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The identification of electrons plays an important role for a large fraction of the physics
analyses performed at the ATLAS experiment. An improved electron identification algorithm
is presented that is based on convolutional neural networks (CNN), a type of machine learning
architecture specialized in image recognition. It takes as input the images of the deposited
energy in the calorimeter cells around the reconstructed electron candidates for each of the
electromagnetic and hadronic calorimeter layers. Additional input features include the same
high-level variables that are used by the likelihood (LLH) and deep neural network (DNN)
algorithms developed in ATLAS, as well as the information of up to five inner detector tracks
that are matched to an electron candidate during its reconstruction. The output of the network
corresponds to the probability that a reconstructed electron belongs to six classes of signals and
backgrounds. A significant improvement in identification performance is observed when the
CNN algorithm is used in the simulation. For example, for a working point that corresponds to
the same signal efficiency as the LLH "Loose" working point, the CNN improves the rejection
against charged hadrons faking signal electrons, the dominant electron background at the
LHC, by factors of 5 to 8 (depending on the electron kinematics) with respect to the LLH. For
the most difficult background constituted of electrons originating from heavy flavour hadron
decays, the background rejection of the CNN is improved by factors varying between about 2
to 3.5 with respect to the LLH.
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1 Introduction

The capability to reliably identify signal electrons represents a pillar of the ATLAS physics program.
Electron objects are used in a large fraction of ATLAS publications, whether to select or veto electron
candidates. Better identification implemented in the electron triggers would allow to lower their transverse
momentum threshold and increase their acceptance. In particular, analyses featuring multiple leptons,
pairs of electrons with the same electric charge (known as same-sign lepton pairs) or those needing to
identify loosely signal electrons can suffer from large, sometimes dominant, fake or non-prompt electron
background. In summary, any improvement to the identification of electrons is expected to benefit a large
fraction of the ATLAS analyses planned in the future.

The identification of electrons has been mainly performed so far in ATLAS by the likelihood (LLH)
algorithm [1, 2]. This algorithm employs high-level features defined using information from the inner
detector (including the particle identification capability of the Transition Radiation Tracker (TRT)), and
the electromagnetic and hadronic calorimeters, as well as variables that combine the information from
more than one of these subdetectors. These variables are selected to provide good discrimination between
signal electrons and electron backgrounds coming from a real data sample that is expected to be dominated
by light flavour hadrons faking the signature of signal electrons. Probability density functions for each
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of these variables are created for electron signal and background and are combined to obtain a binary
likelihood discriminant. The correlations between the high-level features are neglected when forming the
likelihood discriminant.

A novel electron identification algorithm has recently been introduced in ATLAS that employs a deep
neural network (DNN) [3] that uses as input (mostly) the same high-level features as the LLH but treats
them more optimally, in particular the correlations between them, to increase significantly the electron
identification performance. Depending on the kinematics of the electron candidate, an increase in combined
background rejection between 1.7 and 5.5 is obtained in simulated data for a fixed signal efficiency. In
addition to the identification performance, the DNN algorithm provides multinomial classification, which
means that the electron backgrounds are separated in several classes such as charged hadrons faking
electrons or electrons from heavy-flavor decays. Such classification provides the flexibility to optimize the
electron background rejection for analyses that particularly suffer from one of these background classes.

More optimal electron identification can be achieved by using the low level information that the ATLAS
detector provides, such as the energy deposited in the individual cells of each of the calorimeter layers
around an electron candidate, which can be represented as images [4]. In the following, these calorimeter
images are treated by a convolutional neural network (CNN) [5, 6], a type of neural network architecture
that is specialized in image recognition. To obtain optimal performance, the information of the calorimeter
images is combined with high-level features similar to those used in the LLH and DNN algorithms.
This CNN algorithm also uses additional tracks that are matched to electron candidates, which are more
numerous on average for background than for signal electrons.

The design and performance of the electron identification CNN are described in this note, which will
focus on electrons with 𝑝T > 4.5 GeV (where 𝑝T is the electron momentum transverse to the LHC beam)
and |𝜂 | < 2.51. The ATLAS detector is presented in Section 2. The electron candidate classification and
the samples used for training the CNN are described in Section 3. Section 4 details the inputs to the CNN.
Section 5 describes the neural network architectures and the training procedure. Finally, the performance of
the CNN is compared with the existing algorithms using simulated samples in Section 6 before concluding
remarks are provided in Section 7.

2 ATLAS Detector

The ATLAS detector [7] at the LHC covers nearly the entire solid angle around the collision point. It
consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic and
hadron calorimeters, and a muon spectrometer incorporating three large superconducting air-core toroidal
magnets.

The inner-detector system (ID) is immersed in a 2 T axial magnetic field and provides charged-particle
tracking in the range |𝜂 | < 2.5. The high-granularity silicon pixel detector covers the vertex region and
typically provides four measurements per track, the first hit normally being in the insertable B-layer (IBL)
installed before Run 2 [8, 9]. It is followed by the silicon microstrip tracker (SCT), which usually provides

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the 𝑧-axis along the beam pipe. The 𝑥-axis points from the IP to the centre of the LHC ring, and the 𝑦-axis points
upwards. Cylindrical coordinates (𝑟, 𝜙) are used in the transverse plane, 𝜙 being the azimuthal angle around the 𝑧-axis.
The pseudorapidity is defined in terms of the polar angle 𝜃 as 𝜂 = − ln tan(𝜃/2). Angular distance is measured in units of
Δ𝑅 ≡

√︁
(Δ𝜂)2 + (Δ𝜙)2.
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eight measurements per track. These silicon detectors are complemented by the transition radiation tracker
(TRT), which enables radially extended track reconstruction up to |𝜂 | = 2.0. The TRT also provides
electron identification information based on the fraction of hits (typically 30 in total) above a higher
energy-deposit threshold corresponding to transition radiation.

The ATLAS calorimeter system has both electromagnetic (EM) and hadronic (HAD) components
and covers the pseudorapidity range |𝜂 | < 4.9, with finer granularity over the region matching the inner
detector. The central electromagnetic calorimeters are of an accordion-geometry design made from
lead/liquid-argon (LAr) detectors, providing a full 𝜙 coverage. These detectors are divided into two
half-barrels (−1.475 < 𝜂 < 0 and 0 < 𝜂 < 1.475) and two endcap components (1.375 < |𝜂 | < 3.2), with a
transition region between the barrel and the endcap (1.37 < |𝜂 | < 1.52) which contains a relatively large
amount of inactive material. Over the region devoted to precision measurements (|𝜂 | < 2.5, excluding the
transition regions), the EM calorimeter is segmented into longitudinal compartments, referred to as the
first (also known as strips), second, and third layers. The first layer consists of strips finely segmented
in |𝜂 |, offering excellent discrimination between photons and 𝜋0 → 𝛾𝛾 decays. The granularity of that
layer is 0.1 in 𝜙, and depends on |𝜂 | for its granularity in the 𝜂 direction: 0.025/8 for |𝜂 | < 1.8, 0.025/6 for
1.8 < |𝜂 | < 2.0, 0.025/4 for 2.0 < |𝜂 | < 2.4 and 0.025 for 2.4 < |𝜂 | < 2.5. Most of the energy is typically
collected in the second layer, which has a lateral granularity of 0.025 × 0.025 in (𝜂, 𝜙) space, while the
third layer provides measurements of energy deposited in the tails of the shower. The granularity of the
third layer is 0.050 × 0.025 in (𝜂, 𝜙). The central EM calorimeter is complemented by two presampler
detectors in the region |𝜂 | < 1.52 (barrel) and 1.5 < |𝜂 | < 1.8 (endcaps), made of a thin LAr layer,
providing a sampling for particles that start showering in front of the EM calorimeters. The granularity of
the presampler is 0.025 × 0.1 in (𝜂, 𝜙).

The hadronic calorimeter, surrounding the EM calorimeter, consists of an iron/scintillator tile calorimeter
in the range |𝜂 | < 1.7 and two copper/LAr calorimeters spanning 1.5 < |𝜂 | < 3.2, which are each composed
of three and four longitudinal layers, respectively. The granularity of the tile calorimeter is 0.1 × 0.1 in
(𝜂, 𝜙), except for its last layer for which it is 0.2× 0.1. The granularity in the LAr HAD endcap calorimeter
is 0.1 × 0.1 in (𝜂, 𝜙) for |𝜂 | < 2.5, the range of interest for this note. The acceptance is extended by two
copper/LAr and tungsten/LAr forward calorimeters extending up to |𝜂 | = 4.9, and hosted in the same
cryostats as the electromagnetic calorimeter.

The muon spectrometer surrounds the calorimeters and is based on three large superconducting air-core
toroidal magnets with eight coils each. The field integral of the toroids ranges between 2.0 and 6.0 T m
across most of the detector. The muon spectrometer includes a system of precision tracking chambers and
fast detectors for triggering.

Interesting events are selected by the first-level trigger system implemented in custom hardware, followed
by selections made by algorithms implemented in software in the high-level trigger [10]. The first-level
trigger accepts events from the 40 MHz bunch crossings at a rate below 100 kHz, which the high-level
trigger further reduces in order to record events to disk at about 1 kHz.

