic
sites, since each of the fermion flavors within a site is
mapped onto a spin degree of freedom by the Jordan-
Wigner transformation.

B. Mass renormalization for staggered fermions

In general, the bare fermion mass that is chosen as a
parameter in the lattice discretization of a field theory
does not correspond to the physical fermion mass, and
one has to consider renormalization effects to determine
the physical fermion mass. Recently, an analytical pre-
diction for the additive mass renormalization of staggered
fermions was derived for the lattice Schwinger model
with periodic boundary conditions, both for the single-
flavor [32] and the multi-flavor [33] case. This derivation
was based on enforcing a discrete spurious chiral symme-
try given by a translation of one lattice site followed by
shifting @ by 7. The resulting mass shift (MS) in units
of the coupling is given by [32, 33]

MS F

g 8z
Thus, the renormalized fermion mass m, is not equal to
the bare lattice fermion mass my defined in the original
lattice Hamiltonian (1), but receives an additive mass
renormalization, such that (m,/g) = (mys/g) + (MS/g).

More generally, the additive mass renormalization for
the Schwinger model can be determined numerically us-
ing the method proposed in Refs. [9, 34], i.e., by iden-
tifying the point m,/g = 0 at which the electric field
density vanishes, independently of the boundary condi-
tions. This approach was demonstrated for the single-
flavor Schwinger model in Refs. [9, 34], where it was
found that the method can significantly improve the con-
vergence towards the continuum limit. Moreover, for suf-
ficiently large volumes, V = N/\/z 2 30, the results for
the mass shift obtained with open boundary conditions
were shown to agree with the theoretical prediction for
periodic boundary conditions [32]. Note that this tech-
nique can be straightforwardly extended to the multi-
flavor Schwinger model, because the condition that the

(7)

electric field density vanishes at the point m,./g = 0 holds
true also for multiple fermion flavors [31]. In particular,
the method can be readily implemented in a VQE setting
by measuring the electric field density in the ground state
as a function of the lattice mass my/g and by determin-
ing the point at which the electric field density vanishes.

C. Phase structure of the model

For the massless case, the phase structure of the con-
tinuum model in a finite volume with periodic boundary
conditions has been determined analytically in Refs. [35,
36]. It was found that the model undergoes an infinite
number of first-order phase transitions, whose locations
only depend on the difference of the chemical potentials
vy — vy with respect to a single, arbitrarily chosen flavor
f’. Each of the phases is characterized by the particle
numbers

N—-1
Ny=Y" 0l 1ns (8)
n=0

of the different flavors f. For two flavors of fermions,
Ref. [11] showed that the picture also qualitatively per-
sists on a finite lattice with open boundary conditions.
Moreover, when taking the continuum limit, the results
obtained from the lattice calculations agreed with the
theoretical prediction of Ref. [35]. Additionally, it was
demonstrated for the case of two fermion flavors that
these first-order phase transitions also occur for nonvan-
ishing bare fermion mass [11], and also for quantum elec-
trodynamics in 241 dimensions [37]. Note that the phase
structure of the model can in general not be assessed nu-
merically with conventional MC methods, as these suffer
from a sign problem as soon as Zf kg # 0.

A theoretical prediction for the locations of the phase
transitions in the lattice model can be obtained following
the ideas in Ref. [11]. Since the Hamiltonian in Eq. (3)
commutes with Ny for each flavor, the energy eigenstates
are simultaneously eigenstates of the particle number op-
erators. Consequently, W has a block-diagonal form in
which each block can be labelled with (Ng, -+, Np_1).
In order to derive a theoretical prediction for the phase
transition points it will be convenient to rewrite W as

F-1
W = ZVfo+Waux; (9)
f=0

where W,.x contains all parts of W which are indepen-
dent of vy [11]. The minimum eigenvalue in a given block
is then

E(N(Ja"' 1NF—1)(VO’ e aVFfl) =
F—1

= Z Vfo + Emin(Waux‘(No,-u,NF_1)>7
f=0

(10)



where Enin(Waux| (N, ,Np_1)) 18 @ block-dependent con-

stant. Therefore, measuring the ground-state energy
E(Ng,. .Np_y) (Yo, - -+ ,vp—1) as well as all particle num-
bers Ny at one point (vg,--- ,vp_1) is sufficient to de-

termine this constant for the whole block. We can now
simplify Eq. (10) to the case of three fermion flavors,
F = 3, considered throughout the rest of the paper and
set vo = —1g', which yields

E(N07N1,N2)(V07 Vl) :Vo(No - NQ) + VlNl
+ Emin(Waux|(No,N1,N2))'

In the following, we will consider vy as a variable to scan
through the phase diagram and 14 to be a constant. This
allows us to derive an analytical expression for the tran-
sition points u0|jump. During a first-order phase transi-
tion, it becomes energetically favorable to go from one
block characterized by (Ng, N1, N2) to a neighbouring
block with (Ng, N1, N2). Directly at the critical point,
the energy levels of the neighbouring blocks are degener-
ate, E(No,Nl,Ng) (1/0, Vl) = E(NO’NI,N&) (1/0, Vl). Using this
equality together with Eq. (11), we obtain the following
expression for the critical point:

(11)

Ein(Waux| (89,51, 55)) = Emin(Waux| (8o, 31,8,))
(No — No) — (N2 — No)
Vl(Nl - Nl)
(No — No) = (No — Ny)’

