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Abstract

Mostmaterial discrimination in security inspections is based on dual-energy x-ray imaging, which

enables the determination of amaterial’s effective atomic number (Zeff) as well as electron density and

its consequent classification as organic or inorganic. Recently phase-based ‘dark-field’ x-ray imaging

approaches have emerged that are sensitive to complementary features of amaterial, namely its

unresolvedmicrostructure. It can therefore be speculated that their inclusion in the security-based

imaging could enhancematerial discrimination, for example ofmaterials with similar electron

densities andZeff but differentmicrostructures. In this paper, we present a preliminary evaluation of

the advantages that such a combination could bear. Utilising an energy-resolved detector for a phase-

based dark-field technique provides dual-energy attenuation and dark-field images simultaneously. In

addition, since we use amethod based on attenuating x-raymasks to generate the dark-field images, a

fifth (attenuation) image at amuch higher photon energy is obtained by exploiting the x-rays

transmitted through the highly absorbingmask septa. In a first test, a threatmaterial is imaged against

a non-threat one, andwe showhow their discrimination based onmaximising their relative contrast

through linear combinations of two andfive imaging channels leads to an improvement in the latter

case.We then present a second example to showhow themethod can be extended to discrimination

againstmore than one non-threatmaterial, obtaining similar results. Albeit admittedly preliminary,

these results indicate that significantmargins of improvement inmaterial discrimination are available

by including additional x-ray contrasts in the scanning process.

Introduction

Security inspections at e.g., airports are based on dual-energy x-ray imagingmethods [1, 2]. Images created at

two significantly different (average) x-ray energies can be processedwith established algorithms [3, 4] in an

attempt to determine the electron density and the effective atomic number (Zeff) of the scannedmaterial.

Subsequent research looked into the possibility to usemore than two energies [5, 6], typically demonstrating

bettermaterial determination or reduced uncertainty.

As a completely independent line of research, phase-based x-ray imaging, gainedmomentum in themid-90s

[7–9], following pioneering developments in themid-60 s [10].

Alongside the ability to detect phase changes, access to an additional ‘contrast channel’was demonstrated in

the early 00 s [11–13], whichwas termed dark-field or ‘Ultra-Small Angle X-Ray Scatter’ (USAXS) imaging. This

contrast channel is related to the degree of inhomogeneity that the imaged object presents on a scale smaller than
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the spatial resolution, and indeed this signal was later on connected to ‘traditional’ small-angle x-ray scatter

[14, 15]. Technology was then developed that enables translating initially the phase-basedmethods [16, 17], then

also the dark-field capabilities [18, 19] for usewith conventional, laboratory-based x-ray sources, whichmade

the technologymorewidely available.

The research presented in this paper combines all of the above through the use of a scanner based on one of

the existing laboratory-based phase technologies (‘edge illumination’, EI), which uses aperturedmasks to

generate phase sensitivity [17, 19–21]. Thanks to the use of a detector with energy-thresholding capabilities [22],

the scanner is capable of delivering five contrast channels (attenuation at three different energies and dark-field

at two) through a single object scan.More specifically, the detector threshold allows splitting the used x-ray

spectrum in two, resulting in the collection of high and low energy attenuation (AbsH, AbsL) and dark-field

(ScattH, ScattL) images. In addition to this, the small percentage of x-rays transmitted through themask septa are

also collected, resulting in the creation of afifth attenuation image at amuch higher average X-ray energy.We

refer to this contrast as ‘offset’ image, as it corresponds to the intensity detected between two consecutive

beamlets formed by the apertures, i.e., the offset abovewhich the beamlet intensity is detected. The system is also

capable of simultaneously registering differential phase at two energies [23, 24], but this property is not exploited

in this study.

Alongside the establishedmethods that exist to combine attenuation-based images at different energies

[3–6], recently approaches have emerged that address dual-energy dark field imaging in a quantitative

manner [25].

