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Abstract
Integrative structural modeling enables structure determination

of macromolecules and their complexes by integrating data

from multiple sources. It has been successfully used to char-

acterize macromolecular structures when a single structural

biology technique was insufficient. Recent developments in

cellular structural biology, including in-cell cryo-electron to-

mography and artificial intelligence-based structure prediction,

have created new opportunities for integrative structural

modeling. Here, we will review these opportunities along with

the latest developments in integrative modeling methods and

their applications. We also highlight open challenges and di-

rections for further development.
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Introduction
Integrative modeling allows macromolecular structure
determination by combining data from multiple exper-
imental and computational techniques [1]. In essence,
empirical data guides the assembly of a protein complex
from its component structures. For example, atomic
structures may be fit into the 3D density obtained
by cryo-electron microscopy (cryo-EM) or scattering
profiles by small-angle X-ray scattering (SAXS) and

simultaneously orientated with distance restraints ob-
tained by cross-linking mass spectrometry (XL-MS)
(Figure 1). Depending on data quality, integrative
models can inform the general architecture, find
evolutionary relationships, localize active sites and near-
atomic interactions, and generate hypotheses on the
mechanism(s) of action.

Integrative modeling has resolved the structure of many
complexes (Figure 2). A prime example is the nuclear
pore complex, first published in 2007 [2]. Since then,
nuclear pore complexes from various species have been
modeled with increasingly precise data, culminating
with near-atomic yeast and human models [3e5]. Other
recent examples include the Fanconi anemia core com-
plex [6], yeast Smc5/6 holo-complex [7], and myco-
bacterial type VII secretion system [8] built using cryo-
EM and XL-MS data; a ribozyme using NMR and SAXS
data [9]; RAGE complexed with S100B using XL-MS,
hydrogen-deuterium exchange, and mass spectrometry
data [10]; and histone H3-H4 and RNA polymerase sub-
complexes using restraints from a novel genetic inter-
action mapping technique [11].

Many integrative modeling software tools are available,
with Integrative Modeling Platform (IMP) [12] and
HADDOCK [13] being the most popular. Derivative
programs targeting different modeling challenges and
methodological aspects include Python modeling inter-
face [14] and our Assembline protocol [15], both based
on IMP; M3 [16] which is based on HADDOCK; or
IMProv [17], a graphical interface to IMP.

Here, we will review recent innovations and new op-
portunities arising from advances in experimental and
computational techniques.

State-of-the-art in integrative structural
modeling
The first step in integrative modeling, besides collecting
experimental data, is choosing how to represent mac-
romolecules during modeling (Figure 1). While small
complexes can be represented at the atomic level, larger
complexes must be represented more coarselydsuch as
spherical beads approximating individual or groups of
residuesdfor computational efficiency. Multiple levels
can be used simultaneously in a so-called multi-scale
representation, with fine-grain details retained only for
calculations that require accuracy [1,18]. IMP, PMI, and
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Assembline use multi-scale representation to efficiently
generate large models with atomic features. Though the
choice of representation is usually dictated by the
software and the modeler’s intuition, an automatic
optimization protocol based on local information density
has been proposed [19].

The second step is representing experimental data as
restraintsdmathematical formulations that evaluate the
fit of sampled models to the input data. Importantly, the

restraints must account for uncertainty in the data, such
as EMmap resolution or the expected cross-link distance
distribution, and be suitable for the scale of representa-
tion. Many experimental data types, such as EM, SAXS,
or XL-MS, have already been implemented as restraints,
with more sophisticated forms being developed [20,21].

Third, an optimization procedure searches the space of
structural configurations for models that best fit the
data, based on a scalar scoring function constructed from

Figure 1

Schematic of a typical integrative modeling workflow (left) with opportunities and key areas for development (right).

Figure 2

Examples of recent integrative models. (a) Human nuclear pore complex model (PDB ID: 7R5K). (b) Fanconi anemia core complex (PDB DEV ID:

00000055). (c) Smc5/6 complex showing multi-scale atomic and bead representation (PDB DEV ID: 00000081). Green bars indicate crosslinks used for

modeling. (d) Neurospora Varkud satellite ribozyme (PDB DEV ID: 00000067).
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the restraints. While optimization procedures have
matured [1,13], computational efficiency is still lacking
for large and fine-grained models. The scoring function
is usually a linear combination of individual restraints
[13,15] with manually selected weights. Methods based
on Bayesian inference have been proposed [12e15,21]
with weights optimized automatically based on the
estimated quality of the data. However, only a few re-
straint types and software have Bayesian formulations,
and the resulting function is often still a linear combi-
nation of Bayesian and conventional terms. Thus, an
integrative model is not only a hypothesis over
coordinates but also the relative weighing of data types.
In our opinion, automated weighting is one of the
biggest challenges in integrative modeling that requires
further advancement.

