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1 Introduction

Extended objects or defects are important observables in quantum field theory. They enrich

the dynamics of a system by probing new physics, and are relevant in particle physics and

condensed matter. A conformal defect is an extended object in conformal field theory

(CFT) that preserves a fraction of the original conformal algebra. Conformal defects in

higher dimensional CFTs have received significant attention in recent years, due in part

to the revival of the conformal bootstrap program and its natural extension to conformal

defects.

In the presence of a defect, several configurations of correlation functions of local oper-

ators are possible. One can consider the local operators to either be bulk operators, i.e. they

live outside of the defect, or to be excitations localized on the defect itself. In this paper,

we focus on the latter and refer to this setup as correlation functions of defect operators.

Such correlators are described by a (non-local) CFT in a lower-dimensional space, where

the usual constraints coming from conformal invariance apply. In particular, line defects

form an interesting setup, as they are the most natural way of implementing 1d conformal

symmetry, and their dynamics are expected to be simpler than their higher-dimensional

counterparts. This makes the study of 1d defect CFTs an ideal laboratory where new

techniques can be tested. Indeed, modern developments such as analytic functionals were

first formulated in 1d [1–3], before being generalized to higher dimensional CFTs [4].

In this work we focus on a well-known 1d model: the supersymmetric Wilson line in

4d N =4 Super Yang-Mills (SYM), defined as

WC :=
1

N
tr P exp

∫

C
dτ (ẋµA

µ(x) +
√
ẋµ ẋµ θ

IφI(x)) , (1.1)

where θI (I = 1, . . . , 6) is a SO(6) vector parametrizing a path on S5. The coupling is such

that from a 10d perspective the path C is light-like: ẋM = {ẋµ, θi√ẋµ ẋµ} with ẋM ẋM =

0. This operator is locally half-BPS and conformally invariant, and the supersymmetry

enhances its total symmetry to a powerful superconformal algebra. For special geometries

of the path C, such as the infinite straight line, the expectation value of this operator

was obtained at all orders by summing up Feynman diagrams [5, 6]; a result which was
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later confirmed rigorously using supersymmetric localization [7, 8]. The 1d CFT can be

generated by inserting local excitations along the line, and the fact that the resulting theory

is conformal, supersymmetric and embedded in N = 4 SYM places it at a crossroads where

several modern techniques converge, like perturbation theory [9–11], integrability [12–16],

localization [17–22], holography [23, 24] and the conformal bootstrap [25–27]. In this work

we compute multipoint correlators using standard perturbative techniques. One of our

motivations is the multipoint conformal bootstrap in general, and in particular, recent

developments in the study of multipoint correlators in CFT [28–37]. Although multipoint

correlators are often technically challenging, 1d CFTs offer the advantage that the number

of cross-ratios is reduced and the kinematics simplifies.

Our goal is to obtain efficient recursion relations that reproduce general n-point corre-

lators built out of the single-trace fundamental scalars φI(τ) at next-to-leading order in the

couping constant λ := g2N . This work is then a natural continuation of our previous pa-

per [11], where we focused on (single-trace) protected operators formed by inserting φi(τ)

(i = 1, . . . , 5). In this work we extend that analysis to include unprotected operators. The

most studied example is the fundamental field φ6 itself, which is the only scalar of length

L = 1 that couples to the Wilson line for the choice θ = (0, 0, 0, 0, 0, 1). In many ways, this

operator can be seen as the 1d analog of the famous Konishi operator in 4d N = 4 SYM: it

is the lowest-dimensional unprotected operator at weak coupling, and it is not degenerate.

Perhaps the main difference is that it flows to a “two-particle” state at strong coupling (i.e.

∆ = 2), whereas the Konishi operator decouples in this limit. As a result, the conformal

dimension of φ6 has been determined up to five loops at weak coupling [13] and up to four

loops at strong coupling [27].

The structure of the paper is as follows. In section 2 we review the construction of the

1d defect CFT defined along the Maldacena-Wilson line and give the perturbative rules

of N = 4 SYM. In section 3 we present the recursion relations for computing correlation

functions of single-trace scalar operators up to next-to-leading order. We present applica-

tions of these formulae in section 4, including the computation of anomalous dimensions

and higher-point correlators of protected and unprotected operators. Section 5 is dedicated

to the expansion of the correlators 〈〈φ6 . . . φ6 〉〉 in conformal blocks, both in the comb and

snowflake channels, and to the analysis of the corresponding CFT data. Finally we review

our results in section 6 and discuss possible future directions.

2 Preliminaries

In this section we introduce the 1d defect CFT defined by inserting operators along the Wil-

son line. We review how correlation functions can be constructed and give the perturbative

rules of N = 4 SYM.

– 2 –
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2.1 The 1d defect CFT

Our focus in this paper is the Maldacena-Wilson line operator in 4d N = 4 SYM, i.e. the

extended operator defined in (1.1) and for which the path is a straight line:

Wℓ :=
1

N
tr P exp

∫ ∞

−∞
dτ
(
iẋµAµ(τ) + |ẋ|φ6(τ)

)
. (2.1)

Here we have chosen the scalar φ6 to be the one coupling to the line by setting θ =

(0, 0, 0, 0, 0, 1) in (1.1). Note that we have Wick-rotated to Euclidean space and defined

the path such that the line extends in the Euclidean time direction, i.e. ẋµ = (0, 0, 0, 1) and

|ẋ| = 1. The straight Maldacena-Wilson line is a half-BPS operator, and its expectation

value is just

〈 Wℓ 〉 = 1 . (2.2)

One can consider this extended operator as a defect. In Minkowski space, it corresponds

to a point-like impurity in the 3d space, which evolves in time. As a consequence, if we

consider the defect to be part of the vacuum, the conformal symmetry of N = 4 SYM is

broken from SO(4, 2) to SO(1, 2) × SO(3). If we restrict ourselves to operators inserted

on the line (as explained in more detail in the next subsection), then the symmetry group

SO(1, 2) corresponds to a 1d CFT for which the representations carry the quantum number

∆, which is the scaling dimension of the operators. On the other hand, the subgroup SO(3)

refers to rotations orthogonal to the defect, which in this 1d picture is an internal symmetry

with quantum number s (spin).

Because of the presence of the scalar field φ6 in (2.1), the defect also breaks the

R-symmetry from SO(6)R to SO(5)R. This choice entails that SO(5)R corresponds to

the five scalars φi (i = 1, . . . , 5) which do not couple to the line. In this setup, the full

superconformal algebra psu(2, 2|4) of N = 4 SYM breaks into the N = 8 superconformal

quantum mechanics algebra osp(4∗|4).

In this work we consider correlation functions of operators in the scalar sector, which

involve only the six fundamental scalar fields φI(τ) (I = 1, . . . , 6) of the bulk theory.

Operators are constructed by effectively inserting them inside the trace of the Wilson line

and for this reason we refer to them as insertions. Moreover we consider only single-trace

representations of the algebra. Details about these single-trace insertions can be found in

the next subsection, where we formally introduce the correlators.

2.2 Correlation functions

The n-point correlation functions of the defect single-trace operators are to be understood

in the following way:

〈φI1 . . . φIn 〉1d :=
1

N
〈 tr P

[
φI1 . . . φIn exp

∫ ∞

−∞
dτ
(
iẋµAµ + |ẋ|φ6)

]
〉4d , (2.3)

where we suppressed the dependency on τ1, . . . , τn (for the local insertions) and on τ (for

the Wilson line itself) for compactness. Without loss of generality we consider the τ ’s to

be ordered i.e. τ1 < τ2 < . . . < τn. This type of correlators is illustrated in figure 1. The
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. . .τ1 τ2 τn−1 τn

φI1 φI2 φIn−1 φIn

Wℓ

Figure 1. Representation of the correlation functions (2.3) in the 1d defect CFT defined by

inserting operators along the Maldacena-Wilson line. At the points τ1 , . . . , τn, scalar fields are

inserted inside the trace of the Wilson line operator.

brackets on the left-hand side refer to correlators in the 1d defect theory, while the ones

on the right-hand side correspond to correlators in the 4d bulk theory. From now on 〈 . . . 〉
always refers to 1d correlators, hence we drop the subscript.

These correlation functions correspond to single-trace operators,1 in the sense that

there is only one overall color trace in (2.3). This is different from the bulk theory case,

where each operator carries its own trace. This property is specific to the defect theory and

will be crucial later on for constructing correlators involving operators of higher R-charge.

This can be done by bringing two operators close to each other, we refer to this limit as

pinching, and is explained in more detail at the end of this subsection.

In section 4, where we present perturbative results, we consider unit-normalized cor-

relation functions, which are defined in the following way:

〈〈φI1 . . . φIn 〉〉 :=
〈φI1 . . . φIn 〉√
nI1

. . . nIn

, (2.4)

with nI the normalization constants related to two-point functions. Indeed this definition

is chosen such that

〈〈φI(τ1)φJ(τ2) 〉〉 =
δIJ

τ2
12

, (2.5)

with τij := τi − τj . Note that the (classical) scaling dimension of the fundamental scalar

fields φI is ∆ = 1 due to their origin from a 4d bulk theory, which explains the form of the

propagator in (2.5), in spite of the theory being one-dimensional.

The normalization constants can be obtained by computing two-point functions for

the correlators (2.3). For the protected operators φi, conformal symmetry fixes their form

to be

〈φi(τ1)φj(τ2) 〉 =
ni

τ2
12

δij , (2.6)

which follows from the fact that the operators φi have exact conformal dimensions ∆ = 1.

The normalization constant is known to be [38, 39]

ni = 2B(λ) =

√
λ

2π2

I2(
√
λ)

I1(
√
λ)
, (2.7)

where B(λ) is the Bremsstrahlung function with the leading weak-coupling terms being

explicitly B(λ) = λ
16π2 − λ2

384π2 + O(λ3).

1In principle multi-trace operators with the same quantum numbers can also be constructed. See foot-

note 4 in [11] for more detail.
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Figure 2. Examples of diagrams contributing to the two-point functions of fundamental scalars

φI . The diagram on the left contributes to both 〈φiφj 〉 and 〈φ6φ6 〉, while the one on the right

contributes only to 〈φ6φ6 〉 and hence is contained in the function Λ(λ) defined in (2.9). We refer

to this type of diagram as U -diagram.

For the unprotected operator φ6, the non-normalized two-point function reads

〈φ6(τ1)φ6(τ2) 〉 =
n6

τ2∆6
12

. (2.8)

Here the normalization constant takes the form:

n6 = 2B(λ) + Λ(λ) , (2.9)

which can be understood from Feynman diagrams in the following way [12, 40]: the first

term corresponds to diagrams that are common to both φi and φ6, while the term Λ(λ)

refers to the diagrams unique to φ6, i.e. the diagrams where the scalar field couples directly

to the Wilson line (see figure 2 for an example). Since the tree-level diagrams are the same

for 〈φiφj 〉 and 〈φ6φ6 〉, it is clear that Λ(0) = 0.

The scaling dimension of φ6 takes the following form from the weak coupling perspec-

tive:

∆φ6 = 1 +
∞∑

n=1

λnγ
(n)
φ6 , (2.10)

where the anomalous dimensions γ
(n)
φ6 are known up to order n = 5 [13]. The first correction

reads

γ
(1)
φ6 =

1

4π2
. (2.11)

As a consequence, the operator φ6 requires a renormalization procedure. Expanding the

two-point function at λ ∼ 0, we have

〈φ6(τ1)φ6(τ2) 〉 =
1

τ2
12

{
1 + λγ

(1)
φ6 log

ǫ2

τ2
12

+ . . .

}
, (2.12)

with ǫ → 0. In order to cancel the divergence, we promote φ6 to its renormalized version:

φ6
R(τ) := φ6(τ)

{
1 − λγ

(1)
φ6 log

ǫ2

µ2
+ . . .

}
, (2.13)

where µ corresponds to some choice of scale. This results in a finite two-point function:

〈φ6
R(τ1)φ6

R(τ2) 〉 =
1

τ2
12

{
1 + λγ

(1)
φ6 log

µ2

τ2
12

+ . . .

}
. (2.14)

This correlation function is still conformal upon renormalization of the dilatation opera-

tor. In the rest of this work we drop the subscript since we always refer to renormalized

– 5 –
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operators. We also assume normal ordering in the correlators, such that all operators have

vanishing one-point functions, as required by conformal symmetry.