An extensive software suite [11] is used in the reconstruction and analysis of real and simulated data, in
detector operations, and in the trigger and data acquisition systems of the experiment.
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3 Simulated samples and electron candidate classification

3.1 Classification of electron signals and backgrounds

The CNN, which is described in detail in Section 5, undergoes supervised training using simulated data
where signal and background electrons are assigned a label based on their true identity, which is available
in the simulation. This multinomial classification has been designed to provide flexibility to the users, such
that analyses suffering from different types of electron backgrounds can modify the computation of the
final CNN discriminant to provide optimal background rejection for their specific analysis. This aspect of
the CNN is described in more detail in Section 6. The same electrons classes as for the DNN are used.

• Prompt electrons: Prompt isolated electrons, e.g. electrons from 𝑍 → 𝑒+𝑒−, 𝑊± → 𝑒±𝜈,
𝐽/𝜓 → 𝑒+𝑒− decays with the 𝐽/𝜓 being produced in the hard scatter. Electrons from a final state
radiation or bremsstrahlung photons are also considered here if they originate from a prompt electron.
Furthermore, the reconstructed charge is the same as the true charge;

• Charge-flip electrons: Same as prompt electrons, but the reconstructed charge is the opposite of the
true charge. Charge-flip electrons originate either from material effects (e.g. 𝑒− → 𝑒−𝛾 → 𝑒−𝑒+𝑒−

for which the positron is reconstructed as the main electron candidate track) or from a pure mistake
in the electron curvature measurement, which occurs in particular at high pseudorapidity where the
lever arm of the inner detector is reduced, or at high 𝑝T. In case of an electron originating from
bremsstrahlung followed by a conversion, the charge of the original prompt electron is considered the
true charge. For most use-cases in the ATLAS physics program, charge-flip electrons are considered
signals. Notable exceptions are analyses featuring pairs of same-sign leptons. With the DNN or the
CNN, the users can decide whether to include charge-flip electrons as signal or background (see
Section 6);

• Prompt photon conversion: Electrons from prompt photons which convert into an 𝑒+𝑒− pair.
Prompt photons which are reconstructed as an electron are also considered for this class;

• Electrons from heavy-flavour hadron decays: Electrons coming from a decay of a 𝑐-hadron or a
𝑏-hadron, except those produced from prompt 𝐽/𝜓 decays as explained above. Electron backgrounds
from this and the next two classes originate from hadrons, which themselves originate from the
parton showering and hadronisation processes of jets;

• Light flavour 𝒆/𝜸: Real electrons coming from the decay of a light quark hadron. This includes
electrons from converted photons from such decays, such as 𝜋0 → 𝛾𝛾, which are copious in the
LHC data.

• Light flavour hadrons: Charged hadrons (such as 𝜋±) that fake the electron signature. This is
the dominant background source after electron reconstruction and before electron identification are
applied.

The performance of the CNN will be compared to the LLH that has a binary output, for which signal
electrons include both prompt and charge-flip electrons and background electrons include all other classes.
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3.2 Simulated samples used for CNN training and performance evaluation

Deep learning algorithms such as CNNs have a high learning capacity, which implies that their performance
is largely dependent on the available training statistics. For this reason, several samples enriched in
different types of electron signals and backgrounds are combined to maximize the electron statistics.
These samples, which are listed in Table 1, form a large inclusive sample consisting of approximately
183 million reconstructed candidate electrons that are used to train the CNN and test its performance. Even
though some samples are particularly enriched in a specific type of electrons, such as 𝑍 → 𝑒+𝑒− for signal
electrons, each sample also contains other types of electrons, such as charged hadrons faking the electron
signatures for example. Therefore, each of the samples described below are allowed to populate any of the
electron classes defined in Section 3.1.

The simulation [12] of the production and decay of 𝑍 → 𝑒+𝑒−, 𝑍 → 𝜏+𝜏−, Drell-Yan 𝛾∗/𝑍∗ → 𝑒+𝑒−,
𝑊+ → 𝑒+𝜈𝑒, 𝑊− → 𝑒−𝜈̄𝑒, 𝑊+ → 𝜏+𝜈𝜏 and 𝑊− → 𝜏−𝜈̄𝜏 were all performed with the Powheg Box v1
MC generator [13–16] at NLO accuracy. The Drell-Yan processes were generated in ten subsamples of
various 𝑚𝑒𝑒 slices covering 10 − 60 GeV, 120 − 180 GeV, and 180 GeV all the way up to 𝑚𝑒𝑒 values of
5 TeV. For all of these samples, Powheg was interfaced to Pythia 8.186 [17] for the modelling of the
parton shower, hadronisation, and underlying event, with parameters set according to the AZNLO tune [18].
The CT10NLO parton distribution functions (PDF) set [19] was used for the hard-scattering processes,
whereas the CTEQ6L1 PDF set [20] was used for the parton shower. The effect of QED final state radiation
was simulated with Photos 3.52 [21, 22]. The EvtGen 1.2.0 program [23] was used to decay bottom and
charm hadrons.

The production of 𝑡𝑡 events was modelled [24] using the Powheg Box v2 [15] generator at NLO with the
NNPDF3.0NLO [25] PDF set and the hdamp parameter2 set to 1.5 ×𝑚top [26]. The events were interfaced
to Pythia 8.230 [27] to model the parton shower, hadronisation, and underlying event, with parameters set
according to the A14 tune [28] and using the NNPDF2.3LO [29] set of PDFs. The decays of bottom and
charm hadrons were performed by EvtGen 1.6.0. During the simulation, at least one of the 𝑊 bosons
originating from a top quark is required to decay leptonically.

To maximize the available statistics of electron backgrounds, several high cross section two-to-two
processes were simulated in individual datasets using Pythia 8.186 with the A14 set of tuned parameters
and the NNPDF2.3LO PDF set. The simulated processes include multijet production, 𝑞𝑔 → 𝑞𝛾, 𝑞𝑞 → 𝑔𝛾,
𝑊 and 𝑍 boson production, as well as top quark production. No restrictions are placed on the decays of the
bosons. To enrich the sample in electron backgrounds, only events where the sum of transverse energy of
particles of the hard scatter (excluding muons and neutrinos) in a Δ𝜂 × Δ𝜙 window of 0.1 × 0.1 exceeds a
certain threshold are selected. Three samples have been generated with lower energy thresholds of 17, 35
and 50 GeV, guaranteeing good background statistics over a wide range of 𝑝T values. For the remainder of
this note, these samples will be referred to as JF17, JF35 and JF50, respectively.

Large statistics in background electrons originating from prompt photon conversion is obtained from
simulated photon+jets sample which are sliced in photon 𝑝T. These events are generated with Pythia8
with the NNPDF2.3LO set of PDFs and the A14 tune.

In all of these samples, the effect of multiple interactions in the same and neighbouring bunch crossings
(pileup) was modelled by overlaying the simulated hard-scattering event with inelastic proton–proton

2 The hdamp parameter is a resummation damping factor and one of the parameters that controls the matching of Powheg matrix
elements to the parton shower and thus effectively regulates the high-𝑝T radiation against which the 𝑡𝑡 system recoils.
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(𝑝𝑝) events generated with Pythia 8.186 [17] using the NNPDF2.3lo set of parton distribution functions
(PDF) [29] and the A3 set of tuned parameters [30].

The number of electron candidates with 𝑝T > 4.5 GeV and |𝜂 | < 2.5 for each of the process categories
described above is shown in Table 1. The total number of electron candidates available is roughly
183 million in the inclusive sample, of which approximately 90% were used for the training of the CNN,
and 10% for evaluating its performance. Table 2 shows the class proportions in that sample, as well as the
process they come from. The majority of candidate electrons belong to the light-flavour hadron category.
Signal prompt electrons are also well represented in the sample, which is important for the CNN to perform
well in signal electron recognition. The sample contains at least 1 million electron candidates of each
electron class, which guarantees a good identification performance across all classes.

Table 1: Number of electron candidates in the inclusive simulated sample used for training the CNN and evaluating
its performance (see text for details).

Processes Number of electron candidates

JF17, JF35, JF50 71,839,462
𝑡𝑡 (at least one 𝑊 boson → ℓ𝜈) 63,891,541
𝑊 , 𝑍 28,287,996
Drell-Yan 𝑍∗/𝛾∗ → 𝑒+𝑒− 11,823,539
𝛾 + jet 7,406,539

Total 183,249,077

Table 2: Class composition (in %) of the inclusive sample used to train and evaluate the CNN, as well as the process
which they come from.

Process \ Class Prompt 𝑒± Charge Flip 𝛾 Conversion HF Decay LF 𝑒/𝛾 LF Hadron

JF17, JF35, JF50 2.5× 10−3 9.5× 10−5 0.05 0.20 7.67 31.28
𝑡𝑡 (𝑊 → ℓ𝜈) 2.19 0.07 0.05 1.22 5.44 25.89
𝑊 , 𝑍 10.45 0.36 0.04 0.03 1.48 3.08
𝑍∗/𝛾∗ → 𝑒+𝑒− 3.93 0.21 8.6× 10−3 0.01 0.54 1.76
𝛾 + jet 3.9× 10−5 3.8× 10−6 0.73 0.02 0.69 2.59

All Processes 16.57 0.64 0.88 1.49 15.82 64.60

4 Input variables to the CNN

Three types of features are used as input to the CNN: high-level variables (which are used also in the
LLH and DNN), tracking variables and the calorimeter images. Each type of features is described in
Sections 4.2-4.4. These variables are computed once the electron candidates are reconstructed, which
procedure is first briefly described in Section 4.1.
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4.1 Electron reconstruction

Electron candidates are reconstructed by matching a cluster of energy deposits in the calorimeter with at
least one inner detector track. The clusters are built using the topo-cluster reconstruction algorithm [31,
32]. To reduce the amount of topo-clusters reconstructed from pile-up, only clusters with at least half of
their energy deposited in the electromagnetic calorimeter are considered for the electron reconstruction.
These topo-clusters are matched to tracks that are re-fitted to account for bremsstrahlung [33]. To also
capture possible energy deposits from bremsstrahlung, super-clusters are formed which can contain multiple
topo-clusters. Electron candidates with 𝑝T > 4.5 GeV and |𝜂 | < 2.5 are retained for further analysis. More
details on electron reconstruction can be found in Refs. [1, 2].