Last, integrative models must be assessed for precision,
consistency with the data, and exhaustiveness of
conformational sampling. A formalized solution is
included in the imp-sampcon toolkit [22], recently
improved to determine local precision [23].

New opportunities from artificial
intelligence-based structure prediction
Traditionally, atomic structures for integrative modeling
came mainly from X-ray crystallography, NMR, and cryo-
EM. If no experimental structures existed, homology
modeling could be used to predict structures based on
homologous proteins as templates. Yet, this was a rela-
tively time-consuming process limited by the data avail-
able. If no atomic structures could be obtained, spherical
beads would be used to approximate residues or entire
subunits. As a result, integrative models were limited in
precision, with some subunits retaining “bead” repre-
sentation, or having uncertain localization and unresolved
steric clashes. Although fully atomic integrative modeling
programs exist, such as HADDOCK, they are limited by
the quality of input structures and the accuracy of the
optimization algorithms.

The advent of artificial intelligence (AI) protein struc-
ture prediction programs, such as AlphaFold2 [24] and
RoseTTAFold [25], has revitalized the potential of
atomic integrative structural modeling. These programs
can model the atomic structure of proteins and small
complexes at a precision comparable to experimental
structures. In some cases, AlphaFold structures have fit
experimental data better than crystal structures [4] and
may exhibit conformations resembling the complexed
structure. Almost all proteins cataloged in UniProt are
available for download from the EBI’s AlphaFold data-
base. Together with user-friendly implementations of
these programs [26], we can predict atomic structures
with relative ease.

Thus, the current state-of-the-art of integrative
modeling is to build sub-complexes via AI-based

structure prediction prior to assembling the higher-
order structure. In our work on the human nuclear
pore complex [4], we used AlphaFold to generate
models of single proteins and sub-complexes that were
assembled using our Assembline integrative modeling
pipeline. The study exemplified several advantages of
AlphaFold models for integrative modeling, such as an
excellent fit to cryo-EM densities even if subunits are
modeled outside the complex context, the surface
complementarity of independently modeled proteins,
and minimal steric clashes. Many studies have used
AlphaFold models as starting structures for cryo-EM
model building (for example: [27e30]), and some
have begun using AlphaFold in cross-linking [31] and
SAXS [32] studies. The structure of SMG1 kinase with
its protein cofactors was determined by integrating cryo-
EM and cross-linking data with AlphaFold model fitting
and refinement [33]; cross-links were also used to
evaluate the quality of AlphaFold models [34]. A new
Phenix procedure integrated AlphaFold modeling and
iterative refinement with high-resolution cryo-EMmaps
[35]. Although computation costs are still an issue, we
can, nevertheless, confidently discontinue approxi-
mating structure with mere “beads” in integrative
modeling.

Can AI modeling programs reduce the number of
orthogonal techniques needed for integrative modeling?
On the one hand, it might be sufficient to obtain ac-
curate models of sub-complexes with AlphaFold, put
them together using a single experimental data set, such
as cross-links, and only then validate against EM or
SAXS data. This would simplify integrative modeling by
eliminating the need for tedious restraint weight ad-
justments. On the other hand, the diversity of
perspective is a key advantage of integrative modeling. A
limitation of current AI-modeling tools is the nontrivial
assessment of model accuracy [36]. Though they pro-
vide quality scores to estimate model accuracy, these
are, nevertheless, just predictions with an inherent level
of error. Modeling complexes is still challenged by un-
known stoichiometry, alternative homo-oligomeric
states (e.g., a tetramer vs. pentamer), and asymmetry.
When AI-based models have wrong conformations or
contain errors, additional experimental information will
be required for refinement. For example, AlphaFold
predicts an interaction between NUP160 and ELYS
proteins in the human nuclear pore complex. However,
the complex contains the NUP160 subunit on both
sides of the nuclear membrane, but ELYS is present and
interacts with NUP160 only on the nuclear side. In
another example, XL-MS was used to guide the
modeling of multi-domain SARS-CoV-2 proteins in
conformations that could not be predicted using
AlphaFold2 alone [37]. Thus, the biological context
provided by techniques such as EM, cross-linking,
SAXS, and biochemical experiments on interactions
may still be necessary to clarify nuances and validate the
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predicted models. Finally, the incorporation of addi-
tional data, such as EM densities, cross-link distance
restraints, or SAXS profiles, into the AI-based structure
prediction itself could create a new generation of inte-
grative modeling programs, made possible by the avail-
ability of open-source codebases.

