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Linear colliders rely on high-quality flat beams to achieve the desired event rate, while avoiding
potentially deleterious beamstrahlung effects. Here, we show that flat beams in plasma accelerators
can be subject to quality degradation due to emittance mixing. This effect occurs when the beam
particles’ betatron oscillations in a nonlinearly coupled wakefield become resonant in the horizontal
and vertical planes. Emittance mixing can lead to a substantial decrease of the luminosity, the main
quantity determining the event rate. In some cases, the use of laser drivers or flat particle beam
drivers may decrease the fraction of resonant particles and, hence, mitigate emittance deterioration.

Plasma-based accelerators [1, 2] are promising candi-
dates as drivers for future linear colliders due to their
& GV/m accelerating gradients. Although experimental
progress in terms of energy gain [3–5], energy transfer
efficiency [6], and energy spread preservation [7, 8] have
increased the interest in plasma-based linear colliders [9–
11], additional challenges must be overcome.
For optimal operation of a linear collider, the event

rate and, consequently, the luminosity L must be maxi-
mized while deleterious beamstrahlung effects [12] must
be minimized. Because the former scales as 1/(σxσy) [13]
(where σx and σy are the rms beam sizes at the interac-
tion point in the horizontal and vertical plane, respec-
tively) and the latter as 1/(σx + σy) [14], a common so-
lution is to operate with flat beams, σx ≫ σy (i.e., with
an aspect ratio σx/σy ≫ 1). This motivates the creation
of beams with ǫx/ǫy ≫ 1 (where ǫ[x,y] is the beam emit-
tance in [x, y]), and the preservation of this ratio during
acceleration. Established mechanisms that lead to dele-
terious exchange or mixing of the transverse emittances
are linear coupling [15], e.g., due to misaligned or skew
quadrupoles, and nonlinear coupling, e.g., due to space-
charge effects [16, 17], which are mainly relevant at low
energies. The latter is linked to the Montague resonance
that occurs if the focusing in the horizontal and vertical
planes is in phase. Emittance mixing can occur when
the motion in the x and y planes is coupled (for instance
when the transverse force in x depends on y), but such ef-
fects have not been previously described in plasma-based
accelerators.
Plasma accelerators are often operated in the so-called

blowout regime, where the driver is strong enough to ex-
pel all plasma electrons, creating a trailing ion cavity
in its wake. In the ideal case of a uniform background
ion distribution within the cavity, the transverse wake-
fields in x and y are decoupled, preventing emittance
exchange. In practice, various nonlinear effects can per-
turb the transverse wakefields and cause coupling and,
hence, emittance mixing. Such effects occur for collider-
relevant beams that require high charge (∼nC) and low

emittance (∼ 100 nm) and therefore generate extreme
space-charge fields capable of ionizing the background
plasma to higher levels [18] or causing ion motion [19–
21], both of which can lead to the formation of nonlin-
early coupled wakefields. Nonlinear wakefields are some-
times desired: for instance, nonlinearities in the wake due
to ion motion can suppress the hosing instability [22–24]
while still allowing for witness beam emittance preserva-
tion through advanced matching schemes [21, 25].
In this Letter, we demonstrate by means of theory and

3D particle-in-cell (PIC) simulations that coupled wake-
fields in plasma accelerators can lead to severe emittance
mixing of flat beams when there is a resonance between
the betatron oscillations in the horizontal and vertical
planes for a large fraction of beam particles. With this
effect, the horizontal emittance decreases as the vertical
one increases, resulting in an overall growth of their ge-
ometric average and, hence, a reduction in luminosity.
This mechanism is different from nonlinearity-induced
mismatch, by which a beam with a position-momentum
distribution not matched to nonlinear fields relaxes at
the cost of emittance growth. Unlike emittance mixing,
mismatch causes emittance growth in both planes inde-
pendently. Without proper mitigation, mixing can cause
a flat beam to become round, resulting in a consider-
able decrease in luminosity (e.g., by a factor of 50 for an
initial aspect ratio of 100), while simultaneously loosing
the beneficial suppression of beamstrahlung. This mech-
anism has direct impact on any future plasma collider
design using flat beams. It has previously not been doc-
umented, since only short distance acceleration of flat
beams was considered [20].
Emittance mixing for flat beams in coupled, nonlinear