This paper follows amore basic, simplified approach inwhich the detection of amaterial of interest (e.g., an

explosive) ismaximised against othermaterials by producing a linear combination of the various contrast

channels with floating coefficient, and selecting the set of coefficients that results in themaximumcontrast-to-

noise ratio (CNR). This is done both onAbsH, AbsL only, as a surrogate for conventional dual-energy imaging,

andwith the full set offive contrasts (AbsH, AbsL, Offest, ScattH, ScattL). Despite the simplicity of the approach,

the comparison of the optimisedCNR in the two cases provides an estimate of the detection advantages that can

be obtained by simultaneously exploiting five contrasts instead of two. After laying out the procedure to

distinguish twomaterials from each other and presenting a practical example, we outline an approach that can

be used tomaximise the detection of amaterial of interest againstmultiple others. Although in both cases we

provide examples in a security context, the proposed approach is general, and can be applied to the

discrimination of any type ofmaterials.

Materials andmethods

A schematic of the imaging system is shown infigure 1. It features a tungstenX-Tek (Tring, UK) 160 x-ray tube

with an approximately 80micron focal spot, operated at 80 kVp and 2 mA. The detector was aCdTeCMOS-

based photon counter XC-Flite FX2manufactured byDirect Conversion. It has 100micron square pixels and an

overallfield of view of 20 cm (vertical) times 1.28 cm (horizontal). The detector features two thresholds, one of

which is used to cut off the noise, and the other to split the spectrum in two. This was calibrated at the beginning

of the experiment by comparing experimentalmeasurements with a theoreticalmodel.

Themaskswere fabricated to the authors’ design byCreatvMicrotech (Rockville,MD), by electroplating a

∼200micron thick gold layer on a patterned graphite substrate. Pre-sample and detectormaskswere placed at

1.50 and 1.95 m from the source, respectively, with the detector placed immediately downstreamof the detector

Figure 1. Schematic diagramof the used imaging system.

2

Phys. Scr. 98 (2023) 095501 AAstolfo et al



mask; their overall sizematches the detector’s oncemagnification is taken into account. Aperture sizes were

28 μmand 21.4 μmfor detector and pre-samplemask, respectively.

While a symmetricmask is shown for simplicity infigure 1, in truth the system employs the ‘asymmetric’

mask concept [26] that enables the acquisition of all image frames necessary for the retrieval of attenuation,

differential phase and dark-field images in a single object scan. Bothmasks aremounted onmotor stacks that

enables their alignment with each other andwith the detector’s pixel columns; a third, longer translation stage is

used to scan the objects through the beam, simulating the use of a conveyor beld in e.g. an airport scanner for

carry-on baggage. Each scan point wasmeasured for 1 s, which resulted in a total scan time of about 45 min. A

thorough discussion on scan times is available in [23].

Scans with the sample present are acquired alongside ‘air’ scans, and the intensity, central position, and full-

width at halfmaximum (FWHM) of the beamlets are compared on a pixel-by-pixel basis.More specifically,

beamlets arefittedwithGaussian curves in both cases, at which point the pixelwise ratio between curve areas

provides the sample’s attenuation, and the difference between curve centres and FWHMs the refraction and

dark-field signals, respectively. In the latter two cases, division by the sample-to-detector distance enables

converting beamlet shifts/broadenings on the detector into angular values; a full equation-based description is

not repeated here for simplicity’s sake, and the reader is referred to recent publications [23, 27].

Two phantoms simulating explosive concealment in a postal delivery were created to demonstrate the

technology in a security-related application. Thefirst one, aimed at developing and testing the approach, was

deliberately simpler. It consisted of a thin (2 cm) plastic boxwith a size of 4 cmby 4 cm containing SemtexH1

placed alongside a stack of post-its with comparable thickness inside a standard paper envelope. In the second

phantom, the same plastic box containing a different explosive (TNT)was placed alongside other objects inside a

thicker cardboard box. In particular, a highlighter pen and amakeup removal padwere placed near the

explosive, to develop a procedure that allows to simultaneously discriminate the explosive frommore than one

surroundingmaterial. For both phantoms non-threatmaterials with a pronouncedmicrostructure were chosen

in order to (1) provide an appreciable dark-field signal and, thus, (2) to provide a challenge for discrimination of

threat versus non-threatmaterials.

As the quantitative parameter to determine the degree ofmaterial discrimination, we used theCNR, defined

as:

∣ ( ) ( )∣

( ) ( )
( )CNR

mean ROI mean ROI

stdv ROI stdv ROI
1

1 2

1
2

2
2

ROI1,2 indicate Regions-Of-Interest selected inside the threat and non-threatmaterial, respectively. The

module at the numerator guarantees that theCNR is a positive value, and stdv indicates the standard deviation.