Three-point functions of generic operators Ok are also kinematically fixed by conformal

symmetry and read

〈〈 O1(τ1)O2(τ2)O3(τ3) 〉〉 =
CO1O2O3

τ∆123
12 τ∆231

23 τ∆312
31

, (2.15)

with ∆ijk := ∆i + ∆j − ∆k. For protected operators, an appropriate tensor with R-

symmetry indices must be inserted in (2.15) (see e.g. equation (2.9) in [11]), and it follows

directly that three-point functions with an odd number of fundamental fields φi vanish

since all R-symmetry indices must be contracted.

For higher n-point functions, conformal symmetry is not strong enough to fix the

kinematical form of the correlators. Nevertheless, it constrains them to be functions of

n − 3 cross-ratios χi. For convenience, we now restrict ourselves to correlators of the

operators φI introduced above, and we use the following factorized form:

〈〈φI1 . . . φIn 〉〉 = K(τ1,∆φI1 ; . . . ; τn,∆φIn ) AI1...In(χ1 , . . . , χn−3) , (2.16)

where χi are the spacetime cross-ratios. The prefactor reads

K(τ1,∆φI1 ; . . . ; τn,∆φIn ) =

(
τ32

τ21τ31

)∆1

(
τn−1,n−2

τn,n−2τn,n−1

)∆n n−2∏

i=1

(
τi+2,i

τi+1,iτi+2,i+1

)∆i+1

,

(2.17)

with τij := τi−τj as usual, while we refer to AI1...In as the reduced correlator. The spacetime

cross-ratios are defined as

χi :=
τi,i+1τi+2,i+3

τi,i+2τi+1,i+3
, (2.18)

and they are positive-definite. The prefactor as well as the cross-ratios are adopted

from [41],2 where they emerge naturally in the derivation of the conformal blocks in

the comb channel. These expressions generalize straightforwardly to operators of higher

lengths.

To conclude this section, we review the notion of pinching already discussed in [11].

For a given correlation function, one can bring two operators or more together in order to

produce single-trace operators with a higher length. For example,

〈〈φI1(τ1) . . . φIn−1(τn−1)φIn(τn)︸ ︷︷ ︸
two operators of length 1

〉〉 τn→τn−1−→ 〈〈φI1(τ1) . . . φIn−1(τn−1)φIn(τn−1)︸ ︷︷ ︸
one operator of length 2

〉〉 . (2.19)

This pinching technique allows to construct any single-trace scalar operator made of fun-

damental scalar fields from correlation functions involving operators of length L = 1. Note

that this is not the case in the bulk theory, where the pinching of two single-trace operators

produces a double-trace operator, since each operator carries its own trace.

2Note that in [41] the points are ordered as τ1 > τ2 > . . . > τn.
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2.3 Bulk action and propagators

As stated above, although the correlators satisfy the axioms of a 1d CFT, we perform the

computations using the 4d action of N = 4 SYM. The latter is given by

S =
1

g2

∫
d4x Tr

{
1

2
Fµν F

µν +DµφiD
µφi − 1

2
[φi, φj ][φi, φj ]

+iψ̄γµDµψ + ψ̄Γi[φi, ψ] + ∂µ c̄D
µc+ ξ

(
∂µA

µ
)2
}
, (2.20)

where we include the ghosts and the gauge fixing. Our conventions are collected in ap-

pendix A. The resulting propagators in Feynman gauge (ξ = 1) take the following form in

position space:

Scalars:
i, a

1

j, b

2

= g2δijδ
abI12 , (2.21a)

Gluons:
µ, a

1

ν, b

2

= g2δµνδ
abI12 , (2.21b)

Gluinos:
a

1

b

2

= ig2δab/∂∆I12 , (2.21c)

Ghosts:
a

1

b

2

= g2δabI12 , (2.21d)

where we have defined for brevity the 4d propagator

Iij :=
1

(2π)2x2
ij

, (2.22)

with xµ
ij := xµ

i − xµ
j and

/∂∆ := γ · ∂

∂∆
, ∆µ := xµ

12 , (2.23)

with γµ the Dirac matrices. The Feynman rules are easy to obtain, and a set of convenient

insertion rules can be found in appendix A.

3 Correlation functions of fundamental scalar insertions

In this section we derive a series of recursion relations for correlators involving an arbitrary

number of insertions of the fundamental scalar fields φI (I = 1 , . . . , 6). The case where all

the operators are protected (i.e. I = 1 , . . . , 5) was already worked out in [11]. In order to

implement the remaining field φ6, we have to distinguish between two cases: the formulae

depend on whether an even or odd number of φ6 operators is inserted on the Wilson line.

Similarly to [11], in this section we use for compactness the following shorthand nota-

tion for the correlators:

AI1...In := 〈φI1(τ1) . . . φIn(τn) 〉 . (3.1)

– 7 –
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Note that this differs from (3.1) in [11] by the fact that we keep the R-symmetry indices

open. We consider correlation functions that are not unit-normalized, since this is the

natural normalization to work with when doing perturbative computations. However the

results presented in the subsequent sections are going to be unit-normalized. Note that the

recursion relation presented in this section is implemented in the Mathematica notebook

which can be found as supplementary material and ready to use.

As stated in [11], if a correlator contains an odd number of protected scalars φi in (3.1),

then it vanishes because of the R-symmetry indices. Therefore in the following we consider

the number of φi to always be even.

3.1 Even case

We start our analysis by studying the case where an even number of unprotected scalars

φ6 is included in the correlator. This provides a generalization of the equations (3.3) and

(3.5) of [11].

3.1.1 Leading order

We begin with a formula for the leading order. In this case, computing correlation functions

with an even number of φ6 operators is the same as computing correlation functions of only

protected operators φi, and thus the recursion relation is the same as equation (3.3) in [11],

with the difference that we now keep the R-symmetry indices open:

AI1...In
LO

=

n
2

−1∑

j=0

A
I1I2j+2

LO A
I2...I2j+1

LO A
I2j+3...In

LO . (3.2)

This can be represented diagrammatically as

AI1...In
LO

=

n
2

−1∑

j=0 1 2j + 2

t t , (3.3)

where t stands for the leading-order correlation functions ALO of appropriate lengths.

Arbitrary correlation functions of scalar fields can then be obtained by selecting R-symmetry

indices, as long as the number of φ6 is kept even.

In the expression above, the starting values for the recursion are given by the vacuum

expectation value and by the two-point functions:

ALO = 1 , AI1I2
LO

=
λ

8π2

δI1I2

τ2
12

, (3.4)

the second one corresponding to the leading order of equation (2.7) at weak coupling.

3.1.2 Next-to-leading order

We now turn our attention to the next-to-leading order, where the recursion relation be-

comes more involved. For arbitrary operators (still with an even number of φ6), it consists

of the diagrams appearing in 〈φi1 . . . φin 〉, which must be complemented with the so-called

– 8 –
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U -diagrams, i.e. diagrams accounting for the coupling to φ6 present in the definition of the

Maldacena-Wilson line in (2.1). An example of such diagrams can be found on the right

in figure 2. Explicitly, we have

AI1...In
NLO

= AI1...In
NLO

∣∣∣
old

+ AI1...In
NLO

∣∣∣
new

, (3.5)

where AI1...In
NLO

∣∣∣
old

refers to equation (3.5) in [11],3 while the second term can be determined

by considering all the possible U -contractions:

AI1...In
NLO

∣∣∣
new

=
n−1∑

j=1

n∑

k=j+1

(
n−2∑

l=k

n∑

m=l+2

t t t t t

j k l m

+
n∑

l=k

k−1∑

m=j

t t t t t

j m k l

+
j−3∑

l=0

j−1∑

m=l+2

t t t t t

l m j k

+
k−1∑

l=j

j−1∑

m=0

t t t t t

m j l k

+
k−1∑

l=j

n∑

m=k

t t t t t

j l k m

+
k−3∑

l=j

k−1∑

m=l+2

t t t t t

j l m k

+
j−1∑

l=0

n∑

m=k

t t t t t

jl mk

+
j−1∑

l=0

k−1∑

m=j

t t t t t

l j m k

)

+
n−3∑

j=1

n−1∑

k=j+2

(
n∑

l=k+1

n∑

m=l

t tO t t t

j k l m

+
n∑

l=k+1

l−1∑

m=k

t tO t t t

j k lm

)

+
n−2∑

j=2

n∑

k=j+2

(j−1∑

l=1

j−1∑

m=l

t t t tO t

l j km

+
j−1∑

l=1

l−1∑

m=0

t t t tO t

l j km

)

+
n−3∑

j=1

n−1∑

k=j+2

n∑

l=k+1

j−1∑

m=0

t t tO t t

jm k l

+
n−2∑

j=3

n∑

k=j+2

j−1∑

l=1

n∑

m=k

t t tO t t

l mkj

+
n−5∑

j=1

n−3∑

k=j+2

n−2∑

l=k+1

n∑

m=l+2

t tO t tO t

k l mj

, (3.6)

where every sum should be considered as going in steps of 2. In the recursion, we find
tO to indicate that a leading-order contribution of appropriate odd length has to be

inserted there. These contributions are derived in the next subsection and are given in

equation (3.8).

This recursive expression is lengthy but easy to understand: it corresponds to summing

over all the possible U -diagrams. When propagators end on the Wilson line without a dot,

it means that the integration limit of the U -integral goes from the previous propagator to

the next. More concretely:

i jn a

tt :=

∫ τj

τi

dτn Ian , (3.7)

3Note that the notation is slightly different here due to the fact that we keep the indices open. This

change is easy to implement in (3.5) of [11], by removing the null-vectors u’s and keeping the R-symmetry

indices of the fundamental fields open.
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where we have not included the leading-order insertions t on the right-hand side for

the sake of clarity.

The explicit form of this diagrammatic expression is particularly long, therefore we

give it in appendix B. It is important to note that two types of U -integrals appear in that

expression, which are the ones defined in (C.17) and (C.19). This formula is implemented

in the supplementary material and can readily be used for producing arbitrary correlators

composed of fundamental scalar fields φI (I = 1 , . . . , 6). The technical details related to

the recursion relation and to the U -integrals can be found in appendices B and C.2.2.

In later sections, we refer to the terms AI1...In
NLO

∣∣∣
old

appearing in equation (3.5) as building

blocks, since these terms appear in all the correlation functions involving fundamental scalar

fields. On the other hand, the second term AI1...In
NLO

∣∣∣
new

is only relevant when some of the

R-symmetry indices are set to Ik = 6.

To conclude, note that AI1...In
NLO

∣∣∣
old

contains a recursive term (see equation (3.19) in [11]).

As it is obvious from thinking in terms of Feynman diagrams, the full expression AI1...In
NLO

on the left-hand side of (3.5) should be used as input for this recursive term.

3.2 Odd case

We now consider the case where an odd number of φ6 appears in the correlators, while the

number of protected scalars φi is still kept even. We restrict our analysis to the leading

order, since a coupling to the Wilson line already appears here and hence it corresponds

to the interacting theory.

Diagrammatically the formula reads

AI1...In
LO

(1, . . . , n) =
n∑

i=1




i−1
2∑

j=0

t t t

2j i

+

n
2∑

j= i
2

t t t

i 2j




+
n−1∑

i=1

n∑

j=i+2

t tO t

i j

, (3.8)

where the sum in the second line goes in steps of 2, and where tO are the leading-order

correlation functions with an odd number of points of the appropriate length. Again it is

fairly easy to understand the formula: these three terms ensure that all the possible U -

diagrams are represented, either when the propagator of equation (3.7) closes over leading-

order contractions (the first two terms) or when the U -integral is contained inside a leading-

order propagator (the third one).
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The diagrammatic expression given above can be expressed formally as

(3.8) =
n∑

i=1

( i−1
2∑

j=0

λ

8π2
δi6Ui;2j(2j+1)A

I1,...,I2j

LO A
I2j+1,...,Ii−1

LO A
Ii+1,...,In
LO

+

n
2∑

j= i
2

λ

8π2
δi6Ui;2j(2j+1)A

I1,...,Ii−1
LO A

Ii+1,...,I2j

LO A
I2j+1,...,In

LO

)

+
n−1∑

i=1

n∑

j=i+2

A
IiIj

LO A
I1,...,Ii−1
LO A

Ij+1,...,In

LO A
Ii+1,...,Ij−1

LO , (3.9)

again with the sum in the last line going in steps of 2. The starting values of the recursion

are the same as in (3.4), and this formula is also fully implemented in the supplementary

material.

