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It is well known that asymptotically flat Schwarzschild black holes in general relativity in four spacetime di-
mensions have vanishing induced linear tidal response. We extend this result beyond linear order for the polar
sector, by solving the static nonlinear Einstein equations for the perturbations of the Schwarzschild metric and
computing the quadratic corrections to the electric-type tidal Love numbers. After explicitly performing the
matching with the point-particle effective theory at leading order in the derivative expansion, we show that the
Love number couplings remain zero at higher order in perturbation theory.

I. INTRODUCTION

The tidal deformability of a compact object refers to its
propensity to respond when acted upon by an external long-
wavelength gravitational field. It is in general characterized
in terms of complex coefficients that capture the conservative
and dissipative parts of the response. The coefficients asso-
ciated to the conservative response of the object are usually
referred to as Love numbers—conceptually, one can think of
the Love numbers as the analogues of the electric polarizabil-
ity of a material in electromagnetism. The tidal response co-
efficients are important because they offer insights into the
gravitational behavior and the body’s internal structure. In the
case of a neutron star, the tidal deformability is tightly related
to the physics inside the object and its equation of state [1]. In
the case of black holes, the tidal response coefficients depend
on the physics at the horizon, and can be used to access and
test the fundamental properties of gravity in the strong-field
regime, including the existence of symmetries of the black
hole perturbations [2–8].

In a binary system of compact objects, the way one body
responds to the gravitational perturbation of its companion
becomes more relevant in the last stages of the inspiral, in-
fluencing the waveform of the emitted gravitational waves.
The tidal coefficients can be measured or constrained with
gravitational-wave data. They can be used to detect binary
neutron star systems [9, 10] and have been the subject of re-
cent searches in the LIGO-Virgo data [11]. Future observa-
tions will achieve much better accuracy and demand high-
precision calculations, such as those developed with various
schemes in [12–16]. The incorporation of tidal effects in these
schemes will be crucial, as highlighted, e.g., in [17–21].

It is well known that isolated asymptotically flat black holes
in general relativity have exactly vanishing Love numbers
[22–33]. Quite interestingly, this result holds only in four
dimensions, while higher-dimensional black holes display
in general a non-vanishing conservative response [25, 34–
37]. Most of the results in this context have regarded so
far linear perturbation theory only. However, nonlinearities
are an intrinsic property of general relativity. Nonlinerities
have been studied for instance in relation with quasinormal
modes (see, e.g., [38–45]), but much less is known regard-

ing nonlinear corrections to the tidal response of compact ob-
jects.1 In this work we make progress in this direction and
derive quadratic corrections to the static Love numbers of
Schwarzschild black holes in general relativity in four space-
time dimensions. Our strategy will be to compute the response
of a perturbed Schwarzschild black hole solution to an exter-
nal gravitational field in the static limit and perform the match-
ing up to quadratic order in the external perturbation with the
worldline effective field theory (EFT). The latter provides a
robust framework to define the tidal response of compact ob-
jects [49–51]. For simplicity, we will consider an external
field with a quadrupolar structure and even under parity trans-
formation. The two main results of our work can be summa-
rized as follows: (i) the vanishing of the linear Love numbers,
defined as Wilson couplings of quadratic derivative operators
in the worldline EFT, is robust against nonlinear corrections;2

(ii) the quadratic Love number couplings also vanish.
The structure of the paper is as follows. In section II, we

introduce the worldline EFT. In section III, we solve the non-
linear Einstein equations up to second order in perturbation
theory and in the static limit. For illustrative purposes, we
will focus on the even sector only, and assume quadrupolar
tidal boundary conditions at large distances for the metric per-
turbation. In section IV, we perform the matching between
the EFT and the full solution in general relativity, up to sec-
ond order in the external tidal field amplitude. Some details
and useful technical results are collected in the appendices.
In particular, appendix A provides all the equations necessary
for the computation of the metric solution at second order in
the Regge–Wheeler gauge, while appendix B summarizes the
Feynmann rules for reference.