As outlined above, the block-dependent constants
Emin(Waux|(No,N:,N2)) can be obtained from measuring
E(ny,Ny,N,) and Ny at an arbitrary point (1, v7) inside
each block. In particular, the point can be far away from
the transition point. Considering this in the above equa-
tion, we find for the transition point

Vol jump=

BNy 51,8) (75, v1) — 75 (No — Na)
(No — No) — (N2 — Na)
. E(N07N1,N2)(V6<7 v1) — v5(No — Na)
(No = No) = (N2 — N2)
Alternatively, we can label each block of W with the
differences in the particle numbers ANy = Ny — Ny with
respect to a single, arbitrarily chosen flavor f/ and the
total particle number > . Ny. Equation (12) can thus

be rewritten in terms of the particle number differences
ANy = Ny — N for f' =1, yielding

EANg, AN, AN) (75, 11) — 75 (ANg — ANy)
(ANy — ANy) — (AN; — ANy)
_ Bang,ani,an,) (5, v1) — V5 (ANg — AN,)
(ANo — ANy) — (AN, —ANy)

Vol jump=

(12)

V0| jump=

(13)

1 This restriction is contained in the considered symmetry sub-
space as introduced in Sect. IT A, see Eq. (6), but it is also used
in our simulations outside of this symmetry subspace for simplic-
ity (cf. Sec. IV C).
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We will use Eq. (13) in Sec. IVD to predict the relevant
phase transition points from our hardware data.

III. VQE PROTOCOL

In the following, we will introduce our parametric
ansatz circuit for the VQE protocol. After introducing
the ansatz, we will show how to incorporate the symme-
tries of the model into the ansatz, which allows for reduc-
ing the number of variational parameters. We will give a
general description of the ansatz, which can be straight-
forwardly realized on any circuit-based quantum device,
in Sect. [T A. Additionally, we show that our ansatz lends
itself also to the one-way model of quantum computation
in Sect. III B, which opens up the possibility of imple-
menting our algorithm on measurement-based quantum
computers in the future.

A. Quantum circuit model

The VQE utilizes a parametric circuit ansatz real-
ized on a quantum device, in conjunction with a closed
feedback-loop with a classical optimization routine find
an approximation for the ground state of our model
Hamiltonian W [23]. The quantum device is capable of
efficiently preparing a set of trial states {|¥(0y))} de-
pending on the variational parameters 8, € RP, start-
ing from a fixed initial state |¥g). After the state
preparation, the energy (U(0)|W|¥(0))) is measured
and handed to the classical optimizer as a cost func-
tion. The optimizer attempts to minimize this cost func-
tion by iteratively adjusting the algorithm parameters,
0 — 041, and handing them back to the quantum de-
vice (cf. Fig.1a)).

The ansatz we propose, consists of a series of L layers.
Each layer [ realizes the following unitary operation on
the N F qubits corresponding to a system with N sites

NF-1

Ul(el) = H Rf(9§VF—1+i) H Uﬁ-&-l(of)
i=0 i odd (14)
H Uzafzerl(Hi)a

i even

where

Uzt (0) = e_i%(XiXﬁ‘Yvin)’ (15)

,

R:(0) = e 1375, (16)
and 0' is a real vector representing the parameters of
layer [. One layer thus consists of two-qubit entangling
gates arranged in an odd-even pattern, followed by local
R?-rotations on all qubits (cf. Fig. 1b) for an illustration).
All L layers are applied sequentially to the initial state



|Tq), realizing the trial state

HUl ) @),

with? 6 = (01,02, . ,oL) and U;(8') given in Eq. (14).
The whole VQE protocol is shown schematically in
Fig. la). As one can easily show, the gate operations

a)
New Parameters 851 ( Classical Optlmlzer\‘ (T(0:)[W]T(6;))

me U(0:)|W|T(0)) J‘
(" Quantum Device )
Ry
Rn
UL (05) 2
Ry
v J ;v—J
L L Layers |¥(0x)) Readout

b)

FIG. 1. a) VQE protocol using a layered circuit ansatz U;(6%)
with L layers to prepare trial states {|¥(6))} from initial
state |Wo) = [0101---1) and a classical optimizer to itera-
tively find the approximate ground state of W. Here, R}
indicate post rotations needed to measure the energy expec-
tation value (U(8;)|W|¥(6:)). b) Ilustration of the circuit
corresponding to Eq. (14) for six qubits representing three
lattice sites.

in Eq. (14) conserve the total charge. Moreover, we can
ensure that our algorithm is invariant under the symme-
try operation from Eq. (6) by restricting the parameters
in Eq. (14) to
0! =0 p 5 ; foric[0,NF—2] (17)
0! = O np 5, foric[NF—12NF 2] (18)
where Eq. (17) corresponds to the parameter restriction

for the two qubit gates, U} 11, of Uy and Eq. (18) repre-
sents the parameter restriction for the local z- rotations,

2 We consider @ and all 8" to be row vectors.

RZ, of U;. Equations (17) and (18) together reduce the
number of optimization parameters from p = 2NF — 1
per layer to p = NF, when investigating this symme-
try subspace of our model. For investigations outside of
this subspace, i.e., Ky # —Kp_1—f§ or ms # Mmp_1_5,
f < |F/2], we can simply relax the parameter restric-
tion of Eqs. (17) and (18), and treat all parameters as
independent.