The availability offive different contrast channelsmeans that for a given set of 2materials five differentCNRs are

available.We introduce the linear combination of individual contrast channels in order to provide an

integration of all contrasts into a single image:

( )I a I a I a I a I a I , 21 Abs 2 Abs 3 Offset 4 Scatt 5 ScattL H L H

where a1–5 are free coefficients, and the pedicesAbsL, AbsL, Offset, ScattL, ScattH refer to the intensities detected in

the corresponding images. TheCNR between twomaterials is then calculatedwhile iterating over a1–5 for the

5-contrast case, and over a1–2 only for the dual energy ‘surrogate’, and the set of coefficients resulting in the

highestCNR value is selected.

When only twomaterials need to be discriminated (first phantom), the above procedure is straightforward.

When a certain targetmaterial (in our case the explosive)needs to be discriminated againstmore than one

material (e.g. two, as in our second phantom), a two-step process is required. First, we calculated theminimum

CNRbetween thematerial pairs for given set of coefficients a1–5, which aims at the discrimination of threat

materials from allnon-threatmaterials. Second, we then iterate over coefficients a1–5, and choose the set of

coefficients thatmaximises theminimumCNR. This simultaneouslymaximises the distance (inCNR terms)

between all threematerials, which accounts for the possibility that theROI corresponding to thematerial of

interest is not known a priori.

Results and discussion

The utilized detector allows for the simultaneous acquisition of a low and a high photon energy image by setting

a threshold voltage, which corresponds to a specific photon energy threshold, the value of which is unknown

prior to calibration. Thus, the initial stepwas the calibration of the detector’s higher threshold (figure 2), which

is described in the following.

We started from the theoretical (normalised) 80 kVp spectrumof a tungsten source, obtained through

SpekCalc [28–30] and represented by the dashed black line infigure 2. The dashed orange and blue lines show
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the fraction of number of photons in the higher and lower energy bins (respectively) as a function of the

threshold in keV ( )f Etheo h th, and ( )f Etheo l th, (with ( ) ( )f E f E 1theo h th theo l th, , ), calculated from the same

theoretical spectrum. In the experiment, we scanned the voltage threshold in steps of 1 V and extracted the

fraction of number of photons in the corresponding energy bins yielding ( )f Vh thexp, and ( )f V .l thexp, Weassumed

a linear transformation between the photon energy and the voltage threshold, i.e., E mU b.th th In order to

retrieve the calibration parameters m and b wenumerically solved theminimisation problem

( ( ) ( )) ( )f E f mU b 3
im b

theo h th i h th i
min

,

, , exp, ,
2

where i denotes the individual scan points. The result of this calibrationwas

[ ] [ ] [ ] [ ] [ ]*/E keV keV V U V keV3.69 7.2th th withEth the energy threshold in keV andUth the threshold

value inV. The solid orange and blue lineswithmarkers infigure 2 show the experimental fraction of counts for

the high and low energy bins as transformed by the calibration procedure. As can be seen the curvesmatch very

well with their theoretical counterparts, which validates the described calibration procedure.

The second preliminary step consisted in an outline determination of the threshold value that leads to an

optimalmaterial discrimination. In principle, this requires the prior knowledge of the specific contrast values

produced by the variousmaterials in the different imaging channels. However, some degree of optimisation can

be conducted on the basis of the background noiseminimisation as previously reported in [31].

Thefirst step in this process is the determination of the system’s sensitivity function, which in EI is the

illumination curve (IC), obtained by scanning the pre-samplemask in the absence of a samplewhile the

remainder of the imaging system is kept stationary [32]. This ismodelled as a convolution between the (re-

scaled) source distribution and the apertures in the pre-sample and detectormasks, while taking into account a

degree of transmission through themasks that gives rise to the IC’s offset (figure 3(a)):

( ) ( ) ( ) ( ) ( ) ( )m t S m A m A m tIC 1 41 2

withm, the samplemask position, ( )S m , theGaussian-shaped source distribution, ( )A m1 and ( )A m ,2 the

apertures of the sample anddetectormask, respectively, the aperture of the detectormask and t , the transmission

through themask for the given energy threshold and the convolution operator. An example of the resulting

IC is displayed infigure 3(a) as the blue curve.

