

Dispelling the $\sqrt{\mathcal{L}}$ myth for the High-Luminosity LHC

Alberto Belvedere,^a Christoph Englert,^b Roman Kogler,^a and Michael Spannowsky^c

^a*Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany*

^b*School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom*

^c*Institute for Particle Physics Phenomenology, Department of Physics, Durham University, Durham DH1 3LE, United Kingdom*

E-mail: alberto.belvedere@desy.de, christoph.englert@glasgow.ac.uk,
roman.kogler@desy.de, michael.spannowsky@durham.ac.uk

ABSTRACT: Extrapolations of sensitivity to new interactions and standard model parameters critically inform the programme at the Large Hadron Collider (LHC) and potential future collider cases. To this end, statistical considerations based on inclusive quantities and established analysis strategies typically give rise to a sensitivity scaling with the square root of the luminosity, $\sqrt{\mathcal{L}}$. This suggests only a mild sensitivity improvement for LHC's high-luminosity phase, compared to the collected data up to the year 2025. We discuss representative analyses in top quark, Higgs boson and electroweak gauge boson phenomenology and provide clear evidence that the assumption that the sensitivity in searches and measurement scales only with $\sqrt{\mathcal{L}}$ at the High-Luminosity LHC is overly conservative at best, and unrealistic in practice. As kinematic coverage enables more targeted search strategies with sufficient statistical sensitivity, employing a multitude of features in data dispels the scaling based on more inclusive selections.

Contents

1	Introduction	1
2	Top physics	3
2.1	Multi-top production	3
2.2	Exclusive top quark mass measurements	5
3	Electroweak gauge boson interactions	7
3.1	Rare electroweak processes: A tWZ case study	7
4	Higgs physics	8
4.1	Higgs property measurements	8
5	Summary	10

1 Introduction

The ongoing LHC runs will define the research activities in collider phenomenology in the coming years. Currently, the LHC is in its Run-3 phase with an anticipated upgrade into the high-luminosity (HL) phase in 2029. The data from Run 2 (2016–2018) corresponds to an integrated luminosity of about 140 fb^{-1} , which will increase to an expected 300 fb^{-1} at the end of Run 3 for each multi-purpose experiment ATLAS and CMS. The HL-LHC will result in an accelerated data acquisition, where both experiments will accrue over 3000 fb^{-1} of data until the end of the LHC’s lifetime. While it is impressive to increase the existing data tenfold in a relatively short amount of time, it is generally believed that the sensitivity \mathcal{S} in searches for resonances and the underlying dynamics of a theory that extends the standard model (SM) scales as the square root of the integrated luminosity $\sqrt{\mathcal{L}}$, i.e.

$$\mathcal{S} \simeq \frac{S}{\sqrt{B}} \simeq \sqrt{\mathcal{L}} \frac{\sigma_S}{\sqrt{\sigma_B}}, \quad (1.1)$$

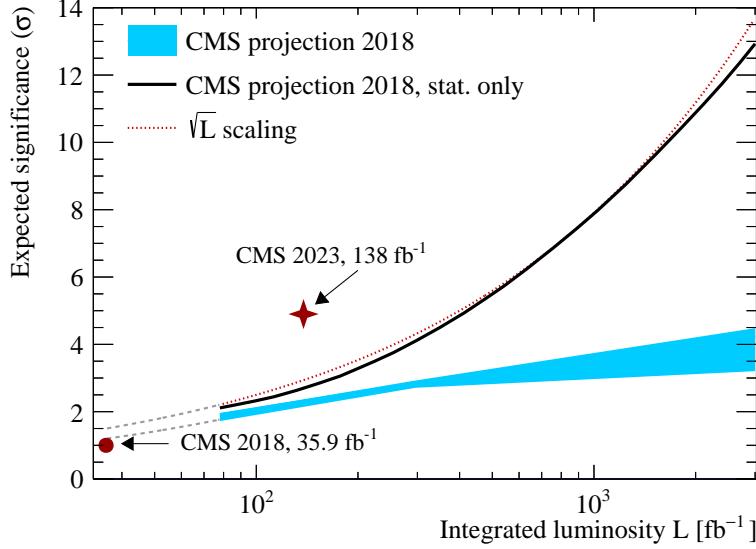
assuming LHC upgrades do not affect the cross sections of signal, σ_S , or background, σ_B . Similarly, for SM measurements with a negligible amount of background events B compared to signal events S , the statistical uncertainty δ is obtained from the variance of a Poisson distribution and hence scales as $\delta \sim \sqrt{S} \sim \sqrt{\mathcal{L}}$. Despite a considerable increase in the LHC’s luminosity, this implies only a modest sensitivity increase in searches for new physics and in measuring SM parameters. More complex is the prediction of the evolution of systematic uncertainties, originating from different sources, that constitute the leading uncertainties in

some cases. On this basis of a simple rescaling of the number of signal and background events with the integrated luminosity, several analyses have assessed the LHC physics potential [1] for the HL-LHC. In these analyses, the systematic uncertainties have been estimated assuming different scenarios, reaching from unchanged uncertainties with respect to existing analyses to reducing them by either a factor of two or by $\sqrt{\mathcal{L}}$ scaling. The HL-LHC projections contribute to a relatively gloomy outlook for the collider physics programme of the coming decades. Some of these projections continue to inform the future strategy of particle physics [2, 3].

However, we argue that the anticipated $\sqrt{\mathcal{L}}$ scaling is too conservative for many relevant searches for effects beyond the SM (BSM) and SM measurements. While it is correct that the cross sections for signal and background remain essentially unchanged during the HL-LHC runs, new observables will become accessible, which will lead to a much more significant gain in sensitivity than widely projected [4–6]. Concretely, entirely new phase space regions, e.g. high transverse momentum or large invariant-mass final states, will be populated by an appreciable number of events, opening them up for tailored search and measurement strategies. Thus, novel reconstruction techniques designed for these exclusive phase space regions will significantly boost exploiting kinematic differences between signal and background, enhancing sensitivity in new physics searches. In addition, in any search, the experimentally measured data are tensioned with a model assumption, i.e. often a high-dimensional extension of the SM; accessing such new observables will help to overconstrain the parameter space of such models, thereby increasing the sensitivity far beyond the estimated $\sqrt{\mathcal{L}}$ scaling. As the amount of data increases, new reconstruction techniques and calibrations become available, not only reducing the systematic uncertainties estimated in previous analyses but also making new measurement strategies possible. Furthermore, once sufficiently large datasets become available for constructing multi-dimensional measurement regions, the measured data can be used to constrain model parameters thus reducing modelling uncertainties.