wakefields is illustrated with a plasma-wakefield acceler-
ator setup in the blowout regime that resembles the first
stage of the proposed HALHF collider [9]. It consists of
an electron drive beam, an electron witness beam, and
a singly ionized lithium or argon plasma with a density
of n0 = 7 × 1015 cm−3. Lithium and argon are consid-
ered to illustrate the effect of a nonlinearity owing to
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FIG. 1. (a) Normalized plasma charge density (grey-red col-
orscale) and drive and witness beams (blue) in the x-ζ plane,
where ζ = z− ct is the co-moving variable and c the speed of
light; inset: transverse profile of the flat beam. (b) Examples
of nonlinear transverse wakefields. The blue line (nonrelativis-
tic ion motion) corresponds to a lineout along the dashed line
of the case in (a). Other colored lines show wakefields with
relativistic ion motion (orange), induced by increasing the ini-
tial witness beam energy to 478GeV, thereby decreasing the
matched transverse spot size by ∼ 10×; drive-beam-induced
ionization (dashed green line), obtained with argon. (c) Emit-
tance in x (solid lines) and y planes (dashed lines) and (d)
√
ǫxǫy for a flat beam in the nonrelativistic ion motion regime

(Li, blue lines) and the ionization regime (Ar, green lines) and
for corresponding round beams (dotted lines) with the same
initial

√
ǫxǫy.

ion motion and beam-induced ionization, respectively.
The drive beam is bi-Gaussian with an rms length of
σd,z = 42 µm and is located at the origin of the co-
propagating coordinate system. We chose an emittance
of ǫd,[x,y],0 = 60 µm [26]. The witness beam is also bi-
Gaussian with initial emittances of ǫx,0 = 160µm and
ǫy,0 = 0.54 µm in the horizontal and vertical planes, re-
spectively. Its length is σz = 18 µm and it is located on
axis, 334 µm behind the drive beam. The drive and wit-
ness beams have initial energies of 31.9GeV (γd = 62500)
and 5.1GeV (γw = 10000), charges of 4.3 nC and 1.6 nC,
and their transverse rms sizes are matched to the blowout
wake. The simulations are conducted with the quasi-
static, 3D PIC code HiPACE++ [27] using its mesh re-
finement capabilities. The complete numerical settings
for all the simulations discussed in this paper are avail-
able online [28]. In what follows, E0 = mec

2kp/e is the
cold, nonrelativistic wavebreaking limit, kp = ωp/c the

plasma wavenumber, ωp =
√

n0e2/(meǫ0) the plasma
frequency, and ǫ0 the vacuum permittivity.
Figure 1 shows the nonlinear wake and resulting emit-

tance mixing as the witness beam is accelerated from 5.1
to ∼ 21GeV. For a flat witness beam, the large horizon-
tal emittance decreases in lithium by 3.4 µm, or −2%,

and in argon by −23%. At the same time, the small
vertical emittance increases by 3.4 µm, or +613% and
in argon by +7611%. As collider luminosity scales as
the inverse of the geometric average of the transverse
emittances

√
ǫxǫy, this quantity is tracked in the rest of

this work. In the example of Fig. 1,
√
ǫxǫy increases

in lithium by +164% (in argon by +670%). Notably,
a round beam matched to the same wakefield with the
same initial

√
ǫxǫy experiences in lithium a small growth

of only +0.3% (in argon by +10%) due to mismatch to
the nonlinear field, showing that the drive-beam-induced
nonlinearity of the transverse field due is the dominant
driver of emittance growth in the flat beam case for nei-
ther gas.
In the following, we investigate emittance mixing for

the regime of non-relativistic ion motion shown in Fig. 1,
by means of test particles simulations. We consider a
simplified model based on Ref. [21] that represents well
the perturbed transverse wakefield W[x,y] in this regime:

W[x,y] =
kp[x, y]E0

2

[

1 + α[x,y]H

(

r2

2L2
[x,y]