In this section, we have presented recursion relations that allow to compute arbitrary

correlators of fundamental scalar fields φI , both at leading and next-to-leading orders for

the even case and at leading order for the odd case. We now consider concrete examples

of correlators that can be computed using these expressions.

4 Applications

In this section, we gather explicit results for correlators that can be derived using the

recursion relations presented in the previous section. More precisely, we compute examples

of n-point functions that include the unprotected scalar field φ6, as well as composite

operators, for n = 2 , . . . , 6, complementing the results of [11]. For operators of lengths

L = 1, 2, we obtain the normalization constants and scaling dimensions up to next-to-

leading order, and compare the results to the literature when possible.

4.1 Two-point functions and anomalous dimensions

We start by computing two-point functions both for protected and unprotected operators

of lengths L = 1, 2. We obtain normalization constants as well as anomalous dimensions,

which for the latter can be compared to the existing literature, while to the best of our

knowledge the normalization constants are new results. The method presented here can

be extended straightforwardly to operators of higher length consisting of the elementary

scalar fields φI .

4.1.1 Operators of length L = 1

As explained in section 2.1, there are two distinct operators of length L = 1, which are the

half-BPS operators φi and the unprotected scalar field φ6. As a sanity check, we compute

here their two-point functions in order to compare them to equations (2.7), (2.9) and (2.11).

We start with the two-point function 〈φiφj 〉. At leading order, the recursion relation

given in equation (3.2) trivially produces the following diagram:

〈φi(τ1)φj(τ2) 〉LO = =
δij

τ2
12

λ

8π2
, (4.1)
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where the explicit result on the right-hand side simply comes from the starting value given

in (3.4).

At next-to-leading order, we use equation (3.5) in order to generate the following

diagrams:

〈φi(τ1)φj(τ2) 〉NLO = + , (4.2)

where the red dots in the second diagram indicate the places where the gluon line should

be connected. This corresponds to integrals along the Wilson line, similarly to the case

of the U -diagrams and as explained in [11] around equation (3.12). The two diagrams are

individually divergent and refer to the starting values given in equations (3.10) and (3.14)

of [11]. The divergences cancel and the two-point function at next-to-leading order reads

〈φi(τ1)φj(τ2) 〉NLO = − δij

τ2
12

λ2

192π2
, (4.3)

in perfect agreement with (2.7).

Analogously we can compute the two-point function of φ6. At leading order we find

that it coincides with 〈φiφj 〉:

〈φ6(τ1)φ6(τ2) 〉LO = 〈φi(τ1)φj(τ2) 〉LO

∣∣∣
i=j

= =
1

τ2
12

λ

8π2
, (4.4)

and so the function Λ(λ) defined in (2.9) indeed satisfies Λ(0) = 0.

However, at next-to-leading order we observe that new diagrams contribute:

〈φ6(τ1)φ6(τ2) 〉NLO = 〈φi(τ1)φj(τ2) 〉NLO

∣∣∣
i=j

+ + +

+ + +

+ + + O(λ3) . (4.5)

The new diagrams are U -integrals, which are the ones contributing to the function Λ(λ).

Using the integrals given in appendix C.2.2 and following the renormalization procedure

described in section 2.2, we find the following result for the leading and next-to-leading

orders combined:

〈φ6(τ1)φ6(τ2) 〉 =
1

τ2
12

λ

8π2

(
1 − λ

24

6 + π2

π2
+ O(λ2)

)(
1 − λ

4π2
log τ2

12 + O(λ2)

)
. (4.6)

This factorized form is useful for reading off the normalization coefficient as well as the

anomalous dimension, since it can be compared to (2.8). The first-order correction to the

scaling dimension reads

γ
(1)
φ6 =

1

4π2
, (4.7)
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in perfect agreement with (2.11), while the normalization constant is

n6 =
λ

8π2

(
1 − λ

24

6 + π2

π2
+ O(λ2)

)
, (4.8)

which to the best of our knowledge has not been given explicitly in the literature yet.

Comparing this result to (2.9), we determine

Λ(λ) = − λ2

32π4
+ O(λ3) . (4.9)

4.1.2 Operators of length L = 2

We now move our attention to the operators of length L = 2. Orthogonal eigenstates of

the dilatation operator at next-to-leading order have been constructed in [12]:

Oij
S := φiφj + φjφi − 2

5
δijφkφk ,

Oij
A := φiφj − φjφi ,

Oi
A := φ6φi − φiφ6 ,

Oi
S := φ6φi + φiφ6 ,

O± := φiφi ±
√

5φ6φ6 .

(4.10)

In this case, the operator Oij
S is protected while the other ones are not. In the following,

we compute the two-point functions of all these operators up to next-to-leading order.

For the protected operator Oij
S , inserting the definition given in (4.10) results in

〈Oij
S (τ1)Okl

S (τ2) 〉 = 〈φi
1φ

j
1φ

k
2φ

l
2 〉 + 〈φi

1φ
j
1φ

l
2φ

k
2 〉 − 2

5
δkl〈φi

1φ
j
1φ

m
2 φ

m
2 〉

+ 〈φj
1φ

i
1φ

k
2φ

l
2 〉 + 〈φj

1φ
i
1φ

l
2φ

k
2 〉 − 2

5
δkl〈φj

1φ
i
1φ

m
2 φ

m
2 〉

− 2

5
δij〈φm

1 φ
m
1 φ

k
2φ

l
2 〉 − 2

5
δij〈φm

1 φ
m
1 φ

l
2φ

k
2 〉 +

4

25
δijδkl〈φm

1 φ
m
1 φ

n
2φ

n
2 〉 ,
(4.11)

where we defined φi
1 := φi(τ1) for compactness. Each term can be seen as the pinching

limit of a four-point function of the fundamental protected scalars φi, e.g.

〈φi
1φ

j
1φ

k
3φ

l
3 〉 = lim

(2,4)→(1,3)
〈φi

1φ
j
2φ

k
3φ

l
4 〉 . (4.12)

The recursion relations (3.2) and (3.5) can be used to efficiently compute each of these

terms up to next-to-leading order.

We now illustrate with an example at leading order how the pinching of the recursion

relation works. In the planar limit, the four-point function consists of the following two

diagrams:

〈φi
1φ

j
2φ

k
3φ

l
4 〉LO =

i j k l

+
i j k l

. (4.13)
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In order to generate the first term of (4.11), 〈φi
1φ

j
1φ

k
2φ

l
2 〉, we need to pinch (τ2, τ4) → (τ1, τ3)

and then relabel τ3 to τ2. Only the second diagram in (4.13) survives this pinching, since

the first one results into self-contractions, and we have

〈φi
1φ

j
1φ

k
2φ

l
2 〉 =

ij kl
= δilδjk λ2

64π4τ4
12

. (4.14)

We can repeat the same procedure for the other terms at leading order and for the next-

to-leading order.4 We finally obtain

〈Oij
S (τ1)Okl

S (τ2) 〉 = 2

(
δikδjl + δilδjk − 2

5
δijδkl

)
λ2

64π4τ4
12

(
1 − λ

24
+ O(λ2)

)
. (4.15)

In this case there is no factor corresponding to the correction to the scaling dimension since

this operator is half-BPS and hence protected (∆ = 2). The normalization constant is

n
Oij

S

=
λ2

64π4

(
1 − λ

24
+ O(λ2)

)
, (4.16)

which agrees with (4.3) in [11] after identifying (u1 · u2)2 → 2
(
δikδjl + δilδjk − 2

5δ
ijδkl

)
.

One can proceed in a similar way for the other unprotected operators in order to

read their normalization constants as well as the anomalous dimensions. For example, the

two-point function of Oij
A can be obtained in the following way:

〈Oij
A(τ1)Okl

A (τ2) 〉 = 〈φi
1φ

j
1φ

k
2φ

l
2 〉 − 〈φi

1φ
j
1φ

l
2φ

k
2 〉 − 〈φj

1φ
i
1φ

k
2φ

l
2 〉 + 〈φj

1φ
i
1φ

l
2φ

k
2 〉 . (4.17)

Note that there are only correlators of protected operators of length L = 1 on the right-

hand side, but that the pinching operation generates logarithmic divergences that can be

related to the anomalous dimension of the operator, as explained in equation (2.12) and

below. We find that the normalization constant is

n
Oij

A

= − λ2

32π4

(
1 − λ

24
+ O(λ2)

)
, (4.18)

while the anomalous dimension turns out to be

γ
(1)

Oij
A

=
1

4π2
, (4.19)

in perfect agreement with [12].

All the other operators can be treated the same way, even when they involve φ6. For

Oi
A we find the normalization constant to be

nOi
A

= − λ2

32π4

(
1 − λ

24

6 + π2

π2
+ O(λ2)

)
, (4.20)

while the anomalous dimension reads

γ
(1)

Oi
A

=
3

8π2
. (4.21)

4See section 4.3.1 and in particular equation (4.34) for more detail on the four-point function at next-

to-leading order.

– 14 –



J
H
E
P
0
8
(
2
0
2
3
)
1
9
8

Similarly, for Oi
S the normalization constant turns out to be

nOi
S

=
λ2

32π4

(
1 − λ

24
+ O(λ2)

)
, (4.22)

and the anomalous dimension is

γ
(1)

Oi
S

=
1

8π2
. (4.23)

Finally, for the last operator O± we find

nO±
=

5λ2

32π4

(
1 − λ

24π2

(
π2 − 9

2
(1 ±

√
5)

)
+ O(λ2)

)
, (4.24)

and

γ
(1)
O±

=
5 ±

√
5

16π2
. (4.25)

All the anomalous dimensions listed above perfectly match the results of [12] for the

supersymmetric case ζ = 1.

4.2 Three-point functions

In this section, we compute selected three-point functions using the recursion relations given

in section 3. We focus our attention on correlators involving the two operators of length

L = 1, φi and φ6, but in the supplementary material we provide examples of three-point

functions involving unprotected operators of length L = 2 as well.

Note that from now and for the rest of this work, we are going to consider unit-

normalized correlation functions, following the definition given in (2.4) and using the results

of subsection 4.1.

4.2.1 〈〈 φiφjφ6 〉〉

We start by computing the three-point function involving two protected operators φi to-

gether with the only unprotected operator of length L = 1, φ6. Using the recursion relation

for an odd number of φ6 operators given in (3.8), we find the following result:

〈〈φiφjφ6 〉〉 =
〈φiφjφ6 〉
ni

√
n6

=
δij

τ12τ23τ31

(
−

√
λ

2
√

2π
+ . . .

)
, (4.26)

which yields, by comparison to (2.15), the OPE coefficient

Cφiφjφ6 = −
√
λ

2
√

2π
+ O(λ3/2) . (4.27)

4.2.2 〈〈 φ6φ6φ6 〉〉

The same computation can easily be performed for three unprotected operators φ6. In this

case we obtain

Cφ6φ6φ6 = − 3
√
λ

2
√

2π
+ O(λ3/2) . (4.28)

These results are going to be used as consistency checks for the correlation functions that

we expand in conformal blocks in section 5.
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4.3 Four-point functions

We move now our attention to the four-point functions that can be computed using the

recursion relations of section 3. These are the first correlators that have a non-trivial

kinematic dependence.

We consider here three examples, two of which involve the fundamental scalars φI only

and one involving a composite operator of length L = 2. For both types, more correlators

can be found in the supplementary material.

4.3.1 Building blocks and 〈〈 φiφjφkφl 〉〉

As defined in (3.5) and explained in the text, the R-symmetry channels of the correlator

〈〈φiφjφkφl 〉〉 (i, j, k, l = 1 , . . . , 5) can be used as building blocks for other correlators

involving an even number of unprotected operators. This correlator has been computed

in [10] and can also be generated using the recursion relation of [11]. We repeat this

computation here in order to show how the recursion relations work in this case.

In our convention, the reduced correlator can be extracted from the full correlator

following

〈〈φi(τ1)φj(τ2)φk(τ3)φl(τ4) 〉〉 =
1

τ2
12τ

2
34

Aijkl(χ) , (4.29)

where the conformal prefactor is obtained following (2.17). The spacetime cross-ratio is

defined as

χ :=
τ12τ34

τ13τ24
, (4.30)

which satisfies 0 < χ < 1, with the ordering of the spacetime points τ1 < τ2 < τ3 < τ4.

