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Abstract: The νSM, the Standard Model (SM) extended with 3 generation of sterile

neutrinos, is a supercalifragilisticexpialidocious explanation for the neutrino masses that

cannot be explained by the SM. In this paper, we systematically study the algebraic struc-

ture of the flavor invariants constructed from the flavorful parameters of the νSM. We

calculate the Hilbert series and plethystic logarithm of the theory. Together with a graph-

based method for the construction of the invariants, this allows us to construct a generating

and primary set of invariants for the νSM for the first time. The generating set contains

459 invariant, out of which 208 are CP-even and 251 are CP-odd. Furthermore, we discuss

how the sources of CP violation, as well as the necessary and sufficient condition for CP

violation can be captured with the use of these invariants. Along the way, we present useful

algorithms, which allowed us to obtain the results in this paper.
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1 Introduction

The smallness of the observed neutrino masses (needed to explain neutrino oscillation ex-

periments [1, 2]) is yet another consequence/success of the chiral nature of the Standard

Model (SM) gauge structure. In the absence, yet to be confirmed, of right-handed neutrino

at low energy, these neutrino masses cannot emerge from marginal interactions among the

SM degrees of freedom, like in the case for quarks and charged leptons, but require irrelevant

interactions [3] possibly stemming from interactions with new physics degrees of freedom or

new strong interactions. A particularly compelling scenario is the type-I seesaw mechanism

with right-handed sterile neutrinos endowed with a large SM gauge-invariant Majorana

mass and coupled via Yukawa interactions to the left-handed active neutrinos [4–8]. The

value of the scale of this Majorana mass, which also measures the breaking of an accidental

symmetry of the SM - the conservation of the total number of leptons, remains unknown

and largely unconstrained.

In this paper, we will focus on the renormalizable theory of the SM extended with

nN = 3 flavors of right-handed sterile neutrinos N , often referred to as νSM or νMSM [9–

13]. Depending on the mass we assign to these new particles our discussion will capture

both a type-I seesaw scenario and a scenario with light right-handed sterile neutrinos. Just

like in the quark sector of the SM, adding more parameters to the theory by introducing

a mass term opens the possibility to violate CP through physical phases that cannot be

removed from the theory using field redefinitions. These new sources of CP violation (CPV)

could help generating the matter-antimatter asymmetry via a leptogenesis mechanism [14].

In the case of neutrinos, the option of having a Majorana mass allows for another pecu-

liarity. Beyond the Dirac-like phase in the Pontecorvo–Maki–Nakagawa–Sakata (PMNS)

matrix – in analogy to the CKM matrix in the quark sector of the SM – there can be ad-

ditional Majorana-like phases which are unphysical in the case of a Dirac mass due to the

conservation of lepton number. However, the parameters describing CPV in the neutrino

sector have not been measured reliably to date and it is unclear if it is feasible to achieve

sufficient experimental sensitivity to detect Majorana-like phases in the near future [15].

Therefore, it is an important task to classify all possible scenarios for the generation of

neutrino masses from an IR perspective. In this paper, we want to tackle this task using

the language of flavor invariants and in addition also classify new sources of CPV that are

introduced through the neutrino masses with Jarlskog-like flavor invariants [16–18]. In this

analysis we will make use of the fact that – as physical quantities – all observables should

in principle be expressible in terms of finite number of flavor invariant objects. Such a set

of invariants is referred to as the generating set or the basic set in the literature. This

set enables us to express all observables as functions of them, which will allow us to learn

about the structure of CP violation in the theory. Furthermore, it is straightforward to

differentiate between Dirac and Majorana-like mass terms for the light sterile neutrinos in

our formulation by taking the appropriate limits.

The generating set of flavor invariants is the maximal set capturing all physical effects

of the theory. In terms of CPV effects, we will also try to address the questions of what

is the minimal set of CP-odd invariants that are necessary to capture all sources of CPV,
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and what is the minimal set that can capture the necessary and sufficient conditions of

CP conservation (CPC). Taking all texture zeros and degenerate and vanishing masses into

account, these sets are required to be valid in all special spectra in the theory.

In order to simplify the process of finding a generating set of flavor invariants, we will

make use of tools from invariant theory that have been developed in recent years in the

context of theoretical particle physics. Invariants have been used both in UV complete

theories [19–33] and EFTs [34–37] to characterize the parameters of the theory with respect

to CP and other symmetries of EFTs [38]. Some problems which are closely related to our

analysis in this paper have been previously investigated in the literature. In particular,

the νSM with only two generations for all fermions has been studied in Ref. [26] and the

case of adding two generations of right-handed sterile neutrinos to the SM has been treated

in Ref. [30]. There, the authors also use the flavor invariants to formulate the necessary

and sufficient conditions for CPV in the model. As we will see throughout this paper,

generalizing the discussion from two to three generations is not an easy task. The more

complex flavor group structure leads to a significantly more complicated algebraic ring

structure of the invariants in the set. We will find that the number of generating invariants

in the theory explodes from 38 in Ref. [30] for two generations of sterile neutrinos to 459

for three generations of sterile neutrinos.

The paper is structured as follows. In Sec. 2, we will define more precisely the setup

for neutrino masses that we consider in this paper and introduce all tools from invariant

theory we will need to build a generating set of flavor invariants. In Sec. 3, we will present

our results for 3 generations of right-handed neutrinos including the Hilbert series and the

generating set. In Sec. 4, we distinguish between the minimal set of CP-odd invariants used

to parameterize the sources of CPV and the set used to capture the CPC conditions. We

emphasize that these sets have the property of being applicable to all special spectra of the

theory that give rise to larger exact flavor symmetries. We show the results for the theory

with 2 generations of sterile neutrinos. The case of 3 generations turns out to be too hard

to solve, but we nonetheless discuss an approach towards finding such a set. Finally, in

Sec. 5, we draw some conclusions. In App. A, we present useful parameterizations for the

flavorful couplings that we use throughout this paper. In App. D, we list all invariants in

the generating set along with their CP parities. In App. B, we show our results for the

graded Hilbert series and the graded plethystic logarithm that we do not show in the main

text due to their length. In App. C, we present the algorithms used in this paper. These

algorithms cover several purposes: generating flavor invariants, reducing the invariants to

a generating set, and finding the minimal set of CP-odd invariants to capture all sources

of CPV. In App. F, we introduce the Hironaka decomposition that we use in some parts

of the paper. In App. G, we introduce Hilbert’s Nullstellensatz and present the relevant

concepts that are useful for obtaining a minimal set of CP-odd invariants that capture the

necessary and sufficient conditions for CPC. Finally, in App. H, we present the complete

list of CPC conditions obtained through the ideal-related method.
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SU(3)L ×U(1)L SU(3)e ×U(1)e SU(3)N ×U(1)N
Ye 3+1 3̄−1 10

YN 3+1 10 3̄−1

MN 10 10 (3̄⊗s 3̄)−2
Table 1: The flavor transformation properties of the relevant Yukawa matrices and Majorana mass matrix
treated as spurions. The subscripts of the SU(3) representations denote the charge under the U(1) part of
the flavor symmetry group. Furthermore, ⊗s denotes the symmetric tensor product of the simple represen-
tations.

2 Prerequisites

2.1 SM extended with right-handed neutrinos

Before we start with the analysis, we have to precisely define the theory we will work with.

As already mentioned in the introduction, there are several ways to introduce a mass terms

for neutrinos at low energies. In this paper, we will extend the SM particle spectrum by

adding 3 generations of right-handed sterile neutrinos N , which in the literature usually

goes under the name of νSM.1 The most general renormalizable Lagrangian that can be

built with these fields and the symmetries of the SM gauge group is

LνSM = ∑
ψ

ψ̄i /Dψ − [1
2
(NCMNN) + L̄YNNH̃ + L̄YeeH + Q̄YuuH̃ + Q̄YddH +H.c.]

− 1

4
GaµνG

aµν − 1

4
W I
µνW

Iµν − 1

4
BµνB

µν + (DµH)†(DµH) − λ(H†H − v2
2
)2 , (2.1)

where ψ represents all fermion fields {Q,u, d,L, e,N}, H is the Higgs doublet with the

vacuum expectation value v, H̃i = ǫijH∗j , and Gaµν , W
I
µν , Bµν are the field strengths of

the SM gauge fields. The right-handed singlet neutrino N is introduced to extend the SM.

If lepton number is not a symmetry, a Majorana mass for the N fields is allowed, which

corresponds to a symmetric matrix MN .2 The 3 × 3 Yu,d,e,N are the Yukawa couplings

with the Higgs field. C is the charge-conjugation matrix, and Dµ is the gauge covariant

derivative.

One can easily check that the fermion kinetic term in LνSM is invariant under unitary

U(3) flavor transformations of the fermion fields. Assuming that this flavor symmetry is

only softly broken by the Yukawa couplings and Majorana mass term, we promote all flavor-

ful couplings to spurions under this symmetry, making the Lagrangian formally invariant.

The corresponding transformation properties of the spurions under the non-Abelian part of

the flavor group can be found in Tab. 1.

One immediate consequence of this assignment is that the presence of MN breaks

lepton number, as the transformation properties of MN do not allow for rephasings of N .

1In principle 2 generations of sterile neutrinos are enough to generate the observed neutrino masses at
low energies [39]. As mentioned before this case has been treated in Ref. [30].

2If there is no lepton number violation, the Majorana mass term is forbidden, and the neutrino will
have a Dirac mass. Then, the flavor structure of the lepton sector will have exactly the same form as the
quark sector in the SM.
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Therefore, there will be additional Majorana type phases in the spectrum of the theory.

These phases can be removed in the SM because all interactions enjoy a symmetry under

respectively rephasing the lepton and quark fields. Furthermore, lepton family number,

which is conserved in the SM, is broken due to the PMNS matrix which encodes the fact

that in general Ye and YN cannot be diagonalized simultaneously in analogy to the quark

sector.

Later on in the paper it will prove useful to have an explicit parametrization for the

flavorful matrices. We will use the following parametrization

Ye = diag (ye, yµ, yτ) , YN = V ⋅ diag (y1, y2, y3) ⋅W †, MN = diag (m1,m2,m3) , (2.2)

where

V =U(θ12, θ13, θ23, δ) ⋅ diag (1, eiφ1 , eiφ2) , W = diag (1, eiφ′1 , eiφ′2) ⋅U(θ′12, θ′13, θ′23, δ′) , (2.3)

and U(θ12, θ13, θ23, δ) has been defined in Eq. (A.9), which is a CKM-like matrix with a

Dirac phase δ ∈ [0,2π) and three mixing angles θij ∈ [0, π/2]. φ1,2 ∈ [0,2π) and φ′
1,2 ∈[0, π) are additional Majorana phases. This parametrization correctly captures the 9 mass

parameters, 6 mixing angles and 2 Dirac as well as 4 Majorana phases of the theory. This

paper adopts a different convention, distinct from that which was previously discussed in

Ref. [26]. As a result, we provide the details focus on the new convention in App. A. In

addition, we introduce new parameterizations that can be more conveniently used for the

study of algebraic structures of the polynomial rings.

2.2 The Hilbert series and plethystic logarithm

In this section we will briefly review useful tools from invariant theory, developed in

Refs. [40–43] for operator bases and flavor invariants, that simplify the building process

and characterization of the low-energy flavor invariants. We will mostly follow the notation

introduced in Refs. [29, 42] here. Our goal in this paper is to find a minimal set of flavor

invariants that allows us to parametrize all observables in the theory in terms of those

invariants.

The central object of this paper will be flavor invariants I that are combinations of

Lagrangian parameters of the theory invariant under the maximal possible flavor group of

the renormalizable Lagrangian to be defined below. In a first step, we want to find a set of

invariants that allows us to express all remaining invariants in the theory as a polynomial

of the invariants in the set. As mentioned above, this set of invariants is called the set of

generating or basic invariants and always has finite cardinality for reductive groups [44, 45].

The basic set is a set of invariants, in which no invariant can be expressed as a polyno-

mial of all other invariants in the basic set. If any invariant can be expressed as a polynomial

of other invariants, it will be termed as a linear relation in this paper. But the invariants

in the basic set may still be algebraically dependent, i.e., there exist relations between them

in the form of

P (I1, ...,Im) = 0 , (2.4)

which are called syzygies in the invariant literature.
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Among the basic set of invariants there exists a set of invariants which are furthermore

algebraically independent, they are the so-called primary invariants.3 The fact that they are

algebraically independent implies that there exists no syzygy only comprising of invariants

from the primary set. Another interesting result is that the number of physical parameters,

i.e., the minimal number of parameters that are left after all transformations allowed by the

symmetry group of the theory are used, is equal to the number of invariants in the primary

set [26, 44, 45].

A useful guide to construct those invariants is the so-called Hilbert series (HS)

H(q) = ∞∑
i=0

ciq
i (2.5)

which enumerates the number ci of all possible invariants that can be built from the given

set of building blocks labeled by the parameter q at a given order i.

It can be shown that the HS can always be written as a fraction of two polynomials [45]

H(q) = N (q)D(q) , (2.6)

where the numerator is of palindromic form, i.e. N (q) = tpN (1/q) with p is the highest

power of q in N (q) and all terms in N (q) come with a positive sign. The denominator is

of the form D(q) = ∏mi=1(1 − qdi), where the total number of factors m counts the number

of primary invariants corresponding to the physical parameters in the theory, while the

exponents di in each factor give the power of the spurion in the invariant. If the numerator

is trivial, i.e. N (q) = 1 and the complete generating set is given by the set of primary

invariants, the ring is called a free ring.

Of course, most theories contain more than one coupling and it can be convenient to

count each coupling with its own spurion to simplify the identification of the invariants in

the HS. For n independent couplings in the theory that are used to build invariants, one

defines the multi-graded HS

H(q1, . . . , qn) = ∞∑
i1=0

⋅ ⋅ ⋅
∞

∑
in=0

ci1...inq
i1
1
. . . qinn , (2.7)

where the coefficient ci1...in now count the number of invariants containing the spurions

(q1, . . . , qn) to the power (i1, . . . , in). We call these powers the degrees of the invariant

while we call the sum of the degrees the order of the invariant.

Note that the multi-graded HS is no longer guaranteed to come in the form of Eq. (2.6),

which has a palindromic property in numerator with positive terms and the denominator

counting the number of primary invariants. To still obtain this information, one can always

3Note that there is a difference between the math and physics invariant literature on what is called a
primary invariant. In the physics literature a set of algebraically independent invariants is often called a
primary set. In the math literature on the other hand, the primary set is defined by a unique decomposition,
the so-called Hironaka decomposition (see App. F for more details), which automatically implies that the
invariants are algebraically independent. Since we do not care about this unique decomposition, we will
follow the definition that is commonly used in physics but will also make an effort to find a primary set
which is consistent with the Hironaka decomposition.
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take the single-graded limit of the HS, H(q1, . . . , qn) = H(q, . . . , q), where all couplings in

the theory are counted with the same spurion.

After describing the properties of the HS, we now introduce the mathematical methods

for calculating it. One convenient way to calculate the HS for reductive Lie groups is the so-

called Molien-Weyl formula, which for a single coupling transforming in the representation

R of the group G is defined as

H(q) = ∫ dµG exp
⎛
⎝
∞

∑
k=1

qkχR (zk1 , . . . , zkd)
k

⎞
⎠ ≡ ∫ dµGPE [χR(z1, . . . , zd); q] , (2.8)

where dµG is the Haar measure of the group, χR(z1, . . . , zd) is the character of the repre-

sentation R of the group G of rank d, and we have defined the plethystic exponential (PE)

in the last step. There is a straightforward generalization of the Molien-Weyl formula for a

multi-graded HS in a theory with several couplings transforming in different representations

Ri

H(q1, . . . , qn) = ∫ dµG

n

∏
i=1

PE [χRi
(z1, . . . , zd); qi] . (2.9)

To study some of the properties of the ungraded HS of a theory with several couplings, we

can take the single-graded limit qi → q.

Another useful function is the so-called plethystic logarithm (PL) which is the inverse

function of the PE that we just defined, i.e., PE−1(f(x)) = PL(f(x)) and is defined as

follows

PL [f (x1, . . . , xN)] = ∞∑
n=1

µ(n)
n

log [f (xn1 , . . . , xnN)] , (2.10)

where µ(n) is the so-called Möbius function.4 In most cases the PL proves extremely

helpful because we can simply read off the number of basic invariants and syzygies from

the coefficients of the spurions at a given order in the spurions.5 In the case of a complete

intersection ring,6 where the PL is just a polynomial in the spurions, the positive terms can

be identified with the basic invariants of the theory, and the negative terms correspond to

the syzygies that exist among them [46, 47]. However, for non-complete intersection rings,

the PL becomes a non-terminating series, and it has been noted in the literature [29, 46, 47]

4The Moebius function is defined as

µ(n) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 n has repeated prime factors

1 n = 1

(−1)j n is product of j distinct prime numbers

. (2.11)

5For instance, the PL of the quark sector of the SM can be easily calculated with the HS shown in
Ref. [26], which is given by PL(t) = 2t2 + 3t4 + 4t6 + t8 + t12 − t24. From the positive terms, we can read off
that there are two order 2 invariants, three order 4 invariants, four order 6 invariants, one order 8 invariant
and one order 12 invariant, while the negative term shows there is a syzygy at order 24. Among these 11
basic invariants, 10 of them are algebraically independent, which map to the ten physical parameters of the
quark sector, with an additional invariant capturing the sign of the CP phase.

6A ring is classified as a complete intersection if the difference between the number of generating
invariants and the number of syzygies is equal to the Krull dimension (the Krull dimension being the
maximal number of algebraically-independent invariants). Otherwise, it is categorized as a non-complete
intersection [29, 45].
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that the leading positive terms, i.e., all positive terms up to the first term with a negative

sign in the PL, can be identified with the basic invariants, and the leading negative, i.e., the

first negative terms that appear after the leading positive terms correspond to syzygies.7

We will see later for the νSM with 3 generations of sterile neutrinos, that this does

not necessarily have to hold true and the interpretation of the positive and negative terms

in the PL have to be slightly changed for more complicated invariant rings. This has also

been pointed out in the literature [29]. As we will see in the next section, this is also the

main difference between the SM quark sector and the νSM. While, the representations that

the spurions of the SM quark sector transform in are still sufficiently simple to generate

a complete intersection ring with a terminating PL, this is no longer true for the νSM.

Here, the representation the Majorana mass MN lives in complicates the ring structure

significantly leading to a non-complete intersection ring for both two and three generations

of sterile neutrinos.

3 Building an invariant basis for the νSM

3.1 Hilbert series of the νSM

Before we start building invariants, we will first compute the HS and PL to set our expec-

tations for the generating and primary set of invariants. We use again the Molien–Weyl

formula to calculate the Hilbert series for the νSM with the spurions Ye, YN and MN .8 For

that, we need the character of the fundamental and anti-fundamental representation and

the Haar measure of U(3) which are given by [42]

χ3
U(3) = z1 + z2 + z3 ,
χ3̄
U(3) = z−11 + z−12 + z−13 ,

dµU(3) = 1

6!
( 3

∏
i=1

dzi

2πizi
)(−(z2 − z1)2 (z3 − z1)2 (z3 − z2)2

z2
1
z2
2
z2
3

) .
(3.1)

From these, we can construct the characters for the representations of the flavorful La-

grangian parameters of the νSM following Tab. 1. For instance, the character for YN is

given by

χYN = χ3
U(3)L

(z1, z2, z3)χ3̄
U(3)N

(z4, z5, z6) = (z1 + z2 + z3) (z−14 + z−15 + z−16 ) . (3.2)

The characters for all other spurions can be obtained in the same manner. Using the

expression for the Molien–Weyl formula in Eq. (2.9) with the same grading for all spurions,

we can calculate the ungraded HS. The calculation involves the integral over the six variables

z1, . . . , z6 over the contour ∣zi∣ = 1, which can be obtained by calculating the residues. The

7All other terms in the non-terminating PL of a non-complete intersection ring after the leading negative
terms have – to our knowledge – no meaning for the construction of a generating set beyond the fact that
they appear in a special form of the HS, the so-called Euler form [46]. In this form the HS can be written
as H(q) = ∏∞n=1(1 − qn)−bn , where it can be shown that the bn are exactly the coefficients in the PL
PL [H (q)] = ∑∞n=1 bnq

n.
8To get a dimensionless quantity we take MN to be divided by the only other mass scale in the problem,

the Higgs vev v. Only then, one can compare invariants with a different number of insertions of MN .
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same calculation has been presented before, please refer to Refs. [37, 47] for details. We

find for the numerator of the ungraded HS

N (t) = 1 + t4 + 5t6 + 9t8 + 22t10 + 61t12 + 126t14 + 273t16 + 552t18 + 1038t20
+1880t22 + 3293t24 + 5441t26 + 8712t28 + 13417t30 + 19867t32 + 28414t34 + 39351t36
+52604t38 + 68220t40 + 85783t42 + 104588t44 + 123852t46 + 142559t48 + 159328t50
+173201t52 + 183138t54 + 188232t56 + 188232t58 + 183138t60 + 173201t62 + 159328t64
+142559t66 + 123852t68 + 104588t70 + 85783t72 + 68220t74 + 52604t76 + 39351t78
+28414t80 + 19867t82 + 13417t84 + 8712t86 + 5441t88 + 3293t90 + 1880t92 + 1038t94
+552t96 + 273t98 + 126t100 + 61t102 + 22t104 + 9t106 + 5t108 + t110 + t114, (3.3)

which has a palindromic form.9 The denominator is

D(t) = (1 − t2)3 (1 − t4)4 (1 − t6)4 (1 − t8)2 (1 − t10)2 (1 − t12)3 (1 − t14)2 (1 − t16) .(3.4)

As expected, the powers of the factors in the denominator add up to 21, the number of

physical parameters in the νSM which is also the cardinality of the primary set. [37, 47].