)]

, (1)

where Wx = Ex − cBy, and Wy = Ey + cBx (E[x,y] and
B[x,y] are the electric and magnetic fields in the wake,

respectively), H(q) = [1 − exp(−q)]/q, r = (x2 + y2)1/2

is the radius, and L[x,y] and α[x,y] the characteristic size
and amplitude of the nonlinearity.
Beams of test particles with the same properties as

the flat witness beam discussed in Fig. 1 are propagated
in the transverse wakefields given by Eq. (1) (assuming
no acceleration) for various nonlinearity coefficients α[x,y]

and fixed length scales Lx = Ly = σx,d. The length scale
was chosen to be the drive beam rms size, since the non-
relativistic ion motion is caused by the symmetric drive
beam.
The mixing process can be understood by analyzing

the single-particle orbits. A beam particle moving in
nonlinear wakefields performs transverse betatron oscil-
lations in the x and y planes with frequencies kβ,x and
kβ,y. These frequencies will, in general, differ from the
unperturbed betatron frequency kβ,0 = kp/(2γw)

1/2, and
depend on the particle’s betatron amplitude and, in turn,
its initial conditions. Figure 2 (a) shows the distribution
of betatron frequencies for the beam particles in the three
cases considered in Fig. 2 (b).
In the presence of a coupling term (assumed weak,

α[x,y]H(r2/2L2
[x,y]) . 1), the x and y orbits form a sys-

tem of two coupled oscillators. As generally expected
from such a system [29], particles satisfying the reso-
nance condition kβ,x ≃ kβ,y, i.e., near the diagonal of
Fig. 2 (a), experience an exchange of their horizontal and
vertical betatron oscillation amplitudes. This exchange
occurs over a timescale much longer than the betatron
period. These resonant particles are responsible for the
decrease of ǫx and increase of ǫy. In contrast, for particles
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FIG. 2. (a) Distribution of betatron frequencies in the
(kβ,x, kβ,y) plane for three different nonlinearity coefficients
αy = 1 (blue points), αy = 1.3 (orange points), and αy = 0.6
(green points). For all cases αx = 1. The shaded areas de-
note the initial instantaneous betatron frequencies, the dots
show them averaged over many betatron periods. (b) The
resulting emittance evolution in x (solid lines) and y (dashed
lines). The final

√
ǫxǫy at saturation is shown as a function of

αx and αy for (c) particle tracking and (d) analytical model
from Eq. S30.

far from the resonance, the amplitude of the oscillations
in x and y are both independently preserved. Overall,
the fraction of resonant particles in the beam determines
the degree of emittance mixing. The case αx = αy = 1
(blue lines) has 100% resonant particles, which leads to a
full equalization of the emittances. For the case αx = 1,
αy = 1.3 (orange lines) there are no resonant particles
and, hence, no emittance mixing. Finally, in the case of
αx = 1, αy = 0.6 (green lines), 49% of the particles are
resonant, leading to partial mixing. For more details on
the last case, see the Supplemental Material.
Given the wakefields in Eq. (1), it is possible to esti-

mate the emittances of a flat beam at saturation ǫ∗[x,y]:

{

ǫ∗x ≃
(

1− ηr

2

)

ǫx,0

ǫ∗y ≃ (1− ηr) ǫy,0 +
1
2ηr

αy

αx

L2
x

L2
y
ǫx,0,

(2)

where

ηr =

{

exp
[

− 4k2
pL

2
xL

2
y

kβ,0ǫx,0

αx−αy

3αxL2
y−2αyL2

x

]