To obtain a state in the correct symmetry sector, not
only the ansatz must respect the symmetry, but also the
initial state |Wy) must be in the same symmetry sector
that one targets (cf. Sect. ITA). In our simulations, we
will use the Neel state |¥g) = |0101---1), which has
vanishing total charge and remains invariant under the
symmetry operation from Eq. (6). This state can easily
be obtained from the state [00---0) the qubits are typ-
ically initialized in on circuit-based devices by flipping
the corresponding qubits with X-gates.

B. One-way model of quantum computation

Besides the widespread circuit model of quantum
computation, also measurement-based approaches exist.
While it can be shown that both models are equivalent,
such measurement-based models could provide a better
suited path to quantum computation for certain physical
platforms, e.g., photonic setups [38, 39]. In particular,
VQE protocols for measurement-based quantum hard-
ware [40] as well as hybrid approaches [11] have already
been discussed. Here, we will translate our paramet-
ric ansatz circuit into the one-way model of quantum
computation, a measurement-based model proposed in
Refs. [26, 27]. This allows for implementing our algo-
rithm on such one-way quantum computer hardware in
the future. In the following, we introduce the basics of
the one-way model of quantum computation before we
translate our ansatz circuit to this framework.

1. Basic concepts of the one-way model of quantum
computation

The basic idea of the one-way model of quantum com-
putation is to perform a series of single-qubit measure-
ments on specific qubits of a highly entangled resource
state, thereby effectively performing unitary operations
on the unmeasured qubits. Typically a special class
of entangled states called graph states are used a re-
source. As the name suggests, these can be conve-
niently represented as mathematical graph: the vertices
of the graph correspond to qubits initialized in the state
[4+) = (|0} + |1))/v/2, the edges connecting two qubits
correspond to a controlled-Z gate applied between the
qubits. For example, Fig. 2b) shows the two-qubit linear
graph state given by

CZo1 [+)g [H)1 (19)



and Fig. 3b) shows the three-qubit linear graph state
given by

CZo1CZy2 [+) g [4)1 [+)4- (20)

Here, C'Z;; represents a controlled-Z gate between qubits
i and j, and |[+), corresponds to the state of qubit 1.
Unitary operations can be implemented on the basis of
the generalized single-qubit teleportation scheme, which
is illustrated in Fig. 2a). This circuit allows for tele-

e 10 A= W
s XPHRO9), ) ——XPHRO1),

b) @ monetin (1)
Oa output qubit
D — input qubit

FIG. 2. a) Iustration of the single-qubit teleportation pro-
tocol, the upper quantum wire represents qubit 0, the lower
one qubit 1. The measurement in the computational basis
following the R*-rotation gate and the Hadamard gate in the
left part effectively corresponds to a measurement in the ro-
tated X-basis [6+) = (|0) +e 1)) /v/2 as shown in the
right part. The measurement outcome m takes binary values,
m € {0,1}. b) The corresponding graph state for [¢), = |+),
and measurement pattern for the one-way computation.

porting any single-qubit quantum state |¢b) from qubit 0
to qubit 1 while applying a z-rotation and a Hadamard
gate to [1). Additionally, if the measurement outcome
of qubit 1 is m = 1, a Pauli-X operator is added. The
application of R*(0)H together with the measurement
in the computational basis correspond to a measurement
in the rotated X-basis, |03) = (|0) e [1)) /V2 (cf.
right-hand side of Fig. 2a)). The teleportation example
shows that applying a measurement to one of the qubits
effectively implements a set of unitary operations on the
state of the qubit 0. This is because the two qubits are
entangled at the beginning with a CZ gate. After the
measurement, qubit 0 is projected to one of the basis
states and is no longer entangled with qubit 1. Moreover,
since the state of qubit 0 is in general not one of the basis
states |64}, the output in qubit 1 is probabilistic and de-
pends on the measurement outcome m obtained for qubit
0, which is reflected in the X™ in the final state.

The circuit for the teleportation scheme can also be
illustrated conveniently in form of a mathematical graph,
as shown in Fig. 2b). Choosing |1), = |+), for the input
qubit 0 of the computation, the initial entangling CZ-
gate creates a graph state, represented by two vertices
connected by an edge. Subsequently the input qubit is
measured in the |f4) basis, indicated by the color and
label in the left vertex which represents qubit 0. The
output state, i.e., the final result of the circuit, is then
contained in the vertex not carrying any color nor label,
which represents the output qubit of this computation.

This principle can now be generalized to perform com-
putational tasks involving a series of unitary operations.
In particular, also two-qubit gates can be implemented
with this method which requires two-dimensional graph
states. To this end, a sequence of single-qubit measure-
ments is applied to qubits of a graph state. These are
either performed in the eigenbasis of one of the Pauli
operators X, Y, Z or in the rotated X-basis |#1). More-
over, the measurement basis chosen at one point of the
sequence can depend on the previous measurement out-
come. Hence, in general the measurements have to be
chosen adaptively [42, 43]. At the end of the sequence of
measurements, the subset of qubits that have not been
measured, called output qubits, contains the final state.
Qubits that have been measured, have been projected to
one of the basis states and are no longer entangled with
the subset of qubits that have not been measured. As il-
lustrated already in the teleportation example, the mea-
surement outcome is generally probabilistic, resulting in
a set of possible output states for the unmeasured output
qubits. In order to make the computation deterministic,
one needs to keep track of the outcome of each individual
measurement and apply so-called Pauli corrections to the
output qubits depending on the measurement outcome.
The Pauli corrections can be shown to consist of Pauli
X- and Z-operators. Moreover, it is possible to compen-
sate for the Pauli corrections at the end of a computation
instead of after each individual measurement.