Our result of the ungraded HS is consistent with those found in Refs. [37, 47]. We have

furthermore calculated the multi-graded HS with a different parameter {e,m,n} counting

the degrees of the couplings {Ye,MN , YN}, which we only show in App. B due to its length.

To obtain the results in this paper, we have developed our own Mathematica code that

can efficiently calculate the Hilbert series. The code will be published as a Mathematica

package under the name CHINCHILLA [48].

Plugging the ungraded HS in Eq. (2.10) to calculate the PL, we find furthermore

PL[H(t)] =3t2 + 5t4 + 9t6 + 10t8 + 19t10 + 40t12 + 66t14 + 92t16 + 70t18 − 124t20
− 703t22 − 2039t24 − 4391t26 − 7472t28 − 8522t30 + 590t32 +O(t34) . (3.5)

We only show the PL up to order 32. For higher orders, both positive and negative terms

will appear repeatedly in an infinite series, which implies the νSM has an algebraic structure

that resembles a non-complete intersection ring.

The usual interpretation of the PL suggests that the leading positive terms indicate a

total of 314 basic invariants. However, our analysis reveals that this number is incorrect.

Discrepancies begin to arise at order 16 in the PL, where the count of basic invariants

exceeds 92. This is due to the non-complete intersection nature of the ring, resulting in

cancellations between the number of basic invariants and the number of syzygies. Concrete

9 Note that in the numerator Eq. (3.3), a term (1+t2) can be factorized, and the same factor also appears
in the denominator Eq. (3.4). If this factor were to be simplified, the Hilbert series would take a rational form
with a numerator featuring some negative terms, in contradiction with the positivity requirement announced
earlier However, one can always multiply a factor (1 + tk)m in both numerator and denominator if there
exists a factor (1−tk)n (where m ≤ n) in the denominator. This multiplication removes a factor of (1−tk)m

from the denominator while introducing a new factor of (1 − t2k)m. The total number of factors in the
denominator does not change, and the numerator keeps its palindromic form with positive terms. This
freedom indicates that there is ambiguity in determining the form of the Hilbert series if there is no further
requirement of the Hilbert series.
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examples will be provided in the following sections to clarify this matter. It is worth noting

that a similar cancellation was observed in a low-energy neutrino model in Ref. [29], which

also corresponds to a non-complete intersection ring. There is no rigorous proof

for this cancellation, however we can try to understand it as follows. For a sufficiently

simple invariant ring, the orders in the PL corresponding to the appearance of syzygies

are well-separated from the orders corresponding to the appearance of the basic invariants.

When the ring becomes more complicated, more invariants are needed to describe the full

algebraic structure of the ring, hence there exist more basic invariants at higher orders. If

syzygies containing the lower order basic invariants still appear at a similar order as in less

complicated rings, there will be an overlap between the regions of positive and negative

terms. This overlap will result in cancellations between the number of basic invariants and

the number of syzygies. Therefore, one should be cautious when using the PL to count

the number of basic invariants in a non-complete intersection ring. Observing a negative

term in the PL does not necessarily imply the absence of basic invariants, but rather

indicates the presence of more syzygies than basic invariants. It is preferable to define the

coefficient in the PL as the difference between the number of basic invariants and the number

of syzygies. Moreover, the coefficients in the ungraded PL at a specific order can be subject

to cancellations from terms which have a different grading for the same total order in the

multi-graded PL but cancel once the ungraded limit is taken. In this sense, we can not

naively assume that the leading positive terms in Eq. (3.5) can capture all basic invariants

as we expected for the theory with a complete intersection ring. Hence, the multi-graded

PL (see App. B) is our main guide to check if we have found the correct number of basic

invariants and syzygies at a given order in the spurions. It is also conjectured in Ref. [30]

that the basic invariants are all captured by the terms prior to the pure negative order10

in multi-graded PL. The pure negative terms occur at order 26 in Eq. (B.3) in our theory,

so the basic set should already be found within order 24. However, to test the conjecture,

we also construct invariants up to order 26 to see there is indeed no basic invariant can be

found in this pure negative order.

3.2 Constructing the invariants

Although the PL may provide some clues regarding the number of basic invariants, their

specific form remains unknown. While it is possible to construct invariants for some simple

models manually, in the case of complex models such as the νSM, which involves hundreds

of invariants in their generating sets, it becomes unfeasible to manually build them. Fur-

thermore, as mentioned at the end of the last section, in a sufficiently complicated ring, the

orders at which generating invariants and syzygies appear in the PL might overlap, hence

leading to cancellations. To construct a generating set, one therefore cannot solely rely

on the information provided by the PL. Instead, we will start by constructing all possible

invariants up to a given order which is done by a method based on graphs introduced in

this section. The objective is to eliminate redundant invariants with linear relations and

create a generating set. This generating set will then be used to obtain a primary set.

10In the multi-graded PL, we sort the terms according to the order (total degrees) of [emn] (c.f.
Eq. (B.3)). In a given order, if all terms are negative, then it’s called pure negative order.
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All possible flavor invariants
516’101 invariants

Pre-reduced set of invariants
8’666 invariants

Generating set of invariants Sgen
generates all invariants in the theory polynomially.

459 invariants

208 CP-even 251 CP-odd

Primary set of invariants Sprim

captures physical parameters in the theory.
21 invariants

Minimal CPV/CPC set SCPV
min /SCPC

min

captures CPV sources/conditions.
6 to 251 invariants

Cayley-Hamilton theorem
& trace identities

Remove redundancies
using linear relations

Denominator of HS
(+Hironaka dec.)

Zero table algorithm
/Hilbert’s Nullstellensatz

Figure 1: Flow graph of different invariant sets that appear in the analysis alongside the algorithms that
are used to obtain one set from another. The numbers in the top two boxes correspond to all single trace
invariants up to O([emn]26). Finally, we find 208 CP-even and 251 CP-odd invariants that make up the
generating set of the ring defined by the Lagrangian parameters and their transformation properties. A
complete list of these invariants can be found in App. D. The 21 algebraically independent invariants are
selected from the CP-even generating set to form the primary set. These invariants accurately capture the
21 physical parameters of the theory. To capture CPV sources and determine the CPC conditions, the CP-
odd invariants are selected from the CP-odd generating set. However, our program fails to find the minimal
set due to the complexity of the theory. Detailed explanations on the Hironaka decomposition, the zero
table algorithm and Hilbert’s Nullstellensatz can be found in App. F, App. C.3 and App. G respectively.

Furthermore, we will analyze the CPV effects based on the CP-odd generating invariants

of the theory. The entire process is summarized in Fig. 1, and we will provide a detailed

explanation of each step in the following sections.

Flavor invariants from closed walks in the graph The construction of flavor invari-

ants in our paper heavily relies on the flavor invariant graph, which is inspired by Ref. [49].

We show the graph of the νSM in Fig. 2, where the lepton sector and quark sector are

presented in the top and bottom panels respectively. In a graph, the nodes represent the

different fields and their conjugates, while the arrow lines are labeled with flavor matrices

connecting the flavor indices of the various fields at the nodes. These graphs have the

following two main advantages. First, they display the transformation rules for all flavor

matrices. Taking the general building block of the graph as an example,

i

Fi
j

Fj
Y

where the arrow labeled with a flavor matrix Y , starting from vertex i to vertex j, which
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N∗
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Y
†
e YN

Y
†
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M∗
N Y T

N

Y ∗N

Y ∗e

Y T
e

7
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8

Q

9
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u∗

11

Q∗
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d∗
Yd

Y
†
d

Y
†
u

Yu Y ∗d

Y T
d

Y T
u

Y ∗u

Figure 2: The flavor invariant graph that can be used to construct all possible single trace flavor invariants
in the νSM. To any closed walk that follow the arrows, one can associate a single-trace invariant. Note that
the graph for the SM would have a “holomorphic” structure, i.e., it has two separated branches involving
separately only fields or only their conjugates. This changes in the νSM, where the transformation properties
of the Majorana mass MN connect the holomorphic and antiholomorphic branches. More details can be
found in the main text.

are labeled with the fields Fi and Fj respectively, indicating that the flavor matrix Y should

transform as Y → UFi
Y U

†
Fj

under the flavor group. For example, for the graph in Fig. 2,

we can read off Ye → ULYeU
†
e and Y ∗e → UL∗Y

∗
e U

†
e∗ = U∗LY ∗e UTe , where we have used the

fact Uf∗ = U∗f . Second, following the directional flow of the arrows, one can pass through

vertices and edges, creating “paths”. If the repetition of vertices and edges are allowed,

these paths will be referred to as “walks” in mathematical terminology. To every walk, one

can associate an object with specific transformation under the flavor transformations. For

instance, in the graph below, starting from vertex i and following a sequence of arrows until

reaching vertex j,

i

Fi

k

Fk

l

Fl
j

Fj
Y1 Y2, . . . , Yn−1 Yn

then the product of flavor matrices X ≡ Y1 . . . Yn will transform as X → UFi
XU

†
Fj

. If there

is a walk, with i = j, which means the walk is closed and ends at the starting vertex, then

we will have X → UFi
XU

†
Fi

. This implies Tr(X) is a single trace invariant. As a result,

one can construct flavor invariants from closed walks in the graph. Conversely, one can also

identify a closed walk with each single-trace invariant.

For instance, one can find the following correspondences between invariants and the

closed walks in the quark and lepton sectors (the red paths represent closed walks on the
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graphs denoted by the black arrows connecting the vertices)

7

d

8

Q

9

u

Yd

Y
†
d

Y
†
u

Yu

∼ 8→ 9→ 8→ 7→ 8

∼ Tr(YuY †
uYdY

†
d
) ,

2

L

3

N

4

N∗

YN

Y
†
N

MN

M∗
N

∼ 2→ 3→ 4→ 3→ 4→ 3→ 2

∼ Tr(YNM∗
NMNM

∗
NMNY

†
N) .

(3.6)

Note that the walks are equivalently given as a chain of numbers corresponding to the

vertices that are passed through. We only show here simple examples of walks in subsets

of the νSM graph. Obviously, one can consider more complicated walks involving more

vertices and obtain new flavor invariants accordingly. Due to the cyclicity of the trace, the

invariant associated to a closed walk is independent of the starting vertex, e.g. 8 → 9 →

8 → 7 → 8 = 7 → 8 → 9 → 8 → 7 for the first example above. In addition, since the last

vertex in a closed walk is always the same as the first vertex, we can omit the last number

in the chain. To further shorten the notation, we can also remove the arrow, resulting in

an integer representation of the walk notation. Furthermore, due to the cyclicity of the

walk, we can rotate the numbers in the chain to arrange them in lexicographically smallest

order. By following this approach, all single trace invariants are uniquely represented as

integers. For instance, the two invariants above should be represented by two integers 7898

and 234343 respectively.

The inclusion of the Majorana neutrino mass MN creates an important difference be-

tween the lepton and the quark sectors. The quark sector has two separate parts in the

graph: the closed walks involve either the fields or their complex conjugate at the vertices,

but never mix both. The walks are holomorphic or anti-holomorphic. The set of invari-

ants built from the anti-holomorphic closed walks is equivalent of the one built from the

holomorphic walks (see App. C.1 for details). The introduction of the Majorana neutrino

mass term MN complicates the scenario in the lepton sector. The two conjugate parts

are connected through this new flavor matrix, making the invariant structure much more

complex, as we will see.

In the Dirac limit MN → 0, the quark and the lepton sectors obviously have the same

flavor structure, and thus have the same forms of the flavor invariants. In Section C.1, we

show how to construct the flavor invariants in the quark sector based on the graph approach.

The generating flavor invariants are shown explicitly, which can be easily mapped to the

flavor invariants of the lepton sector in the Dirac limit.
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For nonzero and finite MN , we can systematically enumerate the closed walks cor-

responding all single-trace flavor invariants up to arbitrarily high order. Based on the

arguments of Ref. [30], we are particularly interested in invariants up to order 26 which is

the order of the first pure negative term in the multi-graded PL of the νSM, and therefore

it should be possible to obtain a set of basic invariants out of them. In App. C.1, we present

the brute-force algorithm we used to construct all these single-trace invariants up to order

26. We obtain 516’001 of them. However, there is still a lot of redundancy among them,

and we can immediately reduce the set of invariants using some simple relations.

• Transpose redundancy

The flavor invariant associated with the walkW1 ≡ ij . . . kl is always accompanied with

another walk with primed vertices in reverse order W2 ≡ l′k′ . . . j′i′, where v′ = 7−v for

the graph in the lepton sector, featuring a left and right mirror symmetry. The invari-

ants generated from these two walks are the same, and they are connected through

the trace identity Tr (XT ) = Tr (X). For instance, Tr (YeY †
e ) = Tr (Y ∗e Y T

e ).
• Conjugate redundancy

The walk W1 defined above is also associated with W3 ≡ i′j′ . . . k′l′. The invariants

generated by these two walks are conjugate to each other. Thus, both Tr(X) and

Tr(X∗) will be generated in our construction. As the CP properties of ReTr(X)
and ImTr(X) are more transparent than those of Tr(X) and Tr(X∗), we will trade

Tr(X) and Tr(X∗), which are generated by the graphs, with ReTr(X) and ImTr(X),
whenever a complex invariant is found.

• Cayley–Hamilton theorem

The Cayley–Hamilton theorem, along with its variations, enables us to eliminate

invariants or establish relations among them. The trace identities induced by the

Cayley–Hamilton theorem hold true for generic matrices, but further identities hold

among the invariants since they end up involve products of matrices with special

structure like YeY
†
e , or with special symmetry properties as for MN .

The details of these redundancies are discussed in App. C.1. Making full use of the

redundancies, we are left with a set of 8’666 invariants. This is still a too large set to form

a generating set.

Construction of the generating set After pre-reducing the set of invariants with well-

known trace relations, we will then search for linear relations of invariants in terms of the

other invariants at the previous order. This will allow us to identify the generating set

of invariants which, by definition, does not have any linear redundancy. To fully remove

all linear dependence and obtain a basic set, we introduce a numerical algorithm outlined

in App. C.2, which converts the problem of finding polynomial relations to a problem of

solving finite system of linear equations. This algorithm has been used in different forms

in Refs. [27, 29, 34, 38] before. We have improved the algorithm for this work to avoid
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redundant syzygies11 as we show in detail in App. C.2. By using this method, we are

able to generate all possible polynomial relations among the invariants at each degree,

which includes both linear relations and syzygies. Once a linear relation is found, the

corresponding invariant will be removed from our set.

Running this algorithm up to order 26, the invariant list is reduced to a set without

linear dependencies. Our final set includes 459 invariants which form a generating set of

the flavor invariants in the νSM. Out of the 459 generating invariants 208 are CP-even and

251 are CP-odd. We want to stress again that all invariants in the theory can be captured

by polynomials of these 459 flavor invariants. Hence, any observable in the theory is in

principle expressible in terms of these invariants. In the following sections, we will further

reduce the generating set to a primary set which captures all physical parameters in the

theory. Additionally, we will reduce the CP-odd generating set to a minimal CPV set that

captures all sources of CPV, as well as a minimal CPC set that captures all necessary and

sufficient conditions for CPC in the νSM (c.f. Fig. 1). We provide the full generating set in

App. D, which is split into CP-even set and CP-odd set. From now on, we will use Ii(Ji)
to represent the ith invariant in the CP-even(CP-odd) set. When referencing Ii(Ji), one

should bear in mind that these invariants are from our generating set.

Linear relations and syzygies To cross-check if the correct amount of generating in-

variants was found, we can use the information provided by the graded PL. In order to

match the numbers in the PL given by the number of generating invariants minus the num-

ber of syzygies at each order, we also have to find all syzygies at a given order. All of this

have been done with the process described above. Now, we will provide some examples for

the polynomial relations we have found, which include both linear relations and syzygies.

Our program scans and checks all terms in the PL from lowest order to highest order. Prior

to order 12, our reduced invariant set accurately produces the terms in the PL. This means

that no polynomial relation can be found, and all the invariants in our pre-reduced set are

basic invariants. At degree e6n6 in spurions, two invariants are found in our pre-reduced

set, they are given by I ≡ ReTr(X2

NX
2
eXNXe) and J10 ≡ ImTr(X2

NX
2
eXNXe). From the

multi-graded PL in Eq. (B.3), a positive term +e6n6 is observed. According to the usual

understanding of the PL, there will be only one basic invariant at this degree, which means

one of the invariants I and J10 is redundant. This is confirmed by our algorithm, we find

that I can be written as a polynomial of other lower degree CP -even invariants

6I =I33I31 − I3I6I31 − 3I23I7I21 + 3I3I12I21 − I33I4I1 + I4I11I1+
+3I23I13I1 − 3I3I18I1 + I3I6I9 − I9I11 + 3I12I13 + 3I7I18 . (3.7)

With this linear relation, the CP -even invariant I becomes redundant, while no such linear

relation can be found for the CP -odd invariant J10; as a result it is collected in our basic

set. The same linear relation was found in the discussion of the quark flavor invariants in

11Redundant syzygies are those which have previously appeared in the algorithm at a lower order in the
spurions and are multiplied by another syzygy, which has previously appeared, or some invariant of the
generating set, hence reappearing at a higher order. These kind of syzygies evidently do not carry any new
information. This is also discussed in Ref. [27], where the term “old relation” is used.
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Ref. [26]. The CP -odd invariant J10 in the lepton sector is analogous to the Jarlskog invari-

ant I
(−)
6,6 in the quark sector as shown in Eq. (C.3), and is the only CP-odd generating invari-

ant in the νSM that has no dependence on MN . Note that I
(−)
6,6 = 2i ImTr(X2

uX
2

dXuXd),
while in our notation the additional factor “2i” is omitted.

Running our algorithm up to order 14, we get exactly the same number of basic in-

variants as indicated by the positive terms in the multi-graded PL. However, we run into a

mismatch at degree m8n8. There are 10 invariants from the pre-reduced set, we only find 9

linear relations. As a result, we are left with one invariant J76 that can not be written as

any polynomial of other invariants, by definition, it should be identified as a basic invariant.