The reduced correlator can be expanded in three R-symmetry channels:

Aijkl(χ) = δijδklF0(χ) + δikδjlχ2F1(χ) + δilδjk χ2

(1 − χ)2
F2(χ) , (4.31)

where the prefactors have been chosen such that they correspond to the same channels

as in equation (4.8) in [11], even if here we keep the R-symmetry indices open and the

correlator is unit-normalized.

These channels (which we will call building blocks from now on) obey the following

perturbative expansion:

Fj(χ) =
∞∑

k=0

λkF
(k)
j (χ) . (4.32)

At leading order the recursion relation given in equation (3.2) produces the diagrams given

in (4.13). Unit-normalizing the correlator by following (2.4) and using the normalization

constant computed in (2.7) results in the following channels:

F
(0)
0 (χ) = F

(0)
2 (χ) = 1 , F

(0)
1 (χ) = 0 . (4.33)

– 16 –



J
H
E
P
0
8
(
2
0
2
3
)
1
9
8

At next-to-leading order, the recursion relation generates the following diagrams:

〈φi
1φ

j
2φ

k
3φ

l
4 〉NLO =

i j k l

+
i j k l

+
i j k l

+
i j k l

+
i j k l

+

i j k l

+
i j k l

+
i j k l

+

i j k l

+

i j k l

+

i j k l

, (4.34)

where we have used the notation φi
1 := φi(τ1) on the left-hand side for compactness. This

computation was first performed in [10], and then repeated in [11] with the use of the

recursion relation. The unit-normalized R-symmetry channels read

F
(1)
0 (χ) =

1

8π2

(
2LR(χ) +

ℓ(χ, 1)

1 − χ

)
, (4.35a)

F
(1)
1 (χ) = − 1

8π2

ℓ(χ, 1)

χ(1 − χ)
, (4.35b)

F
(1)
2 (χ) = − 1

8π2

(
2LR(χ) − ℓ(χ, 1)

χ
− π2

3

)
. (4.35c)

Note that we have used the Rogers dilogarithm, defined as

LR(χ) := Li2(χ) +
1

2
log(χ) log(1 − χ) , (4.36)

and satisfying the following properties:

LR(x) + LR(1 − x) =
π2

6
, (4.37a)

LR(x) + LR(y) = LR(xy) + LR

(
x(1 − y)

1 − xy

)
+ LR

(
y(1 − x)

1 − xy

)
. (4.37b)

We also use the following two-variable function introduced in [11]:

ℓ(χ1, χ2) := χ1 logχ1 − χ2 logχ2 + (χ2 − χ1) log(χ2 − χ1) . (4.38)

Note that the function ℓ(χ, 1) is manifestly crossing-symmetric, i.e.

ℓ(χ, 1) = ℓ(1 − χ, 1) , (4.39)

and it is related to a special limit of the Bloch-Wigner function D(χ, χ̄) in the following

sense:

ℓ(χ, 1) = χ(1 − χ) lim
χ̄→χ

D(χ, χ̄)

2(χ̄− χ)
, (4.40)
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with

D(χ, χ̄) = 2Li2(χ) − 2Li2(χ̄) + logχχ̄ log
1 − χ

1 − χ̄
. (4.41)

The function ℓ, which appears in higher-point functions as well, satisfies the following

identities:

ℓ(χ1, χ2) + ℓ(χ2, χ1) = iπ(χ1 − χ2) , (4.42a)

ℓ(χ1, χ2) = χ1 χ2 ℓ(χ
−1
2 , χ−1

1 ) for 0 < χ1 < χ2 < 1 , (4.42b)

ℓ(χ1, χ2) + ℓ(1 − χ2, 1 − χ1) = ℓ(χ1, 1) − ℓ(χ2, 1) . (4.42c)

4.3.2 〈〈 φ6φ6φ6φ6 〉〉

We now look at the four-point function of unprotected fundamental fields φ6. The reduced

correlator can be read from

〈〈φ6(τ1)φ6(τ2)φ6(τ3)φ6(τ4) 〉〉 =
1

τ2∆
φ6

12 τ2∆
φ6

34

A6666(χ) . (4.43)

Similarly to (4.32), the reduced correlator obeys the following perturbative expansion:

A6666(χ) =
∞∑

k=0

λkA(k)
6666(χ) . (4.44)

Note that, as opposed to the case 〈〈φiφjφkφl 〉〉 presented above, this correlator consists of

a single R-symmetry channel.

At leading order, using (3.2) and unit-normalizing we find that it agrees with A(0)
ijkl

when all the indices are set equal

A(0)
6666(χ) = A(0)

ijkl(χ)
∣∣∣
i=j=k=l

=
1 − 2χ(1 − χ)

(1 − χ)2
. (4.45)

At next-to-leading order, the conformal prefactor in (4.43) produces logs when ex-

panded around λ ∼ 0 because of the anomalous dimension of φ6:

1

τ2∆
φ6

12 τ2∆
φ6

34

=
1

τ2
12τ

2
34

(
1 − λ γ

(1)
φ6 log τ2

12τ
2
34 + O(λ2)

)
. (4.46)

The log term must be taken into account in order to isolate the reduced correlator A(1)
6666 at

next-to-leading order. Moreover, as discussed in section 3.1, the correlator can be expressed

as a sum of building blocks and U -diagrams. Applying (3.5) and computing the integrals

with the help of appendix C results in the following elegant result:

A(1)
6666(χ) = A(1)

ijkl(χ)
∣∣∣
i=j=k=l

+
λ

12(1−χ)2

(
1−2χ(1−χ)+

3

π2

(
3χ(1−χ)+χ2 logχ−(1−χ(2−3χ)) log(1−χ)

))
.

(4.47)

The first line corresponds to the building blocks defined in equations (4.31) and (4.35),

while the second and third ones are the results of computing the U -diagrams.
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4.3.3 〈〈φiφjOk
AOl

A 〉〉

We now use our algorithm to compute a four-point function involving the composite op-

erator Oi
A introduced in (4.10), namely 〈〈φiφjOk

AOl
A 〉〉. The correlator takes the following

form:

〈〈φi(τ1)φj(τ2)Ok
A(τ3)Ol

A(τ4)〉〉 =
1

τ2
12τ

2∆OA34

Âijkl(χ) . (4.48)

Here we use the notation Âijkl for the reduced correlator in order to distinguish it from

the Aijkl used in (4.29).

This reduced correlator consists of three R-symmetry channels, for which we use the

following notation:

Âijkl(χ) = δijδklG0(χ)+δikδjlχ2G1(χ)+δilδjk χ2

(1−χ)2
G2(χ) . (4.49)

At leading order, the channels are related to the building blocks defined in section 4.3.1

in the following way:

G
(0)
0 (χ) =F

(0)
0 (χ) = 1 , (4.50a)

G
(0)
1 (χ) = 0 , (4.50b)

G
(0)
2 (χ) =

1

2
F

(0)
2 (χ) =

1

2
. (4.50c)

At next-to-leading order the anomalous dimension computed in (4.21) must be taken

into account in the same fashion as explained around equation (4.46). Applying the recur-

sion relation (3.5) for six-point functions, pinching to four-point and unit-normalizing, we

find the following elegant results in terms of building blocks:

G
(1)
0 (χ) =F

(1)
0 (χ)− λ

12
F

(0)
0 (χ)− λ

16π2

(
8−9χ

1−χ +log(1−χ)

)
, (4.51a)

G
(1)
1 (χ) =

1

2
F

(1)
1 (χ) , (4.51b)

G
(1)
2 (χ) =

1

2
F

(1)
2 (χ)− λ

48
F

(0)
2 (χ)− λ

16π2
(4+log(1−χ)) . (4.51c)

Several other four-point functions can be found in the supplementary material. We

conclude this section by also reminding that all four-point functions of single-trace scalar

operators made of fundamental scalar fields and of arbitrary length L can be obtained up

to next-to-leading order by using (3.2) and (3.5) (for an even case of φ6 insertions) or (3.8)

(for the odd case), and by pinching the operators in the desired way.

4.4 Five-point functions

We now consider the case of five-point functions. When the number of operators is odd,

there are no building blocks as for the even case, and the recursion relation provides the

leading order of the correlators only.

Five-point functions depend on two independent cross-ratios:

χ1 :=
τ12τ34

τ13τ24
, χ2 :=

τ23τ45

τ24τ35
, (4.52)

which are defined following (2.18).
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4.4.1 〈〈φiφjφ6φ6φ6 〉〉

In this subsection, we compute the correlator of two protected operators φi and three

unprotected ones φ6 at leading order. The correlator can be expressed as

〈〈φi(τ1)φj(τ2)φ6(τ3)φ6(τ4)φ6(τ5)〉〉 =
1

τ2
12

(
τ42

τ32τ43τ
2
45

)∆
φ6

Aij666(χ1,χ2) , (4.53)

following equation (2.17) for the prefactor.

The reduced correlator obtained using the recursion relation (3.8) consists of a single

R-symmetry channel corresponding to the contraction between the indices i and j, and it

obeys the following perturbative expansion:

Aij666(χ1,χ2) =
∞∑

k=1

λk/2A(k)
ij666(χ1,χ2) . (4.54)

As it was the case for three-point functions, the leading order is O(
√
λ), and we obtain

A(1)
ij666(χ1,χ2) = − 1

2
√

2π

χ1

1−χ1−χ2

(
3χ2(1−χ2)

χ1
+

1

1−χ2
−χ1−5χ2

)
. (4.55)

4.4.2 〈〈φ6φ6φ6φ6φ6 〉〉

We now want to compute the correlator of five unprotected scalars φ6 at leading order. It

can be factorized in

〈〈φ6(τ1)φ6(τ2)φ6(τ3)φ6(τ4)φ6(τ5)〉〉 =

(
τ42

τ2
12τ32τ43τ

2
45

)∆
φ6

A66666(χ1,χ2) , (4.56)

with the prefactor following (2.17).

The reduced correlator obtained using the recursion relation (3.8) obeys the following

perturbative expansion:

A66666(χ1,χ2) =
∞∑

k=1

λk/2A(k)
66666(χ1,χ2) . (4.57)

The leading order is again O(
√
λ) and we obtain the following expression:

A(1)
66666(χ1,χ2) = − 3

2
√

2π

(
χ1(2(1−χ1)−χ2

1)

1−χ1
+
χ2(1−χ2)−1

1−χ2

+
χ2

1(1−χ1)2

(1−χ1−χ2)2
+

1−2χ1(1−χ1)(1+χ1)

1−χ1−χ2

)
. (4.58)

4.5 Six-point functions

We now turn our attention to six-point functions of operators of length L= 1, involving

both protected and unprotected scalars, using the recursion relations given in section 3.1.

As before, the results can be extended to more complicated correlators by combining the

formulae for length L= 1 operators and the pinching technique.
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4.5.1 Building blocks and 〈〈φiφjφkφlφmφn 〉〉

We start by analyzing the six-point function of protected operators and collecting the build-

ing blocks useful to express other correlators, including the ones involving the unprotected

scalar φ6. As usual we define a reduced correlator through

〈〈φi(τ1)φj(τ2)φk(τ3)φl(τ4)φm(τ5)φn(τ6)〉〉 =
τ24τ35

τ2
12τ23τ2

34τ45τ2
56

Aijklmn(χ1 ,χ2 ,χ3)

=
1

τ2
12τ

2
34τ

2
56

1

χ2
Aijklmn(χ1 ,χ2 ,χ3) , (4.59)

where the notation on the second line turns out to be more convenient for expressing

the correlator in terms of R-symmetry channels. We define three independent spacetime

cross-ratios from (2.18):

χ1 :=
τ12τ34

τ13τ24
, χ2 :=

τ23τ45

τ24τ35
, χ3 :=

τ34τ56

τ35τ46
. (4.60)

The reduced correlator consists of fifteen R-symmetry channels, which we choose to define

as follows:5

1

χ2
Aijklmn = δijδklδmnF0+δikδjlδmnχ2

1F1+δilδjkδmn χ2
1

(1−χ1)2
F2+δijδkmδlnχ2

3F3

+δijδknδlm χ2
3

(1−χ3)2
F4+δikδjmδln χ2

1χ
2
3

(1−χ2)2
F5+δimδjkδlm χ2

1χ
2
3

(1−χ1−χ2)2
F6

+δikδjnδlm χ2
1χ

2
3

(1−χ2−χ3)2
F7+δilδjmδkn χ2

1χ
2
2χ

2
3

(1−χ1)2(1−χ2)2(1−χ3)2
F8

+δilδjnδkm χ2
1χ

2
2χ

2
3

(1−χ1)2(1−χ2−χ3)2
F9+δimδjlδkm χ2

1χ
2
2χ

2
3

(1−χ3)2(1−χ1−χ2)2
F10

+δimδjnδkl χ2
1χ

2
2χ

2
3

(1−χ1−χ2)2(1−χ2−χ3)2
F11

+δinδjlδkm χ2
1χ

2
2χ

2
3

(1−χ1−χ2−χ3+χ1χ3)2
F12

+δinδjkδlm χ2
1χ

2
3

(1−χ1−χ2−χ3+χ1χ3)2
F13

+δinδjmδkl χ2
1χ

2
2χ

2
3

(1−χ2)2(1−χ1−χ2−χ3+χ1χ3)2
F14 , (4.61)

where we suppressed the dependency on the spacetime cross-ratios, i.e. Fj :=Fj(χ1,χ2,χ3).

