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StoRM: A Diffusion-based Stochastic Regeneration
Model for Speech Enhancement and Dereverberation
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Abstract—Diffusion models have shown a great ability at bridging
the performance gap between predictive and generative approaches
for speech enhancement. We have shown that they may even
outperform their predictive counterparts for non-additive corruption
types or when they are evaluated on mismatched conditions. However,
diffusion models suffer from a high computational burden, mainly as
they require to run a neural network for each reverse diffusion step,
whereas predictive approaches only require one pass. As diffusion
models are generative approaches they may also produce vocalizing
and breathing artifacts in adverse conditions. In comparison, in
such difficult scenarios, predictive models typically do not produce
such artifacts but tend to distort the target speech instead, thereby
degrading the speech quality.

In this work, we present a stochastic regeneration approach where
an estimate given by a predictive model is provided as a guide for
further diffusion. We show that the proposed approach uses the
predictive model to remove the vocalizing and breathing artifacts
while producing very high quality samples thanks to the diffusion
model, even in adverse conditions. We further show that this approach
enables to use lighter sampling schemes with fewer diffusion steps
without sacrificing quality, thus lifting the computational burden by
an order of magnitude.

Source code and audio examples are available online1.

Index Terms—score-based generative models, diffusion models,
speech enhancement, speech dereverberation, predictive learning.

I. INTRODUCTION

In real-life scenarios and modern communication devices, clean

speech sources are often polluted by background noise, interfering

speakers, room acoustics and codec degradation [1], [2]. We refer

to this phenomenon as speech corruption, and denote by speech

restoration the art of recovering clean speech from the corrupted sig-

nal [3]. On the one hand, traditional speech restoration methods lever-

age the statistical properties of the target and interference signals in

various domains e.g. time, spectrum, cepstrum or spatial distribu-

tion [4]. On the other hand, machine learning techniques try to learn

these statistical properties and how to exploit them from data [5].

Machine learning algortihms can be categorized into predictive (also

called discriminative) approaches and generative approaches. We
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will choose the term predictive over discriminative as it fits both clas-

sification and regression tasks [6]. The field of speech restoration is

dominated by predictive approaches that use supervised learning to

learn a single best deterministic mapping between corrupted speech

y and the corresponding clean speech target x [5]. These methods

include for instance time-frequency (T-F) masking [7], time domain

methods [8], [9] or direct spectro-temporal mapping [10]. They have

contributed to drastically increasing the quality of speech restoration

algorithms. However, they candistort target speech and suffer from

generalizability issues that we expose hereafter [11], [12].

In contrast, generative models implicitly or explicitly learn the

target distribution and allow to generate multiple valid estimates

instead of a single best estimate as for predictive approaches [6].

Generative approaches include variational auto-encoders (VAEs)

learning explicit density estimations [13]–[16], normalizing flows

adding invertible transforms to obtain tractable marginal likeli-

hoods [17], [18], generative adversarial networks (GANs) estimating

implicit distributions [19], [20] and diffusion approaches [21]–[23].

We talk of conditional generative models when a covariate c is used

to guide the generation, leading to the conditional distribution p(x|c)
[6]. This conditioning can either be another modality describing

the data (e.g. c could be video when x is speech), or a modified

version of the data, an obvious example being corrupted speech

y when the underlying task is speech restoration. By integrating

stochasticity in their latent structure, generative models can capture

the inherent uncertainty of the data distribution and produce realistic

samples belonging to that distribution rather than a mean of optimal

candidates [6]. In doing so, they may obtain better perceptual metrics

at the cost of higher point-wise distortion [24]. In the imaging

domain for instance, it was observed that predictive approaches

tend to brush over the fine-grained details of the considered domain

[24], [25]. Furthermore, predictive models may result in limited

generalization abilities towards unseen corruption types or speakers

as compared to generative models, which is demonstrated for

diffusion-based generative speech enhancement in Richter et al. [12].

We focus in this work on such diffusion-based generative models,

or simply diffusion models, which have met great success in generat-

ing high-quality samples of natural images [21]–[23], [26]. Diffusion

models use a forward process to slowly turn data into a tractable

prior, usually a standard normal distribution, and train a neural

network to solve the reverse process to generate clean data from this

prior [27]. These diffusion models can also be used for conditional

generation in restoration tasks, which has recently been proposed for

speech processing tasks such as enhancement and dereverberation

[12], [28]–[30] as well as bandwidth extension [11], [31].