Then photon shot noise was added to themodelled ICs (orangemarkers infigure 3(a)) and the curve’s

integral signal (representative of absorption) and the signal width (corresponding to scattering)were determined

bymoment analysis [33]. This was repeated 10,000 times and the resulting relative uncertainties over the

repetitions were calculated (figure 3(b)). Please note that thismodel only reflects the noise behaviour of reference

scans (i.e., without sample) and not directly that of attenuation or scattering contrasts.

In order to coarselymodel the potential gain inmaterial discrimination by combining the different contrast

channels (equation (2)), we have used inverse-variance weighting of the relative uncertainties, which is known to

minimize the variance of theweighted average [34]. For the linear combination of different contrasts this leads to

( )
/

/
I

I u

u1
5

j j j

j j

2

2

Figure 2.Calibration of the higher detector threshold.
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with I ,j the ith contrast channel (ref equation (2)) and u ,j the corresponding relative uncertainty. Naturally, the
contrast values Ij depend on thematerials in question. But the uncertainty of theweighted average composite
contrast I is independent from the specific I :j

( )
/

u
u

1

1
. 6I

j j
2

Figure 3(b) shows the relative uncertainties in the various contrast channels as a function of the energy threshold

in keV. Their combination as an inverse-variance weighted sum (green curve) provides an indication of the

threshold value forwhich the combined relative uncertainty uI arising from all contrast values isminimised. As

can be seen, the process is dominated by ScattL, and presents a broadminimumaround 35 keV.

While developing this process we observed that, despite the nominal gold thickness in themasks being

200 μm, a bettermatchwith the experimentally observed offset value is obtainedwith a gold thickness of

150 μm.This is not unprecedented, asmasks are often affected by somedegree of underplating as well as a

reduced density compared to solid gold’s nominal value [35]. However, this can be difficult to determine

precisely as other factors (source tails, air scattering) can affect the offset value. For this reason, the above process

was repeated using a gold thickness of 200 μm,with the results reported in the supplementarymaterials (suppl.

Figure 1). As can be seen from that figure, the overall trend is very similar, with possibly a slight shift of the

‘optimal’ threshold towards higher values.However, the broadness of themaximumand the indicative nature of

the exercise (since, asmentioned, real contrasts are unknown a priori)means very similar indications are

obtained in the two cases. However, to take this into account, the followingCNR optimisation processes were

repeated at three different threshold values, indicatedwith black stars infigure 3(b).

Figure 4 presents thefive retrieved images for the simpler, ‘two-material’ phantomacquiredwith a detector

threshold of 35 keV, which roughlymatches the expected optimal noise behaviour as observed infigure 3(b).

Paper (post-its) and Semtex 1H are visible on the left and right-hand sides, respectively. The blocky structures

visible in the bottomof the images are the sample holders while the paper envelope holding the post-its and the

Semtex sample is not visible. The scalebar infigure 4(a) is 4 cm. TheROIs fromwhichmean and stdv values have

been extracted for CNR calculation are shown infigure 4(a), with blue and red corresponding to paper and

Semtex, respectively. The contrast against the background (‘BG’, black ROI) has also been calculated for

completeness, although it has not been used for further calculations. TheCNR in each image for each pair of

materials is reported in the table at the bottom right corner. The second column in the table at the bottom right

corner provides the ‘natural’ contrast between post-its and Semtex in the various contrast channels. For

completeness, the same table reports also theCNR of the twomaterials against the background (the envelope),

although this has not been used in further analysis.

Figure 5 reports the result of the ‘optimised linear contrast combination’ applied to the above dataset, for

two (top row) andfive (bottom row) contrasts. Here, we have searched the parameter space (i.e., a1 and a2 in the

case of the dual-energy surrogate contrast and a1-a5 in the case of the combination of the 5 contrasts; see

equation (2)) for the set of parameters thatmaximise theCNR between Semtex and paper. As theCNR is

independent from constant factors this effectively reduces the parameter space to one independent variable in

the dual-energy case, and to four independent variables in the 5 contrast case. The searches were performed

numerically as aminimisation of the negativeCNR by gradient descent:

Figure 3.Modelling of the system’s illumination curve (a) andnoise behaviour in the various retrieved contrast channels as a function
of the detector threshold (b). The green curve in (b) represents the combination of noise in each contrast channel via inverse-variance
weighting (equation (6)), and the black stars show the threshold values at which experimental images were collected in this study.
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( ) ( )a CNR a 7i SEMTEXvPAPER i

min

with ai denoting the appropriate set of parameters. Individual contrast channels were binned four times to

emulate larger pixel sizes (effective pixel size≈ 400μm) and subsequently normalised to have zeromean and a

standard deviation of one prior toCNR optimisation. The ROI forCNR determinationwas 50 by 50 pixels.