But looking at the multi-graded PL in Eq. (B.3), one does not find a positive term at degree

m8n8 and would naively believe that there are no basic invariants at that degree. However,

as we mentioned in Sec. 3.1, there can be non-trivial cancellations between the number of

basic invariants and syzygies. Indeed, we also find another relation at degree m8n8, which

is given by

3I25I43 − 3I2I10I43 − 8I32I8I33 + 12I2I5I8I33 + 8I8I10I33 + 12I22I16I33 − 24I5I16I33+
+ 30I22I28I23 − 18I5I28I23 + 36I216I23 − 6I25I6I23 + 6I2I6I10I23 + 8I32I14I23 − 12I2I5I14I23+
− 8I10I14I23 + 10I32I15I23 − 18I2I5I15I23 − 4I10I15I23 − 60I2I8I16I23 − 12I22I20I23+
+ 24I5I20I23 − 24I22I21I23 + 24I5I21I23 + 24I2I28I23 − 24I2I38I3 + 8I32I6I8I3+ (3.8)

− 12I2I5I6I8I3 − 8I6I8I10I3 − 24I22I8I14I3 + 24I5I8I14I3 − 48I22I8I15I3 + 24I5I8I15I3+
+ 48I28I16I3 − 12I22I6I16I3 + 24I5I6I16I3 + 24I2I14I16I3 + 48I2I15I16I3 − 16I32I19I3+
+ 24I2I5I19I3 + 16I10I19I3 + 48I2I8I20I3 − 48I16I20I3 + 48I2I8I21I3 − 48I16I21I3+
+ 48I22I27I3 − 48I5I27I3 − 48I8I28I3 − 48I2I39I3 + 3I25I26 − 6I22I6I28 + 6I5I6I28 + 6I22I214+
− 6I5I214 + 24I22I215 − 12I5I215 − 12I6I216 + 24I220 + 12I221 − 3I2I26I10 + 12I2I28I14+
+ 24I2I28I15 − 10I32I6I15 + 18I2I5I6I15 + 4I6I10I15 + 12I2I6I8I16 − 24I8I14I16+
− 24I8I15I16 + 24I22I8I19 − 24I5I8I19 − 24I2I16I19 − 24I28I20 + 12I22I6I20 − 24I5I6I20+
− 48I2I15I20 − 24I2I14I21 + 6I32I26 − 6I2I5I26 − 12I10I26 − 48I2I8I27 + 48I16I27+
+ 24I14I28 − 24I22I38 + 24I5I38 + 48I8I39 + 24I2I55 + 12J 2

1 = 0 ,
This polynomial relation indicates a redundancy of the CP -odd invariant squared J 2

1
–

not a linear redundancy of an invariant – and therefore by definition it is a syzygy. Hence,

combining the two findings we have

PL (e,m,n) ⊃ +m8n8 −m8n8 , (3.9)

explaining the non-trivial zero in the PL. At higher degrees in the spurions even stronger

cancellations appear, that can even generate negative terms at orders where basic invariants

may exist. Some examples are

PL (e,m,n) ⊃(21 − 1) e4m4n8 + (3 − 1) e2m4n12 + (3 − 6) e2m6n10 + (2 − 6) e2m8n8 , (3.10)

where we have used (nb−ns) as a coefficient to indicate there are nb basic invariants and ns
syzygies at the corresponding degree. Although there may be challenges when identifying
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Order 2 4 6 8 10 12 14 16 18 20 22 24 26 Total

Basic
CP-even 3 5 9 8 12 17 25 33 41 34 17 4 0 208

CP-odd 0 0 0 2 7 23 41 61 61 42 13 1 0 251

Syz. 0 0 0 0 0 0 0 2 32 200 733 2044 4391 7402

PL=Basic−Syz. 3 5 9 10 19 40 66 92 70 −124 −703 −2039 −4391 −6943
Table 2: The number of basic invariants and syzygies from order 2 to order 26, where the basic invariants
are split into CP-even and CP-odd in the counting. The difference between the number of basic invariants
and number of syzygies precisely aligns with the terms in the ungraded PL shown in Eq. (3.5). In the last
column, we list the total number of CP-even, CP-odd basic invariants, syzygies, and their difference. In the
complete intersection ring, the difference between the number of basic invariants and number of syzygies
should be the Krull dimension, which is 21 in our theory. The negative number shown here featuring a
non-complete intersection ring.

basic invariants and syzygies, as long as the terms in PL are correctly interpreted, we

will be able to determine the correct number of the basic invariants and syzygies at each

degree. Our algorithm accurately generates the terms in PL up to order 24 based on the

updated description of the PL. However, at order 26, there are some mismatches due to the

“redundant syzygies”, which are products of syzygies that appeared at a lower order in the

spurions. We provide solutions to address these mismatches. For more details, please refer

to App. C.2. The order 26 is the first order that only has negative terms in the multi-graded

PL. We also confirmed that there is no basic invariants at this order. Finally, our program

successfully generate the correct number of basic invariants and syzygies at each degree

of [emn], and they can lead to the graded PL shown in Eq. (B.3). We have summarized

the number of basic invariants and syzygies, as well as the CP-even and CP-odd counting

at each degree in Tabs. (7,8). Under the new interpretation, the PL should be presented

in a new form with cancellations. The coefficient of each term should be replaced with

(nb − ns) as shown and described around Eq. (3.10). According to the new graded PL,

one should be able to read off the correct number of basic invariants and syzygies at each

degree easily. Due to its length, we will not show it here. Furthermore, we summarize the

counting information at each ungraded order in Tab. 2. With this table, the ungraded PL

shown in Eq. (3.5) can also be revised to the new form

PL[H(t)] =(3 − 0) t2 + (5 − 0) t4 + (9 − 0) t6 + (10 − 0) t8 + (19 − 0) t10 + (40 − 0) t12
+ (66 − 0) t14 + (94 − 2) t16 + (102 − 32) t18 + (76 − 200) t20
+ (30 − 733) t22 + (5 − 2044) t24 + (0 − 4391) t26 +O(t28) .

(3.11)

One can find that up to order 26, the coefficients are exactly the same as those shown in

Eq. (3.5).

At higher orders, the coefficients in the PL can no longer be connected to meaningful

quantities like the number of generating invariants or the number of syzygies at a given

degree [29, 46]. For instance, at order 28, we can find two positive terms

PL (e,m,n) ⊃ +6m14n14 + 4m16n12 . (3.12)

However, all invariants constructed by brute force at these two degrees are redundant after

applying the Cayley-Hamilton theorem. Therefore there is no basic invariant, and these
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two positive terms must be misleading.12 The scanning program should terminate at the

first pure negative order [29], and we can be assured that we get a complete and minimal

set of basic invariants. It is worth noting that identifying syzygies at each order is not

necessary to obtain the basic set. The identification of linear relations is sufficient for this

purpose. Counting correct number of syzygies adds much complexity to our analysis, and

it is only necessary to verify that we have found the correct number of basic invariants as

indicated by the PL.

3.3 A primary set for the νSM

To reduce the generating set of invariants to a primary set that captures all physical degrees

of freedom of the theory, we can use the denominator of the HS as a guide. In addition, the

Hironaka decomposition (c.f. App. F) documented in mathematical literature proves to be

useful in the field of physics studies. The significance of the Hironaka decomposition lies

in its ability to simplify the analysis of the invariants in the ring, particularly in scenarios

where primary invariants are CP-even and secondary invariants are CP-odd. This enables

a more focused investigation into the linear span of CP-odd secondary invariants, providing

necessary and sufficient conditions for CP conservation [27]. Once a set of primary and

secondary invariants is chosen, there will be a unique decomposition of any invariant in the

theory in terms of the primary and secondary invariants in the form of Eq. (F.2).

If one is not interested in the Hironaka decomposition, the primary set is defined as

a set of algebraically independent invariants. These invariants will capture all physical

parameters in the theory. In order to reduce redundancies from the beginning, we choose

the candidate sets with cardinalities equal to 21, which is the number of physical parameters

in the case of the νSM. One way to check if a candidate set is algebraically independent

is to calculate the Jacobian with respect to all parameters in a given parameterization of

the Lagrangian, for which we will use the parametrization from Eq. (2.2). If the rank is

equal to the number of physical parameters in the theory, a set of algebraically independent

invariants is found. Following this procedure we find the following primary set of invariants

I1 = Tr (Xe) , I2 = Tr (XM) , I3 = Tr (XN) , I5 = Tr (X2

M) , I6 = Tr (X2

N) ,
I7 = Tr (XeXN) , I8 = Tr (ZMN) , I9 = Tr (X3

e ) , I12 = Tr (XeX
2

N) , I13 = Tr (X2

eXN) ,
I15 = Tr (XNZMN) , I23 = ReTr (XeXNZMN) , I25 = Tr (X2

eZMN) ,
I34 = Tr (X2

eYNM
∗
NY

T
N Y

∗
NMNY

†
N) , I35 = Tr (XeYNM

∗
NY

T
NX

∗
e Y
∗
NMNY

†
N) , (3.13)

I47 = Tr (X2

eYNM
∗
NY

T
NX

∗
NY

∗
NMNY

†
N) , I50 = ReTr (XeXNYNM

∗
NY

T
NX

∗
e Y
∗
NMNY

†
N) ,

I54 = Tr (X2

eYNM
∗
NY

T
NX

∗
e Y
∗
NMNY

†
N) , I65 = ReTr (X2

eX
2

NYNM
∗
NY

T
N Y

∗
NMNY

†
N) ,

I79 = Tr (X2

eYNM
∗
NY

T
NX

∗2
e Y ∗NMNY

†
N) , I91 = ReTr (X2

eX
2

NYNM
∗
NMNM

∗
NY

T
N Y

∗
NMNY

†
N) ,

where we have defined Xe = YeY †
e ,XN = YNY †

N ,XM = MNM
∗
N and ZMN = YNM∗

NMNY
†
N .

We want to stress here that the set of algebraically independent invariants is not unique. In

12The only meaning we can give to the coefficients of these terms is due to the Euler form we mentioned
in footnote 7.
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particular, there are many sets that are compatible with the denominator of the ungraded

HS and have a Jacobian rank of 21. Furthermore, the primary invariants are only chosen

to be CP-even invariants in the generating set. However, it is possible to include CP-

odd invariants, provided they are algebraically independent. For instance, some CP-odd

invariants are included in the primary set of the seesaw effective field theory in Ref. [37].

In addition, we have chosen the orders of the invariants in our primary set to follow

those of the denominator of the HS in Eq. (3.4). For instance, the first term (1− t2)3 of the

denominator in Eq. (3.4) indicates that there should be 3 invariants of order 2. However,

following our discussion in footnote 9, one can change the numbers in the denominator of

the HS by multiplying the numerator and denominator of the HS with the same factor

(1 + tk)m. In this case, more algebraically independent subsets of the generating set with

cardinality 21 can function as a primary set.

It is also worth noting that we chose our primary set in such a way that it is compatible

with the Hironaka decomposition up to the maximal order O ([emn]26) we could verify. We

have checked this explicitly by constructing all possible secondary invariants and verifying

that the numerator of the HS counts these secondary invariants correctly.

We want to make one further comment about the primary set in the context of degen-

erate mass spectra here. No choice of a primary set can capture all physical parameters in

all degenerate cases. In particular, in the Dirac limit by taking MN → 0, one should recover

the invariants of the SM quark sector upon replacing YN → Yu, Ye → Yd. Comparing our

minimal set in Eq. (3.13) in the limit MN → 0 with the primary set of the quark sector in

Eq. (C.3), one can easily verify that they are not the same after making the replacements

d → e, u → N . On top of that our reduced set will not be a primary set after taking the

limit as it will not have enough invariants to capture all physical degrees of freedom.

We propose the following to build a minimal set which captures all physical parameters

in all degenerate cases. Instead of starting with the denominator of the ungraded HS,

which we believe has the ambiguity of having unphysical parameters to be removed in the

spurions, we start with the denominator of the graded HS. This will obviously lead to a set

with algebraic dependence between invariants, hence not a primary set. However, this set

– which we call maximal primary set – can be reduced to a primary set in every limit of

taking spurions to zero.

For instance, for the set in Eq. (3.13) to retain the properties of a primary set in the

degenerate case of setting MN → 0, the invariants

{I4,I11,I18} (3.14)

have to be added to the primary set in Eq. (3.13). All of these invariants correspond to

factors which appear in the denominator of the multi-graded HS in Eq. (B.1). Hence, to

build a minimal set which captures all degrees of freedom in the theory in all special spectra,

we believe one also has to add all the invariants corresponding to the remaining factors in

the denominator of the multi-graded PL.
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4 Studying CP violation with flavor invariants

4.1 Capturing the sources of CP violation

According to invariant theory, all invariants in the invariant ring can be expressed as poly-

nomials in the generating invariants. On the other hand, physical observables are not

necessarily polynomials of parameters in the theory, and therefore do not generally belong

to the invariant ring. However, due to their flavor invariant nature, they must be some

function of the generating invariants. In this sense, all observables can be parameterized by

the generating invariants. This can in particular be helpful for observables which violate

CP. For instance, in the SM there is a single flavor invariant object which captures all CPV,

the Jarlskog invariant.13 Hence, all CPV observables in the SM must be expressible by this

single flavor invariant. For instance, the electron EDM de breaks both chiral symmetry and

violates CP, therefore we immediately know that de ∝ meI
(−)
6,6 with the Jarlskog invariant

I
(−)
6,6 which we have defined in Eq. (C.3).

We want to achieve the same for the νSM and find a way to express all CPV observables

in terms of a set of flavor invariant objects. For polynomial functions of the invariants we

have already found this set, which is simply the generating set. If we however also allow

for non-polynomial functions of flavor invariants, that observables in QFTs can be, we can

further reduce this set. As we will see below, the primary set is however too small because

it does not capture all CP-odd parameters in all possible degenerate cases of the mass

spectrum and texture zeros etc. Hence, we want to find the smallest set which captures all

sources of CP violation in the theory for all numerical values of the Lagrangian parameters,

also including cases which simplify the spectrum and make some phases unphysical. Hence,

it might be necessary to include more than one invariant for each phase in the theory. We

call this set the minimal CPV set SCPV
min .

Starting with the 251 CP-odd invariants, there is no straightforward way to reduce

them to a minimal set. One way is to find syzygies which allow to express one invariant as

a rational function of other invariants, but this seems hopeless given the amount of CP-odd

generating invariants in the νSM with 3 generations.

Therefore, we have come up with an algorithm that allows us to reduce the CP-odd

invariants in the generating set to a smaller set. The details of the algorithm and a few ex-

amples can be found in App. C.3. However, even though the algorithm works in principle to

reduce the CP-odd generating set to a minimal set, we did not manage to run it successfully

for our generating set of the νSM. In our algorithm we consider all choices of parameters,

which simplify the spectrum of the theory and enlarge its exact flavor symmetry group,

to decide which invariant should be kept in the minimal set. Due to the amount of cases

that have to be considered in the νSM with 3 generations, the size of the tables storing the

information of which invariant is non-zero in each case becomes extremely large. This yields

several TBs of data that have to be stored, which quickly becomes completely unmanage-

13The Jarlskog invariant does not only capture the phase in the CKM matrix. Furthermore, it captures all
cases where simplifying the spectrum of the theory renders the CKM phase unphysical. This is for example
the case when two quark masses of the same type are degenerate, which is captured by the Jarlskog invariant
as follows ∏i>j(y

2

u,i − y
2

u,j)(y
2

d,i − y
2

d,j).
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able even on a computing cluster with many cores and a lot of memory. Nonetheless, we

think our algorithm can be useful for theories with less CP-odd generating invariants to

reduce the CP-odd generating set to a smaller set which captures all sources of CPV. In

App. C.3, we show a reduced set for the νSM with nf = nN = 2, nf = nN = 314 and also run

our algorithm for the Two-Higgs-Doublet model (2HDM) considered in Ref. [27].

We want to stress that the algorithm can only reduce the CP-odd generating set to

a smaller set which captures the sources of CPV. Without solving the equations that are

obtained by setting the invariants to zero, to our knowledge, it cannot be established if the

set is also sufficient to capture all sources of CPV. In particular, there can be cases where

the invariant vanishes which does not correspond to a direction in parameter space with an

enhanced flavor symmetry, but instead is just a single point which happens to be a solution

of the invariant. These cases can only be checked for by explicitly considering all the roots

of the invariants. We give an example for such a case in App. C.3.

The problem of finding a set of flavor invariants which captures the sources of CPV

in the νSM has been discussed in the literature before. Assuming non-vanishing and non-

degenerate neutrino masses, the authors of Ref. [22], translated to our notation, find the

following set of flavor invariants

J1 = ImTr (Y †
NYNM

∗
NMNM

∗
NY

T
N Y

∗
NMN) ,

J4 = ImTr (Y †
NYNM

∗
NMNM

∗
NMNM

∗
NY

T
N Y

∗
NMN) ,

J15 = ImTr (Y †
NYNM

∗
NMNM

∗
NMNM

∗
NY

T
N Y

∗
NMNM

∗
NMN) , (4.1)

J31 = ImTr (Y †
NYeY

†
e YNM

∗
NMNM

∗
NY

T
N Y

∗
e Y

T
e Y

∗
NMN) ,

J67 = ImTr (Y †
NYeY

†
e YNM

∗
NMNM

∗
NMNM

∗
NY

T
N Y

∗
e Y

T
e Y

∗
NMN) ,

J116 = ImTr (Y †
NYeY

†
e YNM

∗
NMNM

∗
NMNM

∗
NY

T
N Y

∗
e Y

T
e Y

∗
NMNM

∗
NMN) ,

where Ji is the ith invariant in our CP-odd generating set in App. D. However, this set

clearly does not pass our requirements for a minimal CPV set as this set, by construction,

trivially vanishes for MN → 0 and hence does not capture the physical Dirac phase that

is present in this limit.15 One could add the equivalent of the Jarlskog invariant J10 =
ImTr (X2

NX
2
eXNXe) to the set to make it work in this limit, which however still does not

ensure that our set is a minimal CPV set according to our definition above. Making other

well-motivated assumptions, one can build similar CPV sets which capture all sources of

CPV given those assumptions are true. In most cases then only 6 invariants are required

to capture the 6 physical phases of the theory.

We can also approach the problem from the other end by considering which invari-

ants must be included for sure in order for our set to capture all sources of CPV for all

possible values of the model parameters. Simplifying cases of the parameter spectrum

that help identifying these invariants are those which drastically simplify (like setting

14Here, nf is the number of generations of fermions for all fermions except the right-handed neutrinos N .
15In certain degenerate mass spectra of charged leptons, this set also fails to meet our criteria for a

minimal CPV set.
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MN → 0) and give rise to only few non-zero invariants. We have found 3 such cases

where only one CP-odd invariant is non-zero assuring us that those invariants have to

be included in the minimal CPV set in order to capture all sources of CPV. The first

is the limit MN → 0 where the theory is reduced to a copy of the SM quark sector.

Then the analogue of the Jarlskog invariant J10 = ImTr (X2

NX
2
eXNXe) is the only non-

vanishing CP-odd invariant and has to be included in the minimal CPV set. The other

2 cases are {MN → mN1, Ye → 0} and {MN → mN1, YN → yN1} which force us to add

J74 = ImTr (YNY †
NYNM

∗
NY

T
N Y

∗
NMNY

†
NYNM

∗
NY

T
N Y

∗
NY

T
N Y

∗
NMNY

†
N) and

J251 = ImTr (X2
eYNM

∗
NY

T
NX

∗2
e Y ∗NMNY

†
NXeYNM

∗
NY

T
NX

∗
e Y
∗
NMNY

†
N) to the minimal CPV

set respectively. Here, as before, we define Xe,N = Ye,NY †
e,N .

We want to emphasize one point here. In the quark sector of the SM all parameters are

measured to high precision, telling us that none of the cases which simplify the spectrum

nor a zero CKM phase are realized in nature, making the Jarlskog invariant undoubtedly

non-zero. The opposite is true for the neutrino sector of the SM where some parameters

are not measured well enough today to even exclude that one of the neutrinos is massless.

Therefore, having a set of flavor invariants which captures all those special cases is important

to make general statements about the theory that hold true for all possible experimental

results.

If on the other hand none of these scenarios simplifying the renormalizable Lagrangian

is realized in nature, the set of Eq. (4.1) will be sufficient to parametrize all phases in the

theory. More generally, once the precision of experimental data is good enough to exclude

all of those cases, any algebraically independent set of CP-odd invariants will be sufficient

to capture the physical phases in the theory. Then, choosing those invariants which are

the last suppressed by small couplings is likely the best flavor invariant description of the

physical phases in the theory.

4.2 Conditions for CP conservation

As mentioned in the previous subsection, the vanishing of all CP-odd invariants in the

generating set Sgen leads to the necessary and sufficient conditions for CP conservation.

However, this does not mean that the CP-odd generating set is the minimal set characteriz-

ing the CPV property. The CP-odd generating set is required to generate any value of the

CP-odd invariants in a given parameterization, while the CP-odd set that can determine if

there exists CPV in the theory only captures their roots. In principle, the latter set should

be a subset of the CP-odd generating set, and from now on, we will call it the minimal

CPC set SCPC
min .

It is possible to find a minimal CPC set, such that

Jmin = 0, ∀Jmin ∈ SCPC
min Ô⇒ J = 0, ∀J ∈ Sgen/SCPC

min . (4.2)

The straightforward method one can try is to solve the common zeros of polynomials in

a candidate minimal CPC set, then apply the solutions to the other CP-odd invariants to

check whether they will vanish. However, this is not practical for complicated polynomials.

– 22 –



Without directly solving the polynomial equations, one can also use the syzygies to deter-

mine whether other invariants are automatically zero given that all invariants in a minimal

set are set to zero. This approach was e.g. followed in Ref. [27], where the author found

some syzygies that can determine the minimal CPC set in the 2HDM. In this section, we

will show that there is a specific form of the syzygy that can help to determine whether an

invariant will vanish.

The general problem concerning the common zeros of polynomials is closely connected

to the Hilbert’s Nullstellensatz [50, 51], a theorem that establishes a fundamental rela-

tionship between geometry and algebra. We have presented this theorem and relevant

mathematical terms in App. G. In this section, we will employ the Hilbert’s Nullstellen-

satz to reframe the problem of identifying the minimal CPC set. In the invariant ring,

or more generally in the polynomial ring R ∶= Q[x1, . . . , xn], where x1,...,n are the param-

eters in the theory. The CP-odd generating invariants are polynomials in this ring. Let

Js,J1, . . . ,Jm ∈ R, Hilbert’s Nullstellensatz says that if an invariant Js vanishes on all the

common zeros of the J1,...,m, then there exist some integer t, such that J ts is a subset of

the ideal I ∶= (J1, . . . ,Jm), i.e.,

J ts = f1J1 + ⋅ ⋅ ⋅ + fmJm , fi ∈ R , (4.3)

where fi are the ring elements, i.e. they are polynomials of the parameters. However, since

Js and J1,...,m are elements in the invariant ring, fi should also be invariants. They can be

parameterized by the generating invariants in a polynomial form

J ts =
m

∑
i=1

Pi(Jl,Ik)Ji , i ≠ s . (4.4)

Therefore, Hilbert’s Nullstellensatz tells us that if a CP-odd invariant Js is redundant in

the presence of a given CPC set, there must exist a syzygy of some power of Js that can

be used to eliminate this invariant. This theorem is quite helpful when using the syzygy

approach. For example, in Ref. [27], the syzygies are used to identify the CPC conditions

in the 2HDM, one can find that the syzygies regarding the vanishing invariant Js can be

obtained at order J 2
s , there is no need to discuss the spectrum of the syzygies as presented

in their analysis. We discuss the CPC conditions of the 2HDM in the new framework of

Hilbert’s Nullstellensatz in App. E.2.