One limiting aspect of diffusion models is their heavy compu-

tational burden. Several steps are needed for reverse diffusion, each
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of them calling the neural network used for score estimation. Much

effort has been recently put into reducing this number of steps, either

by optimization of the reverse noise schedule [32], modifications in

the formulation of the diffusion processes [33], [34], or projection

into a latent space [35] or a reduced subspace [36]. We also observed

in past experiments that our previously proposed diffusion model

is prone to confuse phonemes and generate vocalizing artifacts

when facing very adverse conditions. This is due to the generative

behaviour of the model under high uncertainty over the presence

or nature of speech, and this naturally leads to a degradation, e.g.

in automatic speech recognition (ASR) experimental results.
In this work, we propose a stochastic regeneration scheme

combining predictive and generative models to produce high quality

samples while reducing the computational burden of diffusion mod-

els and their tendency to generate unwanted artifacts. We propose to

first use a predictive approach to estimate a restored version of the

corrupted speech. This estimate is then used as a guide by a diffusion

model, which requires only a few diffusion steps to output a final

clean speech estimation where the distortions introduced by the

predictive stage are corrected while vocalizing artifacts and phonetic

confusions are avoided. Both listening experiments and instrumental

metrics confirm an impressive state-of-the-art perceptual quality of

our proposed approach. Other refinement approaches using diffusion

models were recently proposed. The stochastic refinement approach

[24], [37] subtracts the output of the predictive model from the

corrupted speech, and this residual is used for further estimation by

a diffusion model. We argue hereafter that learning the residual is

however a hard task and demonstrate that our approach outperforms

this stochastic refinement in terms of instrumentally measured

speech quality. Another refinement approach using diffusion models

is denoising diffusion restoration models [38]–[40], where the

corruption operator is assumed to be known (or at least its singular

value decomposition) and is used to modify the reverse diffusion

process without retraining the score model.
We evaluate our proposed approach for speech enhancement with

low input signal-to-noise ratios (SNRs) and speech dereverberation,

using clean speech from the WSJ0 corpus [41]. We also show

ASR results on the TIMIT dataset [42], and report results on the

standardized Voicebank/DEMAND dataset [43]. Finally, several

ablation studies are performed with respect to sampling efficiency,

intial predictor mismatch and training strategy.

II. SCORE-BASED DIFFUSION MODELS

Diffusion models originally use discrete-time diffusion processes

modeled by Markov chains [22]. They have been recently extended

to continuous-time diffusion processes formulated by stochastic

differential equations (SDEs) in [44], allowing for new training

paradigms such as score matching [45], [46]. This class model is

subsequently denoted as score-based diffusion models.
Score-based diffusion models are defined by three components:

a forward diffusion process, a score function estimator, and a

sampling method for inference.

A. Forward and reverse processes

The stochastic forward process {xτ}
T
τ=0 used in score-based

diffusion models is defined as an Itô SDE [44], [47]:

dxτ =f(xτ ,τ)dτ+g(τ)dw (1)

where xτ is the current state of the process indexed by a continuous

time variable τ ∈ [0,T ] with the initial condition representing clean

speech x0=x. The diffusion time variable τ relates to the progress

of the stochastic process and should not to be mistaken for our usual

notion of signal time. As our process is defined in the complex

spectrogram domain, independently for each T-F bin, the variables

in bold are assumed to be vectors inCd containing the coefficients of

a flattened complex spectrogram— with d being the product of the

time and frequency dimensions— whereas variables in regular font

represent real scalar values. The set {xτ}τ∈]0,T [ can be considered

as latent variables used to parameterize the conditional distribution

p(xτ |x0, y). The stochastic process w denotes a standard d-

dimensional Brownian motion, that is, dw is a zero-mean Gaussian

random variable with standard deviation dτ for each T-F bin.

The drift function f and diffusion coefficient g as well as the initial

condition x0 and the final diffusion time T uniquely define the Itô

process {xτ}
T
τ=0 [47]. Under some regularity conditions on f,g

allowing a unique and smooth solution to the Kolmogorov equations

associated to (1), the reverse process {xτ}
0
τ=T is another diffusion

process defined as the solution of the following SDE [44], [48]:

dxτ =
[
−f(xτ ,τ)+g(τ)2∇xτ

logpτ(xτ)
]
dτ+g(τ)dw̄, (2)

where dw̄ is a d-dimensional Brownian motion for the time flowing

in reverse and ∇xτ
logpτ(xτ) is the score function, i.e. the gradient

of the logarithm data distribution for the current process state xτ .