As usual, these channels (the building blocks) have the following perturbative expan-

sion:

Fj(χ1,χ2,χ3) =
∞∑

k=0

λkF
(k)
j (χ1,χ2,χ3) . (4.62)

The computation up to next-to-leading order was already performed in [11] without

unit-normalizing the correlator. If we do so, at leading order it is easy to determine the

5Note that the definition of these channels differs from the convention followed in [11]. This choice is due

to the fact that another set of cross-ratios is being used in (4.59), as well as a different conformal prefactor.
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building blocks and they read

F
(0)
0 =F

(0)
2 =F

(0)
4 =F

(0)
13 =F

(0)
14 = 1 , F

(0)
j = 0 . (4.63)

At next-to-leading order the expressions are cumbersome and we gathered them in the

supplementary material. As an example we give here the highest R-symmetry channel:

8π2F
(1)
0 = L̄R

(
1

η1

)
+L̄R

(
1−η2

η32

)
+L̄R

(
− η2

η32

)
+L̄R

(
η31

η32

)

+2

(
LR

(
−η21

η1

)
+LR

(
−η31

η1

))
+
ℓ(η1,η2)

η21
−
(

η2

η3η21
+
iπ

η31

)
ℓ(η1,η3)

+

(
1

1−η3
+

η1

η3η21
+
iπ

η32

)
ℓ(η2,η3)+

ℓ(η1,1)

1−η1
−
(

1

1−η3
+

iπ

1−η2

)
ℓ(η2,1)

+
ℓ(η3,1)

1−η3
+
iπη3

η31
logη1− iπ(η3(1−η2)−η2η32)

(1−η2)η32
logη2

− iπ(2η1η32−η3(η31+η32))

η31η32
logη3 , (4.64)

where we have defined the following help variables:

η1 :=
χ1χ2χ3

(1−χ1−χ2)(1−χ2−χ3)
, η2 :=

χ2χ3

(1−χ1−χ2)(1−χ3)
, η3 :=

(1−χ1)χ3

1−χ1−χ2
, (4.65)

with ηij := ηi−ηj . Note that with these definitions we have the ordering 0<η1<η2<

η3< 1.6 We have used the functions LR(χ) and ℓ(χ1,χ2) defined respectively in (4.36)

and (4.38), while we introduced for compactness the new function

L̄R(χ) :=LR(1−χ)−LR(χ) . (4.66)

4.5.2 〈〈φ6φ6φ6φ6φ6φ6 〉〉

To conclude this section, we give another example of six-point function, namely the case

where all the operators are the unprotected elementary scalar φ6. The reduced correlator

is defined through

〈〈φ6(τ1)φ6(τ2)φ6(τ3)φ6(τ4)φ6(τ5)φ6(τ6)〉〉 =

(
τ24τ35

τ2
12τ23τ2

34τ45τ2
56

)∆
φ6

A666666(χ1 ,χ2 ,χ3)

=
1

τ2∆
φ6

12 τ2∆
φ6

34 τ2∆
φ6

56

1

χ∆
φ6

2

A666666(χ1 ,χ2 ,χ3) .

(4.67)

At leading order, the correlator 〈〈φ6φ6φ6φ6φ6φ6 〉〉 coincides with 〈〈φiφjφkφlφmφn 〉〉
with i= j= k= l=m=n, i.e.

1

χ∆
φ6

2

A(0)
666666 =

1

χ2
A(0)

ijklmn

∣∣∣
i=j=k=l=m=n

= 1+
η2

1

(1−η1)2
+

η2
23

(1−η3)2
+
η2

1η
2
23(1−2η3(1−η3))

η2
3(1−η3)2η2

12

, (4.68)

6In fact these cross-ratios correspond to the ones defined in equation (2.12) of [11].
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where in the second equality we have used again the cross-ratios defined in (4.65) for

compactness.

The next order includes U -diagrams as well as the next-to-leading order building blocks

F
(1)
j and it is significantly more involved. These additional terms, as well as the full

correlator, can be found in the supplementary material.

Several other examples of six-point functions can be found in the supplementary ma-

terial, and it is straightforward to extend these computations to correlators involving com-

posite operators made of fundamental scalar fields.

5 Expansions in conformal blocks and checks

In this section we expand some of our correlators in conformal blocks, as a consistency

check and to extract CFT data. Conformal blocks allow us to extract the CFT data,

which consist of the scaling dimensions and the OPE coefficients of the operators present

in the spectrum. For n≥ 6, different OPE limits lead to decompositions with different

topologies, and therefore there exist multiple n-point blocks. We will focus on the so-called

comb channel for n= 4,5,6, while for the case of six-point functions we also investigate the

snowflake channel for two correlators.

In the following, we perform several tests for the results presented in the previous

section, by comparing the simplest OPE coefficients (always involving either φi or φ6) to

the results derived in section 4.2. Moreover, we present closed forms for the OPE coefficients

at leading order for different correlation functions 〈〈φ6 . . .φ6 〉〉. We should point that the

analysis of this section is completely bosonic. A full superconformal analysis requires

knowledge of the corresponding superconformal blocks, which are only known for some

selected four-point functions.

5.1 Comb channel

In this section we discuss how to expand the correlators that we obtained in section 4 in the

comb channel. This channel consists of taking one by one the OPE of an external operator

with an internal operator, as represented in figure 3.7 Four-point blocks in d= 1 have

been known for a long time [42], but only recently this work was extended to higher-point

functions [41]. Five-point point blocks were also derived for generic dimension d in [43].

From now on, we are going to specialize our analysis to the case where all the external

operators are identical scalar fields of length L= 1.

For a given R-symmetry channel, the reduced correlator of such n-point functions can

be expanded in blocks in the following way:

AI1...In

=
∑

O1,...,On

CφI1 φI2 O1
CO1φI3 O2

. . .COn−4φIn−2 On−3
COn−3φIn−1 φIng∆1,...,∆n−3

(χ1, . . . ,χn−3) ,

(5.1)

7The exception being of course the two extremities, where we have to take the OPE of two external

operators.
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∆1 ∆n−3
φI1

φI2 φI3 φ
In−2 φ

In−1

φIn

. . .

Figure 3. Representation of the comb channel for n-point correlation functions. The vertices

correspond to bosonic OPE coefficients, which can be interpreted as three-point functions in the

bosonic theory. For n external operators, there are n−3 operators being exchanged.

where the ∆k’s refer to the scaling dimensions of the exchanged operators, and CO1O2O3

are three-point functions defined in (2.15). In the case where all the scalar fields are

protected, we consider the highest-weight R-symmetry channel F0. If the operators are all

unprotected, then there is only one R-symmetry channel, which is labelled A6...6.

The functions g∆1,...,∆n−3
correspond to the comb conformal blocks derived in [41] and

for identical external operators φ, they are defined as

g∆1,...,∆n−3
(χ1, . . . ,χn−3) :=

n−3∏

k=1

χ∆k

k

×FK

[
∆1,∆1+∆2−∆φ, . . . ,∆n−4+∆n−3−∆φ,∆n−3

2∆1, . . . ,2∆n−3
;χ1, . . . ,χn−3

]
, (5.2)

where the function FK is a multivariable hypergeometric function defined by the following

expansion:

FK

[
a1, b1, . . . , bk−1,a2

c1, . . . , ck
; x1, . . . ,xk

]

=
∞∑

n1,...,nk=0

(a1)n1
(b1)n1+n2

(b2)n2+n3
· · ·(bk−1)nk−1+nk

(a2)nk

(c1)n1
· · ·(ck)nk

xn1
1

n1!
· · · x

nk

k

nk!
. (5.3)

Here (a)n = Γ(a+n)/Γ(a) refers to the Pochhammer symbol.

5.1.1 Four-point functions

We start our analysis of the block expansions with four-point functions. Our goal here is to

expand the correlators 〈〈φiφjφkφl 〉〉 and 〈〈φ6φ6φ6φ6 〉〉 following (5.1) and to check whether

the CFT data for the exchanged operator O∆ with the lowest ∆ agrees with the results

computed in section 4.2.

〈〈φiφjφkφl 〉〉. It can be seen from figure 4 that the four-point function of protected oper-

ators 〈〈φiφjφkφl 〉〉 should contain the three-point function 〈〈φiφjφ6 〉〉, which was computed

in equation (4.27) at leading order, when the exchanged operator is O∆ =φ6.

This coefficient can be easily extracted from

F0(χ) = 1+Cφiφjφ6Cφ6φkφlg∆=1(χ)+. . .

= 1+Cφiφjφ6Cφ6φkφlχ+. . . , (5.4)
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∆
φI1

φI2 φI3

φI4

CφI1 φI2 O
∆

C
O

∆
φI3 φI4

Figure 4. Representation of four-point functions in the comb channel. In this case, one operator

labelled O∆ is being exchanged and the OPE coefficients consist of three-point functions squared,

when all the external operators are identical.

where the first term corresponds to the exchange of the identity operator 1 and is 1 due to

the unit-normalization of the two-point function. According to equation (4.27), we have

Cφiφjφ6Cφ6φkφl =
λ

8π2
+O(λ2) . (5.5)

We now expand the correlator at χ∼ 0 for the leading and next-to-leading orders, and

compare the order O(χ) to (5.4) and (5.5). From (4.33), we see that

F
(0)
0 (χ) = 1 , (5.6)

and this implies that Cφiφjφ6Cφ6φkφl vanishes at O(λ0) as predicted by (5.5). For the next

order, we expand (4.35) to find that

F
(1)
0 (χ) =

1

8π2
χ+. . . , (5.7)

which is in perfect agreement with (5.4) and (5.5).

〈〈φ6φ6φ6φ6 〉〉. We focus now our attention on the four-point function of unprotected

operators φ6. In this case, it is clear from R-charge conservation that the only operator

with (bare) scaling dimension ∆ = 1 that can appear in the exchange is the unprotected

scalar φ6 itself, and thus the correlator 〈〈φ6φ6φ6φ6 〉〉 is expected to contain the three-point

function 〈〈φ6φ6φ6 〉〉 in its expansion. This coefficient was computed in (4.28) and can be

compared to the four-point function obtained in section 4.3.2. Expanding the correlator in

blocks following (5.1), we find

A6666(χ) = 1+C2
φ6φ6φ6g1(χ)+. . .

= 1+C2
φ6φ6φ6χ+. . . , (5.8)

which we compare to the results listed in section 4.3.2.

From (4.45), we find that the correlator at leading order can be expanded as

A(0)
6666(χ) = 1+χ2+. . . , (5.9)

and thus we observe that C2
φ6φ6φ6 vanishes at O(λ0) as expected from (4.28), since there

is no term of order O(χ). Again the first term corresponds to the exchange of the identity

operator 1 and it is 1 due to the unit-normalization of the two-point function.
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∆1 ∆2φI1

φI2 φI3 φI4

φI5

CφI1 φI2 O
∆1

C
O

∆1
φI3 O

∆2

C
O

∆2
φI4 φI5

Figure 5. Representation of five-point functions in the comb channel. Here there are two oper-

ators being exchanged, labelled in the diagram by the scaling dimensions ∆1 and ∆2. The OPE

coefficients consist of a product of three three-point functions.