It is possible to come up with an elimination algorithm based on the Hilbert’s Nullstel-

lensatz to find the minimal CPC set. However, the problem of finding a syzygy like Eq. (4.4),

or in more mathematical language, determining whether an ideal J ts is a subset of another

ideal I ∶= (J1, . . . ,Jm) highly relies on the calculation of the Gröbner basis, which is com-

putationally quite expensive in complicated polynomial rings. The undetermined power t

also introduces a lot of complexity in this problem. Some software systems are devoted

to studying the algebraic geometry and commutative algebra, such as Macaulay2 [52] and

Singular [53]. They have proved helpful when exploring algebraic structures of simple

theory. In addition, there is the Mathematica function PolynomialReduce, that can also

be used to solve these problems. However, it’s also based on the expensive Gröbner basis
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calculation. Despite the capabilities of these packages, they failed to generate results within

a reasonable time frame for the three-generation case.

As outlined in App. C.2, the syzygy problem can also be converted to a finite system

of linear equations, which can be addressed using standard linear algebra techniques. This

algorithm relies on the information about upper bound on the power t and the total degree

of parameters in Pi in Eq. (4.4). There is some known bound t ≤ dn, with d the maximal

degree of J1,...,m with respect to the parameters, and n the number of the parameters [54].

In our case, the bound is an incredible large number d21 for some value of d, making it

impossible to scan all possible values of t. The relevant aspect regarding the complexity

of such a problem is often referred to as the effective Nullstellensatz, which is difficult to

solve in general cases. However, if the objective is to reduce the CPV set to a smaller set,

imposing a specific smaller limit on t is also a viable approach. In that case, one can not

make sure if the obtained set is minimal. On the other hand, if the theory is simple enough,

one should also be able to tackle this problem by this approach.

Although we were unable to construct the minimal CPV set for the theory with three

generations of fermions, we did identify some example of syzygy that follows the form shown

in Eq. (4.4). For instance,

2J 2

14 = J1 (2J34I2 − 2J76 −J11I22 −J11I5) +J3 (4J36 − 4J13I2 + I22J3 + I5J3)
+ 2J4 (J11I2 −J34) − 2J11J15 + 2J 2

13 ,
(4.5)

one can find that if {J1,J3,J4,J11,J13} is set to zero, then J14 = 0 automatically.

In addition, some CP-odd invariants can be identified as candidates to the minimal CPC

set. Specifically, if a unique CP-odd invariant Js is non-zero under a specific spectrum, it

would not be possible to establish Eq. (4.4). Consequently, Js cannot be eliminated by any

CPC set unless it is included in the set. In Sec. 4.1, several example candidates have been

identified, such as J10, J74, and J251. These candidates must be included in the minimal

CPC set.

In conclusion, we introduced Hilbert’s Nullstellensatz as a reliable mathematical lan-

guage to address the problem of the CPC condition. However, the problem is inherently

complex and cannot be solved with our current efforts. It deserves further exploration as it

requires larger computational resources to be successfully resolved. Additionally, it would

be interesting to investigate this approach for some simple theories.

5 Conclusions

In this paper, we have analyzed the algebraic structure of the νSM, the SM extended with

three generations of sterile neutrinos, by constructing its set of generating flavor invariants.

In the quark sector, the theory exhibits a complete intersection ring, and the flavor invari-

ants can be easily generated with the guidance of the Hilbert series. However, in the νSM,

the theory corresponds to a non-complete intersection ring, introducing much complexities.

The analysis of the Hilbert series in this context requires a more careful examination to

extract correct information about the number of generating invariants and syzygies. We

construct the flavor invariants by brute force based on a graph of flavor matrices, then
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reduce it to a generating set by removing redundant invariants. The number of gener-

ating invariants and syzygies are carefully compared with the Hilbert series, a consistent

agreement was observed at each order of flavor invariants. The generating set comprises

of in total 459 invariants, out of which 208 are CP-even and 251 are CP-odd. We have

furthermore reduced this set to a primary set of flavor invariants capturing the 21 physical

parameters of the renormalizable Lagrangian. It’s worth noting that the flavor structure of

the Type-III seesaw is identical to that of the Type-I seesaw. Therefore, the flavor invari-

ants identified in this paper can be directly applied to the Type-III seesaw model with some

renaming of flavor matrices. In the spirit of the Jarlskog invariant, we have defined a mini-

mal set of CPV invariants, that captures all sources of CPV in all possible cases of spectra

for the theory. The reduction of the CP-odd generating set to a minimal CPV set turns out

to be a hard task and we only managed to reduce the set of CP-odd flavor invariants to a

more minimal set in the case of two generations of sterile neutrinos, while the reduction of

the three generation case was too complicated to complete by our means. Along the way,

we present useful algorithms which are essential to our analysis and hopefully prove to be

useful for other analyses of flavor invariants in the future.

The huge number of flavor invariants that are needed to capture all sources of CPV

in the νSM contests the idea of using flavor invariants to capture all sources of CPV in

all degenerate cases of the spectrum of the theory, in theories with complicated flavor

structures. An alternative approach was, for instance, put forward in Ref. [55].

An obvious next step for the flavor invariants is to connect them to phenomenological

applications to study, for instance, CPV observables in a consistent way with the help of

flavor invariants.

Our invariants in this paper are also useful to impose conservation of CP at the order

of the renormalizable Lagrangian while studying the flavor invariants of the νSMEFT to

characterize the violation of CP in the theory. This was the motivation to study the

invariants of the renormalizable Lagrangian in the first place.
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A Parameterization of flavor matrices

A.1 Standard parameterization

The parameterizations of the flavor matrices in the lepton and quark sectors have been

discussed in detail in Ref. [26, 49]. However, we use a different convention in this paper,

thus we will follow a similar discussion but in the new convention. The fermionic part of

the Lagrangian is given by

L4 ⊃∑
Ψ

Ψ̄i /DΨ − [1
2
(NCMNN) + L̄YNNH̃ + L̄YeeH + Q̄YuuH̃ + Q̄YddH +H.c.] , (A.1)

where the kinetic term sums all fermion fields Ψ = {Q,L,u, d, e,N}. The flavor transforma-

tions of the fermion fields are given by

L→ ULL , e→ Ue e , N → UN N ,

Q→ UQQ, u→ Uu u , d→ Ud d .
(A.2)

The corresponding Yukawa matrices and the Majorana mass matrix transform as

Ye → ULYeU
†
e , YN → ULYNU

†
N , MN → U∗NMNU

†
N ,

Yu → UQYuU
†
u , Yd → UQYdU

†
d
.

(A.3)

The Yukawa matrices YN,e,u,d are general complex matrices, while the Majorana mass matrix

MN is symmetric, which can be diagonalized as follows

Ye = Ve ŶeW †
e , YN = VN ŶNW †

N , MN = V ′N M̂N V
′T
N ,

Yu = Vu ŶuW †
u , Yd = Vd ŶdW †

d
,

(A.4)

where ŶN,e,u,d and M̂N are diagonal matrices with real and non-negative entries. Vf ,Wf

with f = N,e, u, d and V ′N are unitary matrices. We can choose specific flavor transforma-

tions in Eq. (A.3) to get a fixed mass basis. In this paper, we will work on the charged

lepton diagonal basis in the lepton sector and up basis in the quark sector. This can be

achieved by setting UL = V †
e , Ue = W †

e , UN = V ′TN , UQ = V †
u , Uu = W †

u, Ud = W †
d
. The flavor

matrices will be fixed to the following forms,

Ye = Ŷe , YN = VL ŶNW † , MN = M̂N ,

Yu = Ŷu , Yd = VCKM Ŷd ,
(A.5)

where VCKM = V †
uVd is the CKM matrix, corresponding to the mismatch between the diago-

nalization matrices of the up and down sectors. VL = V †
e VN is a similar matrix in the lepton

sector, describing the mismatch between the diagonalization matrices of lepton Yukawa ma-

trices. The existence of the Majorana mass matrix in the lepton sector introduces another

mixing matrix W = V ′TN WN , which describes the mismatch between the diagonalization ma-

trices of YN and MN . If the Majorana mass term is forbidden in some theory, the neutrino

will have a Dirac mass, then we can simply choose UN = WN , which will lead to W = ✶.
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The lepton sector will have the same structure as the quark sector, and VL can be seen as

the PMNS matrix phenomenologically.

From Eq. (A.4), if we assume that the flavor matrices have no degenerate or vanishing

eigenvalues16, the diagonalization matrices will have at least column phase redefinition

degrees of freedom, Vf → Vfe
iΦ̂f ,Wf →Wfe

iΦ̂f , f = {N,e, u, d} and V ′N → V ′NηN . This can

be expressed as the a rephasing invariance of the diagonal matrices.

Ŷf → eiΦ̂f Ŷfe
−iΦ̂f , f = N,e, u, d ,

M̂N → ηNM̂NηN ,
(A.6)

where Φ̂f ≡ diag(φf1 , φf2 , φf3) , f = N,e, u, d are diagonal complex phase matrices, and ηN

is a diagonal matrix with ±1 eigenvalues. Under these rephasing, the mixing matrices

transform as

VCKM → e−iΦ̂uVCKMe
iΦ̂d , VL → e−iΦ̂eVLe

iΦ̂N , W → ηNWeiΦ̂N , (A.7)

The 3 × 3 unitary matrix can be parameterized as

U3 = eiϕeiΨ̂U(θ12, θ13, θ22, δ)eiΦ̂ , (A.8)

where ϕ is a overall phase, Ψ̂ = diag(0, ψ1, ψ2) and Φ̂ = diag(0, φ1, φ2), and U(θ12, θ13, θ23, δ)
takes the standard form

U(θ12, θ13, θ23, δ) ≡
⎛⎜⎜⎝
1 0 0

0 c23 s23

0 −s23 c23

⎞⎟⎟⎠
⎛⎜⎜⎝

c13 0 s13e
−iδ

0 1 0

−s13eiδ 0 c13

⎞⎟⎟⎠
⎛⎜⎜⎝
c12 s12 0

−s12 c12 0

0 0 1

⎞⎟⎟⎠ , (A.9)

where sij ≡ sin θij , cij ≡ cos θij , and θij ∈ [0, π/2], δ ∈ [0,2π).
In the quark sector, by introducing the phase redefinition in Eq. (A.7), the phases in

the unitary matrix VCKM can be absorbed, it takes the standard form as given in Eq. (A.9).

The number of parameters are summarized as follows

Matrices Masses Angles Phases

Ŷu 3 0 0

Ŷd 3 0 0

VCKM 0 3 1

Total 6 3 1

16If there is a degenerate or vanishing mass spectrum, there will be a larger degrees of freedom to redefine
the mixing matrix, some parameters in our current parameterization could be unphysical, and they can be
removed by those redefinition. Under this enlarged symmetry, we should adopt a new parameterization,
the number of parameters should exactly match the number of physical observables. On the other hand,
if we adopt the most general parameterization, and set the special spectrum afterwards, some parameters
in the parameterization will be redundant. In some cases, the redundant parameters could be canceled in
the expression, and they never appear in the flavor invariants. In other cases, some parameters will appear
together as a single polynomial in different invariants. In the latter case, the polynomial that correlates them
should be considered as a single parameter in the parameterization, which should remove the redundancies.
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There are a total of 10 parameters, consisting of 6 quark masses, 3 mixing angles, and 1

CP phase.

In the lepton sector, we can parameterize VL and W as

VL = eiϕeiΨ̂U(θ12, θ13, θ23, δ)eiΦ̂ ,
W = eiϕ′eiΨ̂′/2U(θ′12, θ′13, θ′23, δ′)eiΦ̂′ .

(A.10)

Since VL and W share the same rephasing matrix Φ̂N , we can use this freedom to remove

either Φ̂ or Φ̂′ in Eq. (A.10), depending on what observable we are interested in. If the

flavor invariant only depends on YN and Ye, then the mixing matrix W can be simply set to

W = ✶, since it is not an observable. We can use the phase matrices Φ̂e and Φ̂N to remove

the phases of the unitary matrix VL, then it takes the same form as given in Eq. (A.9). The

mixing matrices in this case take the following form

VL = U(θ12, θ13, θ23, δ), W = ✶ . (A.11)

If the flavor invariant only depends on YN and MN , then the mixing matrix VL is not an

observable, which can be set to identity matrix. We can use the rephasing matrix Φ̂N to

remove the phases ϕ′ and Φ̂′ in Eq. (A.10), the effect of ηN is indicated by the factor of

two in the phase matrix eiΨ̂
′/2, which limits the phases in the range of ψ′i/2 ∈ [0, π) if by

convention ψ′i ∈ [0,2π). In this case the mixing matrices will take the following form

VL = ✶ , W = eiΨ̂′/2U(θ′12, θ′13, θ′23, δ′) . (A.12)

If the flavor invariant depends on the three flavor matrices Ye, YN and MN
17, then without

losing of generality, we can use the rephasing phases Φ̂e and Φ̂N to remove the phases in

VL and the phase ϕ′ in W in Eq. (A.10), then the mixing matrices take the following forms

VL = U(θ12, θ13, θ23, δ) , W = eiΨ̂′/2U(θ′12, θ′13, θ′23, δ′)eiΦ̂′ . (A.13)

We can also use Φ̂e and Φ̂N to remove the phases eiϕeiΨ̂ and eiϕ
′

eiΦ̂
′

in VL and W in

Eq. (A.10), respectively, then the mixing matrices are given by

VL = U(θ12, θ13, θ23, δ)eiΦ̂ , W = eiΨ̂′/2U(θ′12, θ′13, θ′23, δ′) . (A.14)

The third case corresponds to the most general parameterization of the mixing matrices VL
and W , we can work in this basis without loosing of generality. To be specific, we use the

following parameterization

Ye = diag (ye, yµ, yτ) , YN = VL ⋅ diag (y1, y2, y3) ⋅W †, MN = diag (m1,m2,m3) , (A.15)

with VL and W defined in Eq. (A.14). We summarize the the number of parameters in each

matrix in Tab. 3.

17The flavor invariants can not be constructed by only Ye and MN , since they are disconnected objects
if YN is not included, as shown in Fig. 2.
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For a more comprehensive discussion, please refer to Ref. [26]. In this paper, they also

discuss the cases for nN = nf = 2 and (nN , nf) = (2,3) in the lepton sector. For nN = nf = 2,
all flavor matrices are 2 × 2 matrices, the parameterization of the 2 × 2 unitary matrix is

U2 = eiϕdiag(1, eiψ) ⋅ ( cos θ sin θ

− sin θ cos θ
) ⋅ diag(1, eiφ) . (A.16)

Follow a similar discussion, we can easily find the following parameterization,

Ye = diag (ye, yµ) , YN = VL ⋅ diag (y1, y2) ⋅W †, MN = diag (m1,m2) , (A.17)

with

VL = ( cos θ sin θ

− sin θ cos θ
) ⋅ diag (1, eiφ) , W = diag (1, eiϕ) ⋅ ( cosα sinα

− sinα cosα
) . (A.18)

For (nN , nf) = (2,3), YN is a 3 × 2 matrix, and MN is a 2 × 2 matrix, as a result, the

flavor matrices can be parameterized as

Ye = diag (ye, yµ, yτ) , YN = VL ⋅
⎛⎜⎜⎝
y1 0

0 y2

0 0

⎞⎟⎟⎠ ⋅W
†, MN = diag (m1,m2) , (A.19)

with VL and W defined as follows

VL = U(θ12, θ13, θ23, δ) ⋅ diag (1, eiφ,1) , W = diag (1, eiϕ) ⋅ ( cosα sinα

− sinα cosα
) , (A.20)

which is analogous to the parameterization in Eq. (A.14), however the last phase in Φ̂ is

unphysical, since it vanishes when multiplied with the zeros in the last row of the 3 × 2
block diagonal matrix.

Matrices Masses Angles Phases

M̂N 3 [2] (2) 0 0

ŶN 3 [2] (2) 0 0

Ŷe 3 [2] (3) 0 0

VL 0 3 [1] (3) 3 [1] (2)
W 0 3 [1] (1) 3 [1] (1)

Total 9 [6] (7) 6 [2] (4) 6 [2] (3)
Table 3: The number of masses, mixing angles and phases in the parameterization of the lepton sector for
the case of nN = nf = 3 [nN = nf = 2] (nN = 2, nf = 3).

In the Dirac limit, MN is set to zero, and W is not relevant, we can simply set W = ✶.

In the case of nN = nf = 3, the matrix VL will become the PMNS matrix VPMNS, which

takes the same standard form as VCKM. The parameterization is given as

Ye = diag (ye, yµ, yτ) , YN = U(θ12, θ13, θ23, δ) ⋅ diag (y1, y2, y3) . (A.21)
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Similarly, for nN = nf = 2, it can be parameterized as

Ye = diag (ye, yµ) , YN = ( cos θ sin θ

− sin θ cos θ
) ⋅ diag (y1, y2) , (A.22)

where the phase of VL in the Majorana case can be removed by the rephasing of the right-

handed neutrino N . For nN = 2, nf = 3, the parameterization is given by

Ye = diag (ye, yµ, yτ) , YN = U(θ12, θ13, θ23, δ) ⋅
⎛⎜⎜⎝
y1 0

0 y2

0 0

⎞⎟⎟⎠ , (A.23)

where the phase eiφ in Eq. (A.20) can be absorbed by the field N in the Dirac case. The

parameters in the Dirac limit are summarized in Tab. 4.

Matrices Masses Angles Phases

ŶN 3[2](2) 0 0

Ŷe 3[2](3) 0 0

VPMNS 0 3[1](3) 1[0](1)
Total 6[4](5) 3[1](3) 1[0](1)

Table 4: The number of masses, mixing angles and phases in the parameterization of the lepton sector for
the case of nN = nf = 3 [nN = nf = 2] (nN = 2, nf = 3) in the Dirac limit.

A.2 Algebraic parameterization

The parametrization described above is favored for its phenomenological relevance, as

Yukawa matrices are factorized into eigenvalues and mixing matrices, which aligns with

experimental observables. However, when exploring the algebraic structures of invariants,

the inclusion of trigonometric functions introduces complexity. The use of sine and cosine

as distinct entities in the polynomial expansion of flavor invariants can complicate the ex-

ploration of these structures. Consequently, alternative parameterizations that are more

suitable for polynomial expressions are needed.

One possible solution is to parameterize the trigonometric functions. A frequently used

parameterization for the unit circle is provided as follows:

x(t) = 1 − t2
1 + t2 , y(t) = 2t

1 + t2 , with t ∈ (−∞,+∞). (A.24)

However the point (−1,0) on the unit circle can only be obtained in the limit t → ∞.

Another parameterization that can cover the whole circle is given by

x(t) = 1 − 6t2 + t4
1 + 2t2 + t4 , y(t) = 4t − 4t3

1 + 2t2 + t4 , with t ∈ (−1,1] . (A.25)

Thus the sine and cosine functions in the mixing matrices of our above parameterization can

be replaced with x(t) and y(t) respectively. However, this parameterization may introduce

new complexities, as it leads to rational polynomials.
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Following the parameterization in Eq. (A.15), it is possible to work with the diagonal

basis of both Ye and MN while leaving YN undiagonalized. The parameterization is given

as follows

Ye = diag (ye, yµ, yτ) , YN =
⎛⎜⎜⎝
r11 c12 c13

r21 c22 c23

r31 c32 c33

⎞⎟⎟⎠ , MN = diag (m1,m2,m3) , (A.26)

where rij and cij are general labels for real and complex parameters respectively, they do not

correspond to specific values, and cij can be easily written as real and imaginary parts by

introducing two real parameters. The phases of the first column of YN are absorbed by the

rephasing of charged lepton fields.18 With this parameterization, all invariants are expressed

as polynomials of simple variables, making it easier to analyze the algebraic structures of

the theory. It’s easy to see that the number of parameters in this parameterization is

still 21, which is the same as the physical parameterization in Eq. (A.15). Similarly, for

nN = nf = 2, we can parameterize it as

Ye = diag (ye, yµ) , YN = (r11 c12
r21 c22

) , MN = diag (m1,m2) . (A.27)

For nN = 2, nf = 3, the parameterization is given by

Ye = diag (ye, yµ, yτ) , YN =
⎛⎜⎜⎝
r11 c12

r21 c22

r31 c32

⎞⎟⎟⎠ , MN = diag (m1,m2) . (A.28)

The mapping between these two parameterizations can be found by solving equations built

from the entries of YN , which will not be shown here.