Speech restoration tasks can be regarded either as one-to-one

mapping tasks between corrupted speech y and x0, which leads

to predictive modelling; or as conditional generation tasks, i.e.

generation of x0 conditioned on y. Previous diffusion-based

approaches proposed to condition the process explicitly within the

neural network [49] or through guided classification [26]. In [28],

the conditioning is directly incorporated into the diffusion process by

defining the forward process as the solution to the following SDE:

dxτ =γ(y−xτ)
︸ ︷︷ ︸

:=f(xτ ,y)

dτ+

[

σmin

(
σmax

σmin

)τ
√

2log

(
σmax

σmin

)]

︸ ︷︷ ︸

:=g(τ)

dw. (3)

This equation belongs to the class of Ornstein-Uhlenbeck SDEs

[47], a subclass of Itô SDEs in which the drift function f is affine in

xτ and does not depend on τ , and the diffusion coefficient g only

depends on τ . The equation introduces a stiffness hyperparameter γ

controlling the slope of the decay from y to x0, and σmin and σmax

are two hyperparameters controlling the noise scheduling, that is,

the amount of Gaussian white noise injected at each timestep of

the process.

The interpretation of our forward process in Eq. (3), visualized

on Fig. 1, is as follows: at each time step and for each T-F bin

independently, an infinitesimal amount of corruption is added to the

current process state xτ , along with Gaussian noise with standard

deviation g(τ)dτ . Therefore, the mean of the current process

decays exponentially towards y while the variance increases as in

the variance-exploding scheme of Song et al. [44], leading to a final

distribution xτ which is the corrupted signal y with some additional

Gaussian noise. Given an initial condition x0 and the covariate
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y Dθ(y) xT = Dθ(y) + σ
2(T )z x0 ≈ x

Reverse DiffusionPredictor Sampling

Fig. 4: Stochastic regeneration inference process. The predictive network

is first used to generate a denoised version Dθ(y). Diffusion-based generation Gφ is then performed by adding Gaussian noise σ(T)2z to

obtain the start sample xT and solving the reverse diffusion SDE (10), yielding a sample from the estimated posterior x0∼p(x|Dθ(y)).

VCTK corpus [43] excluding two speakers. The utterances

are corrupted by recorded noise from the DEMAND database

[55] and two artificial noise types (babble and speech shaped)

at SNRs of 0, 5, 10, and 15 dB for training and validation. The

SNR levels of the test set are 2.5, 7.5, 12.5, and 17.5 dB.

b) Speech Dereverberation: The WSJ0+Reverb dataset is

generated using clean speech data from the WSJ0 dataset and

convolving each utterance with a simulated room impulse response

(RIR). We use the pyroomacoustics engine [56] to simulate

the RIRs. The reverberant room is modeled by sampling uniformly

a target T60 between 0.4 and 1.0 seconds and a room length, width

and height in [5,15]×[5,15]×[2,6] m. This results in an average

direct to reverberant ratio (DRR) of around -9 dB and average

measured T60 of 0.91s. A dry auralized version of the room is

generated as the reference clean speech using the same geometric

parameters with a fixed absorption coefficient of 0.99, to generate

the corresponding anechoic target.

B. Hyperparameters and training configuration

a) Data representation: Utterances are transformed using a

short-time Fourier transform (STFT) with a window size of 510,

a hop length of 128 and a square-root Hann window. A square-root

magnitude warping is used to compress the dynamical range

of the input spectrograms [12]. For training, sequences of 256

STFT frames (i.e. 2s) are randomly extracted from the full-length

utterances and normalized before being fed to the network.

b) Forward and reverse diffusion: For all diffusion models,

similar values are chosen to parameterize the forward and reverse

stochastic processes. The stiffness parameter is fixed to γ =1.5,

the extremal noise levels to σmin = 0.05 and σmax = 0.5, and

the minimal diffusion time to τǫ = 0.03 as in [12]. Unless

stated otherwise (that is, for all results except those in Figure 5),

N=50 time steps are used for reverse diffusion and we adopt the

predictor-corrector scheme [44] with one step of annealed Langevin

dynamics correction and a step size of r= 0.5.

