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Abstract: The CALICE collaboration is developing highly granular electromagnetic and hadronic

calorimeters for detectors at future energy frontier electron-positron colliders. After successful tests

of a physics prototype, a technological prototype of the Analog Hadron Calorimeter has been built,

based on a design and construction techniques scalable to a collider detector. The prototype consists

of a steel absorber structure and active layers of small scintillator tiles that are individually read out

by directly coupled SiPMs. Each layer has an active area of 72 × 72 cm2 and a tile size of 3 × 3 cm2.

With 38 active layers, the prototype has nearly 22, 000 readout channels, and its total thickness

amounts to 4.4 nuclear interaction lengths. The dedicated readout electronics provide time stamping

of each hit with an expected resolution of about 1 ns. The prototype was constructed in 2017 and

commissioned in beam tests at DESY. It recorded muons, hadron showers and electron showers

at different energies in test beams at CERN in 2018. In this paper, the design of the prototype,

its construction and commissioning are described. The methods used to calibrate the detector are

detailed, and the performance achieved in terms of uniformity and stability is presented.

Keywords: Calorimeters; Detector alignment and calibration methods (lasers, sources, particle-

beams); Detector design and construction technologies and materials
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1 Introduction

The detailed investigation of the properties of the Higgs boson has been identified as the highest

priority for particle physics beyond the exploitation of the potential of the High-Luminosity LHC.

The best precision for many observables can be obtained in electron-positron collisions, for which a

number of different collider options have been proposed: on the one hand linear colliders, such as

the ILC [1], which is under political consideration in Japan, or CLIC [2–5], and on the other hand

circular colliders such as FCC-ee [6] or CEPC [7, 8].

For all these projects, the physics goals place stringent requirements on the detector performance.

In particular, the jet energy resolution of 3% to 4% for jet energies up to a few hundred GeV, which

is needed to distinguish hadronically decaying W and Z bosons, cannot be reached by existing

particle physics detectors. It has been demonstrated that the Particle Flow Algorithm (PFA) [9–11]

approach to the reconstruction of jets can achieve this goal for typical jets at ILC energies. In the

PFA approach, the energy of each individual particle within a jet is reconstructed in the subdetector

with the best energy resolution. One important ingredient for a detector designed for PFA are

highly granular calorimeters, which allow an efficient assignment of calorimeter energy depositions

caused by charged particles to the respective tracks. Miss-assignments, called confusion, lead to a

deterioration of the jet energy resolution especially at large jet energies.

The CALICE collaboration studies several designs for highly granular calorimeters, for the

electromagnetic (ECAL) as well as the hadronic (HCAL) calorimeter. The R&D on most of these

designs proceeds in two phases: in the first phase, physics prototypes have been built to study

the performance reachable with highly granular calorimeters. In the second phase, technological

prototypes focus on engineering and integration solutions needed to include such a calorimeter in a

collider detector.

The technological prototype for the analog hadron calorimeter (AHCAL) described in this

document is a high granularity sampling calorimeter based on steel absorber and small scintillator

tiles, read out individually by silicon photomultipliers (SiPMs) directly coupled to the tiles. This

concept has first been studied with the AHCAL physics prototype [12]. The calorimeter endcap

upgrade of the CMS experiment for the High-Luminosity LHC, the High-Granularity Calorimeter

(HGCAL) [13], incorporates a design following the AHCAL concept in its backward part, where

radiation levels allow the use of SiPMs.

– 1 –
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2 Design of the AHCAL technological prototype

The design of the AHCAL technological prototype described here is inspired by the calorimeter

layout of the International Large Detector concept (ILD) [14–16]. Similar calorimeter concepts

are discussed for SiD [15, 17], the Silicon Detector for ILC, and for CLICdet [18, 19], the detector

model for CLIC, as well as for detector concepts at future circular electron-positron colliders. The

energies of particles reaching the calorimeter typically range from about 1 GeV up to several hundred

GeV. Most of them are expected to have energies in the lower part of this range. The AHCAL is

constructed as a sampling calorimeter consisting of steel absorber plates and scintillator tiles as the

active medium. The scintillator tiles are read out by SiPMs directly coupled to the tiles. This concept

is different from most existing tile calorimeters which are read out via long fibers. It allows the

integration of both the photosensors and the front-end electronics into the detector volume, making

the high granularity required for particle flow methods realizable with scintillators in a very compact

and cost-effective way.

The feasibility of a highly granular scintillator calorimeter concept has been demonstrated with

the AHCAL physics prototype [12]. With this cubic-metre sized prototype, the energy resolution for

electrons [20] as well as hadrons [21] has been measured, and the detailed structure of hadronic

showers [22–25] has been studied. The separation power for two close-by hadron showers, an

important ingredient for particle flow algorithms, has been demonstrated [26]. The prototype was

also successfully tested with tungsten absorbers [27, 28]. A consistent hadronic energy resolution

has been obtained for a setup with a highly granular scintillator-tungsten electromagnetic calorimeter

in front of the AHCAL [29]. An overview of the results can be found in [30].

The focus for the design of the AHCAL technological prototype lies on the viability of the

concept for a full collider detector: the scalability of the detector layout, taking into account realistic

space constraints in a large particle physics detector, the scalability of the production methods,

the reliable operation of a large detector and the feasibility of the calibration procedures for a

large amount of readout channels. In contrast to the physics prototype, the AHCAL technological

prototype also provides information on the time-of-arrival of each hit with an expected resolution of

the order of 1 ns. First studies of the time evolution of hadronic showers have been performed earlier

with a small number of scintillator tiles installed behind a large hadron calorimeter prototype [31].

They confirmed the expectation that a time resolution of the order of 1 ns gives access to processes

developing on different time scales within hadronic showers. The availability of the time information

for all channels in a hadron calorimeter prototype opens the way for detailed investigations of

hadronic shower shapes and tests of simulation models not only in space and energy, but also time,

and to explore the use of detailed time information in the event reconstruction.

2.1 Design considerations

The segmentation of the detector is driven mainly by two considerations: the ability to distinguish

the energy depositions of close-by neutral and charged hadrons to minimise confusion in the particle

flow reconstruction, and the goal to resolve electromagnetic sub-showers in hadron showers for

the application of software compensation algorithms. Both require a longitudinal segmentation of

the order of one radiation length X0 and a transverse segmentation of a size similar to the Molière

radius. Detailed simulation studies of di-jet events in ILD have shown that for a scintillator-steel

– 2 –
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hadron calorimeter a transverse tile dimension of 3 × 3 cm2 allows a significant improvement of

the jet energy resolution by applying software compensation techniques, and that this tile size is an

optimal choice considering performance and overall detector channel count [32]. These studies have

also shown that a larger tile size of 6 × 6 cm2 in the rear part of the calorimeter could reduce the

channel count with only a modest impact on the jet energy resolution.

For the absorber material, non-magnetic stainless steel offers favourable mechanical properties

like rigidity and ease of machining, such that a self-supporting structure without auxiliary supports

(dead regions) can be realised. Moreover, in contrast to heavier materials, iron has a moderate ratio

of hadronic interaction length to electromagnetic radiation length. This allows a fine longitudinal

sampling in terms of X0 with a reasonable number of layers in a given total hadronic absorption

length. These considerations lead to a choice of 1.7 cm thick non-magnetic stainless steel absorber

layers, corresponding to roughly 1 radiation length or 0.1 interaction length.