On the left-hand side offigure 5 the scaled composite images are shown for dual-energy (top row) and 5

contrast combination (bottom row). In order to facilitate comparability between different phantoms and energy

thresholds, the values of the composite images have been rescaled in such away that the backround has zero

meanwhile the threatmaterial has amean of one. The improvement inCNR is best appreciated by looking at the

histograms on the right-hand side of each image, fromwhich it is immediately evident that combining five

contrastsmakes the histogramsmuchnarrower and therefore thematerialsmore neatly separated from each

other.Optimised Semtex-paper (i.e., post-its)CNR values are 8.7 and 16.3 for the combination of two and five

contrast respectively, indicating an almost 100% improvement resulting from the use of the three additional

contrasts. By comparing this with the values reported in the second column at the bottom right corner of

figure 4, it can be noticed that the combination ofAbsL andAbsH alone leads to a very small improvement over

the attenuation values used on their own.We attribute themere small improvement of combining the standard

dual-energy contrasts to the fact that the noise between theAbsL andAbsH contrast channels was correlated

(r= 0.42), which can be explained by a redistribution of some photons from the high energy bin (i.e.,AbsH) to

Figure 4.Retrieved AbsL (a), AbsH (b), ScattL (c) ScattH (d) andOffset (e) images for the ‘twomaterials’ phantomacquiredwith a
detector threshold of 35 keV. The table on the bottom right hand side lists CNRs of interest.

Figure 5.CNRoptimisation at a 35 keV threshold for two (AbsL andAbsH, top row) andfive (bottom row) contrasts. The re-scaled
composite images are shown on the left. Corresponding histograms extracted from the selected ROIs are shown at the right-hand side
of each image (BG= background, i.e., the envelope).
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the low energy bin (i.e.,AbsL) by charge sharing [36]. Combining five contrasts, on the other hand, significantly

outperforms all ‘native’ values.

This exercise was repeated for detector thresholds of 26 and 44 keV, resulting in optimisedCNR values of 7.7

and 9.3 (respectively) in the ‘two contrast’ case, and of 15.1 and 15.4 in the ‘five contrast’ case. This seems to

indicate that the identification of 35 keV as the optimal threshold for the combination offive contrasts

(figure 3(b))holds in thefive-contrast case, although differences are small, as can be expected from the

broadness of theminimum in the combined noise plot. The same does not apply to the two-contrast case (for

which a 44 keV threshold gives a slightly higher value), however this could be expected as the combination of the

noise levels was dominated by ScattL. Overall, the small differences among the above values indicates that a

reasonable choice of threshold that roughly splits the spectrum in half provides close to optimal values, again in

linewith the broadness of theminimumobserved infigure 3(b). The full datasets at thresholds 26 and 44 keV

and their processed versions are reported for completeness in the supplementarymaterials, suppl. Figures 2 to 5.

Finally, figure 6 shows thefive retrieved images for themore complex phantom, still with a detector

threshold of 35 keV. Pad, highlighter pen andTNT are visible from left to right in the images. The blocky

structures visible in the bottomof the images are the sample holders. The ROIs fromwhichmean and stdv values

have been extracted for theCNR calculations are shown infigure 6(a), with blue, green, and red corresponding

to pad, pen andTNT, respectively. The contrast between TNT and background (‘BG’, black ROI) has also been

calculated for completeness, although it has not been used for further calculations. TheCNR in each image for

each pair ofmaterials is summarised in the table at the bottom right corner.

The columns of interest in the (more complex, due to the increased number ofmaterials) table in the bottom

right corner offigure 6 are the second and the third, indicating the ‘natural’CNR of TNT against pad and pen,

respectively. As can be seen, in this case we are dealingwith significantly lower contrasts than in themore

simplistic case of twomaterials only, whichwe are aiming to enhance through the five-contrast combination

process.