Following Refs. [42, 43], we can translate circuits into
the one-way model by decomposing the operations into
single-qubit z-rotations, R*, Hadamard gates, H, and
CZ-gates. These operations can then be further decom-
posed into single-qubit-teleportation-based schemes as il-
lustrated above (cf. Fig. 2). The required graph state as
well as all (adaptive) measurement bases and the result-
ing Pauli corrections can be extracted from this form.

2. Formulating the ansatz in the one-way model of
quantum computation

In the gate-based representation for our ansatz in
Eq.(14), we have two basic types of unitaries, single-qubit
R? rotation gates and U*¥ entangling gates. Here we
show how to represent both of them in the one-way gate
set {R*, H, CZ} and translate the relevant operations
into a one-way computation. Subsequently the graphs
for each of the individual operations can be combined to
obtain the full ansatz in the one-way model.

Let us start with translating the single-qubit z-
rotations into the one-way model. To this end, we will
have to concatenate the single-qubit teleportation proto-
col of Fig. 2 two times, first between qubits 0 and 1 and
second between qubits 1 and 2. The second time, we can
omit the z-rotation, which means we have to measure
qubit 1 in the Pauli-X eigenbasis. The whole teleporta-
tion scheme of a simple z-rotation and the corresponding
one-way computation is shown in Fig. 3. It is straightfor-
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FIG. 3. a) Single-qubit-teleportation-based scheme of the z-
rotation R*(c). b) The corresponding graph state for |¢), =
[+), and measurement pattern for the one-way computation.

)
On m®

ward to show that the output state in qubit 2 of Fig. 3a)
after both measurements is given by

X™ 20 R (o) [4) (21)

where the first two terms are Pauli corrections depending
on measurement outcomes m; € {0, 1} of qubit 7. As be-
fore, the combination of a z-rotation, a Hadamard gate
and a measurement in the computational basis on the
first qubit correspond to a measurement in the rotated
X-basis, which is defined by the rotation angle « of the z-
rotation. From this teleportation scheme type of circuit,
we can directly extract the required graph state as well
as the necessary measurement pattern. Figure 3b) shows
the representation as a graph for |¢/), = |4+),. The two
CZ gates at the beginning again create a three-qubit lin-
ear graph state, where colored vertices indicate that the
qubit is subsequently measured in the basis indicated by
the label of the vertex. The vertex surrounded by a box
indicates the input qubit, which is where the computa-
tion starts, and the vertex without filling indicates the
output qubit containing the final state at the end of the
computation.

Next, we will decompose the entangling gate U}’ (0).
Therefore, we employ an efficient decomposition of the
unitary operation

UZZ(@) — o 10/2AX X+ Z:75) (22)

presented in Ref. [14] and shown in Fig. 4. Note that
U#(0) can be transformed into U;7Y(0) by applying local
unitaries that change Z;Z; to Y;Y; while leaving X; X
unchanged. This can be achieved with the operation
H®H which transforms the Pauli matrices X, Z as

(HOH)' X (HO®H) = — X, (23)
(HOH) Z(HO®H) =Y (24)

1

— R? (0)
@) | = -
oG
FIG. 4. Efficient decomposition of U%*(#) in terms of

{R®, H, CZ} gates.

where H is the usual Hadamard gate and ® = '3 R* (%)
Using that HOH = ¢'i R* (%), we can rewrite U}’ (0)
in terms of single-qubit gates and UZ*(0) as shown in

Fig. 5. If we arrange the operations U7’ (#) in a odd-even

el H
_ R ©)
FIG. 5. Decomposition of U®Y(f) into the gate set

{R®, H, CZ}. The middle part part corresponds to the cir-
cuit for U"#() from Fig. 4, which is padded with R*(+n/2)
rotation gates as explained in the text.

structure, as shown in Eq. (14) and Fig. 1b), the last x-
rotations R*(—m/2) of the even part cancel with the first
z-rotations R*(rn/2) of the odd part for all qubits, except
the first and the last one. Hence, we do not need to re-
formulate operator U;7”(6) explicitly in the teleportation
scheme, but instead we only reformulate the operator
Ui (0) and the general z-rotation R¥(a). From those
two operations and the the general z-rotation in Fig. 3,
we can directly derive the one-way implementation of a
whole layer of the ansatz.

The teleportation scheme of R*(«x) as well as the graph
representation of the one-way model is shown in Fig. 6.
The first qubit is measured in the Pauli-X eigenbasis,

O—» output qubit
— input qubit

.—) measured in {|+)} @—} measured in {|Z), |R)}

@—» measured in {Jot)}

FIG. 6. a) Single-qubit-teleportation-based scheme of the
z-rotation gate R*(a) = HR*(a)H. b) The corresponding
graph state for [¢), = |+), and measurement pattern for the
one-way computation. c¢) Exemplary one-way computation
for § = —7/2. In this case, the rotated basis {a4} coincides
with the Pauli-Y eigenbasis {|L), |R)} and the second mea-
surement becomes non-adaptive.



and the second qubit is measured in the rotated X-basis,
{|0+)}. As illustrated in Fig. 6a) and 6b), one has to
change the sign of the measurement in the rotated X-
basis based on the outcome of the Pauli-X measurement,
which corresponds to an adaptive measurement. The
state of the third output qubit after both measurements
are performed is given by

X™MZMHR () H [§) = X™ Z™R* () [¢),  (25)

where two leftmost Pauli operations in the equation
above depend on the measurement outcomes mg, m; €
{0,1} of the first two qubits. Note that, Fig. 6b) looks
very similar to Fig. 3b) with only the measurement ba-
sis of qubits 0 and 1 being interchanged, which in turn
makes the rotated X-basis measurement adaptive. The
adaptive choice is indicated by the possible minus sign of
the rotated basis angle depending on the measurement
outcome mg in Fig. 6a). The required graph state with
the necessary measurement pattern is shown in Fig. 6b).
Note that for & = —m/2 the rotated basis {|at)} co-
incides with the Pauli YV eigenbasis {|L),|R)} and that
R*(n/2) = XR*(—n/2). Hence, for the implementation
of R*(+m/2) the rotated basis measurement becomes a
non-adaptive Pauli Y measurement with an additional
Pauli X correction for R*(+7/2) (cf. Fig. 6¢)).