c) Baselines: For comparison on WSJ0-based datasets, we

compare our proposed approach StoRM to the purely generative

SGMSE+ [12] and purely predictive NCSN++M. We also report

results using GaGNet [57], a state-of-the-art predictive approach

using parallel magnitude- and complex-domain processing

in the T-F domain. We complement the benchmark on the

Voicebank/DEMAND dataset with the predictive ConvTasNet [8]

and MetricGAN+ [58], as well as the generative unsupervised

dynamical VAE (DVAE) [59], conditional time-domain diffusion

model CDiffuse [29], stochastic refinement time-domain

enhancement scheme SRTNet [37] and original SGMSE [28].

d) Network architecture: The backbone architecture we use is

a lighter configuration of the NCSN++ architecture variant proposed

in [44], which was used in our previous study [11] and that we de-

note here as NCSN++M. The modifications brought to the network

are that the attention layer in the bottleneck is removed, the number

of layers in the encoder-decoder structure is decreased from 7 to 4,

and only one ResNet block is used per encoder-decoder layer instead

of two. This results in a network capacity of roughly 27.8M parame-

ters instead of 65M, without significant degradation of the speech en-

hancement performance, be it for predictive or generative modelling.

When this NCSN++M configuration is used for score estimation

in SGMSE+, the noisy speech spectrogram y and the current

diffusion process estimate xτ real and imaginary channels are

stacked and fed to the network as input, and the current noise

level σ(τ) is provided as a conditioner. For our proposed approach

StoRM, the initial prediction Dθ(y) is also stacked together with

y and xτ : the influence of this double conditioning is examined

in an ablation study in Section V-F. For the predictive approach,

denoted directly as NCSN++M, the noise-conditioning layers are

removed and only the noisy speech spectrogram real and imaginary

channels are used. This ablation removes only 1.8% of the original

number of parameters, which hardly modifies the network capacity.

We also use ConvTasNet [8] and GaGNet [57] as alternative

initial predictors for StoRM. We train using NCSN++M as the initial

predictor and swap it during inference with one of the two networks

mentioned above, in order to test the robustness of our proposed

stochastic regeneration approach towards unseen predictors.

e) Training configuration: We use the Adam optimizer [60]

with a learning rate of 10−4 and an effective batch size of 16. We

track an exponential moving average of the DNN weights with

a decay of 0.999 to be used for sampling, as it showed to be very

effective [61]. We train DNNs for a maximum of 1000 epochs

using early stopping based on the validation loss with a patience

of 10 epochs. All models converged before reaching the maximum

number of epochs. The generative approach is trained with the

denoising score matching criterion (8), and the predictive methods

use a simple mean-square error loss on the complex spectrogram.

The stochastic regeneration approach uses the combined criterion

in (17). The default training strategy is that we pre-train the initial

predictor with a simple mean-square error loss, then jointly train the
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TABLE I: Denoising results obtained on WSJ0+Chime. Values indicate mean

and standard deviation. All approaches use NCSN++M as backbone architecture. Diffusion models use N=50 steps for reverse diffusion.

Method WV-MOS PESQ ESTOI SI-SDR SI-SIR SI-SAR

Mixture 1.43 ± 0.66 1.38 ± 0.32 0.65 ± 0.18 4.3 ± 5.8 4.3 ± 5.8 -

SGMSE+ 3.63 ± 0.38 2.33 ± 0.61 0.86 ± 0.10 13.3 ± 5.0 27.4 ± 6.3 13.5 ± 4.9
NCSN++M 3.47 ± 0.53 2.21 ± 0.65 0.89 ± 0.09 16.4 ± 4.4 31.1 ± 5.0 16.6 ± 4.4

GaGNet 3.34 ± 0.54 2.19 ± 0.61 0.87 ± 0.09 15.7 ± 4.3 27.6 ± 4.7 16.0 ± 4.4

StoRM 3.72 ± 0.40 2.58 ± 0.61 0.88 ± 0.08 15.1 ± 4.2 31.6 ± 5.0 15.3 ± 4.2

predictor and score networks with (17). Different training strategies

are examined in an ablation study in Section V-F.

C. Evaluation metrics

For instrumental evaluation of the speech enhancement and

dereverberation performance with clean test data available, we

use intrusive measures such as Perceptual Evaluation of Speech

Quality (PESQ) [62] to assess speech quality, extended short-term

objective intelligibility (ESTOI) [63] for intelligibility and

scale-invariant signal to distortion ratio (SI-SDR), scale-invariant

signal to interference ratio (SI-SIR) and scale-invariant signal to

artifacts ratio (SI-SAR) [64] for noise removal. As in [11], we

complement our metrics benchmark with WV-MOS [65]2, which is

a DNN-based mean opinion score (MOS) estimation, and was used

by the authors for reference-free assessment of bandwidth extension

or speech enhancement performance.