In order to ease production and assembly, the layout of the active layers is modular. The basic

unit is the HCAL Base Unit (HBU) with a size of 36 × 36 cm2, containing 144 tiles. Up to six of

them can be connected in a row to form a slab. An active layer is formed by up to three slabs,

served by a common set of interface boards providing the connection to power supplies and the Data

Acquisition (DAQ) system. This design allows an efficient covering of the different widths of active

layers in the barrel sectors of a collider detector (see figure 1) with only a small number of additional,

narrower HBU sizes [33]. The slabs are contained in individual cassettes for mechanical protection.

Figure 1. Schematic view of an ILD barrel sector.

For the AHCAL technological prototype, the active layers consist of four HBUs. These are

mounted in modules formed by two slabs of two HBUs each. They are installed in an absorber

– 3 –
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structure which has a wedge shape similar to the shape of a sector in the ILD barrel. The active

layer size of 72 × 72 cm2 is smaller than for the AHCAL physics prototype with a lateral size of

90 × 90 cm2, leading to a slightly larger lateral leakage for hadron showers.

2.2 Active layers

The active material of the AHCAL technological prototype consists of injection-moulded polystyrene

scintillator tiles with a size of 3 × 3 cm2 and a thickness of 3 mm. The injection moulding technique

is scalable and cost-effective, making it an attractive choice even though the light output is of the

order of 30% less than for cast scintillator. No further machining or polishing of the tiles is necessary.

A small dimple in the center of the tile (see figure 2(a)) houses the SiPM. This geometry allows the

mounting of the SiPM directly onto the electronics boards with standard PCB assembly techniques.

A tile design with the SiPM directly coupled to the scintillator tile was originally proposed in [34]

and subsequently varied and optimised in further studies [35, 36]. The signal non-uniformity within

a tile and the effects of misalignment of the SiPM with respect to the dimple were found to be small

for realistic misalignments [37]. The tiles are individually wrapped in 3M ESR [38] reflective foil

(see section 3.2), leading to negligible optical cross talk between the tiles.

(a) (b)

Figure 2. (a) Photo of SiPMs on an HBU, two of them with bare (top left) and wrapped (top right) scintillator

tiles. (b) Schematic view of the cross section of an active layer.

The system of scintillator tile, reflective foil wrapping and SiPM determines the response of the

detector to minimum ionising particles (MIPs). The scintillator material and thickness as well as

the SiPM properties are chosen such that the smallest relevant physics signal, given by the energy

deposition of a MIP, can be detected with high efficiency, without being too sensitive to SiPM noise.

For the design signal size of around 15 fired pixels per MIP, a threshold of 0.5 MIP corresponds

to 95% or more MIP detection efficiency and leads to a very strong suppression of SiPM noise.

The current generation of SiPMs with trenches between pixels has a very low inter-pixel cross talk

probability of the order of a few percent, leading to a practically noise-free detector for thresholds as

low as 0.25 to 0.3 MIP. The total number of pixels of the SiPM determines the maximum energy

deposition that can be measured. The saturation of the SiPM due to the finite number of pixels leads

to a strongly non-linear behaviour at large amplitudes. In order to measure the expected maximum

hit energy of a few hundred MIPs in hadron showers in the ILC energy range, the SiPMs should have

of the order of 3, 000 pixels. In addition to these physics considerations, the SiPM properties have

– 4 –
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to match the characteristics of the readout ASICs. After a tendering process, Hamamatsu MPPCs

of type S13360-1325PE [39] have been selected. They have a size of 1.3 × 1.3 mm2, with 2668

pixels with a pitch of 25 μm. Their breakdown voltage is around 53 V, and they are operated at 5 V

overvoltage, resulting typically in a photodetection efficiency of 25% and a gain of 7×105. They offer

a low dark count rate (of the order of 100 kHz), very small cross talk (1%) and a small temperature

sensitivity (54 mV/K). They have been ordered in batches of 600 devices with breakdown voltages

within ±100 mV, allowing all SiPMs on one module to be operated with the same bias voltage.

The 144 scintillator tiles and SiPMs are mounted on the top side of the HBU, while 4

SPIROC2E [40] readout ASICs as well as other electronics components are located on the bottom

side. These include a calibration system with one LED per channel. A thin polyimide foil (125 μm

thickness) provides the electrical insulation between the PCB and the cassette. A schematic cross

section of an active layer is shown in figure 2(b). Figure 3 shows photos of the top and bottom sides

of a fully assembled HBU.

(a) (b)

Figure 3. HBU seen from (a) the top and (b) the bottom.

The electrical connections between the HBUs as well as to the interface board within a slab are

realised with very thin flex-leads. One of the slabs has a Central Interface Board (CIB) with active

mezzanines (section 2.3), while the other has a passive Side Interface Board (SIB). The slabs are

connected with each other with larger flexible connections.

In total 38 modules with 3 × 3 cm2 scintillator tiles were constructed. In addition, one module

with 6× 6 cm2 tiles was built. In order to be able to use the same PCBs for the HBUs with 6× 6 cm2

tiles, the dimples of those larger tiles are not in their centre, but moved to coincide with one of

the nominal SiPM positions on the HBU. The lower light output of the larger tiles is compensated

by using larger SiPMs. 2 × 2 mm2 SiPMs are built by an array of four Hamamatsu TSV MPPC

S13615-1025 [41], which have otherwise the same properties (photodetection efficiency, gain,

breakdown voltage) as the S13360-1325PE MPPCs.

2.3 Electronics and data acquisition system

The readout electronics of the AHCAL technological prototype is based on common CALICE

developments [42]. It follows a hierarchical structure as illustrated in figure 4(a).

– 5 –
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Up to 36 SiPM channels are read out by one SPIROC2E ASIC. The communication of all ASICs

within a layer is handled by the Detector InterFace (DIF) board, while the POWER board handles

the power supplies for the complete layer, and the calibration (CALIB) board handles the LED

calibration system. These three boards are realised as mezzanines carried by the Central Interface

Board (CIB). The data of up to 96 layers is aggregated by Link Data Aggregators (LDAs) and sent to

a PC running the DAQ software. The LDAs also receive commands from the PC as well as from the

Clock and Control Card (CCC) and distribute them to the DIFs. A common 40 MHz clock ensuring

the synchronisation of all detector parts is provided by the CCC.

(a)
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(b)

Figure 4. (a) Sketch of the hierarchical structure of the DAQ system. (b) Example of sustained event rates

obtained for different particle types during the May 2018 beam test.

Even though the readout ASICs are integrated in the detector volume, no active cooling is

foreseen there, in order to avoid dead regions in the detector and keep the material as homogeneous

as possible. Therefore, the power consumption is strongly limited, with a design goal of 40 μW

per channel, of which 25 μW are allocated to the readout ASIC. This goal can only be reached

by adapting the readout electronics to the low duty cycle of a linear electron-positron collider. In

their beam structure, short bunch trains (1 ms long for ILC) are interleaved with long gaps without

particles (199 ms long for ILC). This is taken into account in the readout electronics by having

two phases: a data acquisition phase in which the ASICs are acquiring and storing the data, and

a readout phase in which the data are digitised and sent from the ASICs via the LDAs to the PC.