Next, the teleportation scheme of U%*(f) is shown in
Fig. 7, together with the corresponding one-way compu-
tation. The final state of the output qubits 6, 7 in Fig. 7a)
is given by

|wout>67 = UPCU(??Z(G) W’in>677 (26>

with the Pauli correction
UPC — (sz Zmo+M4)6 (Xm5+mz+m3 Zm4+ml)7 . (27)

The one-way computation of the whole ansatz layer can
be obtained by concatenating the individual one-way
computations of U7 (0), R”(+m/2) and R*(¢) according
to Eq. (14) and Fig. 5.

Finally, Fig. 8 shows our algorithm layer for six input
qubits in the gate set {H, R*, R*, CZ} (cf. Fig. 8a)) and
the corresponding one-way implementation (cf. Fig. 8b)).
In Fig. 8b), the adaptive basis choice and the resulting
Pauli corrections of the whole algorithm layer can be ob-
tained by concatenating the output states of the indi-
vidual sub-operations in the one-way scheme accordingly
and than permute all Pauli corrections to the outer left.
Note that in general all non-adaptive measurements in
a one-way quantum computation can be performed in
parallel and in the first step of the computation. All
adaptive measurements have to be performed in a tem-
poral order prescribed by the measurement dependencies
in the adaptive basis choice. The number of qubits Qowqc
in the one-way computation of the whole ansatz layer
scales with the number of input qubits NF (qubits on
which the ansatz layer is applied) as

Qowqc =13 x NF — 6. (28)

Thus, a large number of qubits is required to implement
our ansatz layer in a one-way computation, which is cur-
rently beyond any physical realization of graph states.
In principle, one could reduce the number of qubits
by using the fact that the non-adaptive Pauli measure-
ments in a one-way quantum computation correspond to
a Clifford operations [38, 40]. Hence, they can all be
performed in parallel in the first step of the computa-
tion [38, 40]. Furthermore, instead of performing those
Pauli measurements on the graph state, they can also be
efficiently simulated classically beforehand thanks to the
Gottesman-Knill Theorem [40]. More specifically, since
all Pauli measurements on a graph state yield a state
which is local-unitary-equivalent (LU-equivalent) to an-
other graph state, the classical simulation of Pauli mea-
surements on graph states can be reformulated in a set
of graph modification rules. These transform the ini-
tial graph state to the graph state LU-equivalent to the
state after the Pauli measurements [43, 45]. Since all the
previously measured qubits are disentangled from the re-
sulting graph state, this procedure reduces the size of the
required graph state in the experiment. On the result-
ing state, only the adaptive measurements (non-Clifford
part of the computation) have to be executed. However,
as pointed out in Ref. [38], the resulting graph states
get additional (possibly long-ranged) C'Z connections be-
tween the remaining qubits, which destroy the geometric
structure within the graph representation. While such
unstructured graph states require a smaller number of
vertices and correspondingly a smaller number of qubits,
they become increasingly complicated to realize experi-
mentally with growing system size due the unstructured
CZ connections.

IV. RESULTS

To benchmark our ansatz, we consider the Schwinger
model with three fermion flavors with flavor-dependent
chemical potentials. We simulate our VQE protocol clas-
sically assuming a perfect quantum computer without
any hardware or shot noise, and compare the results
to the ones obtained from exact diagonalization. As a
classical optimizer for the VQE, we choose the L-BFGS
algorithm [46]. For each value of the chemical poten-
tial, ten different runs of the simulation with randomly
chosen initial parameters are carried out. Subsequently
we post-process our data, and mark simulations with a
final energy that is 30% higher than the lowest value
obtained within the ten runs as outliers. To assess the
performance of our ansatz, we study various parameter
regimes, in particular, we investigate (i) vanishing bare
fermion mass (ii) non-vanishing bare fermion mass, and
(iii) a sign-problem afflicted regime for conventional MC
simulations. In addition, to demonstrate the feasibility
of our approach on quantum hardware, we also carry out
inference runs for six qubits (corresponding to N = 2 for
F = 3) on an actual IBM quantum hardware. To this
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end, we take the optimal variational parameters obtained
from the classical simulations for two ansatz layers and
execute a pre-transpiled version of our ansatz with those
parameters, measuring the relevant observables directly
on the quantum device.

Since our primary focus lies on investigating the per-
formance of our ansatz for the lattice system and do not
intend to take the continuum limit, we will not take the
additive mass renormalization into account in our simu-
lations.