We also evaluate our proposed approach on ASR, using NVidia’s

temporal convolutional network QuartzNet 3 [66] as the speech

recognition model, and classical WER dynamic programming

evaluation with the jiwer Python library4. We use the pretrained

Base-en 18.9M parameters version of QuartzNet for specialized

English speech recognition.

Finally, we organize a medium-scale MUSHRA listening test

with 9 participants. We ask the participants to rate 10 samples

with a single number representing overall quality, including speech

distortion, residual distortions and potential artifacts. We use

the webMUSHRA5 tool with pymushra6 server management.

The samples are randomly extracted from the WSJ0+Chime

and WSJ0+Reverb test sets, ensuring gender and task balance

as well as speaker exclusivity (within a given task, a speaker is

used once at most). The approaches evaluated are the predictive

NCSN++M, score-based generative model SGMSE+ and our

proposed approach StoRM. The noisy mixture is given as a low

anchor, and a supplementary anchor is created by increasing the

input SNR by 10dB in comparison to the noisy mixture.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Comparison to baselines

a) WSJ0+Chime and WSJ0+Reverb: In tables I and II,

we show results of the proposed stochastic regeneration StoRM

approach as compared to purely predictive GaGNet and NCSN++M

2https://github.com/AndreevP/wvmos
3https://catalog.ngc.nvidia.com/orgs/nvidia/models/quartznet15x5
4https://github.com/jitsi/jiwer
5https://github.com/audiolabs/webMUSHRA
6https://github.com/nils-werner/pymushra

and purely generative SGMSE+, for denoising on WSJ0+Chime

and dereverberation on WSJ0+Reverb respectively.

We confirm the results from [11], which is that predictive

NCSN++M and GaGNet provide samples with good interference

removal (high SI-SDR) and intelligibility (high ESTOI) but lower

quality (lower PESQ and WV-MOS) compared to diffusion-based

generative SGMSE+. This gap is stronger for dereverberation than

for denoising as already observed, since the average input SNR

for dereverberation is much lower than for denoising. Also, the

reverberation interference being a filtered version of the target

speech, the predictive method cannot suppress reverbreation without

introducing significant distortion, which is particularly visible

in NCSN++M and GaGNet results. The generative SGMSE+,

however, is able to extract the speech cues and directly reconstructs

it without any trace of reverberation.

We observe that our proposed StoRM associates the best of

both the predictive and generative worlds, by producing samples

with very high quality like generative SGMSE+, while being

approximately as good with interference removal as the predictive

NCSN++M. Again, the observed gap is more significant for dere-

verberation, where the proposed StoRM outperforms both SGMSE+

and NCSN++M on all metrics. Example spectrograms are displayed

on Figure 6 and 7, for denoising and dereverberation respectively.

b) VoiceBank/DEMAND: We report in Table III results of

our StoRM configuration against various state-of-the-art speech

enhancement baselines on the VoiceBank/DEMAND benchmark.

The SNRs in Voicebank/DEMAND are always positive and

distributed around 10dB, which is not very challenging compared

to the conditions in our WSJ0+Chime dataset. Consequently, the

gap between SGMSE+ and StoRM on Voicebank/DEMAND is

not as large as on WSJ0+Chime, which shows that using the initial

predictor is particularly useful in difficult conditions. In easier

environments such as that simulated in Voicebank/DEMAND,

diffusion-based generative modelling can take the noisy mixture

as the initial condition for reverse diffusion without being further

guided. Still, our proposed method StoRM still slightly outperforms

the purely generative SGMSE+ on ESTOI and SI-SDR, setting a

new state-of-the-art record for generative models on this benchmark.

As a sidenote, while the best overall PESQ scores are obtained by

MetricGAN+, it should be stressed that this approach is designed

to maximize PESQ, and that the superior performance indicated

by PESQ is not supported by informal and formal listening [12].

B. Efficient sampling

We report in Figure 5 the performance of the SGMSE+ and

StoRM schemes as a function of the number of steps used for
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TABLE II: Dereverberation results obtained on Reverb-WSJ0. Values indicate mean

and standard deviation. All approaches use NCSN++M as backbone architecture. Diffusion models use N=50 steps for reverse diffusion.