Under the Dirac limit, the Majorana mass term MN is set to 0, the parameters in

Yukawa matrix YN can be further reduced by the field redefinition of right-handed neutrino

N . Starting from the YN in Eq. (A.26), we can absorb the phases in c12 and c13 by

rephasing of N , these two real parameters can be further set to 0 by two rotations of N ,

i.e., N → R12(θ2)R23(θ1)N , where Rij is the rotation matrix acting on the (i, j) entries

of N . The rotation R12 can make r21 and r31 complex, but their phases can always be

absorbed by the rephasing of charged lepton fields. With these two leading zeros in the

second and third columns, the rephasing of N can be used again to remove the phases in

c22 and c23, the corresponding real parameters r22 and r23 can be mixed by the rotation

N → R23(θ3)N . By setting proper value of θ3, the parameter r23 can be set to zero. The

leading two zeros in the third column making it possible to remove the phase in c33 by

rephasing of N , resulting in a real parameter r33. The whole transformation process can

be presented as follows

YN →

⎛⎜⎜⎝
r11 r12 r13

r21 c22 c23

r31 c32 c33

⎞⎟⎟⎠→
⎛⎜⎜⎝
r11 0 0

r21 c22 c23

r31 c32 c33

⎞⎟⎟⎠→
⎛⎜⎜⎝
r11 0 0

r21 r22 r23

r31 c32 c33

⎞⎟⎟⎠→
⎛⎜⎜⎝
r11 0 0

r21 r22 0

r31 c32 c33

⎞⎟⎟⎠→
⎛⎜⎜⎝
r11 0 0

r21 r22 0

r31 c32 r33

⎞⎟⎟⎠ .
(A.29)

18It is not necessary for the rephasing degree of freedom to target the first column, any phase in each
row of YN can be eliminated.
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There is no further field redefinition can be used to reduce the number of parameters, as a

result, in the Dirac limit with nN = nf = 3, we can parameterize the flavor matrices as

Ye = diag (ye, yµ, yτ) , YN =
⎛⎜⎜⎝
r11 0 0

r21 r22 0

r31 c32 r33

⎞⎟⎟⎠ . (A.30)

We find there are exactly 10 real parameters in this parameterization as expected. Similarly,

for nN = nf = 2, the flavor matrices are parameterized as

Ye = diag (ye, yµ) , YN = (r11 0

r21 r22
) . (A.31)

For nN = 2, nf = 3, the parameterization is given by

Ye = diag (ye, yµ, yτ) , YN =
⎛⎜⎜⎝
r11 0

r21 r22

r31 c32

⎞⎟⎟⎠ . (A.32)

B Results for graded Hilbert series and plethystic logarithm

B.1 Model with nN = nf = 3
In Eqs. (3.3,3.4), we have used the same grading for all spurions to present the results,

the corresponding Hilbert series is referred to as ungraded Hilbert series. However the

information encoded in the ungraded Hilbert series is compressed, which is not enough for

some analysis, especially when we try to use the PL to count the numbers of basic invariants

and syzygies at each order. Therefore, in this section, we present the graded Hilbert series,

where the single spurion t in Eqs. (3.3,3.4) is split to the multiple spurions e,m and n,

which correspond to the spurions of the flavor matrices Ye,MN and YN respectively.

The denominator of the graded Hilbert series is given as follows

D(e,m,n) = (1 − e2)(1 −m2)(1 − n2)(1 − e4)(1 −m4)(1 − n4)(1 − e2n2)2(1 −m2n2)
(1 − e6)(1 −m6)(1 − n6)(1 − e2n4)(1 − e4n2)(1 −m2n4)2(1 −m4n2)(1 − e2m2n2)
(1 −m2n6)(1 −m4n4)(1 − e2m2n4)(1 − e2m4n2)(1 − e4m2n2)(1 −m2n8)
(1 − e2m2n6)(1 − e4m2n4)(1 − e4m4n2)(1 − e4m2n6)(1 − e4m4n4)(1 − e6m2n4)
(1 − e4m2n8)(1 − e8m2n4)(1 − e8m4n4) ,

(B.1)

while there are 6582 terms in the numerator, which goes up to order O([emn]196) in total

powers of spurions. Due to its length we only show the terms up to O([emn]26) below

N (e,m,n) = 1 − e2n2 + 2m4n4 + e4n4 + 2e2m2n4 + 2m4n6 + 2m6n4 + 4e2m2n6

+ 4e2m4n4 + 3e4m2n4 + 3m4n8 + 3m6n6 +m8n4 + 5e2m2n8 + 7e2m4n6 + 3e2m6n4

+ 4e4m2n6 + 5e4m4n4 + e6m2n4 +m4n10 + 3m6n8 +m8n6 + 3e2m2n10 + 9e2m4n8

+ 6e2m6n6 + e2m8n4 + 4e4m2n8 + 10e4m4n6 + 5e4m6n4 + 3e6m2n6 + 3e6m4n4
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+m4n12 +m6n10 + 3m8n8 + e2m2n12 + 5e2m4n10 + 9e2m6n8 + 2e2m8n6 + e4m2n10

+ 16e4m4n8 + 10e4m6n6 + 2e4m8n4 + 4e6m2n8 + 8e6m4n6 + 3e6m6n4 + 2e8m2n6

+ e8m4n4 +m8n10 +m10n8 + e2m4n12 + 6e2m6n10 + 7e2m8n8 − e2m10n6 (B.2)

+ 10e4m4n10 + 19e4m6n8 + 4e4m8n6 + e6m2n10 + 14e6m4n8 + 8e6m6n6 + e6m8n4

+ e8m2n8 + 5e8m4n6 + 2e8m6n4 + e10m2n6 −m6n14 + 2m10n10 +m12n8 − 3e2m4n14

+ 2e2m6n12 + 5e2m8n10 + 2e2m10n8 − e2m12n6 − e4m2n14 + 6e4m4n12 + 15e4m6n10

+ 12e4m8n8 − 2e4m10n6 − e6m2n12 + 9e6m4n10 + 16e6m6n8 + 2e6m8n6 − 2e8m2n10

+ 9e8m4n8 + 4e8m6n6 + e8m8n4 − 2e10m2n8 + 2e10m4n6 −m6n16 − 2m8n14 +m12n10

− 2e2m4n16 − 4e2m6n14 + 3e2m8n12 + 2e2m10n10 − 2e4m4n14 + 6e4m6n12 + 7e4m8n10

− e4m10n8 − 2e4m12n6 − 2e6m2n14 + 2e6m4n12 + 13e6m6n10 + 8e6m8n8 − 3e6m10n6

− 3e8m2n12 + 3e8m4n10 + 8e8m6n8 + 2e8m8n6 − 2e10m2n10 − 3e10m4n8 − e12m2n8

−m8n16 −m10n14 − e2m4n18 − 3e2m6n16 − 6e2m8n14 − e2m10n12 − 3e2m12n10

+ e4m4n16 − 10e4m6n14 − 5e4m8n12 − 7e4m10n10 − 3e4m12n8 − 7e6m4n14 + 2e6m6n12

− e6m8n10 − 2e6m10n8 − 2e6m12n6 − 2e8m2n14 − 4e8m4n12 + 2e8m6n10 + 3e8m8n8

− 2e8m10n6 − 2e10m2n12 − 6e10m4n10 − 3e10m6n8 − 3e12m4n8 − 3m10n16 −m12n14

−m14n12 − e2m6n18 − 7e2m8n16 − 10e2m10n14 − 5e2m12n12 − 2e2m14n10 − 15e4m6n16

− 33e4m8n14 − 22e4m10n12 − 13e4m12n10 − e4m14n8 − 2e6m4n16 − 21e6m6n14

− 21e6m8n12 − 16e6m10n10 − 4e6m12n8 − 11e8m4n14 − 15e8m6n12 − 15e8m8n10

− 6e8m10n8 − 2e8m12n6 − e10m2n14 − 9e10m4n12 − 8e10m6n10 − 5e10m8n8 − e10m10n6

− 3e12m6n8 − e14m4n8 +O([emn]28) .
It is worth noting that the multi-graded Hilbert series lacks certain properties of the un-

graded Hilbert series, such as a matching number of factors in the denominator with physical

observables and a palindromic form in the numerator. In addition, as already mentioned in

footnote 9, there is ambiguity when determining the form of the ungraded Hilbert series,

similar ambiguity can arise for the multi-graded Hilbert series. For instance, it is possible

to introduce a common factor (1+ e2n2) to both the numerator and denominator, then the

factors (1 − e2n2)2 in denominator become (1 − e2n2)(1 − e4n4), the numerator will also

change accordingly. The form of the Hilbert series is less constrained in the multi-graded

case. This ambiguity prevent us from further exploring the invariant structures of the the-

ory. Instead of decoding the Hilbert series, since the PL has unique forms for both ungraded

and multi-graded Hilbert series, the analyzing of the PL is more helpful in our case. The

invariants in our theory form a non-complete intersection ring, the PL is non-terminating

as a result, according to Eq. (2.10), the PL can only be calculated up to some given order

of spurions. However, as we discussed in Sec. 3.2, we should only care about the terms in

PL up to the first order, where all terms are negative. We find that this occurs at order

O([emn]26). The PL up to this order is given as follows

PL(e,m,n) = (e2 +m2 + n2) + (e4 +m4 + n4 + e2n2 +m2n2) + (e6 +m6 + n6 + e2n4
+e4n2 + 2m2n4 +m4n2 + e2m2n2) + (e4n4 +m2n6 + 3m4n4 + 3e2m2n4 + e2m4n2
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+e4m2n2) + (m2n8 + 2m4n6 + 2m6n4 + 5e2m2n6 + 4e2m4n4 + 4e4m2n4 + e4m4n2)
+ (e6n6 + 3m4n8 + 3m6n6 +m8n4 + 5e2m2n8 + 9e2m4n6 + 3e2m6n4 + 7e4m2n6

+6e4m4n4 + 2e6m2n4) + (m4n10 + 3m6n8 +m8n6 + 3e2m2n10 + 11e2m4n8

+8e2m6n6 + e2m8n4 + 9e4m2n8 + 14e4m4n6 + 5e4m6n4 + 6e6m2n6 + 3e6m4n4

+e8m2n4) + (m4n12 +m6n10 + e2m2n12 + 8e2m4n10 + 8e2m6n8 + 3e2m8n6

+6e4m2n10 + 20e4m4n8 + 13e4m6n6 + 2e4m8n4 + 8e6m2n8 + 13e6m4n6

+3e6m6n4 + 3e8m2n6 + 2e8m4n4) + (2e2m4n12 + 3e4m2n12 + 11e4m4n10

+11e4m6n8 + 5e4m8n6 + 5e6m2n10 + 18e6m4n8 + 13e6m6n6 + e6m8n4 + 4e8m2n8

+8e8m4n6 + 2e8m6n4 + e10m2n6 − 3m8n10 − 3m10n8 − 3e2m6n10 − 4e2m8n8

−e2m10n6) + (+2e6m6n8 + 4e6m8n6 + 9e8m4n8 + 7e8m6n6 + e8m8n4 + 3e10m4n6

−m6n14 − 9m8n12 − 8m10n10 − 4m12n8 − 2e2m4n14 − 21e2m6n12 − 32e2m8n10

−14e2m10n8 − e2m12n6 − 9e4m4n12 − 28e4m6n10 − 18e4m8n8 − 2e4m10n6

−e6m4n10) + (3e8m8n6 + 2e10m6n6 −m6n16 − 10m8n14 − 18m10n12 − 9m12n10

−2m14n8 − 2e2m4n16 − 34e2m6n14 − 76e2m8n12 − 55e2m10n10 − 12e2m12n8

−27e4m4n14 − 103e4m6n12 − 109e4m8n10 − 39e4m10n8 − 2e4m12n6 − 2e6m2n14

−45e6m4n12 − 83e6m6n10 − 35e6m8n8 − 3e6m10n6 − 6e8m2n12 − 21e8m4n10 (B.3)

−9e8m6n8 − 4e10m2n10 − e10m4n8) + (e10m8n6 − e12n12 − 11m8n16 − 20m10n14

−21m12n12 − 5m14n10 −m16n8 − e2m4n18 − 33e2m6n16 − 110e2m8n14 − 116e2m10n12

−48e2m12n10 − 5e2m14n8 − 31e4m4n16 − 174e4m6n14 − 284e4m8n12 − 162e4m10n10

−33e4m12n8 − e6m2n16 − 87e6m4n14 − 261e6m6n12 − 226e6m8n10 − 59e6m10n8

−2e6m12n6 − 8e8m2n14 − 94e8m4n12 − 134e8m6n10 − 48e8m8n8 − 2e8m10n6

−10e10m2n12 − 32e10m4n10 − 15e10m6n8 − 3e12m2n10 − 2e12m4n8) + (−5m8n18

−19m10n16 − 16m12n14 − 7m14n12 −m16n10 − 22e2m6n18 − 105e2m8n16

−149e2m10n14 − 88e2m12n12 − 20e2m14n10 − e2m16n8 − 21e4m4n18 − 192e4m6n16

−424e4m8n14 − 371e4m10n12 − 130e4m12n10 − 13e4m14n8 − 96e6m4n16 − 448e6m6n14

−603e6m8n12 − 303e6m10n10 − 45e6m12n8 − 5e8m2n16 − 161e8m4n14 − 417e8m6n12

−314e8m8n10 − 70e8m10n8 − 2e8m12n6 − 12e10m2n14 − 108e10m4n12 − 140e10m6n10

−40e10m8n8 − e10m10n6 − 8e12m2n12 − 23e12m4n10 − 9e12m6n8 − e14m2n10 − e14m4n8)
+O ([emn]28) ,

where the terms are grouped by parentheses at each order. We can see that the terms in

O([emn]26) are all negative.

Under the Dirac limit, the Hilbert series can be obtained by setting m→ 0, which will

have a very simple form as has been found for the quark sector in Ref [26]

H(e, n) = 1 + e6n6
(1 − e2) (1 − e4) (1 − e6) (1 − n2) (1 − n4) (1 − n6) (1 − e2n2) (1 − e4n2) (1 − e2n4) (1 − e4n4) .

(B.4)
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The ungraded Hilbert series is given by

H(t) = 1 + t12
(1 − t2)2 (1 − t4)3 (1 − t6)4 (1 − t8) . (B.5)

The Dirac case corresponds to a complete intersection ring, and the multi-graded PL has

finite number of terms, which are given as follows

PL(e, n) = e2 + e4 + e6 + n2 + n4 + n6 + e2n2 + e4n2 + e2n4 + e4n4 + e6n6 − e12n12 . (B.6)

The corresponding ungraded PL can be obtained by setting e, n→ t, which has the following

form

PL(t) = 2t2 + 3t4 + 4t6 + t8 + t12 − t24 , (B.7)

where the positive terms correctly capture the 10 CP-even and 1 CP-odd invariants, while

the negative term indicates there is a syzygy at order 24.

B.2 Model with nN = nf = 2
For completeness, we also show the Hilbert series for the case nN = nf = 2, which has

already been presented in Ref. [26]. The numerator and denominator are given by

N (e,m,n) =1 + 2e2m2n4 +m4n4 + e2m4n4 + e4m4n4 + e2m2n6 + e4m2n6 − e2m6n6+
− e4m6n6 − e2m4n8 − e4m4n8 − e6m4n8 − 2e4m6n8 − e6m8n12 ,

D(e,m,n) = (1 − e2) (1 − e4) (1 −m2) (1 −m4) (1 − n2) (1 − e2n2) (1 −m2n2)×
(1 − e2m2n2) (1 − n4) (1 −m2n4) (1 − e4m2n4) .

(B.8)

The ungraded Hilbert series is

H(t) = 1 + t6 + 3t8 + 2t10 + 3t12 + t14 + t20
(1 − t2)3 (1 − t4)5 (1 − t6) (1 − t10) . (B.9)

The multi-graded PL is given by

PL(e,m,n) =e2 +m2 + n2 + e4 +m4 + e2n2 +m2n2 + n4 + e2m2n2 +m2n4+
+ 2e2m2n4 +m4n4 + e4m2n4 + e2m4n4 + e2m2n6 + e4m4n4+
+ e4m2n6 − e2m6n6 − e2m4n8 −O([emn]16) .

(B.10)

The PL also has a non-terminating series. Therefore, the theory has a non-complete inter-

section ring. However, the pure negative order appears at O([emn]14), the 18 lower order

terms in PL are all positive, and they correspond to the basic set.

B.3 Model with nN = 2, nf = 3
For the case of nN = 2, nf = 3, the Hilbert series has been calculated in Ref. [30]. The

numerator and denominator of the multi-graded Hilbert series is given by

N (e,m,n) = 1 − e2n2 + e4n4 + 2e2m2n4 + 2e4m2n4 + 2e6m2n4 +m4n4 + e2m4n4 + 2e4m4n4+
+ e6m4n4 + e8m4n4 + e2m2n6 + e10m2n6 − e2m4n6 − e4m4n6 − 3e6m4n6+
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− e8m4n6 − e10m4n6 − e2m6n6 − 2e4m6n6 − 2e6m6n6 − 2e8m6n6 − e10m6n6+
− e4m2n8 − e6m2n8 − e8m2n8 − e10m2n8 − e12m2n8 − e2m4n8 − e4m4n8+
− 3e6m4n8 − e8m4n8 − 3e10m4n8 − e12m4n8 − e14m4n8 − e4m6n8 + e6m6n8+
− e8m6n8 + e10m6n8 − e12m6n8 + e6m8n8 + e8m8n8 + e10m8n8 − e10m2n10+
+ e4m4n10 + e6m4n10 + 2e8m4n10 + 2e12m4n10 + e14m4n10 + e16m4n10+
+ 2e6m6n10 + 3e10m6n10 + 2e14m6n10 − 2e8m6n12 − 3e12m6n12 − 2e16m6n12+
− e6m8n12 − e8m8n12 − 2e10m8n12 − 2e14m8n12 − e16m8n12 − e18m8n12+
+ e12m10n12 − e12m4n14 − e14m4n14 − e16m4n14 + e10m6n14 − e12m6n14+
+ e14m6n14 − e16m6n14 + e18m6n14 + e8m8n14 + e10m8n14 + 3e12m8n14+
+ e14m8n14 + 3e16m8n14 + e18m8n14 + e20m8n14 + e10m10n14 + e12m10n14+
+ e14m10n14 + e16m10n14 + e18m10n14 + e12m6n16 + 2e14m6n16 + 2e16m6n16+
+ 2e18m6n16 + e20m6n16 + e12m8n16 + e14m8n16 + 3e16m8n16 + e18m8n16+
+ e20m8n16 − e12m10n16 − e20m10n16 − e14m8n18 − e16m8n18 − 2e18m8n18+
− e20m8n18 − e22m8n18 − 2e16m10n18 − 2e18m10n18 − 2e20m10n18 − e18m12n18+
+ e20m12n20 − e22m12n22 , (B.11)

D(e,m,n) = (1 − e2) (1 −m2) (1 − n2) (1 − e4) (1 −m4) (1 − n4) (1 − e2n2)2 ×
(1 −m2n2) (1 − e6) (1 − e2n4) (1 − e4n2) (1 −m2n4)×
(1 − e2m2n2) (1 − e4m2n2) (1 − e4m2n4) (1 − e8m2n4) ,

which corresponds to the ungraded forms

N (t) = 1 + t2 + t4 + 2t6 + 6t8 + 10t10 + 18t12 + 23t14 + 28t16 + 31t18 + 34t20 + 32t22+
+ 34t24 + 31t26 + 28t28 + 23t30 + 18t32 + 10t34 + 6t36 + 2t38 + t40 + t42 + t44 ,

D(t) = (1 − t2)2 (1 − t4)5 (1 − t6)4 (1 − t8) (1 − t10) (1 − t14) .
(B.12)

The multi-graded PL is given by

PL(e,m,n) = e2 +m2 + n2 + e4 +m4 + e2n2 +m2n2 + n4 + e6 + e4n2 + e2m2n2 + e2n4+
+m2n4 + e4m2n2 + e4n4 + 2e2m2n4 +m4n4 + 3e4m2n4 + e2m4n4 + e2m2n6+
+ 2e6m2n4 + 2e4m4n4 + e6n6 + 2e4m2n6 + e8m2n4 + e6m4n4 + 2e6m2n6+
− e2m6n6 − e2m4n8 + e8m4n4 + 2e8m2n6 − e6m4n6 − 2e4m6n6 − e6m2n8+
− 5e4m4n8 − 2e2m6n8 −m8n8 + e10m2n6 − 2e6m6n6 − e8m2n8 − 8e6m4n8+
− 6e4m6n8 − e2m8n8 − e6m2n10 − 2e4m4n10 − e2m6n10 −O([emn]20) . (B.13)

The PL is also non-terminating, thus lead to a non-complete intersection ring. The pure

negative order appears at O([emn]20), and the basic set can be obtained up to O([emn]18)
as shown in Ref. [30].
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C Algorithms

C.1 Algorithm for the construction of invariants

The flavor invariants can be easily constructed according to the invariant graph. Taking

the quark sector as an example, one can refer to the graph in the lower left panel of

Fig. 2 to determine the general form of flavor invariants, denoted by Tr(Xm
u X

n
dX

k
u . . .)

with Xu ≡ YuY †
u and Xd ≡ YdY †

d
. Although this will result in an infinite number of flavor

invariants, there are some identities of n × n matrices that can be utilized to reduce them,

such as the Cayley-Hamilton theorem. For instance, for 3×3 matrices, the identity is given

by

A3 = A2Tr(A) − 1

2
A [Tr(A)2 −Tr(A2)] + 1

6
[Tr(A)3 − 3Tr(A2)Tr(A) + 2Tr(A3)]13×3 ,

(C.1)

which will reduce the power of the matrices Xu and Xd to a maximum of 3. Following the

discussion in Ref. [26], another identity can be derived from the Cayley-Hamilton theorem,

which is given by

2Tr(ABAC) = Tr(A)2Tr(B)Tr(C) −Tr(BC)Tr(A)2 − 2Tr(AB)Tr(A)Tr(C)+
− 2Tr(AC)Tr(A)Tr(B) + 2Tr(ABC)Tr(A) + 2Tr(ACB)Tr(A)+
−Tr(A2)Tr(B)Tr(C) + 2Tr(AB)Tr(AC) +Tr(A2)Tr(BC)+
+ 2Tr(C)Tr(A2B) + 2Tr(B)Tr(A2C) − 2Tr(A2BC) − 2Tr(A2CB) . (C.2)

Note that by using the Cayley-Hamilton theorem, we can derive more general identities

with 4 or more different matrices entering the theorem. This particular identity in Eq. (C.2)

ensures that the terms present in the trace in the quark sector will not exceed a length of

4. Referring to Ref. [26] for a detailed explanation, it can be concluded that with the two

identities above there are only 11 invariants without polynomial relations among them that

can be constructed with the help of the invariant graphs in the quark sector of the SM.