4.2 High-level variables

The CNN uses several high-level variables (HLV) which are listed in Table 3 for the variables relying solely
on calorimetry information, and Table 4 for all other variables. We note that, even though the HLV could in
principle be reconstructed by the neural network using the information from the additional tracks and the
calorimeter images, we observe that the HLV are crucial to help the CNN converge and find a good global
minimum during its training, and generally obtain good performance. The HLV list is the same as for the
LLH and DNN with a couple additions. The charge of the best matched track times the absolute value
of its transverse impact parameter (𝑞 × 𝑑0/𝜎(𝑑0)), as well as the average charge of all tracks matched to
the electron weighted by their number of hits in the SCT detector (⟨𝑞⟩SCT𝑤), are both used by the CNN
while not being included for the DNN and LLH algorithms. These variables have been developed for the
identification of charge-flip electrons [1]. Similarly to the DNN, the 𝐸T and 𝜂 of the electron candidates
are used as input to parametrise the CNN as a function of these variables, while they are not used by the
LLH.

It is to be noted that the tracking variables in Table 4 are those corresponding to the main electron track
identified by the electron reconstruction algorithm, while the features of additional tracks associated to an
electron candidate are also considered separately by the CNN as discussed in the following section.

4.3 Additional track variables

The ATLAS electron reconstruction algorithm can associate more than one track to an electron candidate.
These additional tracks contain useful information since, for example, the average number of tracks for
signal electrons in the inclusive sample described in Section 3 is 1.3, while it is 2.8 for background classes.
The 13 features listed in Table 5 are considered by the CNN for up to five matched tracks, which are ordered
in increasing value of their distance to the reconstructed electron candidate position in Δ𝜂 × Δ𝜙.

4.4 Calorimeter images

More optimal electron identification performance can be achieved by using the two-dimensional images
of the energy deposited in each of the calorimeter layers around an electron candidate. There is the
technical complication in creating such images that the number of calorimeter layers that an electron
candidate will cross varies as a function of |𝜂 | (e.g. because the barrel and endcap calorimeter overlap in
the transition region 1.37 < |𝜂 | < 1.52), and that the calorimeter granularity is not the same for every layer
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Table 3: Calorimeter input high-level variables to the CNN.

Type Description Symbol

Hadronic leakage
Ratio of 𝐸T in the first layer of the hadronic calorimeter to 𝐸T
of the EM cluster 𝑅had1

Ratio of 𝐸T in the hadronic calorimeter to 𝐸T of the EM cluster 𝑅had

Third layer of
EM calorimeter

Ratio of the energy in the third layer to the total energy in the
EM calorimeter. Due to known mismodelling at high |𝜂 |, this
variable is set to a default value for candidates with |𝜂 | > 2.01

𝑓3

Second layer of
EM calorimeter

Lateral shower width,
√︃
(∑ 𝐸𝑖𝜂

2
𝑖
)/(∑ 𝐸𝑖) − ((∑ 𝐸𝑖𝜂𝑖)/(

∑
𝐸𝑖))2,

where 𝐸𝑖 is the energy and 𝜂𝑖 is the pseudorapidity
of cell 𝑖 and the sum is calculated within a window of 3 × 5 cells

𝑤𝜂2

Ratio of the energy in 3 × 3 cells over the energy in 3 × 7 cells
centred at the electron cluster position 𝑅𝜙

Ratio of the energy in 3 × 7 cells over the energy in 7 × 7 cells
centred at the electron cluster position 𝑅𝜂

First layer of
EM calorimeter

Shower width,
√︁
(∑ 𝐸𝑖 (𝑖 − 𝑖max)2)/(∑ 𝐸𝑖), where 𝑖 runs over

all strips in a window of Δ𝜂 × Δ𝜙 ≈ 0.0625 × 0.2, corresponding
typically to 20 strips in 𝜂, and 𝑖max is the index
of the highest-energy strip

𝑤stot

Ratio of the energy difference between the maximum energy
deposit and the energy deposit in a secondary maximum in the
cluster to the sum of these energies

𝐸ratio

Ratio of the energy in the first layer to the total energy in the EM
calorimeter 𝑓1

and 𝜂 region. To tackle the first issue, images of every layer of the calorimeters are produced regardless
of the pseudorapidity of the electron. So, for example, images of the endcap calorimeter are created
for electrons produced in the barrel region, and are filled with zeros. All images are produced with a
granularity of Δ𝜂 × Δ𝜙 = 0.025 × 0.025, which corresponds to the granularity of the second layer of the
electromagnetic calorimeter that collects most of the electron’s energy. Images for calorimeter layers
with a coarser granularity are produced by distributing the deposited energy into images of granularity
Δ𝜂 × Δ𝜙 = 0.025 × 0.025. For example, for a Tile calorimeter cell of granularity Δ𝜂 × Δ𝜙 = 0.1 × 0.1, its
deposited energy is distributed equally between the 16 "pixels" of granularity Δ𝜂 × Δ𝜙 = 0.025 × 0.025
that corresponds to the area of that Tile calorimeter cell. There is the exception of the first calorimeter
layer that reaches even finer granularities that depend on |𝜂 | (see Section 2). The images for this layer
are all produced with the finest available granularity for that layer: 0.025/8. Each calorimeter image is
centered on the electron candidate calorimeter cluster position. The images are 0.175 wide in 𝜂 and 0.275
wide in 𝜙 for all calorimeter layers, which corresponds to the size of 7 cells in 𝜂 and 11 cells in 𝜙 for the
layer 2 of the EM calorimeter. A cell is included in a calorimeter image if (and only if) its center is located
within these ranges, and its entire energy is used. Figure 1 shows the calorimeter images averaged over all
electron candidates with |𝜂 | < 1.3 in the barrel section. The corresponding images in the endcap region
1.85 < |𝜂 | < 2.5 are shown in Figure 2. The color of these images represents the mean energy deposited
divided by the electron energy (in %). Only calorimeter layers with non-zero deposited energies in each 𝜂
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Table 4: Track, track-cluster matching and kinematic input high-level variables to the CNN.

Type Description Symbol

Track
quality

Number of hits in the innermost pixel layer 𝑛Blayer
Number of hits in the pixel detector 𝑛Pixel
Number of hits in the SCT detector 𝑛SCT
Number of degrees of freedom in the track fit 𝑛dof
Transverse impact parameter relative to the beamline 𝑑0
Significance of transverse impact parameter
defined as the ratio of 𝑑0 to its uncertainty 𝑑0/𝜎(𝑑0)

Momentum lost by the track between the perigee and the last
measurement point divided by the momentum at perigee Δ𝑝/𝑝

Charge of the track times the significance of the transverse
impact parameter 𝑞 × 𝑑0/𝜎(𝑑0)

Average charge of all tracks matched to the electron
weighted by their number of hits in the SCT detector ⟨𝑞⟩SCT𝑤

TRT
Likelihood probability based on transition radiation in the
TRT. This variable is set to a default value for candidates
with 𝜂 > 2.01 due to the limited coverage of the TRT.

𝑒ProbabilityHT

Track-cluster
matching

Δ𝜂 between the cluster position in the first layer and the
extrapolated track Δ𝜂1

Δ𝜙 between the cluster position in the second layer of the
EM calorimeter and the momentum-rescaled track,
extrapolated from the perigee, times the charge 𝑞

Δ𝜙res

Ratio of the cluster energy to the track momentum 𝐸/𝑝
Ratio of the cluster transverse energy to the track 𝑝T 𝐸T/𝑝T
Number of tracks matching the electron candidate 𝑛tracks

Kinematics

Transverse energy of the electron measured by the
calorimeter system. This variable is not used for
discrimination purposes but for the CNN to infer the 𝐸T
dependence of other variables.

𝐸T

Pseudorapidity of the electron as measured by the calorimeter
system. This variable is not used for discrimination purposes but
for the CNN to infer the 𝜂 dependence of other variables.

𝜂

region are shown. As expected, significant differences in the transverse and longitudinal developments
of the showers, as well as the activity neighboring the electron candidate, can be observed between the
different signal and background classes. It is to be noted that every calorimeter layer has been found to
contribute non-negligibly to the CNN performance, and thus all of them are considered as inputs to the
CNN.

10



Table 5: CNN input variables for each track 𝑗 which is matched to an electron candidate, up-to a maximum of five
tracks. For the computation of Δ𝜂 and Δ𝜙, the electron candidate position is determined to be the one of the best
matched track to the electron candidate.