Method WV-MOS PESQ ESTOI SI-SDR SI-SIR SI-SAR

Mixture 1.78 ± 0.99 1.36 ± 0.19 0.46 ± 0.12 -7.3 ± 5.5 -7.5 ± 5.4 -

SGMSE+ 3.49 ± 0.39 2.66 ± 0.45 0.85 ± 0.06 2.4 ± 7.2 11.6 ± 9.9 2.8 ± 6.8
NCSN++M 2.99 ± 0.38 2.08 ± 0.47 0.85 ± 0.06 6.1 ± 3.8 21.4 ± 7.0 6.1 ± 3.7

GaGNet 2.40 ± 0.52 1.59 ± 0.37 0.68 ± 0.09 -0.5 ± 4.8 7.7 ± 4.0 0.2 ± 5.1

StoRM 3.73 ± 0.32 2.83 ± 0.42 0.88 ± 0.04 6.5 ± 4.0 22.9 ± 8.2 6.5 ± 3.9

10 20 30 40 50

2.5

3

3.5

WV-MOS

SGMSE+ w/ corrector StoRM w/ corrector SGMSE+ w/o corrector StoRM w/o corrector

10 20 30 40 50

2

2.5

PESQ

10 20 30 40 50
0.75

0.8

0.85

ESTOI

10 20 30 40 50
8

10

12

14

SI-SDR

10 20 30 40 50

1

2

·107
MAC·s−1

Fig. 5: Results for speech denoising on WSJ0+Chime as a function of the number of reverse diffusion steps

N . All approaches use the same NCSN++M architecture. The corrector uses one step of Annealed Langevin Dynamics with a step size of

r=0.5. The number of MAC operations per second is virtually the same for SGMSE+ and StoRM, therefore only one curve is visible here.

TABLE III: Speech enhancement

results obtained on VoiceBank/DEMAND. Here SGMSE+

uses the large NCSN++L architecture and N=30 steps as in

[12].Our StoRM approach uses the lighter NCSN++M architecture

and N=30 steps. P means predictive and G generative. ⋆

means that figures are directly reported from the associated paper.

Method Type PESQ ESTOI SI-SDR

Mixture 1.97 0.79 8.4

NCSN++M P 2.82 0.88 19.9

Conv-TasNet [8] P 2.84 0.85 19.1
MetricGAN+ [58] P 3.13 0.83 8.5

GaGNet [57] P 2.94 0.86 19.9

DVAE [59] G 2.43 0.79 16.4
CDiffuSE [29] G 2.46 0.79 12.6
SRTNet⋆ [37] G 2.69 - -
SGMSE [28] G 2.28 0.80 16.2

SGMSE+ [12] G 2.93 0.87 17.3
StoRM (ours) G 2.93 0.88 18.8

reverse diffusion. We additionally provide an estimation of the

number of multiply-accumulate (MAC) operations per second as

measured by the python-papi package.

We observe that StoRM is able to maintain performance at a near-

optimal level even using only 10 steps, using the initial predictive

estimate as a reasonable guess for further diffusion. In comparison,

SGMSE+ performance degrades rapidly as the number of steps

decreases. Furthermore, StoRM is able to produce very high-quality

samples without even needing the Annealed Langevin Dynamics

corrector during sampling, whereas SGMSE+ performance dramat-

ically degrades without this corrector. Since each corrector step

makes an additional call to the score network, avoiding its use

further relaxes the computational complexity. This demonstrates the

TABLE IV: Denoising results on WSJ0+Chime for StoRM

using matched and mismatched initial predictors. The predictor

architecture used for training is NCSN++M. All approaches

use NCSN++M as score network architecture and N=50 steps

for reverse diffusion. Values indicate mean and standard deviation.

Initial Predictor Matched PESQ ESTOI SI-SDR

Mixture - 1.38 ± 0.32 0.65 ± 0.18 4.3 ± 5.8

NCSN++M ✓ 2.53 ± 0.63 0.88 ± 0.09 14.7 ± 4.3

GaGNet [57] ✗ 2.52 ± 0.62 0.87 ± 0.09 14.7 ± 4.1
ConvTasNet [8] ✗ 2.36 ± 0.60 0.86 ± 0.09 9.9 ± 1.7

flexibility of StoRM with respect to the compromise between fast

inference and high sample quality. In the end, using StoRM with

20 steps and no corrector produces near-optimal sample quality at a

cost of 4.5M MAC·s−1, versus 23M MAC·s−1 for the optimal

SGMSE+ setting (50 steps and Annealed Langevin Dynamics

correction). Furthermore, StoRM still outperforms the optimal

SGMSE+ setting using 10 steps and no corrector, thus reducing

computational complexity by a full order of magnitude.