During the readout phase, all non-necessary components of the ASIC can be switched off (power

pulsing). The synchronisation of the phases between all ASICs can be ensured by a SPILL signal

centrally provided by the CCC, or by a BUSY signal generated by the ASICs.

2.3.1 SPIROC2E readout ASIC

The SPIROC2E [40] is a dedicated very front-end ASIC for SiPMs in calorimetric measurements,

developed by the OMEGA group, realised in AMS SiGe 0.35μm technology. It features a large

dynamic range, low noise, low power consumption and high precision for the amplitude measurement.

– 6 –
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It has 36 channels with variable gains to achieve charge and time measurements. Each channel

embeds an input DAC to tune the SiPM bias voltage, by subtracting the channel-wise adjustable

value from the globally supplied bias voltage. The tuning range can be chosen in slow control

settings to reach either up to 2.5 V or up to 4.5 V The ASIC is optimised for charge measurements

in the range of 1 up to ∼3, 000 photo-electrons, corresponding to 160 fC up to 480 pC at a SiPM

gain of about 106. For each of the 36 channels, two input preamplifiers, for a high gain and a low

gain measurement, are needed to handle the required large dynamic range. Both are followed by

variable slow shapers, for which a shaping time of 50 ns was chosen. The high gain preamplifier is

in addition connected to a trigger line with a fast shaper and a discriminator, providing channel-wise

self-triggering for thresholds as low as 50 fC (1/3 of a photo-electron). If one channel triggers, the

data for all channels of this ASIC are kept.

The time measurement is performed with a coarse 16-bit counter related to the bunch crossing

clock and a fine time ramp based on this clock. The ramp has alternating directions from one bunch

crossing to the next to avoid dead time connected with a ramp reset. The bunch crossing clock can

be chosen between 250 kHz and 5 MHz. The time resolution depends on the bunch clock, and is

expected to reach 1 ns with a 5 MHz bunch clock. For low data rates also the data taking efficiency

depends on the bunch clock, since the data acquisition should be stopped and the detector be read out

when the bunch crossing counter overruns. In order to optimise data taking efficiency, the AHCAL

prototype has been operated with a 250 kHz bunch clock during the beam tests so far, except for a

few test runs.

An analog memory array with a depth of 16 cells for each channel is used to store the time

information and the charge measurement. If all 16 memory cells are filled, the ASIC provides a

BUSY signal via the LDA to the CCC. This is used to stop the data acquisition phase and switch

to the readout phase for all channels of the detector. In addition, the length of the acquisition

phase is limited by a time-out to avoid decay of the analog signals in the memory cells and

an overrunning of the bunch clock counter. For AHCAL operation this time-out is typically

set to ∼15ms.

In the readout phase, the analog memory content is digitised with an internal 12-bit Wilkinson

Analog-to-Digital Converter (ADC) and stored in a RAM. Out of the three measurements per channel

(high gain, low gain and time), only two can be digitised and read out. The standard operation mode

for beam tests was the auto-gain mode in which the ASIC provides the time measurement, and

one of the two charge measurements, depending on the signal amplitude. Dedicated runs where

both charge measurements (and no time information) have been read out are used to determine the

inter-calibration between the two gain modes.

In addition to the self-triggered mode, the SPIROC2E ASIC can also operate in a mode where

the signal is sampled with a fixed delay with respect to an external trigger signal. This mode is used

for the calibration with LED signals.

The SPIROC2E ASIC is optimised for low power consumption. Its actual value depends on

the time periods for which the ASIC components are switched on, including a short period before

the expected arrival of events to allow the ASIC to stabilise. For optimised timing settings, the

power consumption in ILC mode has been measured to be about 100 μW [43], about a factor of four

higher than the design goal. In future SPIROC versions, the power consumption can be reduced by

digitizing and reading only the data of triggering channels.

– 7 –



2
0
2
3
 
J
I
N
S
T
 
1
8
 
P
1
1
0
1
8

2.3.2 Detector InterFace (DIF)

The DIF [44] is based on a Zynq-7020 [45] SystemOnChip (SoC). It can handle the communication

of up to 72 readout ASICs, the maximum foreseen in a layer in the ILD barrel, consisting of three

parallel slabs of up to six HBUs. All ASICs in a slab are read out via two parallel readout chains,

leading to up to six readout chains per DIF. The DIF generates the slower bunch clock from the

central 40 MHz clock. The CIB, on which the DIF sits as a mezzanine, provides the connection to

the central slab and an HDMI connector for the connection to the LDA. In addition, a single HBU

can be operated without CCC and LDA via a direct USB connection from the CIB to the DAQ PC,

allowing for easy tests in the lab. Additional slabs on the left and right can be connected with passive

SIBs to the CIB.

2.3.3 Link Data Aggregator (LDA)

The LDA is also based on the Zynq 7020 SoC. It is available in two versions: the mini-LDA and

the wing-LDA. The mini-LDA is realised as a dedicated mezzanine board for the ZedBoard, a

commercially available development board for the Zynq. It has HDMI connectors for up to 10 DIFs

and has been used in many beam tests with smaller setups. The wing-LDA has been designed with

the geometry of the ILD barrel sectors in mind. It has two times 48 micro-HDMI connectors to

handle two barrel sectors. It is realised as three passive boards, hosting the micro-HDMI connectors,

connected to an active central board. The active central board has a slot for a Mars ZX3 module

holding a Zynq 7020, and four slave Xilinx Kintex-7 [46] FPGAs for an efficient aggregation of the

data volume. In the beam tests of the AHCAL technological prototype, the wing-LDA with only two

passive boards and equipped with only two FPGAs has been used. In this configuration it can handle

up to 48 layers. Both LDA versions have an HDMI connector for the communication with a CCC.

2.3.4 Clock and Control Card (CCC)

The CCC is based on the ZedBoard, which is extended with a dedicated mezzanine board with

three HDMI connectors for the communication with LDAs and two LEMO connectors for externally

provided SPILL and clock signals. In the beam tests, the CCC was used to generate the common

40 MHz clock and to distribute the clock and the SPILL signal to one or two LDAs. The operation

of up to eight LDAs can be achieved with a fan-out.

2.3.5 Beam InterFace (BIF)

The BIF is based on the prototype of an AIDA mini-TLU [47, 48], which provides a simple and

flexible interface for fast timing and triggering signals. It receives the 40 MHz clock from the CCC

on a LEMO connector, and the start and stop signals of the AHCAL data acquisition phases on a

RJ45 connector. The timestamps of up to four external signals provided on LEMO connectors can

be recorded with a precision of ∼ 1 ns.

2.4 LED calibration system

Due to the sensitivity of the SiPMs to changes of the operating temperature and the bias voltage, a

gain calibration and monitoring system is necessary. The calibration system takes advantage of the

property of the SiPMs to show a characteristic single pixel spectrum (SPS) at low light-intensities.
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This allows monitoring of the readout response to a well-defined signal, corresponding to one fired

SiPM pixel, without the need to know the injected light intensity. This makes the calibration system

also insensitive to possible changes of light intensity due to ageing of components. The HBUs house

one LED per tile, producing the necessary light for calibration. The required fast driving pulses are

transmitted electrically from the CALIB board to LED drivers on the HBU. When the calibration

system is in idle-state, a capacitor is charged to the calibration bias voltage via a large resistor. Upon

a LED trigger, a short pulse opens a transistor, and a current corresponding to the stored charge

on the capacitor flows through the LED. This LED driver circuit guarantees a fast fall time of the

optical pulse by a fast discharge of the LED’s cathode node. The resulting optical pulse shapes have

excellent small widths below 10 ns [49]. The LED amplitude can be controlled by the calibration

bias voltage.