, αy ≤ αx

0, αy > αx

(3)

is the fraction of resonant particles in the beam (see the
Supplemental Material for details).
Figure 2 (c) and (d) show the relative growth of the

geometric emittance, (ǫ∗xǫ
∗

y/ǫx,0ǫy,0)
1/2, in the (αx, αy)

plane obtained with particle tracking (c), and with the
model (d), respectively. The model reproduces the main
qualitative and quantitative conclusions observations:
maximal growth of the geometric emittance is observed
for αx = αy where all beam particles are resonant. When
αy < αx, the fraction of resonant particles decreases, re-
sulting in reduced emittance mixing. For αy > αx, no
resonant particles are present, and, hence, no emittance
growth from mixing is observed.
Energy transfer between oscillation modes in coupled

oscillators at resonance is a general physics process [29],
and can be observed for instance in the Wilberforce pen-
dulum [30, 31]. The dynamics in a plasma accelerator
considered in this article are complex, but the emittance
exchange process itself does not depend on the specific
shape of the nonlinear coupling and is therefore observed
with any effects causing coupling (e.g., ionization, ion
motion, non-uniform plasma density, etc.). Similar to
resonance in RF-based accelerators, determining which
particles are trapped in the resonance is a non-trivial task
in general [15, 32], and is best studied with self-consistent
numerical simulations.
Emittance mixing due to resonant particles explains

the observed drastic emittance increase in Fig. 1: since
the ion motion (lithium) and ionization (argon) are
caused by an axisymmetric drive beam, the resulting cou-
pled, nonlinear fields are axisymmetric. Consequently, all
witness beam particles share the same betatron frequency
in both the x and y directions, making them resonant and
leading to the strong emittance mixing observed.
This observation suggests a possible solution to emit-

tance mixing caused by the drive-beam-induced nonlin-
ear fields: using a flat drive beam to induce asymmetric
ion motion and detune the resonance. To confirm this,
we ran the simulation from Fig. 1 in lithium with a flat
driver. The evolution of the witness beam emittances
with both round and flat drive beams is shown in Fig. 3.
While the round drive beam with ǫd,[x,y],0 = 60µm causes
large emittance mixing in the witness beam, a flat drive
beam with emittances ǫd,[x,y],0 = [24 µm, 150 µm] causes
asymmetric ion motion and suppresses the emittance
mixing. The flat driver causes significant ion motion in
the y direction and negligible one in x. The emittance
growth in the y direction for the witness beam can be
attributed to mismatch in these nonlinear fields rather
than emittance mixing, because the emittance does not
decrease in the x direction. This growth could therefore
be prevented by nonlinearly matching the witness beam
in y to the nonlinear fields [21, 25]. Using a flat drive
beam is a viable way to suppress emittance mixing due
to drive-beam-induced ion motion, since it breaks the
symmetry and, in this case, the resonance.
When the nonlinearity is created by the driver, as

above, emittance exchange in the witness beam can be
mitigated by shaping the driver. Independently, and re-
gardless of the driver (such that this also applies to laser-
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ner, L. Hübner, T. Hülsenbusch, L. Jeppe, T. Parikh,
M. Schnepp, and A. R. Maier, Phys. Rev. Lett. 126,
174801 (2021).

[8] C. A. Lindstrøm, J. M. Garland, S. Schröder, L. Boul-
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6

Computer Physics Communications 278, 108421 (2022).
[28] S. Diederichs, C. Benedetti, A. Ferran Pousa, A. Sinn,

J. Osterhoff, C. B. Schroeder, and M. Thévenet, “Input
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coordinates, as opposed to Cartesian coordinates, since
the symmetries of the problem (e.g., quasi-periodic mo-
tion) become explicit.
Rewriting the equations of motion Eq. (S1) using

action-angle coordinates we obtain






























dθ[x,y]

dz
= kβ,0

[

1 + α[x,y] cos
2 θ[x,y]H

(

r2

2L2
[x,y]

)]

dj[x,y]

dz
= α[x,y]kβ,0j[x,y] sin 2θ[x,y]H

(

r2

2L2
[x,y]

)

,

(S3)
where r2 = 2(jx cos

2 θx + jy cos
2 θy)/γwkβ,0. We see

that the system can be described as a set of nonlinearly-
coupled oscillators.
For the initial condition considered in this work (i.e.,

a Gaussian beam distribution linearly matched in the
unperturbed wakefield with ǫ[x,y],0 the rms emittances
on each plane) the initial angles, θ[x,y],0, are uniformly
distributed in [0, 2π], and the initial actions, j[x,y],0, are
distributed as

f(jx,0, jy,0) =
1

ǫx,0ǫy,0
exp

(

−jx,0
ǫx,0

− jy,0
ǫy,0

)