We showcase these observations explicitly in four example studies for representative scenarios and processes. To begin, in Sec. 2, we focus on top quark physics. Firstly, in Sec. 2.1, we consider the production of four top quarks. The rich final state allows to expand the analysis to more decay channels when more data become available. The extension to channels that have not been considered in earlier versions is possible because of potent algorithms for background reduction, complemented by sideband regions that tightly constrain background yields because of better statistical precision. This showcases the prowess of novel machine learning (ML) reconstruction techniques and model constraints from sideband regions. Secondly, we turn from measuring the cross section of four top quark production to measuring one of the most relevant fundamental parameters for electroweak physics, the top quark mass. In Sec. 2.2, we use the example of fully hadronic top quark decays merged into a single jet to demonstrate how novel reconstruction algorithms and improved calibration methods greatly enhance the potential of this measurement. The measurement utilises the benefit of exclusive high-transverse momentum (p_T) phase space regions over inclusive measurements to extract additional information. We then turn towards electroweak physics in Sec. 3. Rare processes in

the SM only become accessible at large integrated luminosities. We provide a phenomenological analysis for tWZ and $t\bar{t}Z$ production, demonstrating how additional background reduction techniques can greatly enhance the potential of measuring the tWZ process over the known $t\bar{t}Z$ background. In addition, we show how a differential measurement can enhance the sensitivity to new physics interactions compared to an inclusive measurement. Finally, we show that $\sqrt{\mathcal{L}}$ scaling is too conservative for Higgs phenomenology, too. In a fourth example, in Sec. 4, we turn our attention to the leading Higgs boson production processes at the LHC. A comprehensive set of differential measurements can lift blind directions in the ample parameter space of new physics, encoded as Wilson coefficients of an effective field theory, breaking evidently the $\sqrt{\mathcal{L}}$ scaling.


This representative set of examples highlights the general appreciation that $\sqrt{\mathcal{L}}$ scaling for the HL-LHC provides a too pessimistic outlook for the coming decades of collider physics, instead, the focus on exclusive phase space regions, designated reconstruction techniques, the simultaneous access to multi-dimensional measurement regions, and advanced background reduction algorithms will excel our ability to gain a deeper understanding of the underlying dynamics of particle physics.

2 Top physics

The HL-LHC is an ideal machine to study the properties of the top quark. With an integrated production cross-section of about 850 and 950 pb at $\sqrt{s} = 13$ and 14 TeV, respectively [7, 8], both ATLAS and CMS will have produced between 2.5–3.0 billion top-quark pair events by the end the HL-LHC’s runtime. Because of its short lifetime, its mass close to the electroweak scale, and its characteristic decay into three fermions, allowing to separate top quark events from large QCD backgrounds, top quark studies at the HL-LHC will yield important insights into the top quark’s role in the mechanism of electroweak-symmetry breaking. Thus, exhausting the HL-LHC’s potential in determining all top quark properties is of fundamental importance for its success.

2.1 Multi-top production

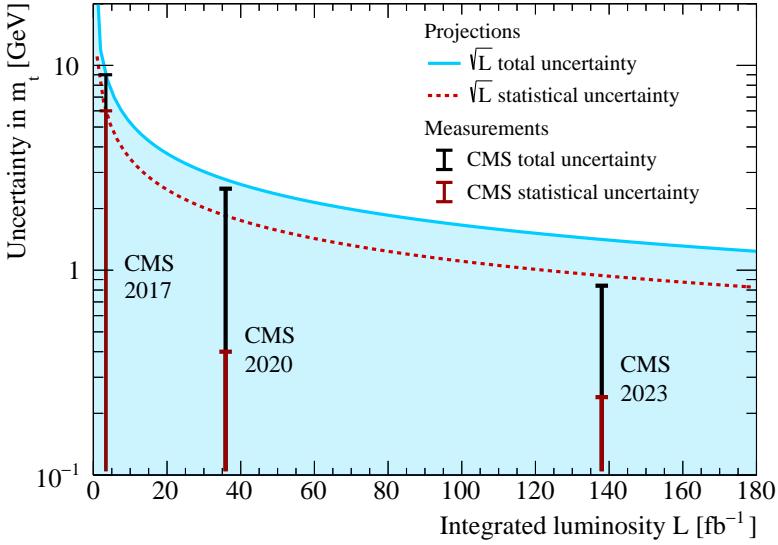
Four top quark final states ($t\bar{t}t\bar{t}$) are known to be sensitive to a plethora of resonant and non-resonant BSM interactions [12–16]. The production of $t\bar{t}t\bar{t}$ is therefore expected to provide high sensitivity to BSM physics when the SM prediction is accurately known. The $t\bar{t}t\bar{t}$ production has a very small cross section of $13.4^{+1.0}_{-1.8}$ fb [17] at 13 TeV, with an overwhelming amount of SM backgrounds, making the search for $t\bar{t}t\bar{t}$ experimentally very challenging. Searches for $t\bar{t}t\bar{t}$ final states also demonstrate the ability of analyses to break the $\sqrt{\mathcal{L}}$ scaling *already*. As more data become available, increasingly exclusive selections can be achieved to combat contributing backgrounds without compromising the robustness of predictions. In Fig. 1, we compare the 2018 CMS sensitivity [9] and its extrapolation to the HL-LHC [10] with the recent 2023 observation of $t\bar{t}t\bar{t}$ production [11]. The 2018 analysis uses same-sign

