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Laser-driven microresonators have enabled chip-integrated light sources 

with unique properties, including the self-organized formation of ultrashort 

soliton pulses and frequency combs (microcombs). While poised to impact 

major photonic applications such as spectroscopy, sensing and optical data 

processing, microcombs still necessitate complex scientific equipment to 

achieve and maintain suitable single-pulse operation. Here to address this 

challenge, we demonstrate microresonators with programmable synthetic 

reflection providing tailored injection feedback to the driving laser. 

Synthetic reflection achieves independence from random sample scattering 

properties and, when designed appropriately, enables deterministic 

access to self-injection-locked microcombs operating exclusively in the 

single-soliton regime. These results provide a route to easily operable 

microcombs at scale for portable sensors, autonomous navigation or 

extreme-bandwidth data processing. The novel concept of synthetic 

reflection may also be generalized to other integrated photonic systems.

Laser-driven microresonators provide access to non-linear optical 

phenomena, already with low-power continuous-wave excitation1. 

Leveraging efficient non-linear frequency conversion, they have ena-

bled novel sources of coherent laser radiation across a broad spectral 

span2,3. Soliton microcombs4–6 are an important representative of such 

sources, providing frequency comb spectra of mutually coherent laser 

lines, based on self-organized dissipative Kerr solitons (DKSs) in reso-

nators with anomalous group velocity dispersion7. Such DKS micro-

combs can be integrated on photonic chips8,9 and have demonstrated 

their disruptive potential in many emerging and ground-breaking 

applications, for example high-throughput optical data transmis-

sion10 reaching petabit-per-second data rates11, ultrafast laser rang-

ing12,13, precision astronomy in support of exo-planet searches14,15, 

high-acquisition-rate dual-comb spectroscopy16, ultra-low-noise 

microwave photonics17,18, photonic computing and all-optical neu-

ral networks19–21.

To leverage microcomb technology in out-of-laboratory appli-

cations, it is critical to reliably access the DKS regime and ideally 

single-DKS operation4,22–25, ensuring well-defined temporal and spec-

tral characteristics. A critical challenge for microcombs arises from 

the need to stabilize the detuning ∆ω0 = ω0 − ωp of the pump laser 

ωp with respect to the pumped resonance ω0. While this is common 

to all resonant approaches, it is particularly challenging during DKS 

initiation, when thermo-optic effects can cause a rapid (on the order 

of microseconds) change in resonance frequency4. To overcome this 

challenge, a number of methods have been developed, involving rapid 

laser actuation4,8, auxiliary lasers26 and/or auxiliary resonances27,28, laser 

modulation29, additional non-linearities25,30,31 or pulsed driving24. These 

methods are successfully used in research.

An attractive approach that can stabilize the laser detuning for 

DKS operation is self-injection locking (SIL). It relies on a feedback wave 

created through backscattering in the microresonator that effectively 

locks the laser frequency to the microresonator resonance32–35. SIL has 

been utilized for DKS generation in bulk whispering-gallery-mode 

resonators17,36 as well as in highly integrated photonic chip-based sys-

tems37–41. In these SIL-based DKS sources, the feedback wave is based 

on Rayleigh backscattering from random fabrication imperfections 

or material defects in the microresonator42. However, critically relying 

on random imperfections is incompatible with scaling of microcomb 

technology into large volume applications. It is also at odds with the 
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Methods
Numerical model

To simulate the non-linear DKS and breathing DKS existence range in 

Fig. 1c, we consider a system of coupled mode equations65,66 for forward 

aµ and backward bµ mode amplitudes, where µ denotes the relative (lon-

gitudinal) mode number with respect to the pump mode (m0 ↔ µ = 0):

where  is a dimensionless detuning defined by  

the pump laser frequency ωp and the resonance frequencies 

 (where D1/2π and D2/2π correspond to the FSR 

and the group velocity dispersion, and ω0 is the resonance frequency 

of the pumped mode).  is the normalized  

pump power, with the coupling coefficient η = 1/2 (critical coupling), 

c is the speed of light, P is the pump power, n is the refractive index, n2 

is the non-linear refractive index and Veff is the effective mode volume. 

Note that fth in equation (1) is normalized in the same way as f. The third 

term in each equation corresponds to the cross-phase modulation by 

the respective counter-propagating waves, while the fourth term rep-

resents the coupling between forwards- and backwards-propagating 

waves. Instead of modelling the SIL dynamics by including laser rate 

equations, we numerically define the detuning. This approach cannot 

describe the abrupt transition from the free-running laser to the SIL 

state, but it remains valid for the specified detuning and can qualita-

tively capture the features observed in the experiment. Simulation 

parameters similar to those of the experimental system are used. The 

numerical simulation also enables us to compute the non-linear disper-

sion as illustrated in Supplementary Fig. 1.

Data availability
The code and data used to produce the plots can be found at  

https://zenodo.org/records/10118988.

Code availability
The numerical simulation code for the bi-directional non-linear coupled 

mode equation can be found at https://zenodo.org/records/10118988.
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