The corresponding results are shown infigure 7. For thismore complex phantom, the search for the optimal

parameter set in equation (2) in terms of theCNRwasmore elaborate. For each given parameter set a1-a5 there

are twoCNRs are of interest: TNT versus pen andTNT versus pad. The smaller of those twoCNRs will limit the

differentiation between threat and non-threatmaterials. Thus, we searched the parameter space for the

maximumof the smallerCNRs (equivalent to theminimumof the negativeCNR):

( ( ) ( )) ( )a CNR a CNR amin , 8i TNTvPEN i TNTvPAD i

min

with ai denoting the appropriate set of parameters. Once again this was performed numerically by gradient

descent.

The optimisation on the dual contrast dataset (AbsL andAbsH, top row) gives aCNR of 0.7 for both TNT

versus pen andTNTversus pad, which is a gain (0.7 versus 0.4) in the TNTversus pad case but a loss (0.7 versus

3.3) in the TNTversus pen case compared to the single contrast values (figure 6). This can be expected, since the

algorithm simultaneouslymaximises the relative distance between allmaterial pairs, which is the only possible

approach on the assumption that the targetmaterial is unknown. This notwithstanding, when allfive contrasts

are used, aCNR of 3.7 is obtained for both TNT versus pen andTNTversus pad, which is higher than all native

CNR values (3.7 versus 2.2 for TNTversus pad and 3.7 versus 3.3 for TNT versus pen), when the ‘best of allfive’ is

selected for the latter. Clearly with some degree of prior information being available (e.g., contrast boundaries

Figure 6.Retrieved AbsL (a), AbsH (b), ScattL (c) ScattH (d) andOffset (e) images for the ‘threematerials’ phantomacquiredwith a
detector threshold of 35 keV. The table on the bottom right hand side lists CNRs of interest.
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for thematerial of interest obtained through previous calibration), the algorithmperformance could be

significantly improved.

Also, in this case results at detector thresholds of 26 and 44 keV are reported for completeness in the

supplementarymaterials (Suppl. Figures 6 to 9). At 26 keV, optimalCNRs of 0.9 and 1.9 are obtained for TNT

versus pad andTNTversus penwith two contrasts, versusmaximumnative values of 0.7 and 2.6. For thefive-

contrast combination, theCNR becomes 2.1 for TNT versus bothmaterials, leading to a gain in the pad case

(versus 1.8) but a loss in the pen case (versus 2.6, as reported above). At 44 keV, an optimalCNR of 1.6 is

obtained for TNT versus bothmaterials with two contrasts, versusmaximumnative values of 1.2 and 1.5,

leading to a small gain in both cases.Withfive contrasts, however, the gain ismore significant with aCNR of 4.3

for TNTversus bothmaterials, versus nativemaxima of 1.6 (TNT-pad) and 3.4 (TNT-pen). This is an even

greater gain than observed at 35 keV, which supports the trend observed in Suppl. Figure 1 inwhich higher

threshold values seem to be slightlymore advantageous.While this would seem to support the assumption of a

slightly thicker gold layer in themasks, it should also be noted that the simplisticmodel based purely on noise

behaviourwe used to obtain figure 3(b) and Suppl. Figure 1may be insufficient to describe the increasingly

complex case wheremultiplematerials are present and their respectiveCNRs need to be simultaneously

maximised.

Table 1 summarises the results of theoretical and experimentalCNR optimisation and provides the

determinedweights a1-a5 used for creating the composite images according to equation (2). Row entries labelled

with ‘approximative’ refer to the rough estimation based on the background noise (figure 3(b)). Since this was

donewithout the knowledge of specificmaterial contrasts,CNR values are not available. The corresponding

entries for theweights are simply the inverse relative uncertainties squared as implied by equation (5) and

figure 3(b).

Rows labelled ‘phantom1’ (figures 5& 6) and ‘phantom2’ (figures 7& 8) display the retrievedCNRs as

described above, while also showing alongside the retrieved optimal weights. In the 5 contrast case themain

Figure 7.CNRoptimisation at a 35 keV threshold for two (AbsL andAbsH, top row) andfive (bottom row) contrasts. The re-scaled
composite images are shown on the left. Corresponding histograms extracted from the selected ROIs are shown at the right-hand side
of each image, and labelled accordingly (BG= background, i.e., the cardboard box).