2.5 Voltage supply and temperature compensation

The regulation of the low voltage for the ASIC power supply, the high voltage for the SiPM bias supply

and the voltage for the LED calibration bias supply are performed on the POWER board. External

supplies of 4.5 V (ASIC), 12 V (LED) and a bias voltage of at least 10 V above the desired operating

voltage of the SiPMs are needed. In the beam tests of the AHCAL technological prototype, these

have been provided by MPOD power supply modules [50]. The cables between the POWER boards

and a cable distribution box were grouped by layer, while they were grouped by voltage between the

cable distribution box and the MPODs. Here cables with a length of about 6 m, corresponding to the

expected length inside ILD, were used.

The POWER board provides up to 3 different SiPM bias voltages to a layer. They can be

controlled by the LabView DAQ software within a range of ∼ 4 V with a precision of ∼ 40 mV. In

order to compensate for changes of the SiPM breakdown voltage caused by temperature variations,

and thus keep their overvoltage constant, the SiPM bias voltage can be adjusted automatically

according to the average temperature measured by up to six temperature sensors within a layer. This

procedure has been set up with the measured mean dependence of the breakdown voltage on the

temperature (section 3.1.1). During the beam tests, it was set to run at every run start, and in fixed

time intervals between ten minutes and one hour.

2.6 Online software

The dedicated DAQ and control software for the AHCAL technological prototype is based on

LabView. It provides not only the fast commands for the data taking, but also the functionality

for the configuration of the readout ASICs, the LDAs and the LED calibration system. This

software has been interfaced to EUDAQ2 [51], allowing easy integration with other devices (e.g.

beam instrumentation such as wire chambers or beam telescopes) and user-friendly operation for

non-experts.

In the EUDAQ2 Producer for the AHCAL technological prototype, several methods for event

building have been implemented. Within the AHCAL, the synchronisation of the self-triggered hits is

based on the bunch crossing ID (BXID), the cycle number of the slow bunch clock. Synchronisation

with other detectors can be achieved with the help of a time stamp with 25 ns resolution or a trigger

number. For this purpose, an external trigger signal, e.g. from a trigger scintillator, can be supplied

to the AHCAL DAQ hardware.
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The synchronisation with other detectors and the data storage was handled by EUDAQ2 Data

Collectors. The data were stored in a raw data format, and as LCIO [52] files for analysis. To

reduce the data volume, pure noise events were suppressed in the LCIO file by storing only data for

BXIDs with an external trigger signal. However, in the raw files all data were kept, such that a later

re-creation of the LCIO files was possible.

The readout speed depends strongly on the event size, which varies in self-triggered events due

to the online zero-suppression. For the configuration with 38 modules, the typical sustained event

rate was between 120 and 400 electron or pion showers per second, reaching up to 600 events per

second for muons. An example of event rates obtained during the beam spills in the data taking in

May 2018 is shown in figure 4(b). For LED calibration data, where all channels need to be read out,

the online conversion to LCIO turned out to be a bottleneck. Therefore, these events were first stored

only in raw data format and afterwards converted to LCIO. Nevertheless, the rate was limited to about

80 LED triggers per second. Typical sizes for one event in raw (LCIO) data format were 7–10 kB

(3–5 kB) for muons, 10–17 kB (3–11 kB) for electrons and 28 kB (18 kB) for 100 GeV pion showers.

During the beam tests, several methods for data monitoring were used. A very first cross check

was provided by the LabView DAQ program, which shows event rates and raw data information per

ASIC. EUDAQ2 also provides a simple online monitor, which was used to display hit positions in

the layers and monitor the beam position. DQM4HEP [53] was used to monitor event quantities,

based on the directly written LCIO files. The most sophisticated monitoring was based on fully

reconstructed data (with a preliminary calibration determined during the commissioning of the

detector), with a dedicated program showing pre-defined histograms, and with an event display.

This information could be accessed, based on partial files, already during the run, and was typically

available within a few minutes after the run end for a complete run.

2.7 Absorber

In a collider detector, the total depth of the calorimeter has to take into account the requirement

to fit inside the diameter of the solenoid coil within the detector as well as the need to minimise

longitudinal leakage. For ILD, the optimisation for jet energies up to 250 GeV leads to 48 AHCAL

layers in the barrel section, corresponding to 6 interaction lengths for electromagnetic and hadronic

calorimeters together [15]. The absorber of the AHCAL technological prototype (figure 5) is a

self-supporting non-magnetic stainless steel structure with 44 layers with a thickness of 16 mm,

corresponding to the inner part of the ILD barrel. Equipped with 38 active layers, it covers 4.4

nuclear interaction lengths. Therefore, at higher hadron energies, longitudinal leakage is expected to

play a role, leading to a reduced reconstructed energy as well as a degradation in energy resolution,

if no tail catcher is present to recover the leaked part of the shower.

The absorber structure has been produced from standard rolled plates, which had undergone a

cost-effective roller-levelling procedure, ensuring a flatness of ±1 mm demonstrated over an area of

2×2 m2. It is supported only by 5 mm thick side panels without additional spacers, such that the gaps

can be filled completely with active elements. The absorber structure was produced as a mechanical

test structure [54]. In order to maximise the thickness of the calorimeter in terms of hadronic

interaction length in the volume given by the solenoid coil, the thickness of the active layers is kept

as small as possible. Their total thickness amounts to 6.4 mm, including the steel cassette providing

mechanical support with a wall thickness of 0.5 mm on both sides. In order to facilitate the installation
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Side Inter-
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Central Inter-

face Boards
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Figure 5. Schematic view of the testbeam setup of the AHCAL technological prototype. The absorber

structure is shown in red (absorber plates) and yellow (connecting plate ensuring the distance between the

absorber plates). The green parts correspond to the Central and Side Interface Boards of the active layers, and

the orange parts to cooling plates and pipes. A support structure for DAQ boards and cables is indicated in grey.

also of slightly too thick active layers in the prototype, the gap size of the absorber structure has been

chosen conservatively as 8.7 mm. Since no problems with the thickness of the active layers and their

installation in the absorber structure was observed, a more aggressive design could be chosen in future.

2.8 Cooling

The AHCAL technological prototype has no active cooling within the active layers, which is possible

thanks to the very low power consumption of the SPIROC2E ASICs. The interface boards, however,

need cooling. For this, in ILD a leakless cooling system is foreseen, with a pipe mounted on the

absorber on the back side of the interface boards (see figure 2(b)). For the AHCAL prototype, a

more flexible solution has been chosen, based on over-pressure, and with separate cooling plates

made from copper. They are mounted on the absorber, thermally decoupled by ∼ 1 cm thick plastic

bars. The cooling plates are connected to the most relevant heat sources on the interface boards

with thermally conducting pads. Flexible tubes connect the cooling plates to common inlet and

outlet pipes. The dimensions of the pipes are chosen to resemble the ILD design. The pipes are then

connected by hoses to an external cooling unit, which runs with nominal settings of 1 bar and 20 ◦C.

The cooling system worked reliably during the beam tests, keeping the interface boards below 45 ◦C.