We are also able to derive a closed-form expression for the OPE coefficients with

arbitrary ∆:

Cφ6φ6O∆
CO∆φ6φ6 |O(λ0) =

4
√
π (∆−1)Γ(∆+1)

4∆ Γ(∆− 1
2)

. (5.10)

We expect that there exist several operators corresponding to the bare scaling dimensions

∆> 1, and thus that these coefficients are in fact averages of three-point functions.

We now move to the next order and we expand the expression of the correlator in (4.47)

to find

A(1)
6666(χ) =

9

8π2
χ+. . . . (5.11)

This coefficient should be compared to equation (4.28), which predicts

C2
φ6φ6φ6 =

9λ

8π2
+O(λ2) , (5.12)

and thus we observe a perfect match between the OPE coefficient obtained from the four-

point function and the three-point function computed using the recursion relation.

5.1.2 Five-point functions

We now move to the five-point function 〈〈φ6φ6φ6φ6φ6 〉〉 that has been discussed in sec-

tion 4.4.2, and we perform analogous checks as for the four-point functions. Note that

there is no five-point function of protected operators of length L= 1 only, hence we restrict

our attention to the five-point function of unprotected scalars.

The comb channel for five-point functions is represented in figure 5. In this case, we

are interested in checking the three-point function 〈〈φ6φ6φ6 〉〉, which can be accessed e.g.

by setting O1 =φ6, O2 =1. The expansion of the correlator in blocks up to this term thus

reads

A66666(χ1,χ2) =Cφ6φ6φ6g1,0(χ1,χ2)+. . .

=Cφ6φ6φ6χ1+. . . , (5.13)

where the OPE coefficient is just Cφ6φ6φ6 because Cφ6φ61 = 1. Note that in this case there is

no term corresponding to the exchange of two identity operators, since the OPE coefficient

Cφ6φ61C1φ61C1φ6φ6 vanishes due to the presence of a one-point function in the middle.
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∆1 ∆2 ∆3φI1

φI2 φI3 φI4 φI5

φI6

CφI1 φI2 O
∆1

C
O

∆1
φI3 O

∆2

C
O

∆2
φI4 O

∆3

C
O

∆3
φI5 φI6

Figure 6. Representation of six-point functions in the comb channel. Three operators are being

exchanged, and the OPE coefficients consist of products of four three-point functions.

Here we only look at the leading order O(
√
λ) given in equation (4.58), which upon

expanding at χ1,χ2 ∼ 0 reads

A(0)
66666(χ1,χ2) =

3

2
√

2π
χ1+. . . , (5.14)

and thus we observe a perfect agreement of Cφ6φ6φ6 with equation (4.28).

We are able to also derive a closed-form expression for the OPE coefficients at leading

order:

Cφ6φ6O∆1
CO∆1

φ6O∆2
CO∆2

φ6φ6

∣∣∣
O(

√
λ)

=
12

√
2
√
λ

4∆1+∆2

Γ(∆1+∆2)

Γ(∆1−1/2)Γ(∆2−1/2)

×(∆1(∆1−1)+∆2(∆2−1)δ∆1,1) (5.15)

with ∆1<∆2.

5.1.3 Six-point functions

We continue our analysis of the comb channel with the six-point functions of protected

fundamental scalars 〈〈φiφjφkφlφmφn 〉〉 and of unprotected ones 〈〈φ6φ6φ6φ6φ6φ6 〉〉.

〈〈φiφjφkφlφmφn 〉〉. As in section 5.1.1, we can expand in conformal blocks the six-

point function of protected operators studied in section 4.5.1, and compare the three-point

function 〈〈φiφjφ6 〉〉 computed in (4.27) with the prediction obtained from the correlator.

The comb channel for this correlator is represented in figure 6, and it is easy to see that

the lowest coefficient that can be checked corresponds to setting ∆1 = ∆2 = 1, ∆3 = 0, for

which the exchanged operators can only be O1 =φ6, O2 =φh (h= 1, . . . ,5), O3 =1, due to

conservation of the R-charge. Noticing that the OPE coefficient vanishes when one ∆ is

equal to 1 and the two other ∆’s are 0, we can expand the highest-weight channel F0 in

blocks in order to compare to that coefficient. We find that

F0(χ1,χ2,χ3) = 1+Cφiφjφ6Cφ6φkφhCφhφl1C1φmφnχ1χ2+. . . , (5.16)

where we note that Cφhφl1C1φmφn = 1, due to the unit-normalization of the two-point

function. This is also the reason why the leading term is 1, in perfect analogy with the

case of the four-point function.
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We now expand the R-symmetry channel F0 of the six-point function studied in sec-

tion 4.5.1 in order to check whether we find a match for the OPE coefficient mentioned

above. At leading order we see from equation (4.63) that

F
(0)
0 (χ1,χ2,χ3) = 1 , (5.17)

which matches the expectation that Cφiφjφ6Cφ6φkφh vanishes at order O(λ0), as it was the

case for the four-point function as well.

At next-to-leading order, expanding equation (4.64) at χ1,χ2,χ3 ∼ 0 results in

F
(1)
0 (χ1,χ2,χ3) =

1

8π2
χ1χ2+. . . , (5.18)

where the coefficient of χ1χ2 is to be identified with Cφiφjφ6Cφ6φkφh according to (5.16).

We observe a perfect match with equation (5.5).

〈〈φ6φ6φ6φ6φ6φ6 〉〉. Our last expansion in the comb channel is the six-point function of

unprotected operators discussed in subsection 4.5.2. This correlator is expected to contain

the three-point function 〈〈φ6φ6φ6 〉〉, which can be checked against (4.28). This coefficient

can be accessed e.g. by setting as (bare) scaling dimensions ∆1 = ∆2 = 1 and ∆3 = 0. As

for the previous cases, the exact correlator can be expanded in blocks and reads

A666666(χ1,χ2,χ3) = 1+C2
φ6φ6φ6g1,1,0(χ1 ,χ2 ,χ3)+. . .

= 1+C2
φ6φ6φ6χ1χ2+. . . , (5.19)

where the 1 comes from the exchange of identity operators as always, and the OPE co-

efficient is just C2
φ6φ6φ6 because of C2

φ6φ61
= 1. Other lower combinations such as ∆1 = 1,

∆2 = ∆3 = 0 vanish because one-point functions are zero in CFT.

We now extract this coefficient at leading and next-to-leading orders and compare it

to the direct computation. At leading order, expanding (4.68) at χ1 ,χ2 ,χ3 ∼ 0 gives

A(0)
666666(χ1,χ2,χ3) = 1+χ2

1+. . . , (5.20)

and thus C2
φ6φ6φ6 vanishes at order O(λ0) as predicted by (4.28).

We are also able to determine a closed form for the OPE coefficients at leading order:

Cφ6φ6O∆1
CO∆1

φ6O∆2
CO∆2

φ6O∆3
CO∆3

φ6φ6

∣∣∣
O(λ0)

= − 64π3/2

4∆1+∆2+∆3

∆1(∆1−1)∆12

(2∆1−1)(∆1+∆2−1)

× Γ(∆1+∆2)2

Γ(∆2)Γ(∆1−1/2)2Γ(∆2−1/2)
δ∆1,∆3

,

(5.21)

with ∆ij := ∆i−∆j , valid when ∆1<∆2.

At next-to-leading order, we expand the correlator given in the supplementary material

and find

A(1)
666666(χ1,χ2,χ3) =

9

8π2
χ1χ2+. . . , (5.22)

which is in full agreement with (4.28).
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φI1φI2

φI3

φI4 φI5

φI6
∆1

∆2

∆3

Figure 7. Representation of six-point functions in the snowflake channel. Here the OPEs are

taken pairwise between external operators, and lead to the OPE coefficient consisting of products

of four three-point functions, represented by the vertices.

5.2 Snowflake channel

We now move our attention to the other topology that appears for multipoint functions

with n= 6, which is called the snowflake channel and which is represented diagrammatically

in figure 7.

In this case, the OPE limits consist of bringing two neighbouring external operators

close to each other pairwise, and this has for consequence that the OPE coefficient in the

middle can consist of operators all different from the external ones, as opposed to the comb

channel of the previous section where at least one external operator is present in the three-

point functions. As above, we specialize our analysis to the case where all the external

operators are identical and are of length L= 1, i.e. correlation functions that involve either

the protected fundamental scalars φi or the unprotected one φ6.

In order to take the proper OPE limits, we have to consider a new set of cross-ratios:

z1 =
τ12τ46

τ16τ24
, z2 =

τ26τ34

τ23τ46
, z3 =

τ24τ56

τ26τ45
. (5.23)

Six-point functions can then as usual be decomposed into conformal prefactor and reduced

correlator:

〈〈φI1(τ1) . . .φI6(τ6)〉〉 = K(τ1,∆φI1 ; . . . ;τ6,∆φI6 )AI1...I6(z1 ,z2 ,z3) . (5.24)

For the choice of the conformal prefactor, we also adopt the convention of [44], that we

specialize to identical operators:

K(τ1,∆φ; . . . ;τ6,∆φ) =
1

τ2∆φ
12 τ2∆φ

34 τ2∆φ
56

. (5.25)

For a given R-symmetry channel, i.e. a fixed choice of indices I1, . . . , I6, correlators can

be expanded in the following way:

AI1...I6(z1 ,z2 ,z3) =
∑

O1 ,O2 ,O3

CφI1 φI2 O1
CφI3 φI4 O2

CφI5 φI6 O3
CO1O2O3

g∆1,∆2,∆3
(z1,z2,z3) ,

(5.26)
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where now the function g∆1,∆2,∆3
corresponds to the snowflake conformal blocks. For our

purposes we write a series expansion of the form

g∆1,∆2,∆3
(z1 ,z2 ,z3) = z∆1

1 z∆2
2 z∆3

3

∑

n1,n2,n3

cn1,n2,n3
zn1

1 zn2
2 zn3

3 , (5.27)

where we only need coefficients cn1,n2,n3
for low values of n1, n2, n3.8 It is easy to determine

the coefficients up to an overall normalization by applying the Casimir equations on the

blocks order by order (see appendix D) and this results in the following expansion of the

full correlator:

AI1...I6(z1 ,z2 ,z3) = 1+CφI1 φI2 O∆=1
CφI3 φI4 O∆=1

CφI5 φI61
CO∆=1O∆=11

z1z2+. . . , (5.28)

where we have used the fact that terms with two ∆’s set to zero vanish since one-point

functions vanish. We note that, as usual, CφI5 φI61
CO∆=1O∆=11

= 1 because of the unit-

normalization of two-point functions. We have labeled the exchanged operator with (bare)

scaling dimension ∆ = 1 as O∆=1, but we will see below that in our two cases of interest

this operator always turns out to be φ6.

We now consider the cases where the six-point functions are either 〈〈φiφjφkφlφmφn 〉〉
or 〈〈φ6φ6φ6φ6φ6φ6 〉〉, and perform checks for the OPE coefficients encountered in (5.28).

〈〈φiφjφkφlφmφn 〉〉. We start by the correlator with the six protected fundamental

scalars. As usual let us focus on the highest-weight channel F0, the expansion sketched

in (5.28) then becomes

F0(z1 ,z2 ,z3) = 1+Cφiφjφ6Cφ6φkφlz1z2+. . . , (5.29)

where the exchanged operator can only be φ6 because of R-charge conservation. At leading

order, we have seen in equation (4.63) that

F
(0)
0 (z1 ,z2 ,z3) = 1 , (5.30)

and thus Cφiφjφ6Cφ6φkφl = 0 at order O(λ0), in perfect agreement with (4.27).

At next-to-leading order, we can expand (4.64) at z1 ,z2 ,z3 ∼ 0 to obtain

F
(1)
0 (z1 ,z2 ,z3) =

1

8π2
z1z2+. . . , (5.31)

which perfectly matches the order O(λ) of (4.27) squared.