They are given by

I2,0 = Tr(Xu), I0,2 = Tr(Xd), I4,0 = Tr(X2

u), I2,2 = Tr(XuXd), I0,4 = Tr(X2

d),
I6,0 = Tr(X3

u), I4,2 = Tr(X2

uXd), I2,4 = Tr(XuX
2

d), I0,6 = Tr(X3

d),
I4,4 = Tr(X2

uX
2

d), I(−)6,6 = Tr(X2

uX
2

dXuXd) −Tr(X2

dX
2

uXdXu) .
(C.3)

These invariants form a generating set of all quark invariants, i.e., all flavor invariants in

quark sector can be written as a polynomial of these 11 invariants. Furthermore, the first 10

invariants form a primary set in the sense that they are algebraically independent invariants

which capture all physical parameters in the theory.

Additionally, there exists a separate conjugate graph in the quark sector shown in

the lower right panel of Fig. 2. It is worth mentioning that the two graphs are discon-

nected in the quark sector, which make it easy to construct invariants within separate

flavor objects. Furthermore, as both matrices Xu and Xd are Hermitian, the identity

Tr(Xm∗
u Xn∗

d Xk∗
u X l∗

d ) = Tr(X l†
d
X
k†
u X

n†
d
X
m†
u ) = Tr(X l

dX
k
uX

n
dX

m
u ) can be used to show that

all flavor invariants constructed from the conjugate graph are included in the first graph.
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If neutrinos are Dirac particles, the Majorana mass term is absent and the structure of

the graph for the simplified νSM will be analogous to that of the quark sector. Then, similar

flavor invariants can be easily obtained by setting Xd → Xe ≡ YeY †
e and Xu → XN ≡ YNY †

N

in Eq. (C.3). The inclusion of the Majorana mass term gives rise to a connected graph,

as illustrated in the top panel of Fig. 2, which offers additional flavor structures for the

construction of invariants. We have found that by just adding MN to the ‘Dirac-like’ νSM,

the number of basic invariants explodes from 11 to 459. The main difference from the quark

sector is that certain invariants may become complicated and cannot be reduced through

the identity presented in Eq. (C.2). It is noteworthy that this identity is applicable only

when the flavor objects A,B and C can form a single trace invariant by themselves (i.e. they

transform in the adjoint of one of the factors of U(3)3 presented in Tab. 1), which may not

always be the case for the invariants generated by the current graph. Consequently, there

exists no universal form for flavor invariants in the νSM. In this regard, our objective is to

exhaustively construct invariants up to order 26 by brute force, and subsequently reduce

linear redundancies as much as possible by using the above two identities.

To systematically construct flavor invariants in the lepton sector, closed paths that

permit the repetition of vertices and edges in a graph, known as “walks” in mathematical

jargon, can be sought out. To achieve single trace invariants, these walks must be closed.

As a result, our algorithm looks for closed walks in the graph. The closed walk is denoted by

a directional chain of vertices that it traverses (see Eq. (3.6) for example). We have further

shorten the walk notation by removing arrows (see Sec. 3.2 for detail). Therefore, all single

trace flavor invariants can be presented by integers. For instance, the invariants in Eq. (3.6)

will be denoted by Tr(YuY †
uYdY

†
d
) ∼ 7898 and Tr(YNM∗

NMNM
∗
NMNY

†
N) ∼ 234343.

By extending one step further at each vertex, we can generate higher order walks from

a given walk, for instance, extending the walk 1232 leads to

{121232, 123232, 121232, 123432, 123232, 123232, 123212} , (C.4)

where the underlined vertices are the ones that have been added. By using the cycling degree

of freedom of the walks or of the single trace invariants, for instance, 121232 ∼ 123212, we

can identify the repeated walks, and the independent walks are determine to be

{121232, 123232, 123432} . (C.5)

With this algorithm, higher order walks derived from a specific walk will be exhaustively

generated. As a result, starting from all possible lowest order walks, the extending algorithm

is capable of constructing all walks up to a given order. The initial walks correspond to the

order two flavor invariants, which are given by

{12, 23, 34, 45, 56} . (C.6)

Running our algorithm up to order 26 with these initial walks results in 516101 walks. How-

ever, there are many redundancies. The first obvious redundancy stems from the graph’s

symmetry property. Since there are two conjugate parts in the graph, we find that the

walk denoted by the labeled fields W1 ≡ ij . . . kl ∼ FiFj . . . FkFl is always accompanied by
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two walks, one with conjugate fields in reversed order W2 ≡ l′k′ . . . j′i′ ∼ F ∗l F ∗k . . . F ∗j F ∗i ,

and another one with conjugate fields W3 ≡ i′j′ . . . k′l′ ∼ F ∗i F ∗j . . . F ∗k F ∗l , where the primed

vertex v′ can be mapped to normal vertex v with v′ = 7 − v for the graph in the lepton

sector. The walks W1 and W2 correspond to the same invariants according to the trace

identity Tr(AT ) = Tr(A), for instance, Tr(Y ∗e Y T
e ) = Tr(YeY †

e ). While the walks W1 and W3

correspond to two conjugate invariants Tr(X) and Tr(X∗), and their linear combinations

Tr(X)+Tr(X∗) and Tr(X)−Tr(X∗) form the CP-even and CP-odd invariants respectively.

Equivalently, we can introduce the real and imaginary components of Tr(X) as our conven-

tion, i.e., Tr(X) = I + iJ = ReTr(X)+ i ImTr(X), where I = ReTr(X) and J = ImTr(X)
are the CP-even and CP-odd invariants. For instance, the walks W1 = 23434543 and

W3 = 23454343 will generate the invariants Tr(X) ≡ Tr(Y †
NYNM

∗
NMNM

∗
NY

T
N Y

∗
NMN) and

its conjugate Tr(X∗) ≡ Tr(Y T
N Y

∗
NMNM

∗
NMNY

†
NYNM

∗
N), but the conjugate one does not

provide additional information, making the real and imaginary parts of Tr(X) as two in-

dependent degrees of freedom for invariants. As a result, the conjugate walk W3 will be

removed from our list. These two types of redundancies can be easily identified from the

structures of the walks. These reduced walks will then be converted into invariants that

can be simplified by applying some matrix identities, allowing us to effectively eliminate

more redundancies.

As mentioned previously, when using Eq. (C.1) and Eq. (C.2), we need to confirm

that the matrices A,B and C must have the same transformation rules under the flavor

group, and can form single trace invariants. We refer to such sequences of flavor matrices

as adjoint objects. We note that if one flavor matrix appears consecutively in an invariant

for 2n times (n ≥ 1), then the corresponding flavor matrix sequence must be an adjoint

object. If it appears 2n + 1 times consecutively, then there must be a 2n sub-sequence

among them correspond to adjoint object. For example, the underlined sequences in the

invariant Tr(YNY †
N

✿✿✿✿✿

YNM
∗
NMNY

†
NYNY

†
N

✿✿✿✿✿

YeY
†
e ) are adjoint objects. We find two of them are

identical, as a result, we can use Eq. (C.2) to eliminate this invariant as it can be represented

by other invariants that are already present in our invariant list. In this invariant, the

matrix products YNY
†
N , YNM

∗
NMNY

†
N and YeY

†
e are identified as A,B and C respectively in

Eq. (C.2). It is evident that they share the same adjoint transformation properties, allowing

the construction of single trace flavor invariants that accurately match the identity. If we

come across an adjoint object with six or more flavor matrices in an invariant, then identity

in Eq. (C.1) can be easily applied, and the invariant will be redundant. For example, we can

remove the invariant Tr(YeY †
e YeY

†
e YeY

†
e

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

YNY
†
N) because there is a sequence with six flavor

matrices. The identity in Eq. (C.1) cannot eliminate Tr(A3). Therefore, our invariant list

will include expressions such as Tr(YeY †
e YeY

†
e YeY

†
e ).

By applying these two identities, our invariant list is further reduced, but there are still

many more identities that can be used. For instance, setting C → AC in Eq. (C.2) yields
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the following identity

3Tr(A2BAC) + 3Tr(ABA2C) = 2Tr(A)3Tr(B)Tr(C) − 2Tr(A)3Tr(BC)+
− 3Tr(A)2Tr(C)Tr(AB) − 3Tr(A)2Tr(B)Tr(AC) + 3Tr(A)2Tr(ABC)+
+ 3Tr(A)2Tr(ACB) − 3Tr(A2)Tr(A)Tr(B)Tr(C) + 3Tr(A2)Tr(A)Tr(BC)+
+ 3Tr(A)Tr(C)Tr(A2B) + 3Tr(A)Tr(B)Tr(A2C) − 3Tr(A)Tr(A2BC)+
− 3Tr(A)Tr(A2CB) +Tr(A3)Tr(B)Tr(C) −Tr(A3)Tr(BC)+
+ 3Tr(A2B)Tr(AC) + 3Tr(AB)Tr(A2C) ,

(C.7)

which indicates one of Tr(A2BAC) and Tr(ABA2C) is redundant, but our algorithm does

not eliminate either. We can further remove invariants using more complex identities de-

rived from Cayley-Hamilton theorem at higher orders, but the identities could be nontrivial

and difficult to use. Furthermore, while the identities presented in this section are for

general matrices, our flavor matrices and their combinations could have special properties.

For instance, the invariant may include a Hermitian matrix YeY
†
e or a symmetric matrix

MN , additional identities beyond those for general 3 × 3 matrices could be found in some

cases. Therefore, we need a general algorithm to identify all potential identities, which

should encompass both regular identities for eliminating redundant invariants and polyno-

mial relations between non-redundant invariants (referred to as syzygies in the context of

invariant). The general algorithm becomes computationally expensive when the invariant

list is large, with the help of the simple matrix identities, the redundancies have been effec-

tively removed. After we perform CP-even and CP-odd decompositions for the invariants,

the number of invariants drops to 8666. Then we will pass this pre-reduced invariant set to

the numerical algorithm to further remove linear redundancies and get the basic set. The

whole process is presented by the flow graph in Fig. 1.

C.2 Algorithm for the construction of a generating set

As by definition any invariant in the set can be expressed as a polynomial of the generating

invariants, the process of identifying the generating set entails eliminating linear redun-

dancies from the invariant list. We have used matrix identities to reduce the invariant list

in advance in the previous elimination process as we have discussed in App. C.1. In this

section, we will introduce the numerical algorithm that can identify all linear relations and

syzygies. The linear relations will remove all linear redundancies, and will result in a gen-

erating set of invariants, while the syzygies, alongside the linear relations, will be generated

as a byproduct, and their count serves as a verification of our algorithm when compared

with the PL.

Our algorithm is based on the fact that the relations of invariants follow the graded al-

gebra, which means every term in the relations should have the same degree of the spurions.

So in order to construct the linear relations or the syzygies, we need to consider all possible

combinations that lead to the specific degree from our invariant list. We create a graded

list {di ∶ {fi}}, where di is the degree in terms of (e,m,n), and {fi} is a homogeneous list

of all (combinations of) invariants at degree di. We start from the lowest degrees, and the
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graded list is given by

{e2 ∶ {Tr(YeY †
e )}, m2 ∶ {Tr(MNM

∗
N)}, n2 ∶ {Tr(YNY †

N)}} , (C.8)

which will be extended degree by degree. At higher degrees di, the homogeneous list

{fi} can be constructed by two possible sources, which includes the invariants at order di
from our invariant list, and all combinations of invariants {fj} and {fk} in the graded list

satisfying djdk = di. Once the homogeneous list {fi} is formed, the general equation for the

polynomial identity should have the form

n

∑
i=1

cifi = 0 , (C.9)

where fi is the element in {fi}, n is its count, and the coefficient ci is the parameter we want

to determine by numerical method. Since it is a polynomial relation, ci can be chosen to

be integer in general. The invariant (combinations) fi is parameterized in terms of general

matrices Ye,N and symmetric matrix MN . In order to find the solutions to the coefficients

{ci}, a numerical algorithm is introduced. We generate n linear equations of {ci} with n

set of random inputs for the flavor matrices19, the coefficient matrix M is taken as input by

the Mathematica function NullSpace, where the rows represent the set of random inputs

and the columns correspond to the homogeneous list {fi}. The function will give a list of

vectors V ≡ {vi} that forms a basis for the null space of the matrix M , as a result, V is the

basis solutions of {ci}, and the identities are given by

n

∑
i=1

Vjifi = 0 for j = 1, . . . , ∣V ∣ . (C.10)

The identities that involve single invariants (not products of invariants) will be called

linear relations, which will be used to remove redundancies from our invariant list. But

sometimes it is difficult to use the solution V to determine which invariant should be

removed, since the relations of single invariants could be correlated, in such cases, the

Mathematica function RowReduce can be applied to generate the row echelon form of V ,

which will be used to disentangle the linear relations. Here is an illustrative example: we

have a homogeneous list consisting of {fi} = {s1, s2, s3, p1, p2}, with s1,2,3 as single invariants

and p1,2 as products of invariants. Suppose they lead to a coefficient matrix M that results

in a null space V and can be further reduced to the row echelon form V ′,

M =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 1 −3 −1 1

−1 2 −1 −2 2

−3 3 0 −3 3

−2 4 −2 −4 4

−4 5 −1 −5 5

⎞⎟⎟⎟⎟⎟⎟⎟⎠

NullSpace
ÐÐÐÐÐÐ→ V =

⎛⎜⎜⎝
0 −1 0 0 1

0 1 0 1 0

1 1 1 0 0

⎞⎟⎟⎠
RowReduce
ÐÐÐÐÐÐÐ→ V ′ =

⎛⎜⎜⎝
1 0 1 0 1

0 1 0 0 −1
0 0 0 1 1

⎞⎟⎟⎠ .

(C.11)

19In order to reduce the accidental error from the random inputs, we can generate more than n equations
to form a larger linear system, or increase the randomness of the inputs
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From the null space matrix V , we can find following identities,

s2 = p2, s2 = −p1, s1 = −s2 − s3 . (C.12)

In order to disentangle the dependence between them, we have to perform additional oper-

ations, while for the identities generate by V ′, they have clear forms,

s1 = −s3 − p2, s2 = p2, p1 = −p2 , (C.13)

which directly determine s1, s2 and p1 should be redundant, and they correspond to the

columns that has leading 1 in the row echelon form V ′. The first two identities tell us s1, s2
should be removed from our invariant list, and s3 should be included in our generating

set as a basic invariant. The first identity can also be written as s3 = −s1 − p2, then s1

and s3 will change their characters, this can be understood as ambiguities in determining

basic invariants. The third identity contains only products of invariants, which should be

identified as a syzygy. Although this syzygy does not identify any redundant invariant,

it does signify the product of invariants p1 is redundant, and we should remove it from

our homogeneous list, and result in {fi} = {s3, p2}. It is crucial to remove p1 from the

homogeneous list in our algorithm, as keeping it would result in redundant syzygies at

higher orders and prevent us from obtaining the correct number of syzygies. For instance,

if p1 is not removed, at degree 2di, the syzygy s3p1 = −s3p2 will be found. Although it looks

trivial in this example, in real analysis of our flavor invariants, the redundant syzygy could

have a complicated form, which make it difficult to identify whether it is redundant.

Once the discussion on degree di is complete and the reduced graded list {di ∶ {fi}}
has been updated, the analysis should be repeated for all other invariants at higher degrees

until we finish the scan of all invariants. All redundancies will be removed, and the invariant

list will be reduced to the basic set. While scanning, it is important to keep a record of the

number of basic invariants nb and the number of syzygies ns at each degree, the difference

nb − ns should match the corresponding term in the PL.

In the real analysis of our invariants, there are some difficulties, as already mentioned

in Sec. 3.2, we will run into “redundant syzygies”. They are partially removed by the

homogeneous list reduction at each degree as described above, however this reduction does

not cover all redundancies. Suppose we have two redundant products fa and fb at degree

di, and the syzygies are denoted by the homogeneous linear function Va and Vb on the

homogeneous list {fi≠a,b},
fa = s1s22 = Va({fi≠a,b}), fb = s21s2 = Vb({fi≠a,b}) , (C.14)

where s1, s2 are invariants at degree di/3. At higher degree, we can easily find a syzygy

s1Va({fi≠a,b}) − s2Vb({fi≠a,b}) = 0 , (C.15)

since it is a linear combination of lower degree syzygies, it must be redundant. Depending

on the ordering scheme of the homogeneous list, such redundant syzygies could first appear

at different degrees. In our algorithm, the first redundant syzygy appears at order 26, and
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we find more syzygies than expected from the PL. In order to remove such redundancies,

we should record the lower degree syzygies, the linear independent redundant syzygies can

be generated at a specific higher degree, the number of which should be subtracted at given

degree when counting the syzygies. Although we did not initially incorporate this into

our algorithm, we have verified the validity of this method by checking multiple redundant

syzygies at certain degrees. Furthermore, our objective is to determine the generating set.

It should not pose any issues to run our algorithm without verifying the number of syzygies.

Another issue is related to the complexity of numerical calculations. Our algorithm take

random flavor matrices as inputs. When the invariants become highly complex, the matrix

calculations will result in extremely large integers. This will generate a complicated linear

system that will take considerable time to solve. The Mathematica function RowReduce

provides a Modulus option, by setting it to an appropriate large prime number, the massive

integers in the linear system are mapped to finite fields, which will considerably reduce the

computational complexity, and our algorithm can speed up by several times. There are also

some packages, such as FiniteFlow [56], FiniteFieldSolve [57], which are frameworks

that can be used to solve the linear system efficiently, interested readers may refer to these

packages.

C.3 Algorithm towards finding a minimal CPV set

Reducing the CP odd basic invariants to a minimal set capturing all conditions for CPV in

the theory – as the Jarlskog invariant does in the SM – can become involved as the flavor

structure of the theory becomes more complicated. While it is still possible to find such a

set for 2 generations of fermions, this task seems bound to fail from the beginning for the

251 CP odd invariants in the case of 3 generations. In this section, we introduce a numerical

algorithm to reduce the CP odd part of the generating set of a theory into a more minimal

CPV set. To illustrate our algorithm, we will work with a simple example with only 2

generations of fermions in the theory defined in Sec. 2.1. We use the parameterization

shown in Eqs. (A.17,A.18).

C.3.1 Mimimal CPV set for nf = nN = 2
In Ref. [26], the authors find the following 6 CP-odd invariants in the basic set
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(C.16)

which we have translated into our notation. This set is sufficient to capture all CPV effects

in the 2-generation theory but not all invariants might necessarily have to be included to
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Cases ↓ / Invariants → J1 J2 J3 J4 J5 J6
ye → 0 /0 /0 /0 /0 /0 /0
m1 → 0 /0 0 0 /0 0 /0
y1 → y2 0 0 0 0 /0 0

θ → 0 0 /0 /0 0 /0 0

θ → π
2

0 /0 /0 0 /0 0

φ→ 0 0 /0 /0 /0 /0 /0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Table 5: Part of the unsorted full zero table for the given example corresponding to the cases given in
Eq. (C.17).

capture all CPV effects. This is easy to check for a given physical spectrum, but if we want

a set that works for all zero masses, texture zeros and all other special cases of the spectrum

which increases the symmetry this becomes more involved.

The first step is to build all possible cases that can simplify the mass spectrum, for

instance

{ye → 0,m1 → 0, y1 → y2, θ → 0, θ →
π

2
, φ→ 0, . . .} , (C.17)

including also the combination of two or more of them applied at the same time. These

cases can be captured by the conditions lead to vanishing or unphysical phases, which are

discussed in Sec. H. We will then build what we call a zero table, which has an entry ‘0’ when

the invariant vanishes for the given case and an entry ‘/0’ if the invariant is non-zero which

we check by plugging in random numbers for the parameters appearing in the invariants.

The result for the given cases above can be found in Tab. 5.

In a second step we take all rows from this table which have at least one non-vanishing

entry and combine the case in this row with another case from the full list of special cases

in Eq. (C.17). We repeat this procedure until the spectrum is sufficiently simplified, such

that all invariants vanish in all cases of the given iteration. In the given example this will

happen when 6 cases of the list in Eq. (C.17) are combined which will lead to a zero table

with only zeros for all invariants in all possible cases. Finally, we combine all zero tables

into one big table.

Once we have obtained those zero tables we can analyze the data. Our strategy is as

follows. We start with an empty set which acts as the candidate set for the minimal CPV

set and then go through all cases in the zero table in a systematic way to check which

invariant has to be added in order to capture all the physical phases in each simplified case.

In order to do this in a systematic way, we first sort the rows, i.e. the cases, of the zero

table such that the rows with the least amount of non-zero entries come first in the table.

These are the cases which are most likely to allow us to decide if an invariant should be

included or not. For instance, if there is only one non-zero invariant in a given case and

there exists one physical phase in the simplified spectrum, then this invariant for sure has

to be added to our minimal set in order to capture all CPV effects.