. (S4)

The nonlinearity in the wakefield results in amplitude-
dependent (i.e., action-dependent) betatron frequencies
for the beam particles. Following canonical perturbation
theory, an estimate for the initial (i.e., valid before sig-
nificant evolution occurs) frequencies can be obtained by
averaging over the angular coordinates the expressions
for dθ[x,y]/dz in Eq. (S3), namely

kβ,[x,y],0 =
1

(2π)2

∫ ∫
(

dθ[x,y]

dz

)

dθxdθy. (S5)

For a flat beam, ǫy,0 ≪ ǫx,0, we have that, in general,
jy,0 ≪ jx,0, and so the betatron frequencies are deter-
mined solely by the initial value of the particle’s action
in the horizontal plane. We obtain,























kβ,x,0
kβ,0

≃ 1 + αxQ2(jx,0;Lx)

kβ,y,0
kβ,0

≃ 1 +
αy

2
Q0(jx,0;Ly),

(S6)

where

Qp(jx,0;L) =
1

2π

∫ 2π

0

(cosϕ)pH

[

2kβ,0jx,0 cosϕ

(kpL)2

]

dϕ.

(S7)
Note that the expressions in Eq. (S6) are valid for
α[x,y] . 1. From Eq. (S6) we see that both the hori-
zontal and vertical betatron frequencies decrease as the
value of the horizontal action increases. The black line in
Fig. S1(b) shows the initial distribution of betatron fre-
quencies computed using Eq. (S6) for αx = 1, αy = 0.6

(the other beam and plasma parameters are n0 = 7×1015

cm−3, Lx = Ly = 6 µm, γw = 10000, ǫx,0 = 160 µm, and
ǫy,0 = 0.54 µm).
If the characteristic size of the nonlinearity is (much)

larger than the characteristic size of the beam in the hor-
izontal plane, i.e., σx ∼ (ǫx,0/γwkβ,0)

1/2 ≪ L[x,y] (we
refer to this as the small beam limit), then kβ,0jx,0 ≪
(kpL[x,y])

2, and so we can use the approximation H(q) ≃
1 − q/2. In this limit the expressions for the betatron
frequencies Eq. (S6) simplify to























kβ,x,0
kβ,0

≃ 1 +
αx

2

[

1− 3

4

kβ,0jx,0
(kpLx)2

]

kβ,y,0
kβ,0

≃ 1 +
αy

2

[

1− 1

2

kβ,0jx,0
(kpLy)2

]

.

(S8)

Resonant particles are the ones for which the horizon-
tal and vertical betatron frequencies are equal. (More
generally, a resonance is present if the ratio between the
horizontal and vertical betatron frequencies is a ratio-
nal number. Here we consider the simplest case where
the ratio between the frequencies is 1.) The value of the
horizontal action for which a beam particle is (initially)

resonant, j
(r)
x,0, can be obtained by solving the equation

kβ,x,0(j
(r)
x,0) = kβ,y,0(j

(r)
x,0). (S9)

In the small beam limit, and for Lx ≈ Ly, a finite, non-
negative solution to this equation exists for αy ≤ αx, and
reads

j
(r)
x,0 ≃

4k2pL
2
xL

2
y

kβ,0

αx − αy

3αxL2
y − 2αyL2

x

. (S10)

Note that the positive solution for αy > (3/2)(Ly/Lx)
2αx

is not acceptable since it violates the small beam approx-
imation used to derive Eq. (S10).
For values of the initial horizontal action larger than

j
(r)
x,0, Eq. (S6) predicts that the betatron frequency will
cross the resonance line. However, a direct numerical so-
lution to the equations of motion [Eq. (S1) or Eq. (S3)]
indicates, instead, that these particles are trapped in the
resonance, with an effective vertical betatron frequency
that is lower than the theoretical one, and equal to the
horizontal one (see the previous Sec. ). Based on these
findings, and starting from the knowledge of the initial
betatron frequencies, we can build a model for the dis-
tribution of betatron frequencies of the beam particles
which is valid at later times (asymptotic), namely



















kβ,x = kβ,x,0

kβ,y =

{

kβ,y,0 for jx,0 < j
(r)
x,0

kβ,x,0 for jx,0 ≥ j
(r)
x,0.