〈〈φ6φ6φ6φ6φ6φ6 〉〉. Let us now perform checks on our result for the six-point function

of unprotected scalars φ6 in the snowflake channel. In this case, equation (5.28) turns out

to be

A666666(z1 ,z2 ,z3) = 1+C2
φ6φ6φ6z1z2+. . . , (5.32)

8In [31] a different Taylor expansion is used with a closed-form expression for the corresponding coeffi-

cients cn1,n2,n3
.
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where again the exchanged operator can only be φ6 because of conservation of the R-charge.

At leading order we can expand (4.68) and we find

A(0)
666666(z1 ,z2 ,z3) = 1+z2

1z
2
2 +. . . , (5.33)

from which we can read that C2
φ6φ6φ6 = 0 at O(λ0), since there is no term of order O(z1z2).

This is fully consistent with (4.28).

At next-to-leading order, we can expand the correlator of the supplementary material

in order to obtain

A(1)
666666(z1 ,z2 ,z3) =

9

8π2
z1z2+. . . , (5.34)

where the prefactor perfectly matches the C2
φ6φ6φ6 predicted by equation (4.28) at order

O(λ).

6 Conclusions

In this work we investigated correlation functions on the 1d defect CFT formed by inserting

scalar operators along the half-BPS Wilson line in 4d N = 4 SYM. We derived a recursion

relation that allows to compute multipoint correlators 〈φI1 . . .φIn 〉 made out of an arbitrary

number of fundamental scalar fields, up to next-to-leading order for an even number of

unprotected operators φ6, and up to leading order when their number is odd. By pinching

operators together it is possible to construct correlation functions of operators of higher

length, and in particular our recursion allows us to build correlators containing arbitrary

operators made out of the fundamental scalar fields. For operators of length L= 2, we

checked that their anomalous dimensions are properly reproduced, and in addition we

generated many correlators of fundamental scalar fields and composite operators up to

six-point. This provides an interesting pool of perturbative results, which can be used to

test and expand modern analytical bootstrap techniques.9 As a check of our results, and

to connect with recent work on multipoint conformal blocks, we expanded 〈〈φi1 . . .φin 〉〉
(ik = 1, . . . ,5) and 〈〈φ6 . . .φ6 〉〉 in both the comb and snowflake channels, and extracted low-

lying OPE coefficients. Both our correlators and the block literature seem to be consistent

with each other.

There are a handful of future directions that can be further explored. In section 5 we

expanded our correlators in bosonic conformal blocks. Although this allowed us to extract

the OPE coefficients of the φ6 operator, our system does have supersymmetry, and it would

be desirable to perform a full superblock analysis. A suitable superspace for correlators

of half-BPS operators was originally presented in [46], and more recently, superblocks

including long operators were announced in [27]. A superblock expansion would extract

supersymmetric CFT data, which will help disentangle degenerate operators. Morever,

multipoint superblocks might pave the way to bootstrapping multipoint correlators at

strong coupling, similar to the work done for four-point functions in [25, 27]. One could

9See for example [45], where analytical functionals for 1d theories with flavor symmetry were studied, a

setup closely related to our supersymmetric Wilson line.
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also repeat our analysis in other superconformal setups, interesting cases include line defects

in 4d N = 2 theories [47] and ABJM [48].

Another natural next step is to include more general operators in our recursion formula,

like fields that transform non-trivially under transverse rotations (fermions for example).

One way of including more general fundamental fields would be to upgrade our formulae for

〈〈φ. . .φ〉〉 to correlation functions of superfields 〈〈Φ . . .Φ〉〉. A result that might be relevant

for this analysis is the superfield formulation for the supersymmetric Wilson line presented

in [49].

Apart from superconformal lines, line defects play a prominent role in condensed mat-

ter physics. An interesting setup is the magnetic line defect studied in [50] (see also [51]).

This line defect can be defined for critical O(N) models in the ǫ-expansion as an exponen-

tial of one of the fundamental scalars. Being a model with a Lagrangian formulation makes

it well-suited for perturbative calculations. A follow up of this work is to study multipoint

correlators on this line defect [52]. Of particular interest are correlators of the displace-

ment operator and the tilt, which measure the breaking of spacetime and flavor symmetry

respectively, due to the presence of the line defect. Both these operators can be built out

of the fundamental scalars of the O(N) models, and are studied with the techniques used

in this paper.10
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A Insertion rules

In this appendix, we list the insertion rules used for computing the Feynman diagrams of

sections 3 and 4. Those are derived from the action of N = 4 SYM in 4d Euclidean space,

which is given by (2.20). Note that we consider SU(N) as the gauge group and that we

work in the large N limit. The generators obey the following commutation relation:

[T a ,T b] = ifabcT c, (A.1)

in which fabc are the structure constants of the su(N) Lie algebra. The generators are

normalized as

trT aT b =
δab

2
. (A.2)

10Incidentally, the fundamental φi scalar in our supersymmetric Wilson line is precisely the tilt operator.

The displacement operator on the other hand is a superconformal descendant of the tilt, and cannot be

written using the fundamental scalars.
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The generators are traceless, i.e. trT a = 0. The (contracted) product of structure constants

gives fabcfabc =N(N2−1) ∼N3, where the second equality holds in the large N limit.

We start by two-point insertions. The only one that we actually need is the self-energy

of the scalar propagator at one loop, which is given by the following expression [5, 53, 54]:

= + + +

= −2g4NδabδijY112. (A.3)

The integral Y112 is given in (C.5) and presents a logarithmic divergence.

We also require only one three-point insertion, which is the vertex connecting two scalar

fields and one gauge field. It is easy to obtain from the action (2.20) and it reads

i,a
1

j,b
2

µ,c

3

= −g4fabcδij (∂1−∂2)µY123. (A.4)

The Y -integral is defined in (C.1a) and its analytical expression in 1d can be found in (C.3).

Another relevant vertex is the four-scalars coupling. Similarly to the three-vertex, it is

straightforward to read the corresponding Feynman rule from the action and perform the

Wick contractions in order to get

i,a
1

j,b
2

k,c
3

l,d
4

= −g6
{
fabef cde (δikδjl−δilδjk)+facef bde (δijδkl−δilδjk)

+fadef bce (δijδkl−δikδjl)
}
X1234. (A.5)

The X-integral can be found in (C.2) for the 1d case.

There is one more sophisticated four-point insertion that we require, which reads

i,a
1

j,b
2

k,c
3

l,d
4

= g6
{
δikδjlf

acef bdeI13I24F13,24+δilδjkf
adef bceI14I23F14,23

}
. (A.6)

with Iij the propagator function defined in (2.22) and Fij,kl as defined in (C.1d). An

analytical expression for Fij,kl in terms of X- and Y -integrals is given in (C.4).

B The recursion relation for an even number of fields

In this appendix we give the formal expression for the recursion relation given in equa-

tion (3.6) in a diagrammatic way. A close look at (3.6) reveals that there are two types

of U -integrals that one can encounter. These two types are represented in figure 8, and

correspond to whether the integration limits are “connected” or not. This distinction
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is made clear in the definitions of the integrals, which can be found in appendix C.2.2.

Equation (3.6) contains both types of integrals, and in order to write an effectively usable

formula, we must extract the U (2) contributions. It is easy to check visually which terms

contain a U (2):

t t t t t

j k l m

m=l+2⊃ t t t t

j k l

t t t t t

l m j k

m=l+2⊃ t t t t

l j k

t t t t t

j l m k

m=l+2⊃ t t t t

j l k

Hence we only have to change the summation range for these three terms and add them

by hand with an explicit mention of U (2). This gives the following expression:

(3.6) =
λ2

4

n−1∑

j=1

n∑

k=j+1

δIj6δIk6

×
(

n−2∑

l=k

n∑

m=l+4

Uj;m(m+1)Uk;l(l+1)A
I1...Ij−1

LO A
Ij+1...Ik−1
LO A

Ik+1...Il
LO A

Il+1...Im

LO A
Im+1...In
LO

+
n∑

l=k

k−1∑

m=j

Uj;l(l+1)Uk;m(m+1)A
I1...Ij−1

LO A
Ij+1...Im

LO A
Im+1...kl
LO A

Ik+1...Il
LO A

Il+1...In

LO

+
j−3∑

l=0

j−1∑

m=l+4

Uj;m(m+1)Uk;l(l+1)A
I1...Il
LO

A
Il+1...Im

LO A
Im+1...jl
LO A

Ij+1...Ik−1
LO A

Ik+1...In

LO

+
k−1∑

l=j

j−1∑

m=0

Uj;l(l+1)Uk;m(m+1)A
I1...Im
LO

A
Im+1...Ij−1

LO A
Ij+1...Il
LO A

Il+1...Ik−1
LO A

Ik+1...In

LO

+
k−1∑

l=j

n∑

m=k

Uj;l(l+1)Uk;m(m+1)A
I1...Ij−1

LO A
Ij+1...Il
LO A

Il+1...kl
LO A

Ik+1...Im

LO A
Im+1...In
LO

+
k−3∑

l=j

k−1∑

m=l+4

Uj;l(l+1)Uk;m(m+1)A
I1...Ij−1

LO A
Ij+1...Il
LO A

Il+1...m
LO A

Im+1...Ik−1
LO A

Ik+1...In

LO

+
j−1∑

l=0

n∑

m=k

Uj;l(l+1)Uk;m(m+1)A
I1...Il
LO

A
Il+1...Ij−1

LO A
Ij+1...kl
LO A

Ik+1...Im

LO A
Im+1...In
LO

+
j−1∑

l=0

k−1∑

m=j

Uj;l(l+1)Uk;m(m+1)A
I1...Il
LO

A
Il+1...Ij−1

LO A
Ij+1...Im

LO A
Im+1...Ik−1
LO A

Ik+1...In

LO

)

+
λ2

4

n−3∑

j=1

n−1∑

k=j+2

δIjIkIjk

×
(

n∑

l=k+1

n∑

m=l

δIl6Ul;m(m+1)A
I1...Ij−1

LO A
Ij+1...Ik−1
LO A

Ik+1...Il−1
LO A

Il+1...Im

LO A
Im+1...In
LO

+
n∑

l=k+1

l−1∑

m=k

δIl6Ul;m(m+1)A
I1...Ij−1

LO A
Ij+1...Ik−1
LO A

Ik+1...Im

LO A
Im+1...Il−1
LO A

Il+1...In

LO

)
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Figure 8. Illustration of the two types of U -integrals that one can encounter in the recursion

relation (3.6). The difference lays in the integration limits, as explained in detail in section C.2.2.

+
λ2

4

n−2∑

j=2

n∑

k=j+2

δIjIkIjk

×
(j−1∑

l=1

j−1∑

m=l

δIl6Ul;m(m+1)A
I1...Il−1
LO A

Il+1...Im

LO A
Im+1...Ij−1

LO A
Ij+1...Ik−1
LO A

Ik+1...In

LO

+
j−1∑

l=1

l−1∑

m=0

δIl6Ul;m(m+1)A
I1...Im
LO

A
Im+1...Il−1
LO A

Il+1...Ij−1

LO A
Ij+1...Ik−1
LO A

Ik+1...In

LO

)

+
λ2

4

n−3∑

j=1

n−1∑

k=j+2

n∑

l=k+1

j−1∑

m=0

δIjIkδIl6

×IjkUl;m(m+1)A
I1...Im
LO

A
Im+1...Ij−1

LO A
Ij+1...Ik−1
LO A

Ik+1...Il−1
LO A

Il+1...In

LO

+
λ2

4

n−2∑

j=3

n∑

k=j+2

j−1∑

l=1

n∑

m=k

δIjIkδIl6

×IjkUl;m(m+1)A
I1...Il−1
LO A

Il+1...Ij−1

LO A
Ij+1...Ik−1
LO A

Ik+1...Im

LO A
Im+1...In
LO

+
λ2

4

n−5∑

j=1

n−3∑

k=j+2

n−2∑

l=k+1

n∑

m=l+2

δIjIkδIlIm

×IjkIlmA
I1...Ij−1

LO A
Ij+1...Ik−1
LO A

Ik+1...Il−1
LO A

Il+1...Im−1

LO A
Im+1...In
LO

+
λ2

4

n−1∑

j=1

n∑

k=j+1

δIj6δIk6

×
(

n∑

l=k

U
(2)
j;k;l(l+1)A

I1...Ij−1

LO A
Ij+1...Ik−1
LO A

Ik+1...Il
LO A

Il+1...In

LO

+
k−1∑

l=j

U
(2)
j;k;l(l+1)A

I1...Ij−1

LO A
Ij+1...Il
LO A

Il+1...Ik−1
LO A

Ik+1...In

LO

+
j−1∑

l=0

U
(2)
j;k;l(l+1)A

I1...Il
LO

A
Il+1...Ij−1

LO A
Ij+1...Ik−1
LO A

Ik+1...In

LO

)
, (B.1)

where the U (2)-integrals are contained in the three last terms.