Conventions. We use the mostly-plus signature for the metric,

1 See [27, 46–48] for previous works in this context. Note that our findings
agree with [27, 47] in the particular case of axisymmetric perturbations—
although we go beyond axisymmetry here. In addition, in contrast with
[46], we define the nonlinear Love numbers at the level of the worldline
effective theory, see section II below. This definition has the advantage
that it does not rely of any choice of coordinates.

2 This is a consistency check of the natural expectation that the linear re-
sponse of an object does not depend on the type of source that is used to
probe it, in particular whether it has a nonlinear bulk dynamics or not.
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(−,+,+,+), and work in natural units, h̄ = c = 1. We use
the notation κ =

√
32πG = 2M−1

Pl and the curvature conven-
tion Rρ

σ µν = ∂µ Γ
ρ

νσ + . . . and Rµν = Rρ
µρν . We use round

brackets to identify a group of totally symmetrized indices,
e.g.,

A(µ|Cρ B|ν) =
1
2
(
AµCρ Bν +AνCρ Bµ

)
.

Our convention for the decomposition in spherical harmon-
ics is Ψ(t,r,θ ,φ) = ∑ℓ,m Ψ̃(t,r, ℓ,m)Y m

ℓ (θ ,φ). For simplicity,
we will often omit the arguments on Ψ̃ altogether and drop
the tilde, relying on the context to discriminate between the
different meanings.

II. WORLDLINE EFFECTIVE THEORY AND LOVE
NUMBER COUPLINGS

A robust way of defining the tidal response of a compact
object is in terms of the worldline EFT [49–51]. By taking ad-
vantage of the separation of scales in the problem, the world-
line EFT implements the idea that any object, when seen from
distances much larger than its typical size, appears in first ap-
proximation as a point source. Finite-size effects can then
be consistently accounted for in terms of higher-dimensional
operators localized on the object’s worldline. As in any gen-
uine EFT, they are organized as an expansion in the number
of derivatives and fields.

Let us start from the bulk action, which we take to be the
standard Einstein–Hilbert term in general relativity:

SEH =
∫

d4x
√
−g

M2
Pl

2
R . (1)

The point-particle action is

Spp =−M
∫

ds =−M
∫

dτ

√
−gµν

dxµ

dτ

dxν

dτ
. (2)

where M is the mass of the point particle, s is its proper time
and τ parametrizes the worldline.

To capture finite-size effects we now include derivative op-
erators attached to the worldline. Neglecting dissipative ef-
fects [52, 53]—which are absent for the static response of
nonrotating Schwarzschild black holes—and focusing for the
moment on the lowest order of the derivative expansion, the
quadrupolar (ℓ= 2) Love number operators can be written as
[49, 54–56]

Sint =
∫

ds
∞

∑
n=1

[
λ
(E)
n Eµ1

µ2 · · ·Eµn+1
µ1 + . . .

]
, (3)

where Eµν is the electric (even) component of the Weyl tensor
Cµρνσ , defined as

Eµν ≡Cµρνσ uρ uσ , (4)

where uµ ≡ dxµ/ds is the particle’s four-velocity, normalized
to unity, uµ uµ = −1. Since we will focus only on the even

response, in (3) we omitted to write explicitly operators in-
volving the odd part of the Weyl tensor [54–56]. One can
easily extend (3) to higher ℓ by introducing the multi-index
operators [56]

Eµ1...µℓ
≡ Pν3

(µ3 . . .P
νℓ

µℓ|∇ν3 . . .∇νℓ
E|µ1µ2) , (5)

where P is the projector on the plane orthogonal to uµ , i.e.,

Pµ
ν ≡ δ

µ
ν +uµ uν . (6)

In (3), λ
(E)
n are the (quadrupolar) Love number couplings at

the nth order in response theory. This provides an unambigu-
ous way of defining the tidal deformability, which is indepen-
dent of the choice of coordinates and the field parametrization.
Putting all together, the EFT for the point-particle is

SEFT = SEH +Spp +Sint . (7)

At this level, λn are generic couplings, which will then be
determined after performing the matching with the full theory.