A. Vanishing bare fermion mass

To begin with, we focus on the case of vanishing bare
fermion mass, py = 0, and consider vo = —yy with
1 = 0. Thus, we are in a regime in which the model
has the reflection symmetry discussed in Sec. I, allowing
us to constrain the parameters in the ansatz according
to Egs. (17) and (18). Figure 9 shows our results for the
ground state energy, the particle number and the overlap
obtained by simulating the VQE classically for system
sizes N = 2, 4 and 6, which correspond to 6, 12 and 18
qubits respectively. For the entire range of system sizes
and chemical potentials we study, we generally observe
good agreement between the VQE results and the exact
solution computed with exact diagonalization. Focusing
on the overlap with the exact solution in Figs. 9(c), 9(f)
and 9(i), we see that in most cases we achieve overlaps
with the exact ground state of more than 95%, and the
values only decrease marginally with increasing system
size, although we use a constant number of 5 layers in
the ansatz for all system sizes. The cases in which the
overlap is significantly lower than 95% correspond to out-
liers according to our criterion that the energy is at least
30% higher than the lowest one obtained within the ten
runs, as the panels for the energy in the first column of
Fig. 9 reveal. While the exact ground state energy as a
function of the chemical potential already indicates the
onset of first-order quantum phase transitions in form of
cusps, these are harder to detect from the VQE results for
the energy, as one would need an extremely fine resolu-
tion in the chemical potential. In contrast, the first-order
quantum phase transitions manifest themselves clearly in
the particle number in form of characteristic jumps when
going from one phase to another, as the panels in the
middle column of Fig. 9 show. The different phases are
all well captured by the VQE results and can be reliably
identified with a modest number of data points.

Looking at the outliers in Fig. 9, we see that these can
be easily identified via the energy and the particle num-
bers, observables which can be efficiently measured on
actual quantum hardware. They consistently show non-
integer particle numbers and high energy values, giving
a strong indication that they are unphysical. This is
confirmed by the almost vanishing overlaps with the ex-
act ground states. Moreover, within our ten experiments
only a small fraction of simulations produced outliers,

10

showing that that our setup is very likely to produce a
good approximation for the ground state of the model.
Consequently, in the regime of vanishing bare fermion
mass our VQE protocol is able to reliably capture the
phase structure of the model, and occasional outliers can
be determined easily from the observables considered.

B. Non-vanishing bare fermion mass

As a next step, we consider a nonzero bare fermion
mass of p1y = 0.1 while still keeping v; = 0 and v = —vy.
Moreover, we focus on the largest system size we stud-
ied in the previous section, N = 6 corresponding to 18
qubits. Figure 10 shows our VQE results for the ground-
state energy and the particle number in comparison to
the results from exact diagonalization as well as the over-
lap with the exact solution. Focusing on the exact re-
sults energy and the particle number in Figs. 10(a) and
10(b), we observe qualitatively the same behavior as for
the case of vanishing fermion mass, the particle number
shows again abrupt discontinuities indicating the first-
order phase transitions which are accompanied by cusps
in the energy. Our VQE results for the energy and the
particle number are in general in good agreement with
the exact solution, which is also corroborated by looking
at the overlap between the VQE solution and the exact
wave function in Fig. 10(c). Again, we are able to obtain
overlaps that are around 95% for most of the simulations
we carry out.

Similar to the previous case of vanishing bare fermion
mass, for py = 0.1 we also see some data points that
are identified as outliers according to our criterion. A
direct comparison between Figs. 9 and 10 shows that for
py = 0.1 we observe an even smaller fraction of sim-
ulations that produced outliers than for py = 0, and
our VQE converges with high probability. These outliers
can again reliably be identified by looking at the physi-
cal observables, and manifest themselves in high values
for the energy and noninteger particle numbers. This is
likely caused by the classical optimization routine get-
ting stuck in a local minimum, as in these cases the final
VQE wave function has almost vanishing overlap with
the exact wave function, despite the ansatz being capa-
ble of approximating it to a good precision, as the other
successfull runs demonstrate.

C. Sign-problem afflicted regime

Next, we investigate a regime which is inaccessible with
MC methods, due to the sign problem. To this end, we
consider again py = 0 and v, = —1, but now we ad-
ditionally set 11 = 24. This results in Zf vy # 0, thus
triggering a sign problem for the conventional MC ap-
proach. In addition, for this case the reflection symme-
try of the model is no longer present, and we cannot
constrain the variational parameters in the ansatz any-
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FIG. 9. Classically simulated VQE results for vanishing bare fermion mass. The first column shows the ground-state energy
Eo, the second column shows the particle number difference ANs, and the third column shows the overlap |{({vqE|texact)| of
the VQE results, each as a function of the chemical potential difference vy — v1. The first row shows the results for N = 2,
the second row for N = 4 and the third row for N = 6, each for z = 16, puy =0, 1o = —1p, v1 = 0, and five algorithm layers.
Successful runs are represented by filled orange triangles. Every run, in which the obtained energy is 30% higher than the
lowest obtained value, is marked as an outlier and is represented by an open green circle. The solution obtained via exact
diagonalization is shown as a dashed blue line in the first two columns. The dash-dotted grey line in the third column marks

the 95% overlap threshold.