Type Description Symbol

Matching
variables

Ratio of the momentum of track 𝑗 to the energy of the electron
candidate 𝑝 𝑗/𝐸

Δ𝜂 between the track 𝑗 and the electron candidate position Δ𝜂 𝑗

Δ𝜙 between the track 𝑗 and the electron candidate position Δ𝜙 𝑗

Number of
hits

Number of hits in the pixel detector 𝑛
𝑗

Pixel
Number of hits in the SCT detector 𝑛

𝑗

SCT
Number of hits in the TRT detector 𝑛

𝑗

TRT

Track parameters
and fit quality

Transverse impact parameter relative to the beamline 𝑑
𝑗

0
Uncertainty on 𝑑0 𝜎(𝑑0) 𝑗
Longitudinal impact parameter relative to the beamline 𝑧

𝑗

0
Charge of the track 𝑞 𝑗

𝜒2 of the track fit 𝜒2
𝑗

Number of degrees of freedom of the track fit ndof 𝑗
Matched vertex index number vtx 𝑗

5 Description of the CNN

5.1 Preparation of the Training Sample

The distributions of 𝐸T and 𝜂 for a subsample of 18.8 million electron candidates of the samples described
in Section 3 are shown in Figure 3. The structures in the 𝐸T distribution is due to the fact that some samples
are sliced kinematically, such as the Drell-Yan samples in 𝑚𝑒𝑒 and the 𝛾+jets samples in photon 𝑝T. The 𝜂
distributions of most electron classes is maximal around 𝜂 ≈ 0 and drops slowly with increasing |𝜂 |, except
for the charge-flip, light flavor 𝑒/𝛾 and photon conversion classes that involve material effects, and thus are
either flat or increasing as a function of |𝜂 |. In order for the CNN to be as physics-independent as possible,
the normalisation and shapes of the 𝐸T and 𝜂 distributions of each background class are reweighed in two
dimensions to match the ones of signal electrons. In this manner, the CNN will not attempt to distinguish
signal versus background based on the values of 𝐸T and 𝜂 of the electron candidate. In addition, reweighing
the normalisation of each class to the same value allows to mitigate significant differences in class ratios,
such as those observed in Figure 3, which have proven to be detrimental for the discrimination performance
of less prevalent classes such as charge-flip and photon-converted electrons. In the same procedure, the
background to signal class ratio can be adjusted to optimize the performance. This ratio was treated as an
hyper-parameter and found to be optimal around a value of 4 for the inclusive sample.

5.2 Preprocessing

Before being fed to the neural network, high-level variables are transformed via the QuantileTransformer
class available in the scikit-learn Python library [34], which allows each variable to follow a standard
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ATLAS Simulation Preliminary ;
√
𝑠 = 13 TeV ; |𝜂 | < 1.3

Prompt Electron Charge Flip Photon Conversion Heavy Flavour Light Flavour e/𝜸 Light Flavour Hadron

Figure 1: Mean energy deposits images for electron candidates with |𝜂 | < 1.3 in a given cell divided by the total
energy of the electron candidate (in %). Each column corresponds to the different electron classes. The top
row corresponds to the presampler layer which is followed by the three layers of the barrel electromagnetic
calorimeter. Then the last three rows show the hadronic tile calorimeter layers. The images of each layer
are treated with a granularity of Δ𝜂 × Δ𝜙 = 0.025 × 0.025, except the first layer of the EM calorimeter for
which it is Δ𝜂 × Δ𝜙 = 0.025/8 × 0.025.

normal distribution. This non-linear transform is applied independently to each feature and allows the
learning algorithm to perform slightly better. It also tends to spread out most frequent values and reduce the
impact of outliers. No transformation is applied for the calorimeter images and additional tracks features.

5.3 Network Architecture

Figure 4 shows the network architecture of the CNN model trained for electron identification. Three
different sub-CNNs are deployed. The first one processes the image extracted from the first electromagnetic
calorimeter layer, which has a finer granularity of 56 × 11 in 𝜂 × 𝜙. The second sub-CNN processes all
of the calorimeter layers each using an 𝜂 × 𝜙 = 7 × 11 granularity, including the first EM calorimeter
layer down-scaled in resolution. The reason to also include the layer 1 of the EM calorimeter layer in
the second sub-CNN is to capture the longitudinal development of the shower of the electron candidate.
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ATLAS Simulation Preliminary ;
√
𝑠 = 13 TeV ; 1.85 < |𝜂 | < 2.5

Prompt Electron Charge Flip Photon Conversion Heavy Flavour Light Flavour e/𝜸 Light Flavour Hadron

Figure 2: Mean energy deposits images for electrons candidates with 1.85 < |𝜂 | < 2.5 in a given cell divided by
the total energy of the electron candidate (in %). Each column corresponds to the different electron
classes. The top rows correspond to the three layers of the endcap electromagnetic calorimeter, followed
by the four rows of the hadronic endcap calorimeter layers. The images of each layer are treated with
a granularity of Δ𝜂 × Δ𝜙 = 0.025 × 0.025, except the first layer of the EM calorimeter for which it is
Δ𝜂 × Δ𝜙 = 0.025/8 × 0.025.
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(a) (b)
Figure 3: Pseudorapidity and transverse energy of the approximately 18.8 million electron candidates used to validate
the CNN performance.

The calorimeter images from the different layers are treated as different channels in the second sub-CNN
(like red-blue-green in a standard colored image-processing CNN). The last sub-CNN is used to process
the information of the tracks associated with the electron object using a 1 × 1 kernel. The outputs are
flattened, concatenated and fed to fully-connected neural network layers, together with the HLV input
features. This fully connected network outputs the probabilities corresponding to the signal or background
classes introduced in Section 3.

...

...

...

0 → Prompt Electron

1 → Charge Flip 

2 → Photon Conversion

3 → Heavy Flavour

4 → Light Flavour   /  

5 → Light Flavour Hadron

Classification

CNN

CNN

CNN

FCN

Calorimeter images
Coarse resolution (7x11)

Calorimeter images

Matched tracks

Fine resolution (56x11)

High-level variables

...

5 tracks x 13 variables

Figure 4: Global neural network architecture.

Table 6 describes the hyper-parameters that have been optimized for each of the four network components
shown in Figure 4. Each of the three sub-CNNs has two consecutive convolution layers for which the
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number of neurons are constrained by specific kernel and pooling sizes (respectively used to perform the
convolutions and subsequently reduce their resulting dimensionality). Each of these two layers has a certain
number of feature maps chosen to extract salient properties of the images. The outputs of all sub-CNNs are
flattened and concatenated along the values of high-level variables and then connected to a fully-connected
network, which in turn consists of two hidden layers of 100 neurons each, followed by an output layer of
six neurons (i.e. the number of classes).

Table 6: Hyper-parameters for each of the components of the neural network.

Network Component Kernel Sizes Pooling Sizes Feature Maps Hidden Neurons

Coarse images (7×11) (3,5), (3,5) (1,1), (1,1) 100, 100 -
Fine images (56×11) (3,5), (3,5) (4,1), (2,1) 100, 100 -
Matched tracks (5×13) (1,1), (1,1) (1,1), (1,1) 200, 200 -

High-level variables (26) - - - 100, 100

The network is trained using TensorFlow [35]. Each hidden layer is processed through the ReLU
activation function whereas the Softmax activation function is used to normalize the output layer to a
probability distribution over predicted output classes. The gradient descent is performed with the Adam
optimiser [36] and uses a variable adaptive learning rate that progressively gets smaller as the minimum
of the loss function gets closer. The categorical cross-entropy is employed as the loss function and the
accuracy is used as the metric to assess training convergence. The algorithm regularly writes checkpoints
to save the weights of the best epoch. The training is terminated after five consecutive epochs for which the
metric did not improve from the previous epoch, thus signalling the convergence has reached a plateau and
making the algorithm retrieve the weights of the best epoch. Throughout the training, L2 [37] and Dropout
[38] regularisation are used in order to minimize the risk of overfitting.

5.4 Definition of the Final Discriminant

The CNN outputs for each electron candidate a vector normalised to unity with six entries, each representing
the estimated probability that the candidate belongs to one of the six classes defined in Section 3. Although
in principle the probability for an electron candidate to be signal 𝑝sig could be used as the final discriminant,
in practice a more powerful discriminant [39] can be formed by taking the ratio of the probabilities to be
signal or background:

D =

∑
𝑤sig𝑝sig∑
𝑤bkg𝑝bkg

, (1)

where the sums on the numerator and denominator are on the signal and background classes, respectively.
The parameters 𝑤sig and 𝑤bkg are adjustable weights, of which the sums are constrained to unity. For most
use cases, charge-flip electrons are included as signal (in addition to prompt electrons) because many
physics analyses do not have requirements on the electron charge. For the CNN, the discriminant D is
transformed as:

D → D/(1 + D), (2)

such that the new discriminant is bounded between 0 and 1, which does not alter the performance. As
demonstrated in the DNN note [3], the chosen values for the weights 𝑤sig and 𝑤bkg affect significantly the
electron identification performance. For instance, the background rejection can be increased against a
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specific background class by increasing the value of 𝑤bkg for that class. The CNN is found to perform
approximately optimally against the combined background of a given sample when 𝑤sig and 𝑤bkg are set to
the actual fractions in which each class occurs in that sample. It will be shown in Section 6.2 that, other
than performing electron identification, the CNN output can be used to estimate the true class fractions of a
given sample.

6 Performance

6.1 Analysis of the performance and comparison with the Likelihood algorithm

The performance of the CNN is estimated in a sample that is statistically independent to the one used for
training the neural network. It consists of 10% of the inclusive sample described in Section 3, with the
same electron class proportions, representing approximately 18.8 million electron candidates. Given that
the CNN achieves high background rejection, especially for the light-flavour classes, it is important to
have a high-statistics evaluation sample to be able to properly characterize its performance, in particular
differentially as a function of 𝐸T, 𝜂 and pile-up activity, as presented below. There is no kinematic
reweighing applied to the validation sample, such that Figure 3 reflects the actual 𝐸T and 𝜂 distributions of
the candidate electrons in that sample. Standard electron quality requirements are applied to that sample.
The number of pixel and silicon (pixel+SCT) hits on the main electron track are required to be at least two
and seven, respectively. In addition, the same ambiguity resolution cut than the LLH Loose and Medium
working point is applied to distinguish objects that are reconstructed as both electrons and photons. These
quality requirements result in an evaluation sample of 17.5 million electron candidates.