Figure 1. Evolution of the expected significance in four top quark analyses by the CMS experiment. We compare the 2018 result based on an integrated luminosity 35.9 fb^{-1} [9], with a projection from 2018 based on $\sqrt{\mathcal{L}}$ scaling [10], with the 2023 observation based on an integrated luminosity 138 fb^{-1} [11]. The projection starts at an integrated luminosity of 78 fb^{-1} ; the dashed grey lines extrapolate it with a $\sqrt{\mathcal{L}}$ dependence down to 36 fb^{-1} . For illustration, the function $0.25\sqrt{\mathcal{L}}$ is also shown (red dotted line), which describes well the expected significance obtained from the statistical-only uncertainty (black solid line).

dilepton and multilepton final states, and observes $t\bar{t}t\bar{t}$ production with an expected sensitivity of one standard deviation (σ) above the SM backgrounds, using data corresponding to 35.9 fb^{-1} of integrated luminosity [9], shown as a filled red circle. When extrapolating this result to the HL-LHC, the cross section of $t\bar{t}t\bar{t}$ production increases by a factor of about 1.3 when increasing \sqrt{s} from 13 to 14 TeV. This increase, together with an expected increase of the integrated luminosity to 78 fb^{-1} , led to a predicted sensitivity of about 2σ above the SM background in the projection, obtained by using $\sqrt{\mathcal{L}}$ scaling [10]. The projection of the expected $t\bar{t}t\bar{t}$ significance for the HL-LHC is performed using two different scenarios, namely statistical uncertainties only (solid line), and three different assumptions on the systematic uncertainties (blue band). When including systematic uncertainties, the most optimistic scenario leads to an expected significance of 4.1σ with 3 ab^{-1} , where the improvement from 300 fb^{-1} to the HL-LHC is only about one standard deviation. Only in the unrealistic case of statistical uncertainties only, the projection results in an observation with a significance above 5σ . We argue that this pessimistic scenario is misleading because it does not consider methodical and technical improvements that can improve the sensitivity far beyond a simple reduction of systematic uncertainties in an existing analysis. This is demonstrated by a recent result by the CMS Collaboration, observing $t\bar{t}t\bar{t}$ production with an expected significance of 4.9σ using 138 fb^{-1} of 13 TeV data, shown by the star in Fig. 1, and an observed significance

of 5.6σ [11]. This analysis from 2023 updates the previous analyses in this channel [9, 18] with a significantly improved lepton identification, especially at low transverse momenta. This is achieved by using Boosted Decision Trees (BDTs) to discriminate between leptons produced in the decay of charm and bottom hadrons from those produced in the decay of W bosons. In addition, BDTs are employed to discriminate between $t\bar{t}t\bar{t}$ production and the large SM backgrounds. The analysis leverages a set of critical variables, including jet multiplicity, jet properties, and the number of jets identified to originate from b quarks (b jets), supplemented by associated kinematic variables. These multivariate analysis techniques have proven to be pivotal in isolating and studying the rare $t\bar{t}t\bar{t}$ production, achieving a significance much better than the $\sqrt{\mathcal{L}}$ -predicted significance of 2.7σ at 138 fb^{-1} , even though this prediction is based on statistical uncertainties only, for a $t\bar{t}t\bar{t}$ cross section 1.3 times as large.*

A very similar analysis can be made for the search of $t\bar{t}t\bar{t}$ production with the ATLAS experiment. An ATLAS search for $t\bar{t}t\bar{t}$ final states with 36.1 fb^{-1} of 13 TeV data resulted in an expected upper limit on the production cross section of 29 fb at 95% confidence level [19]. The $\sqrt{\mathcal{L}}$ scaling of this result predicted a significance of about 5σ with 300 fb^{-1} of integrated luminosity at $\sqrt{s} = 14\text{ TeV}$ [20]. The most recent ATLAS result in this channel achieves an expected significance of 4.3σ already with 140 fb^{-1} of 13 TeV data [21], overcoming the $\sqrt{\mathcal{L}}$ -scaling expectation. This publication reported the first observation of $t\bar{t}t\bar{t}$ production with an observed significance of 6.1σ .


In addition to the same-sign dilepton and multilepton final states, there are other channels that can be considered in the search for $t\bar{t}t\bar{t}$ production. A combination of all-hadronic, one lepton and opposite-sign dilepton events improves the expected sensitivity from 2.7σ as obtained in Ref. [18], to 3.2σ [22]. This example of $t\bar{t}t\bar{t}$ production is educative for many other processes at the LHC, where the availability of more data opens up channels that are not accessible in the first stage of data analyses, and allows for a refined statistical treatment which improves the sensitivity far beyond the first expectations.

2.2 Exclusive top quark mass measurements

Measuring the top-quark mass m_t to high accuracy is a challenge at the LHC. While top quark-pair final states can be separated fairly straightforwardly from QCD and electroweak backgrounds, measuring m_t hinges on controlling the jet-energy resolution, pileup effects from overlapping pp -collision events, and the jet-energy scale specific to jets containing bottom quarks. Ongoing efforts to determine the top mass rely on fully leptonic [23–25], semi-leptonic [26, 27] and fully hadronic [28] top-quark decays. Traditionally, the reconstruction strategies in all three final states build on utilising the full phase space of the top quark pairs. Thus, aiming to exploit predominantly the cross section-enhanced production of top quarks with small transverse momentum. However, boosted top quark final states [29–31] provide

*The 2018 analysis [9] was already updated in 2020 with an analysis using 137 fb^{-1} of 13 TeV data, which resulted in an expected sensitivity of 2.7σ above the SM background [18]. This result alone breaks the $\sqrt{\mathcal{L}}$ scaling, considering that the 2018 analysis based on 35.9 fb^{-1} of integrated luminosity shows a significance of 1σ .

Figure 2. Projected evolution of the total and statistical uncertainties when measuring m_t from the jet mass in hadronic decays of boosted top quarks. The projected uncertainties are obtained using $\sqrt{\mathcal{L}}$ scaling of the 8 TeV measurement from 2017 [39], shown at an effective integrated luminosity of 3.4 fb^{-1} . The later CMS measurements from 2020 [40] and 2023 [41] use 13 TeV data corresponding to integrated luminosities of 35.9 and 138 fb^{-1} , respectively.

several advantages in ameliorating experimental challenges in reconstructing hadronically decaying top quarks [32], even to a degree where these final states can improve on the sensitivity in the cleaner final states with leptonic top decays [33, 34]. Concretely, one trades the smaller cross section of a boosted final state against the larger cross section of a fully hadronic top decay compared to a leptonic top decay, while benefitting from the reconstruction advantage by finding all the hadronic decay products in a relatively small confined area of a detector, i.e. inside a large jet. A measurement of m_t in this boosted topology is affected by complementary systematic uncertainties to measurements from low- p_T final states. In addition, it allows to probe m_t at energy scales much higher than previously reached and can help to resolve ambiguities in relating m_t measurements to its expression in well-defined theoretical schemes [35–38].