C. Generalization to mismatched predictors

In Table IV, we report results for StoRM using different initial

predictors than the one used during training. The approach is trained

using the NCSN++M as initial predictor as before, and we test using

ConvTasNet [8] and GaGNet [57] as alternative initial predictors by

exchanging this predictor during sampling. GaGNet also processes

speech in the T-F domain, therefore the artifacts are of a similar

nature than those of NCSN++M. StoRM is entirely robust to such

a slight mismatch, as indicated by the equivalent performance of

using NCSN++M and GaGNet as the initial predictor. ConvTasNet

is a time-domain method using a fully learnt encoder: the speech
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Fig. 9: Listening test results. CQS

is the ”continuous quality scale” on which participants are asked

to rate. Inner line represents the median. 9 participants rated 10

samples randomly selected from WSJ0+Chime and WSJ0+Reverb.

TABLE V: Denoising results on WSJ0+Chime for StoRM using

different conditioning inputs for the score network. Values indicate

mean and standard devation. All approaches use NCSN++M

as backbone architecture and N=50 steps for reverse diffusion.

Conditioning PESQ ESTOI SI-SDR

Noisy 2.30 ± 0.60 0.84 ± 0.10 11.5 ± 5.2
PostDenoiser 2.50 ± 0.62 0.87 ± 0.09 14.7 ± 4.3

Both 2.53 ± 0.63 0.88 ± 0.08 15.1 ± 4.2

F. Ablation studies

We conduct ablation studies on the WSJ0+Chime dataset, to

observe the respective influence of score network conditioning on

the one hand and the training strategy on the other hand.
a) Conditioning of the score network: In Table V, we report

instrumental results when using different conditioning inputs

for the score network used in the proposed StoRM. We input

either the noisy speech y (”Noisy”), the denoised estimate Dθ(y)
(”PostDenoiser”), or both (”Both”, which is the default setting for

StoRM). Using only the noisy speech (”Noisy”) is detrimental to

the performance. It seems that the score network does need the

information from the original distortions in Dθ(y) at time step

τ=T , to properly learn the score at time step τ<T . This mismatch

at the first denoising steps is detrimental to performance. We also

observe that instrumental metrics tend to slightly favor the ”Both”

conditioning over the ”PostDenoiser” conditioning.
b) Training strategies: We show in Table VI the results of

StoRM using different training strategies. We see that jointly training

the initial predictor and the score network slightly improves results

for denoising. However, training the initial predictor from scratch or

having it pre-trained first does not seem to make a difference, as long

as one regularizes the training criterion with the supervised criterion

J (Sup) which matches the output of the initial predictor to the target.

Indeed, as shown in the third line of Table VI, if we use a randomly

initialized predictor and train both the predictor and score networks

TABLE VI: Denoising results on WSJ0+Chime for StoRM using

different training strategies for the score network. All approaches

use NCSN++M as backbone architecture and N=50 steps for

reverse diffusion. Standard deviation is omitted for easier reading.

Pre-train Dθ Fine-tune Dθ Use J (Sup) PESQ ESTOI SI-SDR

✗ ✓ ✓ 2.58 0.88 15.1

✓ ✗ ✗ 2.53 0.88 14.7
✗ ✓ ✗ 1.11 0.62 -0.3

✓ ✓ ✓ 2.58 0.88 15.1

only with the score matching criterion J (DSM)— i.e. setting α

in (17) to 0,—the performance dramatically drops. This is to be

expected since the learning task then becomes much more compli-

cated given the size of the search space and the lack of regularization.

The proposed combination of joint training and regularization with

J (Sup) performs most favorably. This indicates that it is best to train

the predictor to output something resembling clean speech rather

than arbitrary learned encoder features, while still leaving some

room for the predictor to adapt its output to the score model.

VI. CONCLUSION

We presented a generative stochastic regeneration scheme com-

bining a predictive model as initial predictor and a diffusion-based

generative approach regenerating the target cues distorted by the

first stage. On the one hand, the approach improves sample quality

compared to pure predictive approaches as it leverages generative

modelling to output samples that have high probability on the target

posterior distribution manifold, rather than regressing to their mean.