(S11)
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The green line in Fig. S1(b) shows the asymptotic dis-
tribution of betatron frequencies given by Eq. (S11).
The yellow dashed line is the asymptotic distribution
in the small beam limit (Taylor expansion). We see
that Eq. (S11) provides a good description of the beam’s
asymptotic betatron footprint.
The fraction of beam particles in the resonance can be

computed considering that, according to our model, par-

ticles for which jx,0 ≥ j
(r)
x,0 are resonant, and taking into

account that the initial distribution of actions is given by
Eq. (S4). Namely,

ηr =

∫

∞

j
(r)
x,0

djx,0

∫

∞

0

djy,0 f(jx,0, jy,0)

= exp

(

−
j
(r)
x,0

ǫx,0

)

. (S12)

For the cases shown in Fig. 2 (a) in the Letter, Eq. (S12)
predicts ηr = 0.64 for αx = 1, αy = 0.6, ηr = 1 for αx =
αy = 1, and ηr = 0 for αx = 1, αy = 1.3. These values
are in good qualitative agreement with those obtained
in the test particle simulations, which are 0.49, 1.0, and
0.0, respectively. We can also evaluate the initial average
value of the actions in the horizontal and vertical planes
for resonant and non-resonant particles. These are given,
respectively, by

〈jx,0〉res. =

∫

∞

j
(r)
x,0

djx,0

∫

∞

0

djy,0 jx,0 f(jx,0, jy,0)

= ηr(ǫx,0 + j
(r)
x,0), (S13)

〈jy,0〉res. =

∫

∞

j
(r)
x,0

djx,0

∫

∞

0

djy,0 jy,0 f(jx,0, jy,0)

= ηrǫy,0, (S14)

〈jx,0〉non-res. =

∫ j
(r)
x,0

0

djx,0

∫

∞

0

djy,0 jx,0 f(jx,0, jy,0)

= (1− ηr)ǫx,0 − ηrj
(r)
x,0. (S15)

and

〈jy,0〉non-res. =

∫ j
(r)
x,0

0

djx,0

∫

∞

0

djy,0 jy,0 f(jx,0, jy,0)

= (1− ηr)ǫy,0. (S16)

The temporal evolution of the angle coordinates for
each beam particle can be obtained solving the first equa-
tion in Eq. (S3). Neglecting oscillations on the ∼ k−1

β,0

scale, we obtain

θ[x,y](z) ≃ θ[x,y],0 + kβ,[x,y]z, (S17)

where kβ,[x,y] are given by Eq. (S11).

The temporal evolution of the action coordinates is dif-
ferent for resonant and non-resonant particles. This can
be seen rewriting the evolution equation for the action
(second equation in Eq. (S3)) in the small beam limit,
by using Eq. (S17) for the evolution of the angles, and
by averaging over oscillations at the ∼ k−1

β,0 scale. For
non-resonant particles, i.e., kβ,x 6= kβ,y, we have

dj[x,y]

dz
≃ 0, (S18)

and so the actions in both planes are separately
(quasi-)preserved during evolution, namely

j[x,y](z) ≃ j[x,y],0. (S19)

For resonant particles, i.e., kβ,x = kβ,y, we have























djx
dz

≃ −k2β,0
αx

4

jxjy
(kpLx)2

sin 2(θx,0 − θy,0)

djy
dz

≃ k2β,0
αy

4

jxjy
(kpLy)2

sin 2(θx,0 − θy,0),

(S20)

and so the actions in the two planes are not sepa-
rately conserved since the nonlinearity provides a mech-
anism to couple the particle motion in the horizontal
and vertical planes. However, since (αy/L

2
y)(djx/dz) +

(αx/L
2
x)(djy/dz) ≃ 0, we have that the quantity

αy

L2
y

jx(z) +
αx

L2
x

jy(z) =
αy

L2
y

jx,0 +
αx

L2
x

jy,0 = const., (S21)

is (quasi-)preserved, and the value of the constant is set
by the initial condition for the actions. Using Eq. (S21)
in Eq. (S20) we obtain the following equation describing
the evolution of jx,

djx
dz

≃ −
k2β,0 sin 2(θx,0 − θy,0)

4
(S22)

× jx

[

αx

(kpLx)2
jy,0 +

αy

(kpLy)2
(jx,0 − jx)

]

.