The first measurement of m_t from the measured cross section as a function of the jet mass was performed by the CMS Collaboration in 2017 with 8 TeV pp data corresponding to an integrated luminosity of 19.7 fb^{-1} [39]. The hadronic top quark decays were reconstructed using a single large-radius jet with $p_T > 400 \text{ GeV}$. Then, the differential top quark pair production cross section was unfolded as a function of the jet mass to the particle level, which was used to extract m_t . We use this measurement to predict the evolution of statistical and systematic uncertainties with $\sqrt{\mathcal{L}}$ scaling and show the result in Fig. 2. Since this first measurement has been performed at $\sqrt{s} = 8 \text{ TeV}$ and we will compare it to measurements on 13 TeV pp data, we scale the integrated luminosity according to the cross section ratio

between 8 and 13 TeV and show the point at an integrated luminosity of 3.4 fb^{-1} . Note that we scale not only the statistical but also the systematic uncertainty with $\sqrt{\mathcal{L}}$, which is arguably too optimistic, and leads to a decrease of the total uncertainty (blue region) proportional to $\sqrt{\mathcal{L}}$ as a function of the integrated luminosity. The next measurement using the same strategy was published in 2020 on 13 TeV data with an integrated luminosity of 35.9 fb^{-1} [40], shown as a second bar in Fig. 2. The statistical uncertainty of 0.4 GeV in m_t is much smaller than the projected 1.8 GeV obtained from the $\sqrt{\mathcal{L}}$ scaling. This has been achieved by an improved jet reconstruction using the XCone algorithm [42] with a two-step clustering [43]. This improved the width of the lineshape in the jet mass distribution as well as the experimental resolution, leading to a much larger event count in the peak region and therefore a reduced statistical uncertainty. Even the total uncertainty is smaller than the optimistic $\sqrt{\mathcal{L}}$ projection, because of a more precise calibration of the jet mass and a largely reduced susceptibility to pileup. The most recent measurement by the CMS Collaboration was published in 2023, using the full Run-2 dataset corresponding to an integrated luminosity of 138 fb^{-1} [41]. For this measurement, the jet mass scale was calibrated using the hadronic W boson decay within the large-radius jet, and uncertainties in the modelling of the final state radiation were reduced with the help of an auxiliary measurement of angular correlations in the jet substructure. This approach led to a significant increase in precision, culminating in $m_t = 173.06 \pm 0.84 \text{ GeV}$ [41]. We note that the precision is much better than the optimistic $\sqrt{\mathcal{L}}$ projection of the total uncertainty obtained from the 8 TeV measurement, which gives 1.4 GeV . It is even better than the $\sqrt{\mathcal{L}}$ scaling of the statistical uncertainty only, which results in a projected uncertainty of 0.94 GeV . This example prominently highlights the improvements in precision possible when developing advanced data analysis strategies, information from auxiliary measurements, and experimental calibration methods.

3 Electroweak gauge boson interactions

3.1 Rare electroweak processes: A tWZ case study

Processes involving top quarks (t) and EW gauge bosons (W, Z, γ) reveal high sensitivity to BSM effects [44] and allow to probe the top-EW interaction, which is only poorly constrained by experimental data [45]. The study of the process $pp \rightarrow tWZ$ is crucial for probing the weak couplings of the top quark, which are relatively poorly understood. This process is particularly sensitive to unitarity-violating behaviour due to modified electroweak interactions, setting it apart from other electroweak top production processes. Unlike the dominant QCD-induced channels like ttZ , which primarily experience rate rescalings from operators, tWZ offers a unique perspective due to its sensitivity to the weak interactions of top and bottom quarks, and the self-interactions of SU(2) gauge bosons. This sensitivity is not as pronounced in related processes such as tWj and tZj , making tWZ a more distinct and effective probe. Additionally, tWZ is not influenced by top quark four fermion operators at the tree level, further enhancing its significance as a complementary tool for exploring new interactions in the top quark sector [46, 47].

The first evidence of the standard model production of a top quark in association with a W and a Z boson in multi-lepton final states was reported by CMS [48], using data from 2016 to 2018, with an integrated luminosity of 138 fb^{-1} . The measured cross section was found to be $0.37 \pm 0.05(\text{stat}) \pm 0.10(\text{syst}) \text{ pb}$, with an observed significance of 3.5 standard deviations, compared to an expected significance of 1.4 standard deviations.

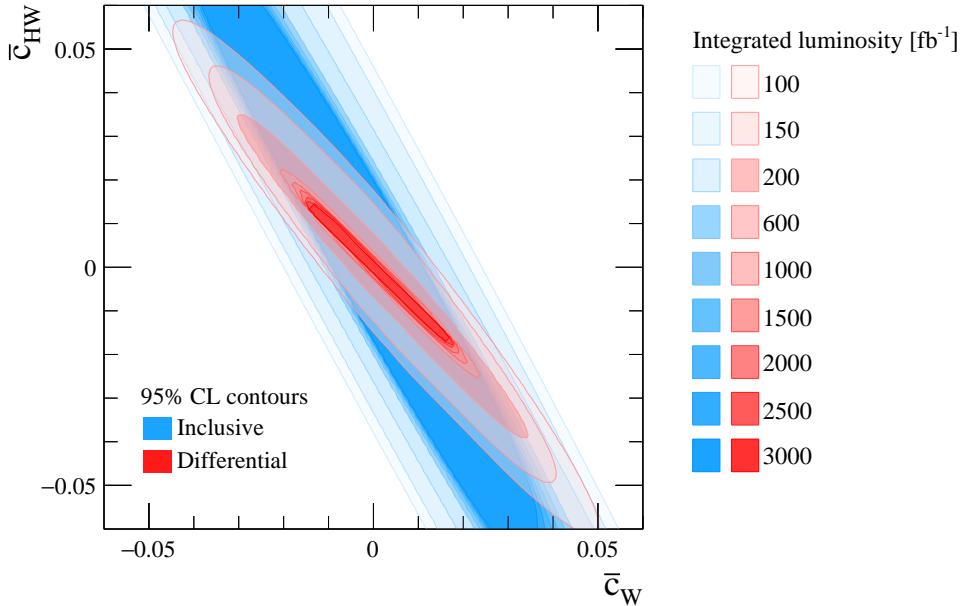
Here is a tWZ study for the HL-LHC [49]