The shape of the CNN discriminant of Equation 2 is shown in Figure 5, for which the parameters 𝑤sig and
𝑤bkg of Equation 1 were set to the true class proportions of the combined sample (see Table 2). Excellent
separation is observed, in particular for the light-flavour hadron class, which is the only background
class that is not prominently composed of real (non-prompt) electrons. Still, it is important to achieve
good rejection for that background class since it is by far the most prominently produced in the LHC
data. The other background classes tend to be more difficult to reject than light-flavour hadrons, but good
discrimination can still be achieved.

(a) 𝐸T ⩽ 15 GeV (b) 𝐸T > 15 GeV

Figure 5: The CNN discriminant for the various electron classes for (a) 4.5 GeV < 𝐸T ⩽ 15 GeV and (b) 𝐸T > 15 GeV
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The performance of the CNN can be further characterized from the Receiver Operating Characteristics
(ROC) curves that show the signal efficiency versus the background rejection (i.e. the inverse of the
background efficiency 1/𝜖bkg). The ROC curves are obtained by varying the cut value on the discriminant
and computing at each value the signal and background efficiencies. Figures 6 and 7 shows the ROC
curves for individual classes for the case where charge-flip electrons are included in the signal (the most
popular use-case in ATLAS) for electron candidates with 4.5 GeV < 𝐸T ⩽ 15 GeV and 𝐸T > 15 GeV,
respectively (inclusively in 𝜂). In these figures, the performance of the CNN using all types of inputs, i.e.
HLV, additional tracks and the calorimeter images, are shown with the solid blue lines. The dotted red,
dash-dotted green and dashed orange lines also show the performance of the algorithms when only the
HLV, HLV+images and HLV+track inputs are used, respectively, to illustrate which component of the
CNN is most powerful against which type of background. The corresponding ROC curves for the LLH are
shown as solid black lines, as well as the Loose, Medium and Tight working points that are shown as black
markers on these figures. The working point markers do not necessarily overlap with the LLH ROC curves
because the cut on the LLH discriminant varies as a function of 𝑝T and 𝜂 in the definition of the working
points. Furthermore, additional requirements are applied for the LLH working points, such as requiring a
hit on the innermost pixel layer for the Medium and Tight working points, which is particularly useful to
reject the photon conversion background.

Large improvements with respect to the LLH can be obtained for all electron classes. For example,
improvement factors in background rejection of 4.3 and 6.9 are observed against the light flavour 𝑒/𝛾 and
hadrons, respectively, for the medium working points for 𝐸T > 15 GeV. These are the easiest classes to
classify, and also the ones for which the calorimeter images are the most distinctive from signal electrons.
Significant improvements over the LLH are also observed for photon conversion and heavy-flavour decays,
as well as against the combined background of the evaluation sample as shown in Figures 6(a) and 7(a). One
exception is the performance against photon conversion at low 𝑝T where the performance is comparable to
the LLH, which is the class with less statistics in the training sample in that 𝑝T range. Another conclusion
that can be reached from these figures is that, in addition to the HLV that are common to the LLH, DNN
and CNN, the calorimeter images and the additional tracks have different importance against different types
of electron backgrounds. The calorimeter images play a more prominent role in rejecting light flavour 𝑒/𝛾
and hadrons (in particular at low 𝑝T), presumably because of their more prominent surrounding hadronic
activity, in particular for light flavour hadrons that feature hadronic showers instead of electromagnetic
showers in the calorimeter. The calorimeter images are not as powerful at high 𝑝T, which is likely due to
the fact that they are the component of the CNN that requires the most statistics to perform adequately, and
the two light flavour categories are much more prominent at low than at high 𝑝T in the training sample, as
illustrated in Figure 3. For prompt photon conversion and heavy flavour electrons, the additional track
variables are particularly important presumably because, like signal electrons, they feature electromagnetic
showers, but they tend to have more than one tracks matching a candidate electron. In general, all features
are required to obtain optimal performance.

Similar ROC curves are shown in Figures 8 (4.5 GeV < 𝐸T ⩽ 15 GeV) and 9 (𝐸T > 15 GeV) for the
case where charge-flip electrons are included in the background, as is the case for analyses featuring
same-sign electron pairs for example. Specifically for the ROC curves of performance against charge-flip
electrons (Figures 8(b) and 9(b)), the performance of the charge-flip electron identifier (ECIDS) [1], which
is based on a boosted decision tree, is shown when applied on top of the LLH, as it is in most ATLAS
analyses that suffer from charge-flip electron backgrounds. For 4.5 GeV < 𝐸T ⩽ 15 GeV, which is not a
common use-case for same-sign lepton pair analyses at the LHC, the CNN is performing comparably to
the LLH+ECIDS. For 𝐸T > 15 GeV, large improvements in background rejection are obtained over the
LLH+ECIDS combination that range from factors of 3.8 to 11.1 depending on the signal efficiency working
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ATLAS Simulation Preliminary√
𝑠 = 13 TeV ; 𝐸T ⩽ 15 GeV

Sig : Prompt Electron + Charge Flip
Bkg: Combined Background

(a) Combined Background

ATLAS Simulation Preliminary√
𝑠 = 13 TeV ; 𝐸T ⩽ 15 GeV

Sig : Prompt Electron + Charge Flip
Bkg: Photon Conversion

(b) Photon Conversion

ATLAS Simulation Preliminary√
𝑠 = 13 TeV ; 𝐸T ⩽ 15 GeV

Sig : Prompt Electron + Charge Flip
Bkg: Heavy Flavour

(c) Heavy Flavour

ATLAS Simulation Preliminary√
𝑠 = 13 TeV ; 𝐸T ⩽ 15 GeV

Sig : Prompt Electron + Charge Flip
Bkg: Light Flavour e/𝛾

(d) Light Flavour e/𝛾

ATLAS Simulation Preliminary√
𝑠 = 13 TeV ; 𝐸T ⩽ 15 GeV

Sig : Prompt Electron + Charge Flip
Bkg: Light Flavour Hadron

(e) Light Flavour Hadron

Figure 6: ROC curves for electrons with 4.5 GeV < 𝐸T ⩽ 15 GeV for the case where signal electrons include both
prompt and charge-flip electrons. The dotted red, dash-dotted green and dashed orange lines show the performance
of the CNN when only the HLV, HLV+images and HLV+track inputs are used, respectively. The bands surrounding
these lines shows the statistical uncertainty due to the limited statistics of the validation sample. The performance of
the LLH for the Loose, Medium and Tight working points are shown as black markers, and the ROC curve of the
LLH discriminant is shown as the solid black line.
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ATLAS Simulation Preliminary√
𝑠 = 13 TeV ; 𝐸T > 15 GeV

Sig : Prompt Electron + Charge Flip
Bkg: Combined Background

(a) Combined Background

ATLAS Simulation Preliminary√
𝑠 = 13 TeV ; 𝐸T > 15 GeV

Sig : Prompt Electron + Charge Flip
Bkg: Photon Conversion

(b) Photon Conversion

ATLAS Simulation Preliminary√
𝑠 = 13 TeV ; 𝐸T > 15 GeV

Sig : Prompt Electron + Charge Flip
Bkg: Heavy Flavour

(c) Heavy Flavour

ATLAS Simulation Preliminary√
𝑠 = 13 TeV ; 𝐸T > 15 GeV

Sig : Prompt Electron + Charge Flip
Bkg: Light Flavour e/𝛾

(d) Light Flavour e/𝛾

ATLAS Simulation Preliminary√
𝑠 = 13 TeV ; 𝐸T > 15 GeV

Sig : Prompt Electron + Charge Flip
Bkg: Light Flavour Hadron

(e) Light Flavour Hadron

Figure 7: ROC curves for electrons with 𝐸T > 15GeV for the case where signal electrons include both prompt
and charge-flip electrons. The dotted red, dash-dotted green and dashed orange lines show the performance of the
CNN when only the HLV, HLV+images and HLV+track inputs are used, respectively. The bands surrounding these
lines shows the statistical uncertainty due to the limited statistics of the validation sample. The performance of the
LLH for the Loose, Medium and Tight working points are shown as black markers, and the ROC curve of the LLH
discriminant is shown as the solid black line.
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point. In all of the ROC curves of Figures 6(a)- 9(a) that show the signal efficiency versus the combined
background rejection, the CNN is capable of achieving a comparable or better background rejection than
the LLH Tight working point for a signal efficiency that correspond to the Loose LLH working point.

The performance of the CNN (HLV+tracks+images) is further scrutinized in Figure 10 that shows the
ratios of background rejection of the CNN over the LLH as a function of 𝐸T for signal efficiencies that
match the ones of the LLH Loose, Medium and Tight working points in each bin individually. In addition,
the ratios of background rejection is shown with respect to the CNN where only the HLV are used as
input, which corresponds to a fully-connected neural network (FCN) that is similar to the DNN. This FCN
serves to illustrate the improved performance that are due to the usage of the calorimeter images and the
additional tracks. In this figure, charge-flip electrons are considered background to be able to visualize
the identification performance for all types of electrons. The CNN performs better than both the LLH
and FCN in all 𝐸T regions and for all signal efficiency working points. The relative improvements as a
function of both 𝐸T and 𝜂 for a signal efficiency corresponding to the LLH Loose working point (applied
individually in each bin) are shown in Figure 11 for the combined background of the validation sample.
Significant improvements with respect to the LLH and the FCN can be found for all values of 𝐸T and 𝜂.
Particularly large improvements are observed in the crack region (1.37 < |𝜂 | < 1.52).