The asymptotic solution of this equation can be obtained
as follows. If sin 2(θx,0−θy,0) > 0 (case I), then djx/dz <
0 and so jx decreases. The horizontal action will continue
to decrease (the term within the square parenthesis is
always positive) and will tend to the asymptotic value

j∗,+x = 0, (S23)

which is a fixed point for Eq. (S22). At the same time
Eq. (S21) implies that jy will increase and tend to the
asymptotic value

j∗,+y = jy,0 +
αy

αx

L2
x

L2
y

jx,0 ≃ αy

αx

L2
x

L2
y

jx,0, (S24)

where the last equality is valid for a flat beam. Con-
versely, if sin 2(θx,0 − θy,0) < 0 (case II), the opposite
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behaviour is observed: the horizontal emittance will tend
to the asymptotic value

j∗,−x = jx,0 +
αx

αy

L2
y

L2
x

jy,0 ≃ jx,0, (S25)

while the vertical emittance approaches the asymptotic
value

j∗,−y = 0. (S26)

Note that since θx,0 − θy,0 is uniformly distributed in
[0, 2π], the solutions corresponding to case I and case II
occur with the same probability.
We can now compute the beam emittance at saturation

when mixing occurs. We recall that the beam emittance
in each plane is given by the average value of the action
in that plane if the angle coordinates are uniformly dis-
tributed. By separating the contribution of resonant and
non resonant particles we have

ǫ∗[x,y] ≃ 〈j∗[x,y]〉non-res. + 〈j∗[x,y]〉res., (S27)

where 〈j∗[x,y]〉non-res. and 〈j∗[x,y]〉res. are the average values
of the action at saturation for non-resonant and resonant
particles, respectively. For non-resonant particles, using
Eq. (S19) (i.e., j∗[x,y] = j[x,y](z) ≃ j[x,y],0), we have











〈j∗x〉non-res. ≃ 〈jx,0〉non-res.

〈j∗y〉non-res. ≃ 〈jy,0〉non-res..

(S28)

For resonant particles, using Eqs. (S23), (S24), (S25),
(S26), we have























〈j∗x〉res. ≃
1

2
〈jx,0〉res.

〈j∗y〉res. ≃
1

2

αy

αx

L2
x

L2
y

〈jx,0〉res..
(S29)

By inserting Eqs. (S28) and (S29) into Eq. (S27), we
obtain the following expression for the emittances at sat-
uration























ǫ∗x,0 ≃
(

1− ηr
2

)

ǫx,0 −
1

2
ηrj

(r)
x,0

ǫ∗y ≃ (1− ηr)ǫy,0 +
1

2
ηr

αy

αx

L2
x

L2
y

(ǫx,0 + j
(r)
x,0).

(S30)

We see that, whenever resonant particles are present (i.e,

j
(r)
x,0 is non negative and so ηr > 0), mixing occurs: the
horizontal beam emittance decreases, while the vertical
one increases. Equation (S30) can be further simplified
considering that, for the parameters considered in this
work, ǫx,0 is larger than j

(r)
x,0, and so we obtain



















ǫ∗x ≃
(

1− ηr
2

)

ǫx,0

ǫ∗y ≃ (1− ηr)ǫy,0 +
1

2
ηr

αy

αx

L2
x

L2
y

ǫx,0.

(S31)

Figure 2 (d) in the Letter shows the growth of
the geometric average of the emittances after mixing,
(ǫ∗xǫ

∗

y/ǫx,0ǫy,0)
1/2, as a function of αx and αy, obtained

using Eq. (S31) and using the values of ηr from Eq.(S12).