Furthermore, we sort the columns, i.e. the invariants, of the zero table such that the
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Cases ↓ / Invariants → J5 J2 J3 J6 J4 J1
y1 → y2 /0 0 0 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
ye → 0, yµ → 0 0 /0 0 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
m2 →m1,α → 0 0 0 0 /0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
α → 0 /0 0 0 /0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
m1 →m2 0 0 0 /0 /0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Table 6: Part of the sorted full zero table for the given example. All dots correspond to entries for different
cases which give the same zero pattern as the previous case. The last case in the table is the last case with
only 2 non-vanishing with a unique zero pattern. After that all entries can be explained by the previous
ones. Hence, we can find a minimal set.

columns with the most non-zero entries come first. This allows us to add the invariant

which is non-zero in the most other cases to the candidate set first, making it more likely

that this invariant will also capture physical phases in many other subsequent cases and

that we will eventually find the most minimal CPV set.

After the sorting is done we go through the table row by row and perform the following

procedure. First, we calculate the rank of the Jacobian of the invariants w.r.t. the CP-odd

variables in the theory in a given case, giving us the number of physical phases in that

particular case. Then, we also calculate the rank of the Jacobian of the invariants in the

candidate set w.r.t. the CP-odd variables in the theory for the given case. If they are

the same we go to the next row. If they are unequal we check which invariants are non-

zero in the given case and are not already part of the candidate set. From the invariants

obtained in this way we first add the one which appears in the most left column according

to our previous sorting as it is the most likely to increase the rank of the Jacobian of the

candidate set in many subsequent cases. If adding this invariant increases the rank we

keep it, otherwise we go to the next invariant which is non-vanishing in the case and not

already in our candidate set. After an invariant is found which increases the rank of the set

we check again if the rank of the Jacobian of the candidate set is equal to the one of the

CP-odd part of the basic set, both evaluated on the given case. For equal ranks, we can

continue examining the next row. Otherwise we have to add an (several) other invariant(s)

to the candidate set until equality of both ranks is reached in the given special case.

Following this algorithm allows us to reduce the set of CP-odd flavor invariants in the

simple example from 6 to only 4. The minimal CPV set we find is

SCPV
min = {J2, J4, J5, J6} , (C.18)

i.e. this is the smallest set that has one non-vanishing CP-odd invariant for each physical

phase in the theory, for all possible values of the flavorful couplings in the theory.

– 45 –



There are several ways to make simplifications in this brute force method. For instance,

as soon as one combination of cases leads to a row of only zeroes in the zero table, one no

longer has to consider it in the next iterations where all possible combinations of this case

are built with all cases in Eq. (C.17). This is because these combinations will of course also

only lead to zero entries. This can help reduce the large combinatorics of the problem.

There exists however also a caveat to our approach. Some of the CP-odd invariants

in the neutrino models are extremely complicated polynomials that have complicated roots

that do not correspond to points that increases the exact flavor symmetry of the theory.

Hence, these cases are not covered by the symmetry-based zero table approach. In every

algorithm that tries to reduce a CP-odd generating set to a (more) minimal CPV set, one

therefore has to check if there are still enough non-zero invariants in the minimal CPV set

on these points to capture all physical phases in the theory. This is of course extremely

unpractical for complicated theories like the νSM, where this can happen already for two

generations of fermions. However, these points are single, extremely specific points in

parameter space. Thus, we are convinced that they can be ignored in most analyses and

that our algorithm can still be helpful. One such case for the νSM with 2 generations

of right-handed neutrinos is the last case in Eq. (H.2), which cannot be explained by an

enlarged flavor symmetry group.

In the following, we will give two more examples of applying the zero table algorithm

to the SM extended with 2 generations of sterile neutrinos and the 2HDM discussed in

Ref. [27]. To our knowledge this is only possible by solving the CP-odd invariants of the

theory explicitly and examining each of the roots one by one.

C.3.2 Minimal CPV set for nN = 2, nf = 3
We can also apply our algorithm to the case of only 2 generations of sterile neutrinos

which has been treated in Ref. [30]. There, the authors find a set of 38 generating flavor

invariants out of which 18 are CP-odd (c.f. Eq. (D.3)). Running our algorithm on this CP-

odd generating set allows us to reduce the set to only 7 CP-odd invariants which capture

all sufficient conditions for CP violation in all degenerate cases. In the notation introduced

in Eq. (D.3), the minimal set we find is given by

SCPV
min = {J1,J5,J10,J28,J31,J132,J195} . (C.19)

Our algorithm is however not able to find a set of invariants that captures only the necessary

conditions of CP violation. In App. C.3, we discuss an example where we can show that

our algorithm is not able to fully reduce the CP-odd invariants of the generating set to a

minimal CP-odd set. We have also determined a minimal CPV set for the case where all

fermions just come in two generations. We treat this case in App. C.3 to illustrate how the

algorithm that reduces a CP-odd generating set to a minimal CPV set works.

D List of invariants

In this section, we enumerate the 459 basic invariants comprising the generating set. We use

the walk-based notation to represent these invariants as introduced in Sec. C.1. Therefore,
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a single trace invariant is denoted by an integer. A prefix “R@” or “I@” means that the real

or imaginary part of the trace should be taken. For pure numbers, the single trace itself

is inherently real. Consequently, invariants with “I@” prefixes are identified as CP-odd

invariants, while all the other remeaning ones are categorized as CP-even. There are in

total 208 CP-even and 251 CP-odd invariants. The complete list we found reads as follows

CP-even set: {12, 34, 23, 1212, 3434, 2323, 1232, 2343, 121212, 343434, 232323, 123232,
121232, 234543, 232343, 234343, 123432, 12123232, 23234543, 23234343, R@23434543,
12345432, R@12323432, 12343432, 12123432, 2323454543, R@2323434543, R@2343434543,
1234545432, R@1232345432, R@1232323432, R@1234345432, R@1232343432, 1212345432,
1234565432, R@1212323432, 1212343432, R@232343454543, R@232343434543, R@123234545432,
R@123232345432, R@123434545432, R@123234345432, R@123234543432, R@123232343432,
R@123434345432, 121234545432, R@121232345432, R@121232323432, R@123234565432,
R@121234345432, R@121232343432, R@123434565432, 121234565432, R@23234343454543,
R@12323234545432, R@12323434545432, R@12323454543432, R@12323234345432, R@12323234543432,
R@12343434545432, R@12323434345432, R@12323454343432, R@12123234545432, R@12123232345432,
R@12323454565432, R@12323234565432, R@12123434545432, R@12123234345432, R@12123234543432,
R@12123232343432, R@12323434565432, R@12323456543432, R@12123434345432, R@12343434565432,
R@12123456545432, R@12123234565432, R@12123434565432, 12123456565432, R@1232323434545432,
R@1232323432345432, R@1232323454543432, R@1232343434545432, R@1232345454343432,
R@1232323434345432, R@1232343434543432, R@1212323234545432, R@1232323454565432,
R@1212323434545432, R@1212323454543432, R@1212323234345432, R@1212323234543432,
R@1232343454565432, R@1232345434565432, R@1232323434565432, R@1232323456543432,
R@1212343434545432, R@1212323434345432, R@1212323454343432, R@1232343434565432,
R@1232345654343432, R@1212323456545432, R@1212323454565432, R@1212323234565432,
R@1212343456545432, R@1212343454565432, R@1212321234345432, R@1212323434565432,
R@1212323456543432, R@1212343434565432, R@1212323456565432, R@1212343456565432,
R@123232343234545432, R@123232343434545432, R@123234343454543432, R@123232345654543232,
R@121232323434545432, R@121232323432345432, R@121232323454543432, R@123232343454565432,
R@123232343234565432, R@123232345434565432, R@121232343434545432, R@121232345454343432,
R@121232323434345432, R@123234343454565432, R@123234543434565432, R@123232343434565432,
R@121232343434543432, R@123234343456543432, R@121232323456545432, R@121232323454565432,
R@121232123434545432, R@121232343456545432, R@121232343454565432, R@121232343212345432,
R@121232345654345432, R@121232345434565432, R@121232321234345432, R@121232323434565432,
R@121232323456543432, R@121234343456545432, R@121234343454565432, R@121232123434345432,
R@121232343434565432, R@121232343212343432, R@121232345654343432, R@121232123456545432,
R@121232323456565432, R@121232123434565432, R@121232343456565432, R@121232345656543432,
R@121234343456565432, R@12123232343234545432, R@12323234323454565432, R@12123232343434545432,
R@12323234343454565432, R@12123234343454543432, R@12323434345434565432, R@12123232345654543232,
R@12123212345434545432, R@12123232123434545432, R@12123232343454565432, R@12123232343234565432,
R@12123232345654345432, R@12123232345434565432, R@12123212343434545432, R@12123234343454565432,
R@12123234343212345432, R@12123234565434345432, R@12123234543434565432, R@12123232123434345432,
R@12123232343434565432, R@12123434345654345432, R@12123212343434543432, R@12123234343456543432,
R@12123212345654545432, R@12123212343456545432, R@12123212343454565432, R@12123212345654345432,
R@12123232123434565432, R@12123232343456565432, R@12123232345656543432, R@12123212343434565432,
R@12123234343456565432, R@12123234565654343432, R@12123212343456565432, R@1212323234323454565432,
R@1212321234543434545432, R@1212323234343454565432, R@1212321234343454543432,
R@1212323434345434565432, R@1212321234345654545432, R@1212321234345454565432,
R@1212321234343456545432, R@1212321234343454565432, R@1212321234565434345432,
R@1212323212343434565432, R@1212323234343456565432, R@1212321234343456543432,
R@1212323434345656543432, R@1212321234345656545432, R@1212321234565654345432,
R@1212321234343456565432, R@121232123434345654345432, R@121232123434345656545432,
R@121232123456565434345432, R@121232123434345656543432} ,
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CP-odd set: {I@23434543, I@12323432, I@2323434543, I@2343434543, I@1232345432,

I@1232323432, I@1234345432, I@1232343432, I@1212323432, I@121232123232, I@232343454543,

I@232343234543, I@232343434543, I@232343234343, I@234343454343, I@123234545432,

I@123232343232, I@123232345432, I@123434545432, I@123432345432, I@123234345432,

I@123234543432, I@123232343432, I@123434345432, I@123432343432, I@121232345432,

I@121232323432, I@123234565432, I@121234345432, I@121232343432, I@123434565432,

I@121232123432, I@23234323454543, I@23234343454543, I@23234343234543, I@23234343454343,

I@12323234543232, I@12323234545432, I@12343234545432, I@12343232345432, I@12323434545432,

I@12323454543432, I@12323234343232, I@12323234345432, I@12323234543432, I@12343434545432,

I@12343432345432, I@12343232343432, I@12323434345432, I@12323454343432, I@12343434543432,

I@12123234545432, I@12123232343232, I@12123232345432, I@12323454565432, I@12323234565432,

I@12123434545432, I@12123432345432, I@12123234345432, I@12123234543432, I@12123232343432,

I@12343234565432, I@12323434565432, I@12323456543432, I@12123434345432, I@12123432343432,

I@12343434565432, I@12123456545432, I@12123212345432, I@12123234565432, I@12123232123432,

I@12123434565432, I@12123212343432, I@2323454323454543, I@2323434323454543, I@2323434345454343,

I@1232323454543232, I@1234543234545432, I@1232345434545432, I@1232323434545432,

I@1232323432345432, I@1232323454543432, I@1234343234545432, I@1234343232345432,

I@1232343434545432, I@1232345454343432, I@1232323434345432, I@1234343454543432,

I@1232343434543432, I@1212323234543232, I@1212323234545432, I@1232323456543232,

I@1232323454565432, I@1212343234545432, I@1212343232345432, I@1212323434545432,

I@1212323454543432, I@1212323234343232, I@1212323234345432, I@1212323234543432,

I@1234565432345432, I@1232343454565432, I@1232345654345432, I@1232345434565432,

I@1232323434565432, I@1232323456543432, I@1212343434545432, I@1212343432345432,

I@1212343232343432, I@1212323434345432, I@1212323454343432, I@1234343234565432,

I@1232343434565432, I@1232345654343432, I@1212343434543432, I@1234343456543432,

I@1212321234545432, I@1212323456545432, I@1212323454565432, I@1212323212345432,

I@1212323234565432, I@1212343456545432, I@1212343454565432, I@1212343212345432,

I@1212343234565432, I@1212321234345432, I@1212323434565432, I@1212323456543432,

I@1212323212343432, I@1212343434565432, I@1212343212343432, I@1212321234565432,

I@1212323456565432, I@1212343456565432, I@123454323234545432, I@123232343234545432,

I@123234543434545432, I@123232343434545432, I@123234343454543432, I@121232323454543232,

I@123232345654543232, I@121234543234545432, I@121232345434545432, I@121232323434545432,

I@121232323432345432, I@121232323454543432, I@123456543232345432, I@123232343454565432,

I@123232343234565432, I@123232345434565432, I@121234343234545432, I@121234343232345432,

I@121232343434545432, I@121232345454343432, I@121232323434345432, I@123234343454565432,

I@123234565434345432, I@123234543434565432, I@123232343434565432, I@121234343454543432,

I@121232343434543432, I@123234343456543432, I@121232321234545432, I@121232323456543232,

I@121232323456545432, I@121232323454565432, I@121234321234545432, I@121234565432345432,

I@121232123434545432, I@121232343456545432, I@121232343454565432, I@121232345654345432,

I@121232345654543432, I@121232345434565432, I@121232321234345432, I@121232323434565432,

I@121232323456543432, I@121234343456545432, I@121234343454565432, I@121234343212345432,

I@121234343234565432, I@121232123434345432, I@121232343434565432, I@121232345654343432,

I@121234343456543432, I@121232123456545432, I@121232321234565432, I@121232323456565432,
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I@121234321234565432, I@121234323456565432, I@121232123434565432, I@121232343456565432,

I@121232345656543432, I@121234343456565432, I@121232123456565432, I@12123454323234545432,

I@12123232343234545432, I@12323234323454565432, I@12123234543434545432, I@12123232343434545432,

I@12123234343454543432, I@12123232345654543232, I@12123456543234545432, I@12123456543232345432,

I@12123232123434545432, I@12123232343454565432, I@12123232343234565432, I@12123232345654345432,

I@12123232345434565432, I@12123434321234545432, I@12123212343434545432, I@12123234343454565432,

I@12123234565434345432, I@12123234565454343432, I@12123234543434565432, I@12123232343434565432,

I@12123434345654345432, I@12123234343456543432, I@12123212345654545432, I@12123232345656543232,

I@12123456565432345432, I@12123456543212345432, I@12123212343456545432, I@12123212343454565432,

I@12123234565654345432, I@12123232123434565432, I@12123232343456565432, I@12123232345656543432,

I@12123434321234565432, I@12123434323456565432, I@12123212343434565432, I@12123234343456565432,

I@12123234565654343432, I@12123434345656543432, I@12123212345656545432, I@12123432123456565432,

I@12123212343456565432, I@1212323234323454565432, I@1212345656543232345432, I@1212321234345654545432,

I@1212321234345454565432, I@1212321234343456545432, I@1212321234343454565432,

I@1212323456565434345432, I@1212323234343456565432, I@1212323434345656543432,

I@1212345656543212345432, I@1212321234345656545432, I@1212343432123456565432,

I@1212321234343456565432, I@121234565654321234565432} .

The generating set is a union of CP-even set and CP-odd set. We have introduced the

notation Ii(Ji) in the main text to represent the ith invariant in the CP-even(CP-odd) set.

The invariants in above lists can be easily converted to Mathematica expression with the

convert function defined below

convert[walk_]:=Block[{map,head,num,c,t,ct},

map={12->ct@Ye,21->Ye,23->Yn,32->ct@Yn,34->c@Mn,43->Mn,54->c@Yn,45->t@Yn,

65->t@Ye,56->c@Ye}/.{c->Conjugate,t->Transpose,ct->ConjugateTranspose};

head=Switch[Head@walk,R,Re@Tr@#&,I,Im@Tr@#&,_,Tr];

num=IntegerDigits@Cases[{walk},_Integer,2][[1]];

head[Dot@@FromDigits/@Partition[num,2,1,1]/.map]];

For example, evaluating convert[R@23434543] in Mathematica will generate the expression

of a CP-even flavor invariant ReTr(YNM∗
NMNM

∗
NY

T
N Y

∗
NMNY

†
N).

We have summarized the number of basic invariants, divided into the number of CP-

even and CP-odd basic invariants, as well as the number of syzygies at each degree and total

order in Tabs. (7, 8). Although the numbers in these tables at every degree are fixed, there

are still degrees where ambiguity arises in determining the form of the invariants. This am-

biguity occurs when our algorithm identifies multiple linear invariants within a single linear

relation. Such linear relation can simply arise from the Cayley-Hamilton theorem as shown

in Eqs. (C.2, C.7). We also discuss the ambiguity in App. C.2 around Eq. (C.13). Let us now

present a specific example. At degree e4n4, according to the summary table, there is only

one basic invariant. However, there exists another invariant I = Tr(YeY †
e YNY

†
NYeY

†
e YNY

†
N),

which is not included in the basic set. We can find following linear relation

2I + 4I18 − I21I23 + I21I6 + 4I1I3I7 − 4I1I12 − 2I27 + I23I4 − I4I6 − 4I3I13 = 0 . (D.1)
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In this relation, two linear invariants, namely I and I18, are observed. Both of these

invariants are of degree e4n4. The ambiguity arises because it is possible to select either of

them as the basic invariant, rendering the other one redundant.

We find that our generating set contains some subsets that can be used as generating

set of other theories. For example, for the theory with nN = nf = 2, the generating set can

be formed with the invariants

Gen.(nN = nf = 2) ∶ {I1,I2,I3,I4,I5,I6,I7,I8,I14,I17,I22,I35,J1,J2,J5,J7,J28,J31} ,
(D.2)

which is also shown in Ref. [26] with a different convention. For the theory with nN =
2, nf = 3, the generating set is given by

Gen.(nN = 2, nf = 3) ∶ {I1,I2,I3,I4,I5,I6,I7,I8,I9,I12,I13,I14,I17,I18,I22,I25,
I34,I35,I54,I79,J1,J2,J5,J7,J9,J10,J26,J28,J29,J31,J32,J68,J70,J72,
J132,J133,J134,J195} .

(D.3)

The above generating set has already been shown in Ref. [30], but the commutation notation

is equivalently represented by taking imaginary part in our notation. We can also easily

identify that the primary invariants shown in Eq. (3.13) correspond to the invariants

Primary set ∶ {I1,I2,I3,I5,I6,I7,I8,I9,I12,I13,I15,I23,I25,I34,I35,I47,I50,I54,I65,I79,I91} .
(D.4)

In the Dirac limit, the generating set will be reduced to have only 11 invariants, in which

only one flavor invariant is CP-odd, and plays the same role as the Jarlskog invariant in

quark sector. The invariants are given by

Gen.(Dirac limit) ∶ {I1,I3,I4,I6,I7,I9,I11,I12,I13,I18,J10} . (D.5)