New opportunities in cellular structural
biology
Cellular structural biology, whereby macromolecular
structures are solved in the cellular environment, has
gained traction thanks to recent advances in cryo-ET
[38]. In this technique, cells are placed on a grid,
vitrified, and, optionally, thinned into lamellae using
focused ion beam (FIB) milling. Lamellae are imaged
under a transmission electron microscope across a range

of tilt angles, and the images are reconstructed into a 3D
tomogram. Individual macromolecular particles can be
computationally extracted, aligned, and averaged in a
process called sub-tomogram averaging, resulting in 3D
density maps with a resolution of 10e50 Å. FIB-milling
is now an automated process and becoming faster and
more reproducible [39], electron detectors are
becoming more sensitive still, image acquisition is
becoming more efficient [40], and processing software
for finding and averaging particles in tomograms is
becoming rapidly more streamlined and accurate
[41,42]. With these advances in cellular cryo-ET, we can
expect an explosive increase in cryo-EToutput, akin to
the ‘resolution revolution’ in single-particle cryo-EM
[43]. Despite these advances and the first examples of
high-resolution in-cell cryo-ET maps [41,42], cryo-ET

Figure 3

The structure of an actively transcribing-translating expressome determined by integrative modeling using in-cell cryo-ET and XL-MS data. (a) Slice
through a tomogram of M. pneumoniae. Example ribosome particles are indicated by black arrows. Classification of particles on the right. (b) Models of

the active elongating (top) and stalled (bottom) expressome. From O’Reilly FJ, Xue L, Graziadei A, Sinn L, Lenz S, Tegunov D, Blötz C, Singh N, Hagen

WJH, Cramer P et al.: In-cell architecture of an actively transcribing-translating expressome. Science (80-) 2020, 369:554–557 [48]. Reprinted with

permission from AAAS.
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still suffers from comparably sparse data sets, resulting
in low-resolution structures on average (10e50 Å).
Cryo-ET is, therefore, in a prime position to benefit
from integrative modeling. The most recent nuclear
pore complex models are based on the in-cell cryo-ET
maps [3,4,44e46]. Other examples include the
Parkinson’s disease-linked LRRK2 [47] and the com-
plex of bacterial RNA polymerase in complex with a
ribosome [48] (Figure 3).

A notable benefit of AI-based structure prediction for
cellular cryo-ET structural biology is in providing
structures for template matchingdthe identification of
macromolecules in a tomogram based on a 3D search
with a starting “template” structure [38]. Predicted
models of complexes [49] could be used as better
templates, enabling the identification of smaller and
less abundant complexes, and a more complete inter-
pretation of tomograms. Nonetheless, cryo-ET must
still overcome many technical limitations. Even if 3D
maps can be reconstructed, they may have an unknown
identity and protein composition [50,51], unassigned
densities [45], and unclear stoichiometry. Protein
paralogs that exchange in the same complex in a
context-dependent manner may not be distinguishable
in 10e50 Å maps (e.g., different paralogs of tubulins in
microtubules), leading to false positives in AlphaFold2
[36]. Thus, as with integrative structure determination
of purified complexes, orthogonal in-cell techniques
will be necessary for confident structure determina-
tion. These may include in-cell cross-linking [52],
super-resolution microscopy [53], and cryo-super-
resolution light and electron tomography [54].
Another opportunity lies in parallel single-particle cryo-
EM analyses of cellular lysate fractions, containing
dozens or hundreds of different complexes from the
same cells that can be computationally identified and
reconstructed, often at high resolution [55]. If high
resolution cannot be obtained, XL-MS of the fractions
can be used with integrative modeling, as was done for
the 10-MDa eukaryotic pyruvate dehydrogenase com-
plex [56]. Integrative modeling does not necessarily
end when a structural ensemble is obtained. Rather,
further data can be integrated into the model, such as
biophysical simulations in the context of the native,
cellular environment. For example, an integrative
model of the nuclear pore complex was placed in the
double membrane of the nuclear envelope to simulate
pore dynamics [4].

Conclusions
Integrative structural modeling is an essential technique
for structural biology. It combines the strengths of many
techniques to resolve the structures of large and com-
plex macromolecular systems which could not otherwise
be achieved by a single experimental approach. Modern

AI structure prediction tools have yielded structural
models of proteins and small complexes at unprece-
dented precision, enabling us to overcome limitations in
the scale and detail with which we can model macro-
molecular structures. To support the growth of integra-
tive structural biology, we must also advance several key
areas. It is imperative to integrate AI-based structure
prediction tools with experimental restraints; develop a
consistent rationale for automatic weighting of different
data types; improve the computational efficiency of
optimization algorithms; conform to accepted standards
of integrative models, such as the inclusion of data and
restraints in structural representations; and develop
computational representations of novel in-cell data
types. These developments will pave the way for ever
larger and more detailed structural modeling studies,
perhaps one day integrating with atomic biophysical
simulations. Integrative structural modeling is well
poised to solve problems in cellular structural biology,
where high-precision data is more scarce, and multidis-
ciplinary approaches are a necessity. We expect that
future studies will broaden our perspective of integra-
tive models beyond a structure in isolation and
toward the cellular horizon.
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