3 Construction and quality assurance

The construction and quality assurance procedures for the AHCAL technological prototype have

been developed for scalability and mass production. Many steps follow standard procedures available

– 11 –



2
0
2
3
 
J
I
N
S
T
 
1
8
 
P
1
1
0
1
8

in industry. The discussion here covers mainly the steps that include procedures developed for this

prototype: the quality assurance of SiPMs and ASICs as well as electrically assembled HBUs (before

tile assembly), the wrapping of scintillator tiles into reflective foil including tests of the wrapped

tiles, and the assembly of the wrapped tiles on the HBU PCBs. Similar to most particle physics

detectors, the construction and quality assurance were distributed over several sites: the electronics

assembly of the HBU PCBs took place at DESY, after SiPM tests at the University of Heidelberg

and ASIC tests at the University of Wuppertal. The scintillator tiles have been produced in Vladimir

by the industrial partner Uniplast [55] in cooperation with LPI and MEPhI. The tile wrapping and

testing were performed at the University of Hamburg, the tile assembly on the HBUs and their tests

with cosmic rays at the University of Mainz. The modules were assembled, commissioned and

integrated into the prototype (see section 4) at DESY, before the prototype was shipped to CERN for

the beam tests. MPP Munich provided strong support for the calibration and analysis software.

All the HBUs with 3 × 3 cm2 scintillator tiles were constructed according to the described

procedures. The four HBUs with 6 × 6 cm2 tiles were assembled manually at the University of

Tokyo.

3.1 Electronics assembly

All the electronics components on the HBU PCBs are assembled with standard pick-and-place and

reflow soldering techniques. In a first step, the SiPMs are mounted and soldered on the bottom side.

Then all the other components including the ASICs are mounted and soldered on the other side. As

detailed below, for the SiPMs sample checks have been performed for each batch. All the ASICs

have been tested and characterised before assembly. After the electronics assembly, a functional

test of the HBU is done with the help of the LED system, which allows for a direct verification of

each channel’s signal quality from the observation of Single Pixel Spectra (SPS). The electronics

assembly was done for a total of 160 HBUs.

3.1.1 SiPM tests

Since many commercial SiPMs have good quality, and the testing of the SiPMs poses a risk of

damaging them, we decided to test only small samples of the SiPMs, which were then not used in the

detector. Of each batch of 600 SiPMs with the same bias voltage within ±100 mV, 576 devices are

needed for a module. These batches were delivered on reels for the pick-and-place machine, which

discards a few devices at the beginning of the reel. We therefore decided to test 16 SiPMs for each

of the 40 batches. For technical reasons, in two of the batches, only 12 and 15 devices were tested.

The setup used for the SiPM test was originally designed for tests of scintillator tiles with a

SiPM coupled to their side, and has been modified for the measurement of surface-mount SiPMs [56].

To achieve a large through-put, the system relies on the parallelised measurement of 12 SiPMs using

a pulsed laser source, which allows acquiring sufficient statistics for the characterisation and the

measurement of parameter spreads at a rate of ∼ 10 seconds per SiPM. It consists of a laser head

with 12 fibres, and a base plate that can hold up to 144 SiPMs. The SiPMs are read out with 12

KLauS2 [57] ASICs, whose signals are multiplexed and sent to a 12-channel ADC. The tests were

made in a temperature-controlled environment at 25 ◦C.

The measurements [58] comprise the breakdown voltage, the dark count rate, the cross talk and

the gain for all devices. The temperature dependence of the breakdown voltage was determined only
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originally been designed for the ATLAS experiment. For the tests, a dedicated LabView program

was used that was derived from the AHCAL DAQ software.

Around 850 ASICs have been tested. Most measurements were performed for three settings

of the preamplifier feedback capacitors of 100 fF, 200 fF and 600 fF, the setting foreseen for beam

operation. The following measurements were performed:

Input DACs: the linearity of the 8-bit input DACs for the channel-wise adjustment of the SiPM bias

voltage was tested for six values in the full range between 0 and 255.

Hold Scan: for a fixed injected charge of 3 pC, the optimal hold times for the three preamplifier

settings were determined both in external and in self-triggered modes.

Amplitude Linearity: the amplitude linearity was measured for the three preamplifier settings.

In external trigger mode, 9 injected charges between 1 pC and 17 pC were used, while in

self-triggered mode, 15 injected charges between 1 pC and 15 pC were used. An example is

shown in figure 6(b).

TDC Ramp: the full range of the rising and the falling ramp of the TDC was explored by measuring

a fixed injected charge of 1 pC for twelve delays between 0 μs and 8 μs. This measurement

was done only for a preamplifier capacitance of 200 fF.

The time needed to perform all tests for one ASIC was about 10 minutes. Only ASICs with all

36 channels working were accepted for assembly. The resulting yield was 89%, in agreement with

expectations for such a complex ASIC with analog and digital elements.

3.1.3 HBU functional test with LEDs

Once the electronics assembly is done, a functional test of the HBU can be done with the help of the

LED system. For this the HBU is placed with the SiPMs facing a reflective surface and connected to

the standard DAQ chain. This tests the complete signal chain, but does not yet allow a calibration,

since the light output is not defined without the tiles. The test has been performed for all HBUs, and

a few problems were spotted. Two bad HBUs were identified which have a short within the PCB that

was impossible to repair. This led to only 38 modules being assembled in the end instead of the 40

we had originally planned. On the 158 working HBUs, in total one dead channel (out of 22, 752

channels) was found.

3.2 Tile wrapping

Individual wrapping of the tiles provides the best optical decoupling between neighbouring scintillator

tiles, but requires a (semi-)automatic procedure for the cutting of the reflector and the wrapping due

to the large number of tiles. We chose ESR foil produced by 3M reflector because it leads to a high

light output of the tiles, but the high reflectivity is challenging for many optical instruments.

The cutting of the reflective foil was performed with a laser cutter. In addition to the cutting of

the foil outline, the folding lines were “scratched” on the outside with reduced laser power. This

simplifies the folding during the wrapping procedure, but the depth of the scratch is very sensitive to

environmental conditions. The cutting took about 9 minutes per sheet of 25 cut foil pieces.
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For the wrapping, a dedicated machine was developed, with a carousel for foil supply, stepper

motors for the wrapping process, and vacuum cups for the transport of the components. In order to

be accepted by the pick-and-place machine, the tiles including wrapping must have a well-defined

maximum size with tolerance below 100 μm. The wrapping machine has to ensure that the tightness

of the wrapping foil is compatible with this requirement. A speed of slightly less than a minute per

tile was reached.

3.2.1 Tile tests

Since the tile wrapping process does not work if the tiles are not within tight mechanical tolerances

of ±50 μm, the size was measured with a caliper for a sub-sample of the tiles before the wrapping.

In the later assembly of the tiles, the size is checked optically by the pick-and-place machine. Since

a bulging of the foil can influence the visible size of the wrapped tile, the QA check of the wrapped

tile was not done with a caliper, but also optically. The size was determined with a commercial

document scanner, using half an integrating sphere to ensure uniform illumination. The outline of

the tile in the scanned image was found with the minimum bounding rectangle search in the ImageJ

Shape Filter Plugin [60]. In addition, spot checks of the light output of the wrapped tiles were

performed with a 90Sr source. For a small sub-sample of the production tiles, detailed studies of the

response uniformity were performed.