III. NONLINEAR STATIC DEFORMATIONS OF
SCHWARZSCHILD BLACK HOLES

In this section we solve the quadratic static equations for
the metric perturbations of a Schwarzschild black hole in
general relativity, given some suitable tidal boundary condi-
tions at large distances. We will denote here with gSch

µν the
Schwarzschild solution for the metric, gSch

µν = diag[1− rs
r , (1−

rs
r )

−1, r2, r2 sin2
θ ], where rs = 2GM, and with δgµν = gµν −

gSch
µν the metric perturbation.
The quadratic equations for δgµν schematically take the

form

Dδg ∼ O(δg2) , (8)

where D is a differential operator and the right-hand side is
quadratic in δg. We will solve (8) in perturbation theory by
expanding δg = δg(1) + δg(2), where δg(2) ∼ O((δg(1))2).
The static linearized solutions are well studied and lead to
the well-known fact that the induced static response of a
Schwarzschild black hole is zero, once regularity of the phys-
ical solution is imposed at the black hole horizon [22–27, 34]
(see also Appendix A below). Once the linear solution for
δg(1) is known, the source on the right-hand side of (8) be-
comes fully fixed and the inhomogeneous solution to eq. (8)
can be derived using standard Green’s function methods. We
shall stress that there are two expansion parameters in the
problem: there is κ ≡ 2/MPl, which controls the number of
graviton field insertions, and there is the amplitude of the ex-
ternal tidal field, which we will denote with E and which con-
trols the nonlinear response. The two should in general be
kept separate, as they appertain to different power countings
in the EFT (see section IV).

In the following we will compute nonlinear corrections to
the Love numbers by explicitly solving the second-order equa-
tions (8) in some particular cases. As briefly reviewed in Ap-
pendix A, we will parametrize the metric perturbations δgµν
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by distinguishing them in even (polar) and odd (axial) compo-
nents, δgµν = δgeven

µν +δgodd
µν (see eqs. (A1) and (A2) for the

explicit expressions). We will assume that the external tidal
field is purely even. As such, we can just focus on the even
sector and set the odd perturbations δgodd

µν to zero: at quadratic
order in perturbation theory, an external even tidal field can-
not induce a parity-odd response (see Appendix A for further
details).

In full generality, we shall parametrize δgeven
µν as in eq. (A1).

After choosing the Regge–Wheeler gauge (A3) and solving
the nonlinear (tr) constraint equation, as outlined in Ap-
pendix A, the expression for δgeven

µν takes a simple diagonal
form:

δgeven
µν = diag

[(
1− rs

r

)
H0, H2, r2K, r2 sin2

θ K
]

Y m
ℓ (θ ,φ) ,

(9)
where we decomposed the field perturbations in spherical har-
monics. Plugging (9) into the Einstein equations, one finds the
following decoupled equation for H0 (see also eq. (A9)):

H ′′
0 +

2r− rs

r(r− rs)
H ′

0 −
ℓ(ℓ+1)r(r− rs)+ r2

s

r2(r− rs)2 H0 = S̃H0 , (10)

where S̃H0 is fully dictated by the known linearized solution
for δgeven

µν . Note that to write (10) we have projected the equa-
tion for H0 in real space with an (ℓ,m) spherical harmonic.
As a result, the right-hand side of (10) is proportional to an
integral of the product of three spherical harmonics,

G ℓ,ℓ1,ℓ2
m,m1,m2

≡
∫

Y m∗
ℓ (θ ,φ)Y m1

ℓ1
(θ ,φ)Y m2

ℓ2
(θ ,φ)sinθdφdθ ,

(11)
which enforces the standard angular momentum selection rule
ℓ = ℓ1 ⊗ ℓ2. Given the tensor product (ℓ1,m1)⊗ (ℓ2,m2) be-
tween two different representations of the rotation group, the
resulting total angular momentum ℓ satisfies the triangular
condition |ℓ1 − ℓ2| ≤ ℓ ≤ ℓ1 + ℓ2, while the total magnetic
quantum number is given by the sum m = m1 +m2. For the
sake of the presentation, we will focus in the following on the
case in which the external tidal field contains only a single
quadrupolar harmonic, i.e., ℓ1 = ℓ2 = 2. The analysis will be
analogous with a more general tidal field and for higher har-
monics.

