ERRATUM · OPEN ACCESS ## Erratum: Design and sensitivity of the Radio Neutrino Observatory in Greenland (RNO-G) To cite this article: J.A. Aguilar et al 2023 JINST 18 E03001 View the article online for updates and enhancements. ### You may also like - Erratum: "Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data" (2019, ApJ, 879, 10) B. P. Abbott, R. Abbott, T. D. Abbott et al. - Erratum: "First Search for Gravitational Waves from Known Pulsars with Advanced LIGO" (2017, ApJ, 839, 12) B. P. Abbott, R. Abbott, T. D. Abbott et al. - Identification of hadronic tau lepton decays using a deep neural network A. Tumasyan, W. Adam, J.W. Andrejkovic et al. RECEIVED: January 31, 2023 Accepted: February 15, 2023 Published: March 17, 2023 # Erratum: Design and sensitivity of the Radio Neutrino Observatory in Greenland (RNO-G) J.A. Aguilar, P. Allison, J.J. Beatty, H. Bernhoff, D. Besson, 4,5 N. Bingefors, O. Botner, 6 S. Buitink, K. Carter, B.A. Clark, A. Connolly, P. Dasgupta, S. de Kockere, 10 K.D. de Vries, 10 C. Deaconu, 11 M.A. DuVernois, 12 N. Feigl, 13 D. García-Fernández, 13,14 C. Glaser,⁶ A. Hallgren,⁶ S. Hallmann,¹⁴ J.C. Hanson,¹⁵ B. Hendricks,¹⁷ B. Hokanson-Fasig,¹² C. Hornhuber, 4 K. Hughes, 11 A. Karle, 12 J.L. Kelley, 12 S.R. Klein, 16 R. Krebs, 17 R. Lahmann, 13 M. Magnuson,⁴ T. Meures,¹² Z.S. Meyers,^{13,14} A. Nelles,^{14,13,*} A. Novikov,⁴ E. Oberla,¹¹ B. Oeyen, 18 H. Pandya, 7 I. Plaisier, 13,14 L. Pyras, 19,14 D. Ryckbosch, 18 O. Scholten, 10 D. Seckel, ²⁰ D. Smith, ¹¹ D. Southall, ¹¹ J. Torres, ² S. Toscano, ¹ D.J. Van Den Broeck, ^{10,7} N. van Eijndhoven, ¹⁰ A.G. Vieregg, ¹¹ C. Welling, ^{13,14} S. Wissel, ^{17,8} R. Young ⁴ and A. Zink ¹³ ¹Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium ²Dept. of Physics, Center for Cosmology and AstroParticle Physics, Ohio State University, Columbus, OH 43210, U.S.A. ³Uppsala University, Dept. of Engineering Sciences, Division of Electricity, Uppsala, SE-752 37, Sweden ⁴University of Kansas, Dept. of Physics and Astronomy, Lawrence, KS 66045, U.S.A. ⁵National Nuclear Research University MEPhI, Kashirskoe Shosse 31, 115409, Moscow, Russia ⁶Uppsala University, Dept. of Physics and Astronomy, Uppsala, SE-752 37, Sweden ⁷Vrije Universiteit Brussel, Astrophysical Institute, Pleinlaan 2, 1050 Brussels, Belgium ⁸Physics Dept. California Polytechnic State University, San Luis Obispo, CA 93407, U.S.A. ⁹Dept. of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, U.S.A. ¹⁰Vrije Universiteit Brussel, Dienst ELEM, B-1050 Brussels, Belgium ¹¹Dept. of Physics, Enrico Fermi Inst., Kavli Inst. for Cosmological Physics, University of Chicago, Chicago, IL 60637, U.S.A. ¹²Wisconsin IceCube Particle Astrophysics Center (WIPAC) and Dept. of Physics, University of Wisconsin-Madison, Madison, WI 53703, U.S.A. ¹³Erlangen Center for Astroparticle Physics (ECAP), Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany ¹⁴DESY, Platanenallee 6, 15738 Zeuthen, Germany ¹⁵Whittier College, Whittier, CA 90602, U.S.A. ¹⁶Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A. ¹⁷Dept. of Physics, Dept. of Astronomy & Astrophysics, Penn State University, University Park, PA 16801, U.S.A. ^{*}Corresponding author. *E-mail*: anna.nelles@desy.de Erratum to: 2021 JINST 16 P03025 The previously published figure 26 is replaced, which corrects a plotting mistake affecting only this figure. The underlying simulations of the RNO-G design specifications used for the article have not changed. Data corresponding to the new figure is available at [1]. Figure 26. RNO-G instantaneous sky coverage. Left: simulated effective area as a function of neutrino energy is shown for four zenith bands, centered at 50° , 60° , 70° , and 80° . Shaded regions indicate the range given by different trigger of $1.5\sigma_{\text{noise}}$ and $2.5\sigma_{\text{noise}}$. Simulations were performed for the full RNO-G array of 35 stations with a distance of 1 km. Right: these bands are projected in Right Ascension (RA) and Declination (Dec) for one particular time of day to illustrate the instantaneous sky coverage. For zenith angles $< 45^{\circ}$ or $> 90^{\circ}$ RNO-G sensitivity is strongly reduced (< 0.1 fraction of maximum effective area). ### Acknowledgments The RNO-G collaboration would like to thank their members Steffen Hallmann and Felix Schlüter for identifying the issue with the figure and correcting it. #### References [1] RNO-G collaboration, *Public data repository*, (2023) https://github.com/RNO-G/rno-g_public_data. ¹⁸Ghent University, Dept. of Physics and Astronomy, B-9000 Gent, Belgium ¹⁹Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany ²⁰Dept. of Physics and Astronomy, University of Delaware, Newark, DE 19716, U.S.A.