This formula is the one that was effectively implemented in the supplementary material

and that has been used for producing the results of section 4.

C Integrals and regularization

In this appendix, we define and compute the bulk and boundary integrals that we encounter

in this work.
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C.1 Bulk integrals

In the computation of the Feynman diagrams at one loop, we encounter three-, four- and

five-point massless Feynman integrals, which we define as follows:

Y123 :=

∫
d4x4 I14I24I34 , (C.1a)

X1234 :=

∫
d4x5 I15I25I35I45 , (C.1b)

H13,24 :=

∫
d4x56 I15I35I26I46I56 , (C.1c)

with Iij the propagator function defined in (2.22). In the last expression we have defined

d4x56 := d4x5 d4x6 for brevity. The letter assigned to each integral is evocative of the

drawing of the propagators. We always encounter the H-integral in the following form:

F13,24 :=
(∂1−∂3)·(∂2−∂4)

I13I24
H13,24 . (C.1d)

The notation presented above is standard and has already been used in e.g. [54, 55]. The

three- and four-point massless integrals in Euclidean space are conformal and have been

solved analytically (see e.g. [56, 57] and [10, 54] for the modern notation). In 1d the

X-integral is given by

X1234

I13I24
= − 1

8π2

ℓ(χ,1)

χ(1−χ)
, χ2 :=

τ2
12τ

2
34

τ2
13τ

2
24

, (C.2)

with ℓ(χ1,χ2) defined in (4.38).

The Y -integral can easily be obtained from this expression by taking the following

limit:

Y123 = lim
x4→∞

(2π)2x2
4 X1234

=
I12

8π2

(
τ12

τ23
log |τ13|+ τ12

τ31
log |τ23|+ τ2

12

τ23τ31
log |τ12|

)
. (C.3)

The H-integral seems to have no known closed form so far, but (C.1d) can fortunately

be reduced to a sum of Y - and X-integrals in the following way [55]:

F13,24 =
X1234

I12I34
−X1234

I14I23
+

(
1

I14
− 1

I12

)
Y124+

(
1

I23
− 1

I34

)
Y234

+

(
1

I23
− 1

I12

)
Y123+

(
1

I14
− 1

I34

)
Y134 . (C.4)

The integrals given above also appear in their respective pinching limits, i.e. when

two external points are brought close to each other. The integrals simplify greatly in this

limit, but they exhibit a logarithmic divergence which is tamed by using point-splitting

regularization. For the Y -integral, we define

Y122 := lim
x3→x2

Y123 , lim
x3→x2

I23 :=
1

(2π)2ǫ2
.
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Inserting this in (C.3) and expanding up to order O(log ǫ2), we obtain

:=Y112 =Y122 = − I12

16π2

(
log

I12

I11
−2

)
. (C.5)

This result coincides with the expression given in e.g. [54].

For completion, we also give the pinching limit of the X- and F -integrals. The first

one reads

:=X1123 = −I12I13

16π2

(
log

I12I13

I11I23
−2

)
, (C.6)

which is again the same as in [54].

Finally, the pinching limit τ2 → τ1 of the F -integral gives

F13,14 =F14,13 = −F13,41

= −X1134

I13I14
+
Y113

I13
+
Y114

I14
+

(
1

I13
+

1

I14
− 2

I34

)
Y134 . (C.7)

C.2 Boundary integrals

In the computations, we deal with two types of boundary integrals that we explain in detail

below and that we name T - and U -integrals.

C.2.1 T -integrals

In presence of the line, there is a new type of integral arising in addition to the bulk

integrals of the previous appendix. We denote this integral by Tij;kl,
11 and define it to be

Tij;kl := ∂ij

∫ τl

τk

dτm ǫ(ijm)Yijm , (C.8)

where ǫ(ijk) encodes the change of sign due the path ordering, formally defined as

ǫ(ijk) := sgnτij sgnτik sgnτjk . (C.9)

When the range of integration is the entire line, the integral is easy to perform and

results in

Tij;(−∞)(+∞) = −Iij

12
. (C.10)

In the case where (i, j) = (k, l) it gives

Tij;ij =
Iij

12
. (C.11)

Let us now review some relations satisfied by the T -integrals. The following identity

can be used in order to “swap” the limits of integration:

Tjk;il|i<j<k<l = −Ijk

12
−Tjk;li , (C.12)

11This class of integrals also appears in [10], where they are defined slightly differently and labelled as

Bij;kl.
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where the integration range (li) on the right-hand side has to be understood as the union

of segments (l,+∞)∪(−∞, i).

There also exist another relevant combination for the computations at one loop relating

the T - and Y -integrals:

IikTjk;ki+IjkTik;jk = −IikIjk

12
+IikIjk

(
1

Iik
+

1

Ijk
− 2

Iij

)
Yijk . (C.13)

In general the integrals can be performed explicitly for the different possible orderings

of the τ ’s, and here we give the results assuming τ1<τ2<τ3<τ4:

T12;34 =
1

32π4τ2
12

(
4LR

(
τ12

τ14

)
−4LR

(
τ12

τ13

)
−C123+C124

)
, (C.14a)

T34;12 =
1

32π4τ2
34

(
4LR

(
τ34

τ14

)
−4LR

(
τ34

τ24

)
−C341+C342

)
, (C.14b)

T14;23 =
1

32π4τ2
14

(
4LR

(
τ24

τ14

)
−4LR

(
τ34

τ14

)
−C412−C143

)
, (C.14c)

T23;41 =
1

32π4τ2
23

(
−4LR

(
τ23

τ13

)
−4LR

(
τ23

τ24

)
−C234−C123

)
, (C.14d)

where we have defined the following help function:

Cijk := −32π4τij(τik+τjk)Yijk , (C.15)

and where the Rogers dilogarithm LR(x) is defined in (4.36).

It is easy to take pinching limits of the integrals given above. For example, we can

have

T12;23 =
1

32π4τ2
12

(
4LR

(
τ12

τ13

)
− 2π2

3
+C123

)
+Y112 , (C.16)

using the fact that LR(1) = π2

6 . All the other pinching limits can be performed in the same

way.

C.2.2 U-integrals

Since the scalar φ6 couples directly to the Wilson line, there is another class of integral

that we have to consider. We denote this integral by Ua;ij and it is defined as

Ua;ij :=

∫ τj

τi

dτn Ian , (C.17)

where a is the insertion point of the scalar φ6 on the Wilson line and ij indicate the range

of integration. These integrals can be easily performed explicitly:

Ua;ij =
1

4π2

(
1

τi−τa
+

1

τa−τj

)
, (C.18)

which is valid both when τa<τi<τj and τi<τj <τa. Though, variations of this U -integral

appear in the recursion, for example when τa = τi. In these cases, we just take the appro-

priate limit, regularizing the divergences in the integral with point-splitting regularization
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as for the integrals of the previous sections. If i, j= ±∞, we again take the limit of the

expression above.

Given that we are interested in next-to-leading order computations, we have to consider

also integrals of (C.17), that arise when two scalars φ6 couple to the Wilson line. We refer

to these integrals as U
(2)
ab;ij and it is defined as

U
(2)
ab;ij :=

∫ τj

τi

dτn IanUb;nj =

∫ τj

τi

dτnIan

∫ τj

τn

dτmIbm . (C.19)

In the following, we perform the integrals of three different configurations, because all the

other ones can be obtained from these by taking the appropriate limits and regularizing

the integrals. Assuming τ1<τ2<τ3<τ4, we get:

n m ba i j

=
1

16π4

(
τij

τaiτajτjb
+

1

τ2
abτaiτaj

(
(τ2

a +τiτj) log
τaiτbj

τbiτaj

+τa(τi+τj) log
τbiτaj

τaiτbj
+τbaτij

))
, (C.20a)

n a bm ji

=
1

16π4

(
τji

τaiτibτaj
+

1

τ2
abτaiτaj

(
(τ2

a +τiτj) log
τbiτaj

τaiτbj

+τa(τi+τj) log
τaiτbj

τbiτaj
+τabτij

))
, (C.20b)

na b m ji

=
1

16π4

(
τij

τbiτbjτja
+

1

τ2
abτbiτbj

(
(τ2

b +τiτj) log
τbiτaj

τaiτbj

+τb(τi+τj) log
τaiτbj

τbiτaj
+τabτij

))
, (C.20c)

with τij := τi−τj .

D Snowflake Casimir

In this short appendix we explain how we calculated the snowflake-channel conformal

blocks. Explicit expressions for these blocks have already appeared in the literature [31],

however here we use different cross-ratios that make the blocks symmetric in all its argu-

ments.12

Defining

a1 =
1

2
(∆2−∆1) , a2 =

1

2
(∆4−∆3) , a3 =

1

2
(∆6−∆5), (D.1)

we can write the following Casimir operators:

C(12)
2 = −(z1−1)z2

1∂
2
z1

+(z2−1)z2z
2
1∂z1

∂z2
+z2

1(−2a2z2+2a1−1)∂z1

−2a1(z2−1)z2z1∂z2
−2a1z3z1∂z3

+4a1a2z2z1+z3z
2
1∂z1

∂z3
,

(D.2)

12We thank Lorenzo Quintavalle for sharing these formulae with us.
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C(34)
2 = −(z2−1)z2

2∂
2
z2

+(z3−1)z3z
2
2∂z2

∂z3
+z2

2(−2a3z3+2a2−1)∂z2

−2a2(z3−1)z3z2∂z3
−2a2z1z2∂z1

+4a2a3z3z2+z1z
2
2∂z2

∂z1
,

(D.3)

C(56)
2 = −(z3−1)z2

3∂
2
z3

+(z1−1)z1z
2
3∂z3

∂z1
+z2

3(−2a1z1+2a3−1)∂z3

−2a3(z1−1)z1z3∂z1
−2a3z2z3∂z2

+4a3a1z1z3+z2z
2
3∂z3

∂z2
.

(D.4)

The conformal blocks are then eigenfunctions of the following Casimir equations:

C(12)
2 g∆a,∆b,∆c

(z1,z2,z3) = ∆a(∆a−1)g∆a,∆b,∆c
(z1,z2,z3) , (D.5)

C(34)
2 g∆a,∆b,∆c

(z1,z2,z3) = ∆b(∆b−1)g∆a,∆b,∆c
(z1,z2,z3) , (D.6)

C(56)
2 g∆a,∆b,∆c

(z1,z2,z3) = ∆c(∆c−1)g∆a,∆b,∆c
(z1,z2,z3) . (D.7)

In order to solve these equations, we give the ansatz

g∆a,∆b,∆c
(z1 ,z2 ,z3) = z∆a

1 z∆b
2 z∆c

3

∑

n1,n2,n3

cn1,n2,n3
zn1

1 zn2
2 zn3

3 , (D.8)

and since we are only interested in extracting low-lying CFT data, we content ourselves

with a handful of low-lying coefficients:

c0,0,0 = 1 , (D.9)

c1,0,0 =
(−2a1+∆a)(∆a+∆b−∆c)

2∆a
, (D.10)

c0,1,0 =
(−2a2+∆b)(∆b+∆c−∆a)

2∆b
, (D.11)

c0,0,1 =
(−2a3+∆c)(∆c+∆a−∆b)

2∆c
, (D.12)

c1,1,0 = −(−2a1+∆a)(−2a2+∆b)(1+∆a−∆b−∆c)(∆a+∆b−∆c)

4∆a∆b
, (D.13)

c0,1,1 = −(−2a2+∆b)(−2a3+∆c)(1+∆b−∆c−∆a)(∆b+∆c−∆a)

4∆b∆c
, (D.14)

c1,0,1 = −(−2a3+∆c)(−2a1+∆a)(1+∆c−∆a−∆b)(∆c+∆a−∆b)

4∆c∆a
. (D.15)

We refer the reader to [31] for a more detailed analysis of the snowflake channel, and for a

closed-form expression for the cn1,n2,n3
coefficients (albeit in a different convention).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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