3.3 Tile assembly

The wrapped tiles were glued to the HBU PCBs with Araldite 2011 two-component epoxy adhesive.

The number, position and size of the glue dots was optimised, resulting in 8 glue points per tile.

The glue was applied to the PCB with the help of a screen printer and a pump printing stencil

which protects the SiPMs. The distribution of the glue needed only a few minutes per HBU, but the

cleaning of the screen took a considerable amount of time (more than an hour).

The tiles were placed on the HBU PCBs with a commercial pick-and-place machine. Most

of the wrapped tiles were fed to the machine on reels. Special tiles with cut-outs for mechanical

cassette fixtures (6 per HBU) were supplied on trays. The machine was operated in the slowest mode,

yielding the highest precision. This resulted in an assembly time of 7 minutes per HBU. Within

the pot life of the glue of about 100 minutes, the tiles on 4 HBUs, corresponding to one module,

were assembled. The glue was left for curing over night. Afterwards, the HBUs were installed in a

cosmic ray test stand, and operated for about 24 hours.

3.3.1 HBU test with cosmic rays

Since the HBUs are fully assembled at this stage, and the system of scintillator tile, reflective foil

wrapping and SiPM is complete, the detector response to MIPs can be determined in the cosmic ray

test stand. In addition a gain measurement can be performed with the LED system, allowing a first

determination of the light yield, the MIP response in units of SiPM pixels (see also section 5).

A dedicated test stand for the tests of HBUs with assembled tiles with cosmic rays has been

built [56]. The test stand has two trigger layers with an area of 365.0 × 361.8 mm2 of scintillator

strips read out by classical photomultipliers, rotated by 90◦ to each other. They provide a position

resolution of the size of an AHCAL tile. The total height between the two trigger layers is adjustable
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up to 50 cm, allowing several HBUs to be stacked between them and to be read out in parallel. The

setup is located in a dark box with temperature monitoring.

In total, 155 HBUs were measured in the test stand, most of them with 4 boards operated in

parallel. In addition to the two HBUs already rejected in the functional tests with LEDs, three boards

were not measured due to smaller effects that could be repaired later. For the first four tested HBUs,

a mistake in the electronics assembly was found and corrected.

The 155 HBUs were characterised in terms of gain and light yield for each channel. The overall

gain and light yield were found to be very homogeneous: the gain spread within an ASIC was 1.7%.

The light yield mean value was 14 pixels per MIP with an RMS of 12%. The light yield measured

for each cell was used as an initial calibration. Only 13 of the 22, 300 tested channels showed an

anomalous behaviour (noisy, dead or low light yield), corresponding to about 0.05% of the total

number of channels.

4 Assembly and commissioning

The assembly and commissioning of the AHCAL technological prototype occured in steps: first,

the modules were assembled, consisting of four HBUs and their interface boards in their cassettes.

The modules are fully functional detector units, and they were tested individually with LED light.

They were also tested in batches with cosmic rays and in beam tests at DESY. In this step, their final

operating parameters were fixed. In a second step, the complete prototype including cooling was

assembled, and exposed to cosmic rays.

4.1 Module assembly and commissioning

Four HBUs with SiPMs with the same operating voltage, a CIB with DIF, POWER and CALIB

mezzanines and a SIB were assembled into a module (see figure 7). These modules were kept in

their respective configuration, no re-arrangement of components was done. The assembled modules

were connected to a small DAQ system and tested with LEDs. Afterwards, they were installed

in horizontal position in a dedicated test stand for cosmic rays [61], that also provided position

information with a few mm resolution, using a scintillator hodoscope constructed by the University

of Tokyo. The last step in the module commissioning was a preliminary calibration performed in

the DESY test beam facility with electrons of 3 GeV. Without additional absorber plates, up to

five modules (including cassettes) could be calibrated in parallel, with the electrons penetrating all

modules as quasi-MIPs.

In the commissioning procedure, a number of operating parameters were fixed.

SiPM bias voltage First, the POWER board was configured for the SiPM operating voltage corre-

sponding to an over-voltage of 5 V at 25 ◦C. All SiPMs in a module were operated with the

same voltage. Therefore, the input DACs of the SPIROC2E ASICs were all set to the same

value. A value of 50 was chosen for the SPIROC2E input DACs, corresponding to a voltage

decrease of 3.7 V. In this region the input DACs show a small channel-to-channel variation,

and the value allows adjustments in positive and negative direction. In order to compensate

for this decrease, the POWER boards were configured to provide a bias voltage of 8.7 V above

the breakdown voltage of the SiPMs in the corresponding module.
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72 cm

Figure 7. Photo of one AHCAL module consisting of 2×2 inter-connected HBUs and the front end electronics

(right side) comprising from top to bottom a SIB and a CIB with POWER, CALIB and DIF mezzanines.

ASIC gain The preamplifier capacitances were optimised for clearly visible Single Pixel Spectra

(SPS) at low amplitudes and coverage of the full dynamic range of the SiPMs at high amplitudes.

This led to 600 fF in the high gain branch and 1200 fF in the low gain branch for all modules,

corresponding to a factor of about 20 in gain between the two.

hold time The hold time was tuned with beam particles such that the pulse is sampled close to

its maximum. Since the optimal hold time strongly depends on the signal shape, it can

only be determined with signals from particles producing scintillation light. One parameter

determines the hold time for all channels of the SPIROC2E. The same parameter value was

found to be adequate for all ASICs.

auto-gain threshold The threshold for switching between the high gain and the low gain mode was

chosen around 5 MIP. This is well within the ADC range for the high gain mode, taking into

account a non-linearity observed in the upper part of the ADC range in high gain mode, and a

rather wide threshold behaviour of the gain switching, leading sometimes to high gain mode

results for amplitudes well above the nominal auto-gain threshold.

trigger threshold The trigger threshold was chosen as low as possible for a stable operation of

many layers. Since the value is applied on the ADC scale, and the gain varies from channel to

channel, the resulting threshold on the MIP scale also varies from channel to channel. The

observed threshold values were around 0.25 − 0.3 MIP.

LED calibration voltages The calibration voltage at which the LEDs start to emit light varies from

channel to channel, both due to variations in the LED circuit and due to device to device

variations. For an efficient cross check of the calibration, it is important to obtain analysable

SPS for a large fraction of all channels with a small number of calibration voltages. It was

found that three LED calibration voltages were sufficient to measure analysable SPS in about
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95% of all channels. These are used to monitor variations of the gain during data taking.

The gain calibration used in the data analysis (see section 5.2) is determined in extended

calibration runs with more LED voltages.

4.2 Prototype assembly and test with cosmic rays

After the successful commissioning of all modules, they were installed in the absorber stack. Based

on the results from tests of the individual modules, the few modules showing dead channels were

placed in the back. The modules were installed and connected to the DAQ one by one, making sure

at each step that installed layers were showing LED signals in external trigger mode. The main

difficulty in this step are the flex-lead connections1 that sometimes mechanically disconnect and

require a removal and re-installation of a module.

In this configuration, the LED calibration procedure was tuned to run with all layers in parallel.

In addition, the full detector was operated in self-triggered mode for about 20 hours. The detector

was running stably during that time. Even though the active layers were in a vertical position and no

further external trigger signal was available, events caused by cosmic rays could clearly be identified.

This shows the very good quality of the detector in terms of noise and efficiency and the excellent

uniformity of the SiPMs.