Since the calorimeter image window is relatively wide around the electron candidate, it is a fair concern
whether the observed improvements would lessen significantly if isolation criteria are also applied, as is
usually the case in physics analyses. This is tested by applying isolation criteria to all electron candidates
where the amount of transverse energy inside a cone of radius Δ𝑅 = 0.2 in 𝜂 × 𝜙 around the electron is
required to be less than 20% of of the electron 𝐸T. Similarly, the scalar sum of the 𝑝T of tracks located
inside a cone of Δ𝑅 = 0.3 is required to be less than 15% of the electron 𝐸T. Figure 12 shows the same
results as Figure 11 with in addition these isolation criteria applied around the electron candidates that are
typical of searches for supersymmetry in ATLAS. Very similar improvements of the CNN with respect to
the LLH or FCN are observed, whether isolation is applied or not.

The background rejection and signal efficiency of the CNN and LLH are studied as a function of 𝑝T and
𝜂 in Figures 13 and 14, respectively. In these figures, the CNN signal efficiency is fixed to match the one of
the LLH in each individual bin for the Loose (upper plots), Loose+isolation (middle plots, same isolation
criteria as Figure 12) and Tight (bottom plots) LLH working points. The signal efficiency for the CNN
thus follows exactly the trends of the LLH, but with a significantly improved background rejection. The
robustness of the CNN performance as a function of pile-up activity is put to the test in Figure 15 that is
analogous to Figures 13-14, but this time as a function of the average number of interactions per bunch
crossing (⟨𝜇⟩). Again, the signal efficiency of the CNN follows closely the behavior of the LLH, but with
much improved background rejection.

6.2 Determination of the population of electron classes in a sample using the CNN

The CNN returns as output a vector of the probabilities for each electron to belong to one of the six classes
described in Section 3. This opens up the possibility for the CNN to be used to determine the electron
class fractions in a sample. This is achieved by assuming that the true class of each electron candidate
corresponds to the one with the highest value in the predicted probability vector. When applied to an entire
sample of electrons, this method provides the predicted amount of electron in each class in that sample.
Figure 16(a) shows the true class ratios for a few representative simulated samples and Figure 16(b) shows
the difference between the predicted and the true class ratios as a function of the true electron class on the

20



ATLAS Simulation Preliminary√
𝑠 = 13 TeV ; 𝐸T ⩽ 15 GeV

Sig : Prompt Electron
Bkg: Combined Background

(a) Combined Background

ATLAS Simulation Preliminary√
𝑠 = 13 TeV ; 𝐸T ⩽ 15 GeV

Sig : Prompt Electron
Bkg: Charge Flip

(b) Charge Flip

ATLAS Simulation Preliminary√
𝑠 = 13 TeV ; 𝐸T ⩽ 15 GeV

Sig : Prompt Electron
Bkg: Photon Conversion

(c) Photon Conversion

ATLAS Simulation Preliminary√
𝑠 = 13 TeV ; 𝐸T ⩽ 15 GeV

Sig : Prompt Electron
Bkg: Heavy Flavour

(d) Heavy Flavour

ATLAS Simulation Preliminary√
𝑠 = 13 TeV ; 𝐸T ⩽ 15 GeV

Sig : Prompt Electron
Bkg: Light Flavour e/𝛾

(e) Light Flavour e/𝛾

ATLAS Simulation Preliminary√
𝑠 = 13 TeV ; 𝐸T ⩽ 15 GeV

Sig : Prompt Electron
Bkg: Light Flavour Hadron

(f) Light Flavour Hadron

Figure 8: ROC curves for electrons with 4.5 GeV < 𝐸T ⩽ 15 GeV for the case where signal electrons include only
prompt electrons, and for which charge-flip electrons are classified as background. The dotted red, dash-dotted green
and dashed orange lines show the performance of the CNN when only the HLV, HLV+images and HLV+track inputs
are used, respectively. The bands surrounding these lines shows the statistical uncertainty due to the limited statistics
of the validation sample. The performance of the LLH for the Loose, Medium and Tight working points are shown as
black markers, and the ROC curve of the LLH discriminant is shown as the solid black line.
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ATLAS Simulation Preliminary√
𝑠 = 13 TeV ; 𝐸T > 15 GeV

Sig : Prompt Electron
Bkg: Combined Background

(a) Combined Background

ATLAS Simulation Preliminary√
𝑠 = 13 TeV ; 𝐸T > 15 GeV

Sig : Prompt Electron
Bkg: Charge Flip

(b) Charge Flip

ATLAS Simulation Preliminary√
𝑠 = 13 TeV ; 𝐸T > 15 GeV

Sig : Prompt Electron
Bkg: Photon Conversion

(c) Photon Conversion

ATLAS Simulation Preliminary√
𝑠 = 13 TeV ; 𝐸T > 15 GeV

Sig : Prompt Electron
Bkg: Heavy Flavour

(d) Heavy Flavour

ATLAS Simulation Preliminary√
𝑠 = 13 TeV ; 𝐸T > 15 GeV

Sig : Prompt Electron
Bkg: Light Flavour e/𝛾

(e) Light Flavour e/𝛾

ATLAS Simulation Preliminary√
𝑠 = 13 TeV ; 𝐸T > 15 GeV

Sig : Prompt Electron
Bkg: Light Flavour Hadron

(f) Light Flavour Hadron

Figure 9: ROC curves for electrons with 𝐸T > 15 GeV for the case where signal electrons include only prompt
electrons, and for which charge-flip electrons are classified as background. The dotted red, dash-dotted green and
dashed orange lines show the performance of the CNN when only the HLV, HLV+images and HLV+track inputs are
used, respectively. The bands surrounding these lines shows the statistical uncertainty due to the limited statistics of
the validation sample. The performance of the LLH for the Loose, Medium and Tight working points are shown as
black markers, and the ROC curve of the LLH discriminant is shown as the solid black line.
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ATLAS Simulation Preliminary ;
√
𝑠 = 13 TeV ATLAS Simulation Preliminary ;

√
𝑠 = 13 TeV

(a) Combined Background (b) Charge Flip

ATLAS Simulation Preliminary ;
√
𝑠 = 13 TeV ATLAS Simulation Preliminary ;

√
𝑠 = 13 TeV

(c) Photon Conversion (d) Heavy Flavour

ATLAS Simulation Preliminary ;
√
𝑠 = 13 TeV ATLAS Simulation Preliminary ;

√
𝑠 = 13 TeV

(e) Light Flavour e/𝛾 (f) Light Flavour Hadron

Figure 10: Ratios of background rejections obtained for the CNN with respect to the ones obtained for the LLH and
FCN as a function of 𝐸T (inclusively in 𝜂).
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ATLAS Simulation Preliminary ;
√
𝑠 = 13 TeV ATLAS Simulation Preliminary ;

√
𝑠 = 13 TeV

(a) CNN / LLH (b) CNN / FCN

Figure 11: Ratios of background rejections obtained for the CNN (HLV+tracks+images) with respect to the ones
obtained for (a) the LLH and (b) the FCN as a function of 𝐸T and 𝜂 for a signal efficiency corresponding to the LLH
Loose working point.

ATLAS Simulation Preliminary ;
√
𝑠 = 13 TeV ATLAS Simulation Preliminary ;

√
𝑠 = 13 TeV

(a) CNN / LLH (b) CNN / FCN

Figure 12: Ratios of background rejections obtained for the CNN (HLV+tracks+images) with respect to the ones
obtained for (a) the LLH and (b) the FCN as a function of 𝐸T and 𝜂 for a signal efficiency corresponding to the LLH
Loose working point. Isolation criteria (described in the text) have been applied to the electron candidates in addition
to the CNN, LLH or FCN identification criteria.
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(a) Background Rejection (Loose) (b) Signal Efficiency (Loose)

(c) Background Rejection (Loose + isolation) (d) Signal Efficiency (Loose + isolation)

(e) Background Rejection (Tight) (f) Signal Efficiency (Tight)

Figure 13: Background rejection and signal efficiency as a function of |𝜂 | for the CNN and LLH while targeting the
bin-by-bin LLH signal efficiencies of the (a)(b) Loose, (c)(d) Loose + isolation and (e)(f) Tight working points. In
Figures (c)(d), the efficiency is computed with respect to isolated electrons. The lower panels show the ratio of these
values for the CNN over the LLH (which is consistently equal to one for the signal efficiency of the CNN since it is
adjusted to match the one of the LLH in each bin).
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(a) Background Rejection (Loose) (b) Signal Efficiency (Loose)

(c) Background Rejection (Loose + isolation) (d) Signal Efficiency (Loose + isolation)

(e) Background Rejection (Tight) (f) Signal Efficiency (Tight)

Figure 14: Background rejection and signal efficiency as a function of 𝐸T for the CNN and LLH while targeting the
bin-by-bin LLH signal efficiencies of the (a)(b) Loose, (c)(d) Loose + isolation and (e)(f) Tight working points. In
Figures (c)(d), the efficiency is computed with respect to isolated electrons. The lower panels show the ratio of these
values for the CNN over the LLH (which is consistently equal to one for the signal efficiency of the CNN since it is
adjusted to match the one of the LLH in each bin).
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(a) Background Rejection (Loose) (b) Signal Efficiency (Loose)

(c) Background Rejection (Loose + isolation) (d) Signal Efficiency (Loose + isolation)

(e) Background Rejection (Tight) (f) Signal Efficiency (Tight)

Figure 15: Background rejection and signal efficiency as a function of ⟨𝜇⟩ for the CNN and LLH while targeting the
integrated LLH signal efficiencies of the (a)(b) Loose, (c)(d) Loose + isolation and (e)(f) Tight working points. In
Figures (c)(d), the efficiency is computed with respect to isolated electrons. The lower panels show the ratio of these
values for the CNN over the LLH.
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same samples. Although imperfect, this method is capable to provide a qualitatively faithful prediction of
the electron class composition of a sample. Figure 16(b) shows that it can predict the true electron class
ratios within about 5% for most of the class and the samples considered.