In the following study we consider the \mathcal{O}_{tZ} and the $\mathcal{O}_{\phi Q}^3$ operators as defined in the SMEFT@NLO [50] model:

$$\begin{aligned}\mathcal{O}_{\phi Q}^3 &= \mathcal{C}_{\phi Q}^3 \\ \mathcal{O}_{tZ} &= -\sin \theta_W \mathcal{C}_{tB} + \cos \theta_W \mathcal{C}_{tW}\end{aligned}$$

the operators denoted with the \mathcal{C} are the original Warsaw basis operators [51].

As mentioned earlier, the tWZ process is particularly sensitive to these types of operators. The similarity in the final state to the $t\bar{t}Z$ process complicates the experimental identification of tWZ significantly, for this reason, we study the effect of the \mathcal{O}_{tZ} and $\mathcal{O}_{\phi Q}^3$ operators for both processes.


To simulate the two processes we use Madgraph5 aMC@NLO [52], while the EFT effects are taken into account using the SMEFT@NLO model. We generate $pp \rightarrow tWZ$ and $pp \rightarrow t\bar{t}Z$ at $\sqrt{s} = 13 \text{ TeV}$ under the SM assumption. Then the events are reweighted to different BSM points by simulating the effects of the previously mentioned EFT operators for different values of the Wilson coefficients using the reweighting method [53]. The events are generated at NLO in QCD, while the parton shower is modelled using PYTHIA8 [54].

4 Higgs physics

4.1 Higgs property measurements

Effective Field Theory has become the consensus for reporting and parametrising sensitivities in the electroweak sector, particularly concerning the Higgs boson. Deviations from the Higgs boson's SM phenomenology are parametrised by effective operators that reminisce the existence of BSM physics at higher mass scales. The high dimensional parameter space of such a parametrisation leads to a plethora of operator correlations, resulting in phenomenologically insensitive directions when constraining the corresponding Wilson coefficients. A famous example of this is gluon fusion Higgs production, which leads to a blind direction $c_{\Phi G} = -\frac{\alpha_s}{12\pi y_t} c_{t\Phi}$. The blind direction of inclusive measurements is broken when the top Compton wavelength is experimentally resolved, and available differential information directly breaks the $\sqrt{\mathcal{L}}$ scaling that enhances sensitivity but never resolves the degeneracy present in the inclusive rate [55, 56]. As shown in, e.g., Ref. [57], this discrimination is stable against expected theoretical uncertainties.

A similar yet slightly more dramatic behaviour is resolved when non-trivial momentum dependencies are present. This is particularly highlighted by the interplay of the \mathcal{O}_W and

Figure 3. Constraints from a global fit, as described in the text, on the SILH-basis operators \mathcal{O}_W and \mathcal{O}_{HW} . The blue-shaded area shows constraints from inclusive measurements, while the red-shaded area refers to constraints including differential $p_{T,H}$ measurements. Evaluating these constraints at various integrated luminosities, ranging from 100 fb^{-1} to 3000 fb^{-1} highlights that differential measurements are needed to resolve the blind direction residual to inclusive measurements, thereby improving in the direction $c_W \simeq -c_{HW}$ over any anticipated $\sqrt{\mathcal{L}}$ scaling.

\mathcal{O}_{HW} operators in the SILH convention [58] that parametrises non-SM momentum dependences of the Higgs and gauge bosons [59, 60].

We follow the analysis in [61] and perform a global fit, including all significant Higgs boson production and decay modes. To calculate the Higgs boson yields, we rely on the narrow-width approximation

$$\sigma(pp \rightarrow (H \rightarrow YY) + X) = \sigma(pp \rightarrow H + X) \text{BR}(H \rightarrow YY), \quad (4.1)$$

where X represents any associated reconstructed object, i.e. jets, top quarks or gauge bosons. To deform the Standard Model, we include the 8 operators \bar{c}_H , $\bar{c}_{u,3}$, $\bar{c}_{d,3}$, \bar{c}_W , \bar{c}_{HW} , \bar{c}_{HB} , \bar{c}_γ and \bar{c}_g . We restrain the analysis to genuine dimension six effects that arise from the interference of the dimension six amplitude with the Standard Model, i.e.

$$|\mathcal{M}|^2 = |\mathcal{M}_{\text{SM}}|^2 + 2 \text{Re} \{ \mathcal{M}_{\text{SM}} \mathcal{M}_{d=6}^* \} + \mathcal{O}(1/\Lambda^4). \quad (4.2)$$

Including Higgs production modes, where the Higgs boson is produced in association with jets, top quarks or gauge bosons, results in a finite transverse momentum distribution. Thus, the fit can explore the sensitivity of Higgs boson measurements in exclusive phase space regions. We bin the Higgs boson's transverse momentum in each production channel in five

100 GeV bins, from 0 to 500 GeV. To tension the theoretical predictions with experimental data, we rely on measurements obtained by ATLAS and CMS and their respective systematic and theoretical uncertainty projections. Concretely, we include unfolded $p_{T,H}$ distributions for the production processes $pp \rightarrow H$, $pp \rightarrow H + j$, $pp \rightarrow H + 2j$, $pp \rightarrow \bar{t}tH$ and $pp \rightarrow VH$. Decay modes of interest, included in the fit, are $H \rightarrow \bar{b}b$, $H \rightarrow \gamma\gamma$, $H \rightarrow \tau^+\tau^-$, $H \rightarrow 4l$, $H \rightarrow 2l2\nu$, $H \rightarrow Z\gamma$ and $H \rightarrow \mu^+\mu^-$. For bins to be included in the fit, we require

$$N_{\text{events}} = \epsilon_p \epsilon_d \sigma(H + X) \text{BR}(H \rightarrow YY) \mathcal{L} \gtrsim 5 , \quad (4.3)$$

where ϵ_p and ϵ_d refer to the reconstruction efficiencies specific to the respective production and decay modes. Thus, depending on the integrated luminosity \mathcal{L} , more or less independent measurements are included in this global fit. For 300 fb^{-1} we find 88 and for 3000 fb^{-1} 123 measurements satisfying Eq. 4.3. Thus, this already showcases the growing amount of information from exclusive phase space regions with the increase of the experiment's integrated luminosities.