On the other hand, it uses predictive power to provide a good initial

prediction of the target sample, which avoids typical generative arti-

facts such as vocalizing and breathing effects, and increases the inter-

ference removal performance, especially in difficult environments.

Intrusive and reference-free instrumental metrics as well as formal

listening tests confirmed the superiority of the stochastic regener-

ation approach over the baselines. The resulting approach allows

efficient sampling, requiring fewer steps and avoiding the use of An-

nealed Langevin Dynamics correction during reverse diffusion, thus

reducing computational complexity by an order of magnitude with-

out sacrificing quality, compared to the original diffusion model.
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[30] J. Serrà, S. Pascual, J. Pons, R. O. Araz, and D. Scaini, “Universal speech

enhancement with score-based diffusion,” arXiv preprint, 2022.
[31] S. Han and J. Lee, “Nu-wave 2: A general neural audio upsampling model

for various sampling rates,” in ISCA Interspeech, 2022.
[32] D. P. Kingma, T. Salimans, B. Poole, and J. Ho, “Variational diffusion models,”

in Neural Information Processing Systems (NIPS), 2021.
[33] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,” in

Int. Conf. Learning Repr. (ICLR), 2021.
[34] M. W. Y. Lam, J. Wang, D. Su, and D. Yu, “BDDM: Bilateral denoising

diffusion models for fast and high-quality speech synthesis,” in Int. Conf.

Learning Repr. (ICLR), 2022.
[35] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-

resolution image synthesis with latent diffusion models,” in IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
[36] B. Jing, G. Corso, R. Berlinghieri, and T. Jaakkola, “Subspace diffusion

generative models,” in European Conf. on Computer Vision (ECVA), 2022.
[37] Z. Qiu, M. Fu, Y. Yu, L. Yin, F. Sun, and H. Huang, “SRTNet: Time domain

speech enhancement via stochastic refinement,” arXiv preprint, 2022.
[38] B. Kawar, M. Elad, S. Ermon, and J. Song, “Denoising diffusion restoration

models,” in Neural Information Processing Systems (NIPS), 2022.
[39] K. Saito, N. Murata, T. Uesaka, C.-H. Lai, Y. Takida, T. Fukui, and Y. Mitsufuji,

“Unsupervised vocal dereverberation with diffusion-based generative models,”
arXiv preprint, 2022.

[40] R. Sawata, N. Murata, Y. Takida, T. Uesaka, T. Shibuya, S. Takahashi,
and Y. Mitsufuji, “A versatile diffusion-based generative refiner for speech
enhancement,” arXiv preprint, 2022.

[41] J. S. Garofolo, D. Graff, D. Paul, and D. Pallett, “CSR-I (WSJ0) Complete.”
[Online]. Available: https://catalog.ldc.upenn.edu/LDC93S6A

[42] J. Garofolo, L. Lamel, W. Fisher, J. Fiscus, D. Pallett, N. Dahlgren, and
V. Zue, “TIMIT acoustic-phonetic continuous speech corpus,” Linguistic Data

Consortium, 11 1992.
[43] C. Valentini-Botinhao, X. Wang, S. Takaki, and J. Yamagishi, “Investigating

RNN-based speech enhancement methods for noise-robust text-to-speech,” 9th

ISCA Speech Synthesis Workshop, 2016.
[44] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole,

“Score-based generative modeling through stochastic differential equations,”
Int. Conf. Learning Repr. (ICLR), 2021.

[45] A. Hyvärinen and P. Dayan, “Estimation of non-normalized statistical models
by score matching.” Journal of Machine Learning Research, 2005.

[46] P. Vincent, “A connection between score matching and denoising autoencoders,”
Neural Computation, vol. 23, no. 7, pp. 1661–1674, 2011.

[47] B. Øksendal, Stochastic Differential Equations: An Introduction with

Applications. Journal of the American Statistical Association, 2000, vol. 82.
[48] B. D. Anderson, “Reverse-time diffusion equation models,” Stochastic

Processes and their Applications, 1982.
[49] N. Chen, Y. Zhang, H. Zen, R. J. Weiss, M. Norouzi, and W. Chan, “WaveGrad:

Estimating gradients for waveform generation,” Int. Conf. Learning Repr.

(ICLR), 2021.
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