ATLAS Simulation Preliminary ;
√
𝑠 = 13 TeV ATLAS Simulation Preliminary ;

√
𝑠 = 13 TeV

(a) Truth Ratio (b) Predicted Ratio - Truth Ratio

Figure 16: (a) True electron class fraction and (b) difference between the predicted and true class fraction as a
function of the true electron class for a few representative simulated processes.

This feature of the CNN could be beneficial for physics analyses, such as guiding the choice of selection
requirements of an analysis or to improve its background estimate. Furthermore, it could be used to
enhance the identification performance of the CNN by predicting the weights to be used in Equation 1,
which are found to be optimal when the weights correspond to the true electron class ratios. The CNN
would be run once on a given sample to obtain the class ratios as explained previously. The discriminant
could then be computed using the predicted ratios for the values of the weights that appear in Equation 1.
The identification could then be performed on the sample by determining which electrons pass a selected
threshold in the newly formed discriminant. This procedure requires to run the CNN only once to obtain
the probability vector for each electron. Table 7 shows the improvement obtained in background rejection
for a 90% signal efficiency for a few representative samples by using such a method compared to the case
of an agnostic discriminant, i.e. when the weights of Equation 1 are all set to the same value. Significant
improvement can be obtained, especially for samples that are enriched in electron backgrounds. That table
also shows the additional improvement that could be obtained if one knew the true electron class ratio in a
given sample. Further improvements could be achieved in theory but, for most samples, the majority of the
achievable improvement is already obtained by computing the predicted electron class ratios using the
CNN. This is also illustrated in Figure 17(a) (charge-flip electron included in signal) and 17(b) (charge-flip
electron included in background) that show the ROC curves for signal efficiency versus the combined
electron background when the agnostic, predicted and truth class ratios are employed when computing the
CNN discriminant. They show that nearly optimal performance can be obtained when using the electron
class ratios predicted by the CNN.

7 Conclusion

An electron identification deep learning algorithm based on convolutional neural networks has been
developed in the context of the ATLAS experiment. In addition to using as input the same high-level
variables that are used by the existing LLH and DNN algorithms, the CNN uses images of energy deposited
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Table 7: Relative improvement in background rejection when using the predicted class ratio in the equation of the
CNN discriminant with respect to using agnostic weights for a signal efficiency of 90%. The additional improvements
that is in theory achievable if one could know the true class ratio is also shown.

Process Agnostic → Prediction Prediction → Truth

𝑍 → 𝑒𝑒 9 % 21 %
𝑊 → 𝑒𝜈 26 % 27 %
𝑍 → 𝜏𝜏 96 % 184 %
𝑊 → 𝜏𝜈 135 % 166 %
𝑡𝑡 (at least one 𝑊 boson → ℓ𝜈) 67 % 6 %
JF17 172 % 58 %
JF35 290 % 44 %
JF50 313 % 80 %

ATLAS Simulation Preliminary√
𝑠 = 13 TeV ; 𝐸T inclusive

Sig : Prompt Electron + Charge Flip
Bkg: Combined Background

(a) Combined Background (5-class)

ATLAS Simulation Preliminary√
𝑠 = 13 TeV ; 𝐸T inclusive

Sig : Prompt Electron
Bkg: Combined Background

(b) Combined Background (6-class)

Figure 17: ROC curves of the signal efficiency versus the combined electron background rejection obtained when
agnostic (green), predicted (orange) and truth (blue) class ratios are employed when computing the CNN discriminant
weights. The left and right figures show the case where charge-flip electrons are included in the signal and background,
respectively.

in each of the electromagnetic and hadronic calorimeter layers, as well as the information of additional
tracks matched to electron candidates. This ancillary information results in a large improvement in the
electron identification performance. For example, for a signal efficiency corresponding to the Loose
working point of the LLH, the combined background rejection for a fixed signal efficiency is improved by
factors of approximately 2 to 10 with respect to the LLH algorithm depending on the electron kinematics.
This is comparable or better than the background rejection obtained with the LLH Tight working point, but
for signal efficiencies that are approximately 15-25% higher (in absolute term). Excellent signal versus
background discrimination is particularly achievable against charged hadrons (e.g. 𝜋±) faking the electron
signature, for which background rejection factors approaching 104 are obtainable, about five times better
than the LLH under the same conditions. For a signal efficiency corresponding to the Loose LLH working
point, the information provided by the calorimeter images and additional tracks improves the background
rejection by factors varying between 1.2 and 3.0 (depending on the electron kinematics and background
class) with respect to a fully-connected network that uses as input only high-level variables. Furthermore,
the CNN outputs a vector of probabilities that an electron candidate belong to each of six classes of signal

29



and background electrons that are defined. This feature can be used to determine the composition of an
application sample, as tested in a variety of processes. In principle, this knowledge of an application
sample composition can then be inserted in the computation of the final discriminant of the CNN, which
significantly improves the performance over a final discriminant in which all of the electron classes would
be weighed equally.

The results presented in this note have been obtained under the ideal conditions that the same simulated
samples were used for both training the CNN and testing its performance. Since the CNN uses low-level
detector information (such as calorimeter images), it might be particularly sensitive to detailed differences
between real data and the simulation, such as noise level, dead cells or the modelling of particle interactions
with matter. This challenge could be overcome by training the CNN using real data, which would necessitate
to design control regions for each electron class. Another option would be to keep on using simulation
as the main training sample, but provide some training examples coming from real data for which an
adversarial network would be used to mitigate differences between real data and simulation [40].

References

[1] ATLAS Collaboration, Electron reconstruction and identification in the ATLAS experiment using
the 2015 and 2016 LHC proton–proton collision data at

√
𝑠 = 13 TeV, Eur. Phys. J. C 79 (2019) 639,

arXiv: 1902.04655 [hep-ex] (cit. on pp. 2, 8, 17).

[2] ATLAS Collaboration, Electron and photon performance measurements with the ATLAS detector
using the 2015–2017 LHC proton–proton collision data, JINST 14 (2019) P12006,
arXiv: 1908.00005 [hep-ex] (cit. on pp. 2, 8).

[3] ATLAS Collaboration,
Identification of electrons using a deep neural network in the ATLAS experiment,
ATL-PHYS-PUB-2022-022, 2022, url: https://cds.cern.ch/record/2809283
(cit. on pp. 3, 15).

[4] L. de Oliveira, B. Nachman, and M. Paganini, Electromagnetic Showers Beyond Shower Shapes,
Nucl. Instrum. Meth. A 951 (2020) 162879, arXiv: 1806.05667 [hep-ex] (cit. on p. 3).

[5] Y. LeCun et al., “Handwritten Digit Recognition with a Back-Propagation Network”,
Advances in Neural Information Processing Systems, ed. by D. Touretzky, vol. 2,
Morgan-Kaufmann, 1989, url: https:
//proceedings.neurips.cc/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-
Paper.pdf (cit. on p. 3).

[6] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
Gradient-based learning applied to document recognition, Proceedings of the IEEE 86 (1998) 2278
(cit. on p. 3).

[7] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider,
JINST 3 (2008) S08003 (cit. on p. 3).

[8] ATLAS Collaboration, ATLAS Insertable B-Layer: Technical Design Report,
ATLAS-TDR-19; CERN-LHCC-2010-013, 2010,
url: https://cds.cern.ch/record/1291633 (cit. on p. 3),
Addendum: ATLAS-TDR-19-ADD-1; CERN-LHCC-2012-009, 2012, url:
https://cds.cern.ch/record/1451888.

30

https://doi.org/10.1140/epjc/s10052-019-7140-6
https://arxiv.org/abs/1902.04655
https://doi.org/10.1088/1748-0221/14/12/P12006
https://arxiv.org/abs/1908.00005
https://cds.cern.ch/record/2809283
https://doi.org/10.1016/j.nima.2019.162879
https://arxiv.org/abs/1806.05667
https://proceedings.neurips.cc/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf
https://proceedings.neurips.cc/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf
https://proceedings.neurips.cc/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf
https://doi.org/10.1109/5.726791
https://doi.org/10.1088/1748-0221/3/08/S08003
https://cds.cern.ch/record/1291633
https://cds.cern.ch/record/1451888


[9] B. Abbott et al., Production and integration of the ATLAS Insertable B-Layer,
JINST 13 (2018) T05008, arXiv: 1803.00844 [physics.ins-det] (cit. on p. 3).

[10] ATLAS Collaboration, Performance of the ATLAS trigger system in 2015,
Eur. Phys. J. C 77 (2017) 317, arXiv: 1611.09661 [hep-ex] (cit. on p. 4).