5 Calibration

The goal of the calibration procedure presented here is to convert the measurement from electronics

units to a physics scale: for the amplitude measurement from ADC bins to the energy deposition of

a MIP, and for the time measurement from TDC bins to nanoseconds. This equalises the response of

all cells, and allows a prediction of the detector response to electromagnetic and hadronic showers.

All measured energies are converted from the ADC scale to the MIP scale, according to

�8 [MIP] =
(�8 [ADC] − Ped8 [ADC]) × ��8

MIP8

× 5 −1
sat,8 (�8 [pixel]) with (5.1)

�8 [pixel] =
(�8 [ADC] − Ped8 [ADC]) × ��8

Gain8
. (5.2)

Here �8 [ADC] is the measured amplitude in units of ADC bins for cell 8, Ped8 [ADC] the corre-

sponding pedestal, ��8 the inter-calibration factor between the low gain and the high gain mode,

and MIP8 is a conversion factor of ADC bins into MIPs. The function 5sat,i is the SiPM response

function describing the SiPM output signal as a function of the incoming light intensity, normalised

such that 5 = 1 for small �. The inverse correction function depends on the number of fired pixels,

�8 [pixel], calculated with the conversion factor of ADC bins into units of a single avalanche in a

SiPM pixel, Gain8 .

The MIP conversion factor MIP8 of each cell is determined using the approximately minimum

ionizing muons, while the conversion factor to pixels Gain8 is extracted from externally triggered

LED runs. For each data taking mode, the corresponding pedestals are extracted from runs with

the same conditions. The gain inter-calibration factor ��8 is measured in runs in which the hit

time information was dropped, and the amplitude was read out in high gain and in low gain mode

1For long-term operation in a collider detector, these connections would be sealed.

– 18 –



2
0
2
3
 
J
I
N
S
T
 
1
8
 
P
1
1
0
1
8

(inter-calibration mode). This is then used to convert low gain amplitude measurements into high

gain units. All numbers in the following quoted in ADC bins refer to the high gain mode.

The values expected from the construction and commissioning are: about 15 pixels fired for a

MIP crossing a tile and a gain: Gain8 ≈ 16 ADC bins per pixel, leading to a MIP conversion factor:

MIP8 ≈ 240 ADC bins.

In the following, each element of the amplitude calibration is discussed in further detail. At the

end of the section, the calibration of the hit time measurement is described.

5.1 Pedestal and noise

The pedestal value enters not only the measurement of every cell energy, but also the determination

of the MIP conversion factor for each cell. Therefore, its accuracy impacts the precision of the

energy scale of the detector, and has to be very small compared to the MIP8 value.

The pedestal and noise values depend on the mode in which the SPIROC2E is operated, therefore

they have to be determined in the mode corresponding to the data taking. Due to the analog storage

of the data in memory cells before the digitisation, the pedestal values depend not only on the

channel, but also on the memory cell number. For the AHCAL prototype with 38 layers, this leads

to 38 × 576 × 16 = 350, 208 pedestal values per mode.

The default beam operation mode for the prototype is the self-triggered auto-gain mode. In this

mode, the information for all channels is digitised and read out if at least one channel has a signal

above the trigger threshold. In muon runs, where typically only one channel in an ASIC has a hit,

the remaining channels can be used for the determination of the pedestals. To cover all memory

cells, the beam rate has to be high enough to fill all 16 slots. This method is used for the amplitudes

measured with high gain in auto-gain mode.

The high gain pedestal values are typically around 530 ADC bins, with a channel-to-channel

spread (RMS) of about 33 ADC bins. The spread of about 9 ADC bins between memory cells of

the same channel is significantly smaller, but not negligible compared to a MIP conversion factor

of ≈ 240 ADC bins. For memory cells 0 to 8, narrow pedestal distributions with a width of 3.5 to

4 ADC bins are observed, with very little indication of SiPM noise. For the higher memory cells,

outliers are observed in the pedestal distribution, leading to large RMS values and shifted means.

Therefore, we chose to apply a memory-cell-wise pedestal correction only for memory cells up to 8,

while we use the mean pedestal determined from memory cells 0 to 8 for memory cells 9 to 15 of

the same channel. While the cause has not yet been identified, it has been checked carefully in the

muon data as well as with charge injection on a test board that no such outliers are observed in the

amplitudes of channels above the trigger threshold.

It turned out that the method used for the high gain pedestals cannot be used to determine the

pedestal for amplitudes measured with low gain since it leads to biased values. In data taken in

inter-calibration mode, the most probable ADC value for muon signals was found to be lower than

the ADC value in events without hits. Therefore, a method was developed to calculate the low gain

pedestal from the muon signals measured with high gain and low gain in inter-calibration runs, using

the inter-calibration factor determined from LED data. In addition, a correction for differences in

the pedestal values observed for high gain between auto-gain and inter-calibration runs is applied.

The low gain pedestals determined with this method are on average 16 ADC bins lower than the

value we would have obtained with the method used for the high gain pedestals. It has been cross
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checked with electron data that the used pedestal values lead to a smooth transition between the high

gain and the low gain range in the hit energy spectra (see figure 8).

Figure 8. Example of the low amplitude region of the reconstructed hit energy spectrum for all cells in a

100 GeV electron run taken in auto-gain mode. The amplitudes measured in high gain mode are indicated in

red, while those measured in low gain mode are shown in green. The sum of both distributions (blue) shows a

smooth transition.

The pedestals in external trigger mode were obtained in LED calibration runs with the LED

voltage set to 0 mV. No outliers were observed in these distributions, so individual values were

determined and used for all memory cells. The high gain pedestal values in external trigger mode

are typically around 500 ADC bins, with a channel-to-channel spread of about 32 ADC bins. The

width of the pedestal distribution is around 4 ADC bins, in agreement with the values obtained for

self-triggered events.

5.2 Gain calibration

The conversion factor from ADC bins to pixels Gain8 corresponds to the charge produced by a

single avalanche in the SiPM, measured in ADC bins by the SPIROC2E readout ASIC, so it is the

product of the SiPM gain (in electrons per avalanche) and the ASIC gain (in ADC per electron). It is

therefore not directly comparable to the gain values quoted and measured for the SiPMs alone, but

is an important quantity for the calibration and the monitoring of the detector in several ways: as

described above, it is needed to convert the measured amplitude from ADC bins to pixels in order to

apply the correction for SiPM non-linearity. Together with the MIP conversion factor MIP8, it is

used to determine the light yield, the MIP response in units of SiPM pixels. In addition, it can be

used to easily monitor the uniformity and stability of the detector, since it can be determined from

short LED runs. While for the determination of the calibration constants long LED runs with many

different LED voltages were used, the monitoring was performed with daily runs with only three

LED voltages, measured in roughly half an hour.

The gain is determined from single pixel spectra obtained by illuminating the SiPMs with short

pulses of LED light. An example spectrum is shown in figure 9(a), clearly showing the individual

pixel peaks. It was obtained after correction of the memory-cell-wise shift of the pedestal. For

each channel, the distribution is fitted with the sum of several Gaussian functions, in which the
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Figure 10. A typical MIP Spectrum for one channel after pedestal subtraction. The blue histogram shows the

data, while the red line indicates the fit with the convolution of a Landau distribution and a Gaussian function

(full line: fit range, dotted line: extrapolation). For a small number of events the ASIC triggers even though

the hit amplitude is below the trigger threshold at ≈ 60 ADC counts.

difference in calibration voltage. We prefer method (2) since it minimises the influence of the pedestal

shift. For about 10, 000 channels in which both methods work well, on average a shift of 0.4% is

observed between the values obtained with the two methods, with a spread of 2%. For about 80% of

all channels the inter-calibration factor could be determined with method (2), with a mean value of

about 19.5 and a channel-to-channel spread of around 4%. For the other channels this mean value is

used. It is slightly lower than the value of 20 expected from the ratio of the preamplifier capacitances.