A comprehensive analysis for all Wilson coefficients can be found in [57, 61]. In Fig. 3, we visualise the constraints obtained for O_W and O_{HW} , while marginalising over all the other operators. The blue contour shows the inclusive measurements, i.e. only considering overall rates without considering the differential binning of $p_{T,H}$. The shading refers to different integrated luminosities. The constraints considering the differential distribution of the Higgs boson are shown in red. The inclusive measurement can never resolve the inclusive blind direction for $c_W \simeq -c_{HW}$, evidenced in Fig. 3. Differential measurements that access the more exclusive phase space region significantly enhance these directions' sensitivity and discrimination beyond what a $\sqrt{\mathcal{L}}$ scaling forecasts.

5 Summary

Extrapolations of sensitivity estimates are crucial in shaping the particle physics roadmaps and phenomenological programmes. Overly pessimistic expectations, albeit constituting a conservative point of reference, can therefore be detrimental to experimental as well as theoretical progress. In this work, we challenge the longstanding assumption that sensitivity in particle physics experiments, particularly at the High-Luminosity Large Hadron Collider (HL-LHC), scales with the square root of the luminosity ($\sqrt{\mathcal{L}}$). Our analysis of representative examples demonstrates that this $\sqrt{\mathcal{L}}$ scaling is overly conservative, especially in the context of the HL-LHC's advanced capabilities in utilising exclusive final states and advanced reconstruction methods.

Concretely, we focused on three key areas: top quark physics, rare electroweak processes, and Higgs property measurements. These examples reveal that implementing more refined search strategies and using advanced analysis techniques substantially enhance the experimental sensitivity, surpassing the traditional $\sqrt{\mathcal{L}}$ -scaling predictions. In the realm of top quark physics, our findings indicate that the sensitivity, not only to searches for new physics in large invariant-mass final states but also in the measurement of fundamental Standard

Model parameters, can increase significantly, providing deeper insights into the top quark’s properties and interactions. Our investigations into rare electroweak processes have evidenced potential for discoveries beyond the standard model. The enhanced sensitivity in these processes could lead to observations of new phenomena, offering a window into physics beyond our current theoretical framework. Furthermore, for Higgs property measurements, the application of new analysis methodologies has shown potential for more precise determinations of Higgs boson characteristics, a cornerstone for understanding the standard model of particle physics and beyond.

Albeit these are only examples chosen to illustrate the impact of improved and adapted data analysis strategies, they representatively demonstrate, for a wide range of applications, that the success of the HL-LHC - and therefore the entire high-energy physics programme - may well hinge on the use of novel reconstruction techniques, e.g. jet substructure observables, machine-learning and matrix-element methods, and the focus on signal-rich exclusive phase space regions. This poses well-known challenges for the experimental community in accessing such information, e.g. particle reconstruction, tracking and calibrations. Thus, a wide effort from the experimental particle physics community is dedicated to the development of these tools and advanced data analysis methods, already showing a breaking of the $\sqrt{\mathcal{L}}$ scaling in present analyses.

Therefore, the implications of these findings suggest a change in how sensitivity is estimated for future collider experiments. Our research indicates that the HL-LHC could be significantly more potent in probing the fundamental aspects of particle physics than previously anticipated. Thus, the findings dispel the myth of $\sqrt{\mathcal{L}}$ scaling and call for reevaluating experimental strategies and data analysis techniques, encouraging the scientific community to look beyond conventional assumptions and explore the full potential of the High-Luminosity LHC.

Acknowledgments.

C.E. is supported by the UK Science and Technology Facilities Council (STFC) under grant ST/X000605/1 and the Leverhulme Trust under Research Project Grant RPG-2021-031.

References

- [1] A. Dainese, M. Mangano, A. B. Meyer, A. Nisati, G. Salam and M. A. Vesterinen, eds., *Report on the Physics at the HL-LHC, and Perspectives for the HE-LHC*, vol. 7/2019 of *CERN Yellow Reports: Monographs*. CERN, Geneva, Switzerland, 2019, [10.23731/CYRM-2019-007](https://arxiv.org/abs/10.23731/CYRM-2019-007).
- [2] R. K. Ellis et al., *Physics briefing book: Input for the European strategy for particle physics update 2020*, arXiv:[1910.11775](https://arxiv.org/abs/1910.11775).
- [3] J. N. Butler et al., *Report of the 2021 U.S. community study on the future of particle physics (Snowmass 2021) summary chapter*, in *Snowmass 2021*, 1, 2023, arXiv:[2301.06581](https://arxiv.org/abs/2301.06581).
- [4] P. Azzi et al., *Report from Working Group 1: Standard model physics at the HL-LHC and HE-LHC*, *CERN Yellow Rep. Monogr.* **7** (2019) 1, [arXiv:[1902.04070](https://arxiv.org/abs/1902.04070)].

[5] M. Cepeda et al., *Report from Working Group 2: Higgs physics at the HL-LHC and HE-LHC*, *CERN Yellow Rep. Monogr.* **7** (2019) 221, [arXiv:1902.00134].

[6] X. Cid Vidal et al., *Report from Working Group 3: Beyond the Standard Model physics at the HL-LHC and HE-LHC*, *CERN Yellow Rep. Monogr.* **7** (2019) 585, [arXiv:1812.07831].