more and treat all the parameters in the ansatz as in-
dependent. Once again, we investigate this regime for a
system with 12 qubits, corresponding to four lattice sites.
Figure 11 shows the results obtained for the simulations
in this parameter regime. Our VQE ansatz still produces
results, which are in good agreement with the exact so-
lution, even though conventional MC methods would fail
in this situation. Because we can no longer constrain
the number of parameters in our ansatz, we get now 23
parameters per layer instead of 12 as before for N = 4.
Nevertheless, the optimization is still capable of finding
a good approximation of the exact ground state, and we
do not see a significant increase in the number of outliers,
comparing Figs. 9(f) and 11(c). We do observe a single
data point which has vanishing overlap with the exact
ground state, but is not marked as a outlier since its en-

ergy is close to the exact one and the particle number is
approximately an integer value. This data point lies close
to a phase transition point, at which the ground-state
energy level is degenerate, which means that the energy
levels of the ground states from each neighbouring phase
are still close. It is likely that the VQE converged to the
wrong ground state, which would explain why the energy
is close to the exact solution but the particle number dif-
fers and the overlap vanishes. In general, our ansatz still
achieves high overlaps with the exact solutions for a large
fraction of the simulation runs and shows overall a good
performance, even in this sign-problem afflicted regime.
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FIG. 11. Classically simulated VQE results for sign-problem afflicted regime. Panel (a) shows the ground-state energy Fo,
panel (b) shows the particle number difference AN», and panel (¢) shows the overlap |(¥vqE|texact)| of the VQE results, each
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the lowest obtained value, is marked as an outlier and is represented by an open green circle. The solution obtained via exact
diagonalization is shown as a dashed blue line in the first two panels. The dash-dotted grey line in the third panel marks the
95% overlap threshold.

D. ther decompose those gates into the native basis gate set,
resulting in the structure shown in Fig. 13. In addition,
we eliminate all two-qubit gates in the ansatz which re-
sult in operations close to the identity for a given param-
eter set. Therefore, we checked if the parameter value for
the two-qubit gate agrees within 0.18 rad accuracy with
m X 2rrad, m € Z. If that is the case, the corresponding
two-qubit gate is considered as a close-to-identity opera-
tion and removed from the circuit.

Inference run on IBM quantum hardware

To demonstrate that our ansatz can be implemented
on current NISQ devices, we perform inference runs on
real quantum hardware and directly measure the rele-
vant observables on the quantum computer. Specifically,
we prepare our ansatz with two layers using the opti-
mal parameters obtained from the classical simulations
in the regime of non-vanishing bare fermion mass on

ibm_cairo. We focus on the case of six qubits, corre- In order to compensate for some of the hardware noise

sponding to N = 2 lattice sites for three fermion flavors,
for which we obtained essentially perfect agreement with
the exact solution with overlaps exceeding 99% with the
exact ground state in the classical simulation, as shown
in Fig. 12.

For the hardware run, we decompose our ansatz cir-
cuit into the natively available set of gates on ibm_cairo,
{CX, R*, VX, X}. To this end, we employ the efficient
decomposition of our ansatz layers (see Fig. 8) and fur-

in the remaining circuit, we use zero-noise extrapolation
(ZNE) [21] available in Qiskit Runtime [47]. The ZNE
in Qiskit Runtime employs digital circuit folding, i.e. in-
serting pairs of unitaries UTU in the circuit which would
result in an identity operation on an ideal quantum com-
puter. For a real device with noise, this effectively allows
for running the same circuit at different noise levels. Sub-
sequently, the results can be extrapolated to zero noise.
Figure 14 shows the data for the energy obtained on the



13

(a) 1 (b) I (c)
45 | 10k
1 H 1 =
1 \‘ 1 g
l’ 1 ~ : 5
s | ) I N —— N
_50F ! ' < 1 & 0.5F
50 i \ 1 5
’,' ---- exact ‘|‘ H =
! VQE success \ i
1 1 1 —1pe== 1 1 0.0k 1 1
—20 0 20 —20 0 20 —20 0 20

vy — 1 vy — U vy — Uy

FIG. 12. Classically simulated VQE results for inference run on ibm_cairo. The panel (a) shows the ground-state energy Fo,
the panel (b) shows the particle number difference AN and the panel (¢) shows the overlap [(¥vQB|texact )| of the VQE results,
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layers. Successful runs are represented by filled orange triangles. The solution obtained via exact diagonalization is shown as

a dashed blue line in the first two panels. The dash-dotted grey line in the third panel marks the 95% overlap threshold.
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FIG. 13. Tlustration of the decomposition of a full layer of the ansatz (see Eq. (14)) into the native gate set {CX, R*, VX, X}

of ibm_cairo for six qubits, corresponding to N =2, F' = 3.

hardware for various noise levels. In general, we observe
the data points from the hardware do follow a linear be-
havior as a function of the noise level for all the values
of the chemical potential we study. Performing a linear
extrapolation significantly improves energy values, but
does not fully compensate for the effects of noise, as the
final extrapolated value for the energy is still above the
exact one (cf. the solid blue lines and the dashed orange
lines at the origin of the panels in Fig. 14).

The results obtained from the quantum hardware for
the energy as well as the particle number after perform-
ing the ZNE as a function of the chemical potential are
shown Fig. 15. Focusing on the energy in Fig. 15(a), we
clearly see a systematic offset AE between the hardware
results compared to the exact solution, as already appar-
ent in the ZNE data in Fig. 14. Compared to exact value
of the energy, this offset is rather modest in almost all
cases, and the relative error |AE/Ey| is within 10%, as
Fig. 15(c) shows. Only in one of our runs we have an
outlier with slightly higher relative error of around 17%.
These deviations are clearly the result of the hardware
noise, since we obtained perfect agreement between the
exact solution and the VQE results and the ideal simu-
lations (cf. Fig. 12).