5.4 MIP calibration

The MIP conversion factors MIP8 of each cell is extracted using the most probable response to

the approximately minimum ionizing muons. A typical MIP spectrum is shown in figure 10. The

calibration of each cell is accomplished with muons from a beam that has a broad spatial distribution

in order to minimise the number of detector positions needed to cover the entire front face of the

AHCAL. A minimum of 1, 000 muon events per channel is required to obtain a reliable fit to the

pulse height spectrum. In practice, we aimed to have at least 10, 000 events per channel, since

also the pedestals are extracted from the same data, for which a sufficient number of events in the

higher memory cells is needed. During the beam tests at the CERN Super Proton Synchrotron (see

section 6.1), muon beams with energies of 40 GeV and 120 GeV were used. For the 40 GeV muon

beam, we scanned 17 positions with ≈ 500, 000 events per position, corresponding to about one

hour per position (with 2 spills of 4.5 seconds length within a cycle of about 30 seconds). For the

narrower 120 GeV muon beam, we collected ≈ 150, 000 events each at 49 positions, leading to a

similar amount of running time.

In the analysis of the muon data, no event or hit selection is applied except the coincidence with

an external trigger scintillator already applied in the online event building. Due to the low SiPM

noise and the clean muon beam, this results in clean MIP signals for nearly all channels. After a

memory-cell wise pedestal subtraction, the resulting ADC spectra are fitted with the convolution of

a Landau distribution and a Gaussian function. The broadening of the Landau distribution, which

leads to the need of the convolution with a Gaussian, is to a large extent caused by the statistical
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measured hit time in units of TDC and )trigger [ns] is the trigger time measured by the BIF. The

slope and offset parameters are obtained in the time calibration procedure by plotting the trigger

time against the TDC values of the hits and fitting a linear function to the data. As explained in

section 2.3, the TDC ramp switches direction from one bunch crossing to the next, so the calibration

has to be done for both directions. Since most of the measurements have been performed with a

250 kHz bunch clock, the time calibration is discussed for this setting.

Similar to the MIP calibration, minimum ionizing muons covering the front face of the AHCAL

are used for calibration. Within one event, all measured hit times of a muon traversing the detector

are related to a single trigger time, therefore the propagation time of the muon is calibrated out. The

slope of the TDC is common to all channels on the same ASIC, while the offsets are obtained for

every memory cell to account for tolerances and signal propagation within the ASIC. Additionally,

the offsets are shifted depending on the direction of the TDC slope. Hence, the calibration consists

of two slope values per ASIC and two offset values per memory cell.

The calibration requires at least 30 hits per memory cell to perform the linear fit. With this

procedure, consistent slope and offset values throughout the AHCAL are obtained and about 93% of

the channels are calibrated. The resulting slope parameters lie around ±1.2 ns/TDC with a spread

of 10% and 8%, depending on the bunch crossing parity. After the conversion of TDC bins to

nanoseconds, a time walk correction is applied to account for energy-signal dependent shifts of

the hit time. In the analysis of the time resolution for MIP tracks, the events in a range of 500 ns

around the transition to the next bunch crossing are rejected to avoid non-linearities in the TDC

ramp. Furthermore, only events with one hit per layer are accepted since the time measurement

gets distorted with rising ASIC occupancy, an effect observed already for previous versions of the

ASIC [62].

6 Test beam experience

6.1 Test beam setup at CERN

The AHCAL technological prototype was operated in three beam test periods in the H2 beam line at

the CERN Super Proton Synchrotron beam test facility during the year 2018.

During the first two weeks of beam time in May 2018, the prototype was equipped with 38

modules with 3 × 3 cm2 scintillator tiles produced according to the scalable construction procedures

described in section 3. They were installed in the first 38 gaps of the absorber structure. The

coincidence of two external trigger scintillators in the beam line was used as a reference for event

building. Four delay wire chambers provided a track position. The prototype was installed on a table

movable in both directions perpendicular to the beam direction (x-y table) to allow a scan of the

complete detector with muons. Photos of the setup are shown in figure 12. It was operated with and

without power pulsing, enabling a direct comparison between the two modes. All data were taken

with temperature compensation (see section 2.5). The prototype was exposed to negative muon,

electron and negative pion beams. In order to monitor the stability of the MIP calibration, muons

were collected at the beginning and the end of the data taking, with energies of 40 and 120 GeV.

Electrons with energies between 10 and 100 GeV and pions between 10 and 160 GeV were measured.

In order to determine the gain inter-calibration factors, for some runs the hit time information was

dropped, and the amplitude was read out in high gain and in low gain modes.
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(a)
(b)

Figure 12. Photos of the assembled prototype: (a) Overview of the setup on the x-y-table in the H2 beam line

at the CERN Super Proton Synchrotron. (b) Close-up of the interface boards sticking out of the absorber.

For the second beam period of one week in June 2018, one module with 6 × 6 cm2 scintillator

tiles was added. It was installed in the 38th absorber gap, and the module previously installed there

was moved to the 41st gap. In addition, the setup was extended by a pre-shower layer consisting of

one HBU in front of the prototype, and a tail catcher behind it. The tail catcher consisted of twelve

layers of one HBU each between absorbers of 7.4 cm thick steel. These HBUs were equipped with

older SiPMs and some of them with a different tile geometry. The tail catcher was read out with

a second wing-LDA which was fully integrated into the AHCAL DAQ. The complete setup was

installed on the x-y-table. Since the experience in May had been positive, all data were taken with

power pulsing as well as temperature compensation. Muons of 40 GeV energy, positrons between 10

and 100 GeV and negative pions between 10 and 200 GeV were measured. Due to improved beam

steering, impurities observed in May for electrons and low energy pions could be reduced.

In October 2018, the AHCAL prototype with 39 layers was operated together with the prototype

for the silicon part of the CMS HGCAL [63, 64] for two weeks. Due to the size of the complete

setup, it had to be installed on a fixed platform. Since the AHCAL prototype was placed behind

the HGCAL prototype with a thickness of about 5 nuclear interaction lengths, only muons and

the tails of hadron showers reached the AHCAL. The synchronisation of the two prototypes was

implemented in EUDAQ2. The data taking rate was limited by the HGCAL prototype to about 50

events per second, resulting in about 2.5 million events in the AHCAL prototype.

During the five weeks of beam time and additional time of LED and cosmics data taking before,

the DAQ operated reliably. In total ∼ 93 million beam events were collected.

6.2 Detector stability

The stability of the detector operation was monitored in several ways: during a testbeam period,

short LED runs were recorded daily, allowing the stability of the pedestal as well as the gain to be

monitored on short time scales. Long LED runs in inter-calibration mode as well as muon data

runs were recorded in all three testbeam periods, such that the long-term stability of the gain, the

inter-calibration factor and the MIP calibration factor could also be monitored.
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