Table 1.Comparison between dual-energy and 5 contrast results for an energy threshold of 35 keV. The
CNR column refers to the experimentally obtainedCNRbetween threatmaterials (Semtex for phantom
1, TNT for phantom2) and non-threatmaterials (paper for phantom1, pad and pen for phantom2). The
columns labelled a1-a5 refer to theweights in the linear combination of contrasts channels
(equation (2)) that optimize the CNRbetween threat andnon-threatmaterials. The rows labelled
‘approximative’ refer to theweights as implied by the initial, coarse estimation based on background
noise alone (figure 3(b)).

CNR a1 a2 a3 a4 a5

dual-energy approximative 0.60 0.40

phantom1 8.7 0.80 0.20

phantom2 0.7, 0.7 0.46 0.54

5 contrasts approximative 0.24 0.16 0.082 0.48 0.029

phantom1 16.3 0.15 0.30 0.50 0.055 0.006

phantom2 3.7, 3.7 0.41 0.40 0.024 0.11 0.057
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contribution to the composite image for phantom1was theOffset channel (a3), i.e., the absorption contrast

corresponding to the spectrumfiltered by the septa of themasks. For phantom2 themain contribution arises

almost equally from the low and high energy absorption channelsAbsLandAbsL. The total contribution of the

scattering channels was 6% and 17%,whichmight seem low.However, it should be noted that we have

deliberately chosen non-threatmaterials with strong scattering. This was done in order to provide a challenge for

the discrimination of threat versus non-threatmaterials using additional scattering contrasts.With this inmind,

we can conclude that using 5 instead of 2 contrast channels improves the detection of threatmaterials.

In table 1 it is apparent that the individual weights vary between the different rows. The difference between

the rough theoretical estimates (rows labelled ‘approximative’) and the experimental ones does not come as a

surprise, as the former does not take into account the specific contrast ofmaterials. However, theweights vary

also between the experimental phantoms, which is due to the differentmaterials used.Here, wewant to

emphasise that we are demonstrating a potential benefit of utilising 5 instead of 2 contrast channels by a simple

analysis ofCNR gains in the composite images on a phantomby phantombasis.We are not proposing to use the

presentedweights in practical applications: for this the optimal weights have to be determined over amuch

larger range ofmaterials, whichwas the approach takenwhen dual-energy X-ray imagingwas adopted.

In thefield of threat detection, the issue of concealment arises naturally. In dual-energy X-ray absorption

imaging the issue of overlapping objects is partially addressed by the classification into organic and non-organic

materials. Here, sample thickness is accounted for in the projected electron density. ForX-ray scattering it has

been demonstrated that the squares of the scattering signals fromoverlapping objects add up [37]. Thus, the

sample thickness increases the scattering signal but, due to the energy dependency, it does this differently for the

low and high energy scattering signals. This gives the opportunity to take sample thickness into account. Further,

overlapping a scattering threatmaterial with a purely absorbing concealmentmaterial would increase the noise

in the scattering signal, but not hide it. Thus, for an effective concealment, amaterial would have tomatch the

threatmaterial’s dual-energy absorption as well as dual-energy scattering properties at the same time. Therefore,

adding dual-energy X-ray scattering contrasts to the already utilized dual-energy absorption contrast would

alleviate the issue of threatmaterial concealment.

Conclusions

This paper provides proof-of-concept evidence that the inclusion of additional contrastmechanisms in an

imaging system can aid the discrimination betweenmaterials with similar attenuation characteristics. The study

is admittedly preliminary, and used the optimisation of a simple linear combination of two andfive contrast to

maximise theCNR betweenmaterial pairs and demonstrate the increased detectability that can be provided by

the inclusion of additional contrast channels.While the approach is straightforwardwhen applied tomaterial

pairs, the inclusion of additionalmaterials leads to an increased degree of complexity,mostly related to the need

tomaximise theCNR between eachmaterial pair whenno a priori information is available on the targetmaterial.

However, even such a simple framework is sufficient to prove that room for improvement exists, whichwe hope

will trigger further research in this direction. Further, the inclusion of X-ray scattering contrasts in threat

detection has a high potential for reducing the ability of concealing explosives.
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