– 50 –



Ord. Degree
nb ns

ne no

e2 1 0 0

2 m2 1 0 0

n2 1 0 0

e4 1 0 0

m4 1 0 0

4 n4 1 0 0

e2n2 1 0 0

m2n2 1 0 0

e6 1 0 0

m6 1 0 0

n6 1 0 0

6
e2n4 1 0 0

e4n2 1 0 0

m2n4 2 0 0

m4n2 1 0 0

e2m2n2 1 0 0

e4n4 1 0 0

m2n6 1 0 0

8
m4n4 2 1 0

e2m2n4 2 1 0

e2m4n2 1 0 0

e4m2n2 1 0 0

m2n8 1 0 0

m4n6 1 1 0

m6n4 1 1 0

10 e2m2n6 3 2 0

e2m4n4 2 2 0

e4m2n4 3 1 0

e4m4n2 1 0 0

e6n6 0 1 0

m4n8 1 2 0

m6n6 1 2 0

m8n4 0 1 0

12
e2m2n8 2 3 0

e2m4n6 4 5 0

e2m6n4 1 2 0

e4m2n6 4 3 0

e4m4n4 3 3 0

e6m2n4 1 1 0

Ord. Degree
nb ns

ne no

m4n10 0 1 0

m6n8 1 2 0

m8n6 0 1 0

e2m2n10 1 2 0

e2m4n8 4 7 0

e2m6n6 3 5 0

14 e2m8n4 0 1 0

e4m2n8 4 5 0

e4m4n6 6 8 0

e4m6n4 2 3 0

e6m2n6 2 4 0

e6m4n4 1 2 0

e8m2n4 1 0 0

m4n12 0 1 0

m6n10 0 1 0

m8n8 0 1 1

e2m2n12 0 1 0

e2m4n10 3 5 0

e2m6n8 3 5 0

e2m8n6 1 2 0

16
e4m2n10 2 4 0

e4m4n8 8 13 1

e4m6n6 5 8 0

e4m8n4 0 2 0

e6m2n8 3 5 0

e6m4n6 5 8 0

e6m6n4 1 2 0

e8m2n6 1 2 0

e8m4n4 1 1 0

m8n10 0 0 3

m10n8 0 0 3

e2m4n12 1 2 1

e2m6n10 1 2 6

18
e2m8n8 1 1 6

e2m10n6 0 0 1

e4m2n12 1 2 0

e4m4n10 6 9 4

e4m6n8 6 9 4

e4m8n6 2 3 0

Ord. Degree
nb ns

ne no

e6m2n10 2 4 1

e6m4n8 9 11 2

e6m6n6 6 7 0

18
e6m8n4 0 1 0

e8m2n8 2 3 1

e8m4n6 3 5 0

e8m6n4 1 1 0

e10m2n6 0 1 0

m6n14 0 0 1

m8n12 0 0 9

m10n10 0 0 8

m12n8 0 0 4

e2m4n14 0 0 2

e2m6n12 0 0 21

e2m8n10 0 0 32

e2m10n8 0 0 14

e2m12n6 0 0 1

e4m4n12 2 3 14

e4m6n10 2 2 32

20 e4m8n8 2 1 21

e4m10n6 0 0 2

e6m2n12 1 1 2

e6m4n10 6 7 14

e6m6n8 7 7 12

e6m8n6 3 2 1

e8m2n10 1 2 3

e8m4n8 6 8 5

e8m6n6 3 5 1

e8m8n4 0 1 0

e10m2n8 0 1 1

e10m4n6 1 2 0

m6n16 0 0 1

m8n14 0 0 10

m10n12 0 0 18

22
m12n10 0 0 9

m14n8 0 0 2

e2m4n16 0 0 2

e2m6n14 0 0 34

e2m8n12 0 0 76

Table 7: Number of basic invariants nb, divided into the number of CP-even and CP-odd basic invariants
(ne and no respectively), as well as the number of syzygies ns at each degree and total order. Note that
the difference nb − ns can be mapped to the coefficient of the graded PL at each degree up to order 26.
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Ord. Degree
nb ns

ne no

e2m10n10 0 0 55

e2m12n8 0 0 12

e4m6n12 0 0 103

e4m4n14 0 0 27

e4m8n10 0 0 109

e4m10n8 0 0 39

e4m12n6 0 0 2

e6m4n12 1 1 47

e6m2n14 0 0 2

22 e6m6n10 2 0 85

e6m8n8 2 0 37

e6m10n6 0 0 3

e8m2n12 0 0 6

e8m4n10 2 3 26

e8m6n8 5 4 18

e8m8n6 2 1 0

e10m2n10 0 0 4

e10m4n8 2 2 5

e10m6n6 1 2 1

e12n12 0 0 1

m8n16 0 0 11

m10n14 0 0 20

24
m12n12 0 0 21

m14n10 0 0 5

m16n8 0 0 1

e2m4n18 0 0 1

e2m6n16 0 0 33

Ord. Degree
nb ns

ne no

e2m8n14 0 0 110

e2m10n12 0 0 116

e2m12n10 0 0 48

e2m14n8 0 0 5

e4m4n16 0 0 31

e4m6n14 0 0 174

e4m8n12 0 0 284

e4m10n10 0 0 162

e4m12n8 0 0 33

e6m2n16 0 0 1

e6m4n14 0 0 87

e6m6n12 0 0 261

24
e6m8n10 0 0 226

e6m10n8 0 0 59

e6m12n6 0 0 2

e8m2n14 0 0 8

e8m4n12 0 0 94

e8m6n10 0 0 134

e8m10n6 0 0 2

e8m8n8 1 0 49

e10m6n8 2 0 17

e10m8n6 1 0 0

e10m2n12 0 0 10

e10m4n10 0 0 32

e12m2n10 0 0 3

e12m4n8 0 1 3

Table 8: Tab. 7 continued. We only show the results up to order 24. There is no basic invariant at higher
orders, only syzygies can be found. At order 26, the numbers of syzygies at each degree can be read off from
the graded PL shown in Eq. (B.3). At higher orders, the PL loses its ability to explain the correct number
of basic invariants and the number of syzygies. Please refer to the text around Eq. (3.12) for further details.
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E CPV and CPC in the 2HDM example

E.1 Minimal CPV set of the 2HDM

Another interesting scenario for the application of basis invariants is the potential of a

2HDM

V (Φ) = Φ†
aY

a
bΦ

b +Φ†
aΦ

†
b
ZabcdΦ

cΦd (E.1)

where the two Higgs doublets transform into each other through global transformations

in SU(2) Higgs “flavor” space. This case was previously considered in Ref. [27], and the

author found that the generating invariants are composed of 11 CP-even invariants and 8

CP-odd invariants. In this paper, we will adopt all the conventions and expressions of the

invariants in Ref. [27].20 The generating set is given as

{I0,0,2, I0,2,0, I0,1,1, I2,0,0, I1,2,0, I1,0,2, I3,0,0, I1,1,1, I2,2,0, I2,0,2, I2,1,1,
J1,1,2, J1,2,1, J2,2,1, J2,1,2, J3,0,3, J3,3,0, J3,2,1, J3,1,2} , (E.2)

where Ii,j,k (Ji,j,k) represents the CP-even (CP-odd) invariant of degree (i, j, k). The

grading is based on the symbols (q, y, t), which are used in the Hilbert series for the building

blocks Y3, Z3, and Z5 respectively in Ref. [27]. The author found that the eight generating

invariants can be reduced to a set of four flavor invariants that can capture the necessary

and sufficient conditions for CP violation.

Eventually, by running the zero table algorithm, we find that the following set is needed

in order to capture all sources of CPV for all possible cases of mass spectra

S = {J1,1,2,J1,2,1,J3,0,3,J3,3,0,J3,2,1,J3,1,2} . (E.3)

Note, that this does not correspond to the set found in Ref. [27], where the necessary and

sufficient conditions for CPC are found to be captured by {J1,1,2,J1,2,1,J3,0,3,J3,3,0} (see

App. E.2 for details). The two additional invariants are needed because we are asking a

slightly different question here. The necessary and sufficient conditions are indeed captured

by the roots of only four invariants. If one is however interested in capturing all physical

sources of CPV, i.e. having as many algebraically independent CP-odd invariants as there

are physical phases in the theory for all possible numerical values of the parameters in the

theory, one is required to add two more invariants. One such case is q3 → 0, qi2 → 0, qr2 →

0, t→ 0, yi → 0, yr → 0, where the only two non-vanishing invariants simplify to the following

expressions

J1,1,2 = −iy(2qr1titr + qi,1(t2i − t2r)),
J3,1,2 = −iy(q2i1 + q2r1)(2qr1titr + qi,1(t2i − t2r)) . (E.4)

In this case, there are evidently two physical CP-odd parameters (qi1, ti) in the theory which

require two CP-odd invariants to capture them. However, note that the two invariants only

differ by a real factor. Therefore, even though the phases are independent, they can in

principle be expressed by one CP-even and one CP-odd invariant (including the signs of

the phases). We will further investigate this in a future publication.

20Due to the length of the invariants, we refer the reader to Ref. [27] for their explicit expressions.
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E.2 Minimal CPC set of the 2HDM

In Ref. [27], the author found four syzygies that are relevant for determining the minimal

CPC set. Two of them are given at order 8 with CP-odd terms

3J2,2,1I1,2,0 −J3,2,1I0,2,0 + 3J3,3,0I0,1,1 +J1,2,1I2,2,0 = 0 ,
3J2,1,2I1,0,2 −J3,1,2I0,0,2 + 3J3,0,3I0,1,1 +J1,1,2I2,0,2 = 0 . (E.5)

Another two are given at order 10 with CP-even terms

3J 2

2,2,1 + 3J1,1,2J3,3,0 −J3,2,1J1,2,1 − I2,0,0J 2

1,2,1 = 0 ,
3J 2

2,1,2 + 3J1,2,1J3,0,3 −J3,1,2J1,1,2 − I2,0,0J 2

1,1,2 = 0 . (E.6)

Note that these syzygies are symmetric under y ↔ t. The order-10 syzygies can already

be presented in the form that follows Hilbert’s Nullstellensatz, i.e., J2,2,1 and J2,1,2 are

vanishing given that {J1,2,1,J1,1,2} = 0. Plug this in Eq. (E.5), by further requiring

J3,3,0 = J3,0,3 = 0, one can find that J3,2,1I0,2,0 = J3,1,2I0,0,2 = 0. If I0,2,0 ≠ 0 ≠ I0,0,2,
we will have J3,2,1 = J3,1,2 = 0. If I0,2,0 = I0,0,2 = 0, by analyzing the spectrum of the

parameter space, one can show that J3,2,1 = J3,1,2 = 0 is already implied. Therefore, the

final minimal CPC set is chosen to be {J1,2,1,J1,1,2,J3,3,0,J3,0,3}, and the CP-odd invari-

ants {J2,2,1,J2,1,2,J3,2,1,J3,1,2} are vanishing given that the minimal CPC set is vanishing.

This is the main results shown in Ref. [27].

The tricky part of the discussion in Ref. [27] is about the spectrum analysis, and it relies

on the vanishing conditions of some invariants, such as I0,2,0 = I0,0,2 = 0, although it’s easy

to obtain in the 2HDM, it could be nontrivial for other theories. Hilbert’s Nullstellensatz

provides guidelines on the form of syzygies that can be used to eliminate invariants. Solving

the vanishing conditions of specific invariants is not necessary, leading to a spectrum-free

analysis. Following the numerical algorithm introduced in Ref. [27] or similar algorithm in

App. C.2,21 we can find following syzygies

3J 2

2,2,1 = I2,0,0J 2

1,2,1 −J3,2,1J1,2,1 − 3J1,1,2J3,3,0 ,
3J 2

2,1,2 = I2,0,0J 2

1,1,2 −J3,1,2J1,1,2 − 3J1,2,1J3,0,3 ,
J 2

3,2,1 = − I2,0,0J1,2,1J3,2,1 + 2I22,0,0J 2

1,2,1 − 3I2,0,0J1,1,2J3,3,0 (E.7)

− 18I3,0,0J1,2,1J2,2,1 + 3J3,3,0J3,1,2 ,
J 2

3,1,2 = − I2,0,0J1,1,2J3,1,2 + 2I22,0,0J 2

1,1,2 − 3I2,0,0J1,2,1J3,0,3
− 18I3,0,0J1,1,2J2,1,2 + 3J3,0,3J3,2,1 ,

where the first two syzygies are the same as Eq. (E.6). Furthermore, we have found two

additional syzygies that are distinct from Eq. (E.5). These four syzygies, as expected, can

be used directly to show that the invariants {J2,2,1,J2,1,2,J3,2,1,J3,1,2} are vanishing on

the minimal CPC set {J1,2,1,J1,1,2,J3,3,0,J3,0,3}. However, we should note that the two

21When employing this numerical method, instead of constructing all possible monomials of invariant
products at a given degree (q, t, y) to form the elements of the syzygy, we should only construct the products
that include the element in the candidate minimal CPC set, along with the term of J to some power that
we aim to verify vanishing.
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new syzygies arise at order 12, which is higher than the order in Eq. (E.5). This should be

considered as a necessary trade-off.

The above discussion is based on the syzygy approach. However, another interesting

approach to consider is the use of ideals in the polynomial ring. As explained in App. G,

the syzygy approach originates from the inclusion problem of a polynomial in an ideal

defined in a polynomial ring. In the context of the 2HDM, the problem can be considered

as to determine whether a power exists that would make the polynomials in the set P ≡
{J2,2,1,J2,1,2,J3,2,1,J3,1,2} belong to the ideal defined by J ≡ ⟨J1,2,1,J1,1,2,J3,3,0,J3,0,3⟩.
This can be easily checked with the isSubset function of the Macaulay2 [52] package, or

PolynomialReduce function in Mathematica.

F The Hironaka decomposition

As defined in Sec. 2.2, the basic set {I1, ...,Im} allow us to write any invariant I ′ of the

ring as a polynomial of the basic invariant:

I ′ = P (I1, ...,Im) . (F.1)

The Hironaka decomposition refines this last equation. This decomposition comes from the

Cohen-Macaulay property [44, 45, 58] which only holds for reductive groups. In this cases it

is possible to construct two finite sets of invariants: the set of primary invariants {θ1, . . . , θk}
which is algebraically independent, and the set of secondary invariants {η1, . . . , ηr}, such

that any invariant I ′ can be written as

I ′ = r

∑
i=1

ηi Pi(θ1, . . . , θk) , (F.2)

where Pi(θ1, . . . , θk) is a polynomial in the primary invariants. This decomposition is related

to the HS in the following way. If zj is the degree of θj , and si the degree of ηi, then

H(q) = N (q)D(q) =
r

∑
i=1

qsi

k

∏
j=1
(1 − qzj)

. (F.3)

Note that, secondary invariants can be a product of several basic invariants. Furthermore,

for a given group the Hironaka decomposition is not unique and the degrees of the primary

and secondary invariants can be different.

G Hilbert’s Nullstellensatz

Hilbert’s Nullstellensatz, a fundamental result in algebraic geometry, establishes a pro-

found connection between polynomial equations and the geometry of algebraic varieties.

The traditional formulation of Hilbert’s Nullstellensatz often involves a polynomial ring

and its associated ideals. Consider the polynomial ring R = k[x1, x2, . . . , xn] in n variables

over the field k (a mathematical structure that generalizes the concept of numbers). This
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ring consists of polynomials in the variables x1, x2, . . . , xn with coefficients in k. We will

now introduce the fundamental mathematical concepts required for presenting Hilbert’s

Nullstellensatz.

• Ideal

An ideal I in the polynomial ring R is a subset of polynomials such that, for any

polynomial f in the ideal I and any polynomial g in the ring, their product fg is also

in I. Mathematically, an ideal I satisfies:

f ∈ I, g ∈ R Ô⇒ fg ∈ I . (G.1)

• Variety

Given an ideal I, the variety V (I) is the set of common zeros of all polynomials

in I. Formally, a point (a1, a2, . . . , an) lies in the variety V (I) if and only if every

polynomial in I evaluates to zero at that point:

V (I) = {(a1, a2, . . . , an) ∣ f(a1, a2, . . . , an) = 0 for all f ∈ I} . (G.2)

• Radical of an Ideal

The radical of an ideal I, denoted by
√
I, is the set of all polynomials g such that

some power of g belongs to I. Mathematically,
√
I is defined as:

√
I = {g ∣ gk ∈ I for some k ≥ 1} . (G.3)

Hilbert’s Nullstellensatz asserts that for any algebraically closed field k, there is a

bijective correspondence between the points of a variety V (I) and the radical ideals
√
I

defining that variety. Formally, this correspondence is expressed as:

Ideal(V (I)) =√I , (G.4)

where Ideal(V (I)) denotes the ideal of polynomials vanishing on the variety V (I).
In a more polynomial-centric language, Hilbert’s Nullstellensatz can also be formulated

differently. If a polynomial p vanishes on the variety V (I), it belongs to Ideal(V (I)), and,

by Hilbert’s Nullstellensatz as shown in Eq. (G.4), it also belongs to
√
I. According to the

definition of
√
I, there exists k ≥ 1 such that pk ∈ I, thus can be expressed as:

pk = f1p1 + f2p2 + ⋅ ⋅ ⋅ + fmpm , (G.5)

where fi ∈ R and pi are the defining polynomials of I. This equation essentially states that

if p is vanishing under the common zeros of the defining polynomials of the ideal I, then

the k-th power of the polynomial p can be expressed as a combination of these defining

polynomials.
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H CPC conditions for nN = nf = 2

The simplified model with two generations of fermions serves as a good example for the

algebraic studies. There are in total 6 CP-odd generating invariants, which are shown in

Eq. (C.16). Although the generating set is small, it’s still difficult to find the common zero

solutions of polynomials based on usual methods. However, these invariants can also be

considered as ideals in the polynomial ring of the theory. In this section, we will analyze

these ideals with the software package Macaulay2 [52] based on the parameterization in

Eq. (A.27). To simplify the notation, we take r11 = a, r21 = c, c12 = b + p i and c22 =
d + q i. Therefore, the polynomial ring is defined as R ∶= Q[ye, yµ,m1,m2, a, b, c, d, p, q], all

CPV effects can be characterized by the ideal I defined by the six CP-odd invariants, i.e.,

I ≡ ⟨J1, . . . , J6⟩. The vanishing set denoted by V (I) captures all the CPC conditions. The

problem of finding common zero solutions is equivalent to finding the irreducible components

of the ideal.

According to Hilbert’s Nullstellensatz, the ideal of all polynomials that vanish on the

common zero set V (I) is the radical of the ideal
√
I, which can be calculated by the radical

function in Macaulay2, and the CPC conditions will be captured by the minimal primes of

the radical, which are shown as

{⟨q, p⟩, ⟨q, a⟩, ⟨p, c⟩, ⟨c, a⟩, ⟨c, b⟩, ⟨d, a⟩, ⟨d, b⟩, ⟨m1, a⟩, ⟨m1, c⟩, ⟨m2, a⟩, ⟨m2, c⟩,
⟨m2,m1⟩, ⟨m1, ye − yµ⟩, ⟨m1, ye + yµ⟩, ⟨m2, ye − yµ⟩, ⟨m2, ye + yµ⟩,
⟨m1, d p − b q⟩, ⟨m2, d p − b q⟩, ⟨m1 −m2, ye − yµ⟩, ⟨m1 −m2, ye + yµ⟩, (H.1)

⟨m1 +m2, ye − yµ⟩, ⟨m1 +m2, ye + yµ⟩, ⟨ye − yµ, a b + c d⟩, ⟨ye − yµ, a p + c q⟩,
⟨ye + yµ, a b + c d⟩, ⟨m1 −m2, a b c

2 − a2 c d + b2 c d − a bd2 + c d p2 − a b q2⟩,
⟨ye + yµ, a p + c q⟩, ⟨m1 +m2, a c

2 p − ad2 p − a2 c q + b2 c q + c p2 q − ap q2⟩} .
The CPC conditions can be obtained by setting the generators to 0, for instance, the first

ideal in above set indicates there is one condition p = q = 0 that can lead to CPC, which

is just the trivial solution of vanishing phases. However, there is no assumption about the

variables in the ring, some unphysical solutions may arise, for example the ideal ⟨m1, ye+yµ⟩
indicates m1 = 0, ye + yµ = 0 is a CPC condition, but ye + yµ = 0 will lead to ye = yµ = 0 with

non-negative mass assumption. This is already included in the ideal ⟨m1, ye − yµ⟩. After

removing these unphysical ideals, the complete solutions of CPC conditions are given by

following ideals

{⟨q, p⟩, ⟨q, a⟩, ⟨p, c⟩, ⟨c, a⟩, ⟨c, b⟩, ⟨d, a⟩, ⟨d, b⟩, ⟨m1, a⟩, ⟨m1, c⟩, ⟨m2, a⟩, ⟨m2, c⟩,
⟨m2,m1⟩, ⟨m1, ye − yµ⟩, ⟨m2, ye − yµ⟩, ⟨m1, d p − b q⟩, ⟨m2, d p − b q⟩, (H.2)

⟨m1 −m2, ye − yµ⟩, ⟨ye − yµ, a b + c d⟩, ⟨ye − yµ, a p + c q⟩,
⟨m1 −m2, a b c

2 − a2 c d + b2 c d − a bd2 + c d p2 − a b q2⟩} .
In the algebraic geometry picture, all these conditions are fundamental objects, and they

correspond to points, lines, surfaces, etc. In addition, each of these conditions has a con-

nection to the special spectrum and enlarged symmetry of the theory. There are some
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nontrivial conditions in the solution list, for instance the last one shows that the mass de-

generacy of m1 =m2 and a vanishing of a very special combination of the matrix elements

of YN can lead to CPC.

By analyzing the polynomial ring, it’s also possible to generate the conditions lead to

special spectrum, which is not necessary the CPC conditions. For instance, the conditions

lead to unphysical phase of p or q can be obtained by the elimination of variables, and the

relevant function in Macaulay2 is called eliminate. By eliminating the CP-odd variable p

or q, one can find the following conditions

unphysical p: {⟨q⟩, ⟨c⟩, ⟨m1⟩, ⟨m2⟩, ⟨m1 −m2⟩, ⟨ye − yµ⟩, ⟨d, b⟩, ⟨d, a⟩} ,
unphysical q: {⟨p⟩, ⟨a⟩, ⟨m1⟩, ⟨m2⟩, ⟨m1 −m2⟩, ⟨ye − yµ⟩, ⟨d, b⟩, ⟨c, b⟩} , (H.3)

where the unphysical conditions such as ⟨m1 +m2⟩ is removed. These conditions can be

used to analyze the special spectrum of the theory, such as the spectrum listed in the

zero table algorithm. The above conditions can also be calculated with the more physical

parameterization in Eq. (A.17), they are given as follows

unphysical φ: {⟨sinϕ⟩, ⟨sinϕ − 1⟩, ⟨sinϕ + 1⟩, ⟨sinα⟩, ⟨sinα − 1⟩, ⟨sinα + 1⟩,
⟨m1⟩, ⟨m2⟩, ⟨m1 −m2⟩, ⟨y1 − y2⟩} ,

unphysical ϕ: {⟨sinφ⟩, ⟨sinα⟩, ⟨sinα − 1⟩, ⟨sinα + 1⟩, ⟨sin θ⟩, ⟨sin θ − 1⟩,
⟨sin θ + 1⟩, ⟨ye − yµ⟩, ⟨m1 −m2⟩, ⟨y1⟩, ⟨y2⟩, ⟨y1 − y2⟩} .

(H.4)

By exploring these special conditions and their combinations, one can obtain all of the

special spectra with enlarged symmetries in the theory.

(mention that Macaulay2 only work for nN = nf = 2 in our theory, but it’s still a good

tool to study some other simple theories, such as 2HDM.)
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