[11] ATLAS Collaboration, The ATLAS Collaboration Software and Firmware,
ATL-SOFT-PUB-2021-001, 2021, url: https://cds.cern.ch/record/2767187 (cit. on p. 4).

[12] ATLAS Collaboration, Monte Carlo Generators for the Production of a 𝑊 or 𝑍/𝛾∗ Boson in
Association with Jets at ATLAS in Run 2, ATL-PHYS-PUB-2016-003, 2016,
url: https://cds.cern.ch/record/2120133 (cit. on p. 6).

[13] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms,
JHEP 11 (2004) 040, arXiv: hep-ph/0409146 (cit. on p. 6).

[14] S. Frixione, P. Nason, and C. Oleari,
Matching NLO QCD computations with parton shower simulations: the POWHEG method,
JHEP 11 (2007) 070, arXiv: 0709.2092 [hep-ph] (cit. on p. 6).

[15] S. Alioli, P. Nason, C. Oleari, and E. Re, A general framework for implementing NLO calculations
in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043,
arXiv: 1002.2581 [hep-ph] (cit. on p. 6).

[16] S. Alioli, P. Nason, C. Oleari, and E. Re,
NLO vector-boson production matched with shower in POWHEG, JHEP 07 (2008) 060,
arXiv: 0805.4802 [hep-ph] (cit. on p. 6).

[17] T. Sjöstrand, S. Mrenna, and P. Skands, A brief introduction to PYTHIA 8.1,
Comput. Phys. Commun. 178 (2008) 852, arXiv: 0710.3820 [hep-ph] (cit. on pp. 6, 7).

[18] ATLAS Collaboration, Measurement of the 𝑍/𝛾∗ boson transverse momentum distribution in 𝑝𝑝

collisions at
√
𝑠 = 7 TeV with the ATLAS detector, JHEP 09 (2014) 145,

arXiv: 1406.3660 [hep-ex] (cit. on p. 6).

[19] H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024,
arXiv: 1007.2241 [hep-ph] (cit. on p. 6).

[20] J. Pumplin et al.,
New Generation of Parton Distributions with Uncertainties from Global QCD Analysis,
JHEP 07 (2002) 012, arXiv: hep-ph/0201195 (cit. on p. 6).

[21] P. Golonka and Z. Was,
PHOTOS Monte Carlo: a precision tool for QED corrections in 𝑍 and 𝑊 decays,
Eur. Phys. J. C 45 (2006) 97, arXiv: hep-ph/0506026 (cit. on p. 6).

[22] N. Davidson, T. Przedzinski, and Z. Was,
PHOTOS Interface in C++: Technical and physics documentation,
Comput. Phys. Commun. 199 (2016) 86, arXiv: 1011.0937 [hep-ph] (cit. on p. 6).

[23] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152
(cit. on p. 6).

[24] ATLAS Collaboration,
Simulation of top-quark production for the ATLAS experiment at

√
𝑠 = 13 TeV,

ATL-PHYS-PUB-2016-004, 2016, url: https://cds.cern.ch/record/2120417 (cit. on p. 6).

31

https://doi.org/10.1088/1748-0221/13/05/T05008
https://arxiv.org/abs/1803.00844
https://doi.org/10.1140/epjc/s10052-017-4852-3
https://arxiv.org/abs/1611.09661
https://cds.cern.ch/record/2767187
https://cds.cern.ch/record/2120133
https://doi.org/10.1088/1126-6708/2004/11/040
https://arxiv.org/abs/hep-ph/0409146
https://doi.org/10.1088/1126-6708/2007/11/070
https://arxiv.org/abs/0709.2092
https://doi.org/10.1007/JHEP06(2010)043
https://arxiv.org/abs/1002.2581
https://doi.org/10.1088/1126-6708/2008/07/060
https://arxiv.org/abs/0805.4802
https://doi.org/10.1016/j.cpc.2008.01.036
https://arxiv.org/abs/0710.3820
https://doi.org/10.1007/JHEP09(2014)145
https://arxiv.org/abs/1406.3660
https://doi.org/10.1103/PhysRevD.82.074024
https://arxiv.org/abs/1007.2241
https://doi.org/10.1088/1126-6708/2002/07/012
https://arxiv.org/abs/hep-ph/0201195
https://doi.org/10.1140/epjc/s2005-02396-4
https://arxiv.org/abs/hep-ph/0506026
https://doi.org/10.1016/j.cpc.2015.09.013
https://arxiv.org/abs/1011.0937
https://doi.org/10.1016/S0168-9002(01)00089-4
https://cds.cern.ch/record/2120417


[25] R. D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040,
arXiv: 1410.8849 [hep-ph] (cit. on p. 6).

[26] ATLAS Collaboration, Studies on top-quark Monte Carlo modelling for Top2016,
ATL-PHYS-PUB-2016-020, 2016, url: https://cds.cern.ch/record/2216168 (cit. on p. 6).

[27] T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159,
arXiv: 1410.3012 [hep-ph] (cit. on p. 6).

[28] ATLAS Collaboration, ATLAS Pythia 8 tunes to 7 TeV data, ATL-PHYS-PUB-2014-021, 2014,
url: https://cds.cern.ch/record/1966419 (cit. on p. 6).

[29] R. D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244,
arXiv: 1207.1303 [hep-ph] (cit. on pp. 6, 7).

[30] ATLAS Collaboration, The Pythia 8 A3 tune description of ATLAS minimum bias and inelastic
measurements incorporating the Donnachie–Landshoff diffractive model,
ATL-PHYS-PUB-2016-017, 2016, url: https://cds.cern.ch/record/2206965 (cit. on p. 7).

[31] W. Lampl et al., Calorimeter Clustering Algorithms: Description and Performance,
ATL-LARG-PUB-2008-002, 2008, url: https://cds.cern.ch/record/1099735 (cit. on p. 8).

[32] ATLAS Collaboration,
Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1,
Eur. Phys. J. C 77 (2017) 490, arXiv: 1603.02934 [hep-ex] (cit. on p. 8).

[33] ATLAS Collaboration, Improved electron reconstruction in ATLAS using the Gaussian Sum
Filter-based model for bremsstrahlung, ATLAS-CONF-2012-047, 2012,
url: https://cds.cern.ch/record/1449796 (cit. on p. 8).

[34] F. Pedregosa et al., Scikit-learn: Machine Learning in Python,
Journal of Machine Learning Research 12 (2011) 2825,
url: https://arxiv.org/abs/1201.0490 (cit. on p. 11).

[35] Martín Abadi et al., TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems,
Software available from tensorflow.org, 2015, url: https://www.tensorflow.org/
(cit. on p. 15).

[36] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization”,
3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, ed. by Y. Bengio and Y. LeCun, 2015,
url: http://arxiv.org/abs/1412.6980 (cit. on p. 15).

[37] C. Cortes, M. Mohri, and A. Rostamizadeh, L2 Regularization for Learning Kernels, 2012,
url: https://arxiv.org/abs/1205.2653 (cit. on p. 15).

[38] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
Dropout: A Simple Way to Prevent Neural Networks from Overfitting,
Journal of Machine Learning Research 15 (2014) 1929,
url: http://jmlr.org/papers/v15/srivastava14a.html (cit. on p. 15).

[39] J. Neyman and E. Pearson, On the Problem of the Most Efficient Tests of Statistical Hypotheses,
Philosophical Transactions of the Royal Society A (1933) 289 (cit. on p. 15).

32

https://doi.org/10.1007/JHEP04(2015)040
https://arxiv.org/abs/1410.8849
https://cds.cern.ch/record/2216168
https://doi.org/10.1016/j.cpc.2015.01.024
https://arxiv.org/abs/1410.3012
https://cds.cern.ch/record/1966419
https://doi.org/10.1016/j.nuclphysb.2012.10.003
https://arxiv.org/abs/1207.1303
https://cds.cern.ch/record/2206965
https://cds.cern.ch/record/1099735
https://doi.org/10.1140/epjc/s10052-017-5004-5
https://arxiv.org/abs/1603.02934
https://cds.cern.ch/record/1449796
https://arxiv.org/abs/1201.0490
https://www.tensorflow.org/
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1205.2653
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1098/rsta.1933.0009


[40] G. Louppe, M. Kagan, and K. Cranmer, “Learning to Pivot with Adversarial Networks”,
Advances in Neural Information Processing Systems, ed. by I. Guyon et al., vol. 30,
Curran Associates, Inc., 2017, url: https:
//proceedings.neurips.cc/paper/2017/file/48ab2f9b45957ab574cf005eb8a76760-
Paper.pdf (cit. on p. 30).

33

https://proceedings.neurips.cc/paper/2017/file/48ab2f9b45957ab574cf005eb8a76760-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/48ab2f9b45957ab574cf005eb8a76760-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/48ab2f9b45957ab574cf005eb8a76760-Paper.pdf

	1 Introduction
	2 ATLAS Detector
	3 Simulated samples and electron candidate classification
	3.1 Classification of electron signals and backgrounds
	3.2 Simulated samples used for CNN training and performance evaluation

	4 Input variables to the CNN
	4.1 Electron reconstruction
	4.2 High-level variables
	4.3 Additional track variables
	4.4 Calorimeter images

	5 Description of the CNN
	5.1 Preparation of the Training Sample
	5.2 Preprocessing
	5.3 Network Architecture
	5.4 Definition of the Final Discriminant

	6 Performance
	6.1 Analysis of the performance and comparison with the Likelihood algorithm
	6.2 Determination of the population of electron classes in a sample using the CNN

	7 Conclusion