[7] M. Czakon, P. Fiedler and A. Mitov, *Total top-quark pair-production cross section at hadron colliders through $O(\alpha_S^4)$* , *Phys. Rev. Lett.* **110** (2013) 252004, [arXiv:1303.6254].

[8] CMS Collaboration, *First measurement of the top quark pair production cross section in proton-proton collisions at $\sqrt{s} = 13.6$ TeV*, *JHEP* **08** (2023) 204, [arXiv:2303.10680].

[9] CMS Collaboration, *Search for standard model production of four top quarks with same-sign and multilepton final states in proton-proton collisions at $\sqrt{s} = 13$ TeV*, *Eur. Phys. J. C* **78** (2018) 140, [arXiv:1710.10614].

[10] CMS Collaboration, *Projections of sensitivities for $t\bar{t}t\bar{t}$ production at HL-LHC and HE-LHC*, CMS Physics Analysis Summary **CMS-PAS-FTR-18-031**, 2018.

[11] CMS Collaboration, *Observation of four top quark production in proton-proton collisions at $\sqrt{s} = 13$ TeV*, *Phys. Lett. B* **847** (2023) 138290, [arXiv:2305.13439].

[12] G. Banelli, E. Salvioni, J. Serra, T. Theil and A. Weiler, *The present and future of four top operators*, *JHEP* **02** (2021) 043, [arXiv:2010.05915].

[13] R. Aoude, H. El Faham, F. Maltoni and E. Vryonidou, *Complete SMEFT predictions for four top quark production at hadron colliders*, *JHEP* **10** (2022) 163, [arXiv:2208.04962].

[14] C. Englert, G. F. Giudice, A. Greljo and M. Mccullough, *The \hat{H} -parameter: An oblique Higgs view*, *JHEP* **09** (2019) 041, [arXiv:1903.07725].

[15] F. Blekman, F. Déliot, V. Dutta and E. Usai, *Four-top quark physics at the LHC*, *Universe* **8** (2022) 638, [arXiv:2208.04085].

[16] E. Alvarez, A. Juste and R. M. S. Seoane, *Four-top as probe of light topophilic new physics*, *JHEP* **12** (2019) 080, [arXiv:1910.09581].

[17] M. van Beekveld, A. Kulesza and L. M. Valero, *Threshold resummation for the production of four top quarks at the LHC*, *Phys. Rev. Lett.* **131** (2023) 211901, [arXiv:2212.03259].

[18] CMS Collaboration, *Search for production of four top quarks in final states with same-sign or multiple leptons in proton-proton collisions at $\sqrt{s} = 13$ TeV*, *Eur. Phys. J. C* **80** (2020) 75, [arXiv:1908.06463].

[19] ATLAS Collaboration, *Search for new phenomena in events with same-charge leptons and b-jets in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector*, *JHEP* **12** (2018) 039, [arXiv:1807.11883].

[20] ATLAS Collaboration, *HL-LHC prospects for the measurement of the Standard Model four-top-quark production cross-section*, ATLAS PUB Note **ATL-PHYS-PUB-2018-047**, 2018.

[21] ATLAS Collaboration, *Observation of four-top-quark production in the multilepton final state with the ATLAS detector*, *Eur. Phys. J. C* **83** (2023) 496, [arXiv:2303.15061].

[22] CMS Collaboration, *Evidence for four-top quark production in proton-proton collisions at $\sqrt{s} = 13$ TeV*, *Phys. Lett. B* **844** (2023) 138076, [arXiv:2303.03864].

[23] ATLAS Collaboration, *Measurement of the $t\bar{t}$ production cross-section using $e\mu$ events with b -tagged jets in pp collisions at $\sqrt{s} = 7$ and 8 TeV with the ATLAS detector*, *Eur. Phys. J. C* **74** (2014) 3109, [arXiv:1406.5375]. [Addendum: Eur. Phys. J. C76, 642 (2016)].

[24] CMS Collaboration, *Measurement of the $t\bar{t}$ production cross section in the $e\mu$ channel in proton-proton collisions at $\sqrt{s} = 7$ and 8 TeV*, *JHEP* **08** (2016) 029, [arXiv:1603.02303].

[25] CMS Collaboration, *Measurement of the $t\bar{t}$ production cross section, the top quark mass, and the strong coupling constant using dilepton events in pp collisions at $\sqrt{s} = 13$ TeV*, *Eur. Phys. J. C* **79** (2019) 368, [arXiv:1812.10505].

[26] ATLAS Collaboration, *Measurement of the top quark mass in the $t\bar{t} \rightarrow \text{lepton+jets}$ channel from $\sqrt{s} = 8$ TeV ATLAS data and combination with previous results*, *Eur. Phys. J. C* **79** (2019) 290, [arXiv:1810.01772].

[27] CMS Collaboration, *Measurement of the top quark mass with lepton+jets final states using pp collisions at $\sqrt{s} = 13$ TeV*, *Eur. Phys. J. C* **78** (2018) 891, [arXiv:1805.01428]. [Erratum: Eur. Phys. J. C82, 323 (2022)].

[28] ATLAS Collaboration, *Top-quark mass measurement in the all-hadronic $t\bar{t}$ decay channel at $\sqrt{s} = 8$ TeV with the ATLAS detector*, *JHEP* **09** (2017) 118, [arXiv:1702.07546].

[29] A. J. Larkoski, I. Moult and B. Nachman, *Jet substructure at the Large Hadron Collider: A review of recent advances in theory and machine learning*, *Phys. Rept.* **841** (2020) 1, [arXiv:1709.04464].

[30] R. Kogler, B. Nachman, A. Schmidt (editors) et al., *Jet substructure at the Large Hadron Collider*, *Rev. Mod. Phys.* **91** (2019) 045003, [arXiv:1803.06991].

[31] R. Kogler, *Advances in jet substructure at the LHC: Algorithms, measurements and searches for new physical phenomena*, vol. 284 of *Springer Tracts Mod. Phys.* Springer, 2021, 10.1007/978-3-030-72858-8.

[32] T. Plehn and M. Spannowsky, *Top tagging*, *J. Phys. G* **39** (2012) 083001, [arXiv:1112.4441].