Looking at the particle number in Fig. 15(b), we see
that the hardware data agrees well with the exact re-
sult. In particular, the particle number clearly reveals
the first-order phase transitions with the characteristic

jumps being evident in the data from the quantum hard-
ware. Note, that ZNE was also applied to the measure-
ment of the particle numbers, in the same way as for
the energy measurement. Moreover, the remaining error
in the measured particle numbers can be compensated
completely. Since the Hamiltonian conserves the parti-
cle number, only integer values are intrinsically allowed.
Since all our data points within one phase are close to the
same integer, we can reliably determine the exact values
by rounding them to the nearest integer.

From our hardware data we can also determine the lo-
cation of the first-order phase transitions via Eq. (13).
As shown in Sec. 11 C, a single data point per phase is in
principle enough to determine the exact location of the
phase boundaries. In order to average over the fluctu-
ations between different runs in the phase characterized
with ANs = 0, we consider all possible pairs of data
points for neighboring phases and determine the transi-
tion point according to Eq. (13) for all of them. Sub-
sequently, we average the results and compute the stan-
dard deviation, the results are indicated in Figs. 15(a)
and 15(b) as vertical dashed orange lines. Note, that for
every calculation of the phase transition points we fully
compensated the error in the particle numbers by round-
ing to the nearest integer as we explained above, leaving
only the energy error to contribute in the calculations.
The numerical values obtained from our hardware run
are vy — 1] —14.91 £ 0.99 and vy — 14|

7 _ 1 _
jump,07 jump,17
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FIG. 14. Zero-noise extrapolation of the ground-state energy from the inference run on ibm_cairo. The filled orange triangles
correspond to the hardware data for different noise amplification factors. The dashed orange lines show the linear extrapolation.
The solid blue lines indicate the exact solutions obtained via exact diagonalization. Panel (a) to (f) correspond to the different
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FIG. 15. Quantum hardware results for VQE inference run on ibm_cairo. The panel (a) shows the ground-state energy Fo, the
panel (b) shows the particle number difference AN> and the panel (¢) shows the relative energy error |AE/ Fy| of the inference
run on ibm_cairo with 15360 measurement shots as a function of the chemical potential difference vy — 11 for N = 2, = 16,
pwr =01, v2 = —1g, v1 =0, and two algorithm layers. Hardware runs are represented by filled orange triangles. The solution
obtained via exact diagonalization is shown as a dashed blue line in the first two panels. The dashed orange lines together with
the shaded orange area show the critical points and their standard deviation obtained from the hardware results via Eq. (13).

to determine the critical points of the model with good
accuracy, despite the presence of noise in the device.

15.78+0.99. They are close to the exact transition points
Yo — Vil§umpo1= +15.91. We observe that the value

extracted for the second transition point vg — V1|§ump,l
shows a smaller deviation from the exact value than the
one for the first transition point vg— 1}, - This likely
due to similar energy offsets in the hardware results for

V. DISCUSSION AND CONCLUSIONS

points in the phases with ANy = 0 and ANy = 1. As
Eq. (13) reveals, adding the same constant offset to both
energy values in the formula does not affect the result.
All in all, our data from the quantum hardware allows us

We presented a VQE ansatz for solving the lattice
multi-flavor Schwinger model in the presence of a chem-
ical potential. Our ansatz uses a layered structure that
can easily incorporate the relevant symmetries of the



Hamiltoinan by simply restricting certain parameters in
each layer. Moreover, we demonstrated that the ansatz
lends itself to both both circuit-based and measurement-
based quantum hardware.

Focusing on the case of three fermion flavors, we simu-
lated the VQE using our ansatz classically for various
parameter regimes, assuming a perfect quantum com-
puter without any noise. This performance benchmark
of the ansatz demonstrated that it can approximate the
ground state of the model well, even in regimes where
conventional MC methods suffer from the sign problem.
Specifically, we can resolve the first-order phase transi-
tions that are present in the model and reliably capture
the phase structure with our ansatz circuit. Moreover,
our results for different system sizes indicate that the
number of layers required to achieve a good performance
scales only moderately with the number of lattice sites
in the model.

To demonstrate the suitability of our ansatz for gate-
based quantum hardware, we performed inference runs
on IBM’s superconducting quantum devices. To this end
we used a set of parameters obtained from classically sim-
ulating the VQE, and prepared the resulting state on the
quantum hardware to measure the energy and the par-
ticle number. To compensate for part of the hardware
noise, we used ZNE to mitigate some of these effects. De-
spite ZNE not being able to fully mitigate the hardware
noise, we were still able to reliably identify the differ-
ent phases in the investigated area of the phase diagram
via the particle numbers. Moreover, we were able to de-
termine the critical points using the quantum hardware
results. The resulting numerical values lie very close to
the exact critical points, allowing us to determine them
with good accuracy from the noisy hardware results.

In our proof-of-principle run on a quantum hardware
we only used ZNE to mitigate hardware noise, yielding
results are in good agreement with the theoretical ex-
pectation. Thus, carefully using more elaborate error
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mitigation methods such as Pauli twirling, readout error
mitigation, measurement error mitigation and dynamical
decoupling, we expect that our ansatz can be scaled up
to larger system sizes on current quantum hardware. A
systematic investigation of our ansatz for larger system
sizes and performing a full VQE on quantum hardware
will be done in future work. Moreover, while the effects
of hardware noise and error mitigation can be straight-
forwardly studied in the circuit model, error mitigation
for measurement-based quantum computers is a lot less
explored. In the future, we also plan to investigate the
potential of our ansatz for realistic, noisy measurement-
based devices and to explore the possibility to mitigate
errors on such quantum hardware.
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