[33] T. Plehn, M. Spannowsky, M. Takeuchi and D. Zerwas, *Stop reconstruction with tagged tops*, *JHEP* **10** (2010) 078, [arXiv:1006.2833].

[34] T. Plehn, M. Spannowsky and M. Takeuchi, *Boosted semileptonic tops in Stop decays*, *JHEP* **05** (2011) 135, [arXiv:1102.0557].

[35] A. H. Hoang, S. Mantry, A. Pathak and I. W. Stewart, *Extracting a short distance top mass with light grooming*, *Phys. Rev. D* **100** (2019) 074021, [arXiv:1708.02586].

[36] A. H. Hoang, *What is the top quark mass?*, *Ann. Rev. Nucl. Part. Sci.* **70** (2020) 225, [arXiv:2004.12915].

[37] M. Butenschoen, B. Dehnadi, A. H. Hoang, V. Mateu, M. Preisser and I. W. Stewart, *Top quark mass calibration for Monte Carlo event generators*, *Phys. Rev. Lett.* **117** (2016) 232001, [arXiv:1608.01318].

[38] B. Dehnadi, A. H. Hoang, O. L. Jin and V. Mateu, *Top quark mass calibration for Monte Carlo event generators – An update*, arXiv:2309.00547.

[39] CMS Collaboration, *Measurement of the jet mass in highly boosted $t\bar{t}$ events from pp collisions at $\sqrt{s} = 8$ TeV*, *Eur. Phys. J. C* **77** (2017) 467, [arXiv:1703.06330].

[40] CMS Collaboration, *Measurement of the jet mass distribution and top quark mass in hadronic decays of boosted top quarks in pp collisions at $\sqrt{s} = 13$ TeV*, *Phys. Rev. Lett.* **124** (2020) 202001, [arXiv:1911.03800].

[41] CMS Collaboration, *Measurement of the differential $t\bar{t}$ production cross section as a function of the jet mass and extraction of the top quark mass in hadronic decays of boosted top quarks*, *Eur. Phys. J. C* **83** (2023) 560, [arXiv:2211.01456].

[42] I. W. Stewart, F. J. Tackmann, J. Thaler, C. K. Vermilion and T. F. Wilkason, *XCone: N -jettiness as an exclusive cone jet algorithm*, *JHEP* **11** (2015) 072, [arXiv:1508.01516].

[43] J. Thaler and T. F. Wilkason, *Resolving boosted jets with XCone*, *JHEP* **12** (2015) 051, [arXiv:1508.01518].

[44] F. Maltoni, L. Mantani and K. Mimasu, *Top-quark electroweak interactions at high energy*, *JHEP* **10** (2019) 004, [arXiv:1904.05637].

[45] N. P. Hartland, F. Maltoni, E. R. Nocera, J. Rojo, E. Slade, E. Vryonidou et al., *A Monte Carlo global analysis of the Standard Model Effective Field Theory: The top quark sector*, *JHEP* **04** (2019) 100, [arXiv:1901.05965].

[46] D. Barducci et al., *Interpreting top-quark LHC measurements in the Standard Model Effective Field Theory*, arXiv:1802.07237.

[47] H. E. Faham, F. Maltoni, K. Mimasu and M. Zaro, *Single top production in association with a WZ pair at the LHC in the SMEFT*, *JHEP* **01** (2022) 100, [arXiv:2111.03080].

[48] CMS Collaboration, *Evidence for tWZ production in proton-proton collisions at $\sqrt{s} = 13$ TeV in multilepton final states*, CMS Physics Analysis Summary CMS-PAS-TOP-22-008, 2023.

[49] J. Keaveney, *Constraining the SMEFT with a differential cross section measurement of tWZ production at the HL-LHC*, *Phys. Rev. D* **107** (2023) 036021, [arXiv:2107.01053].

[50] C. Degrande, G. Durieux, F. Maltoni, K. Mimasu, E. Vryonidou and C. Zhang, *Automated one-loop computations in the standard model effective field theory*, *Phys. Rev. D* **103** (2021) .

[51] B. Grzadkowski, M. Iskrzyński, M. Misiak and J. Rosiek, *Dimension-six terms in the Standard Model Lagrangian*, *JHEP* **2010** (2010) .

[52] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer et al., *The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations*, *JHEP* **2014** (2014) .

[53] O. Mattelaer, *On the maximal use of Monte Carlo samples: Re-weighting events at NLO accuracy*, *Eur. Phys. J. C* **76** (2016) .

[54] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten et al., *An introduction to PYTHIA 8.2*, *Comp. Phys. Comm.* **191** (2015) 159–177.

[55] C. Grojean, E. Salvioni, M. Schlaffer and A. Weiler, *Very boosted Higgs in gluon fusion*, *JHEP* **05** (2014) 022, [arXiv:1312.3317].

[56] M. Schlaffer, M. Spannowsky, M. Takeuchi, A. Weiler and C. Wymant, *Boosted Higgs shapes*, *Eur. Phys. J. C* **74** (2014) 3120, [arXiv:1405.4295].

- [57] C. Englert, R. Kogler, H. Schulz and M. Spannowsky, *Higgs characterisation in the presence of theoretical uncertainties and invisible decays*, *Eur. Phys. J. C* **77** (2017) 789, [arXiv:1708.06355].
- [58] G. F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, *The strongly-interacting light Higgs*, *JHEP* **06** (2007) 045, [arXiv:hep-ph/0703164].
- [59] R. Franceschini, G. Panico, A. Pomarol, F. Riva and A. Wulzer, *Electroweak precision tests in high-energy diboson processes*, *JHEP* **02** (2018) 111, [arXiv:1712.01310].
- [60] S. Banerjee, R. S. Gupta, J. Y. Reiness, S. Seth and M. Spannowsky, *Towards the ultimate differential SMEFT analysis*, *JHEP* **09** (2020) 170, [arXiv:1912.07628].
- [61] C. Englert, R. Kogler, H. Schulz and M. Spannowsky, *Higgs coupling measurements at the LHC*, *Eur. Phys. J. C* **76** (2016) 393, [arXiv:1511.05170].