Solving first the homogeneous linearized equation (10) and
imposing regularity at the horizon yields the following linear
solution for the radial profile of H0:

H(ℓ=2,m)
0 = Em

r2

r2
s

(
1− rs

r

)
, (12)

where the amplitude Em depends on the magnetic quantum
number m. The other components of δgeven

µν are obtained from
(12) via the constraint equations. The linearized solutions for
H2 and K are

H(ℓ=2,m)
2 = Em

r2

r2
s
, K(ℓ=2,m) = Em

r2

r2
s

(
1− r2

s

2r2

)
. (13)

Using (12) and (13), the right-hand side of (10) is completely
fixed. At second order, a general solution for (10) is given by

a superposition of the homogeneous solution and a particular
one. The latter can be obtained via standard Green’s func-
tion methods (see Appendix A 1). One of the two integration
constants for the homogeneous solution simply corresponds
to a redefinition of the tidal field amplitude in (12) and can be
set to zero. The other integration constant is chosen in such
a way that the solution at second order preserves regularity
at the horizon. Note that, from the standard angular momen-
tum selection rules, an ℓ = 2 can induce at second order in
perturbation theory the harmonics ℓ = 0, 2 and 4. In the fol-
lowing, we will focus on the quadrupole, which contributes
to the leading order in the derivative expansion (3). We find
the following quadratic solution for the (ℓ = 2,m) harmonic
of H0, up to quadratic order in perturbation theory:

H(ℓ=2,m)
0 =

r2

r2
s

(
1− rs

r

)[
Em

− ∑
m1,m2

Em1Em2G
2,2,2
m,m1,m2

r(2r+3rs)

4r2
s

]
. (14)

Similarly, for H2 and K, we find

H(ℓ=2,m)
2 =

r2

r2
s

[
Em − ∑

m1,m2

Em1Em2G
2,2,2
m,m1,m2

r(4r+ rs)

4r2
s

]
,

(15)

K(ℓ=2,m) =
r2

r2
s

[
Em

(
1− r2

s

r2

)
− ∑

m1,m2

Em1Em2G
2,2,2
m,m1,m2

1
16

(
2r2

r2
s
+8− 7r2

s

r2

)]
.

(16)

Note that the quadratic terms in Em are small corrections as
long as Emr2 ≪ r2

s . This should not surprise because the tidal
field is formally divergent at large distances, and sufficiently
far away perturbation theory is expected to break down. How-
ever, in physical situations, such as in binary systems, this
does not happen, because the external field acts as a growing
source only on a finite region, beyond which it decays to zero
at infinity. In practice, we will perform the matching with the
worldline EFT in the region rs ≪ r ≪ rs/

√
Em, which is suf-

ficiently far from the black hole that the object can be treated
as a point particle, but still within the range of validity of the
perturbative expansion.3

The previous results have been derived under the as-
sumption that the external source is composed by a single
quadrupolar harmonic. However, they can be generalized to
the case of more general tidal fields, such as a superposition
of different harmonics, using the same procedure.

3 Note that such “secular”-type effects are not a consequence of solving the
equations in curved space. They are present also on flat space, as it can be
seen for instance by formally taking in (14) the limit rs → 0, with Em/r2

s
fixed.
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FIG. 1. Feynman diagrams that reconstruct the Schwarzschild metric
up to order r2

s .

IV. MATCHING WITH EFFECTIVE THEORY

Given the results of section III, we now need to perform the
matching with the worldline effective theory (7) and derive
the Love number couplings in eq. (3). We shall see explicitly
that the matching with the calculation in general relativity can
be performed with just (1) and (2), without turning on any of
the Love number couplings in (3).

For this computation, it is convenient to use the background
field method [57–59]. We shall then expand the metric in
eq. (7) around a non-trivial background as follows

gµν = ḡµν +κ hµν , (17)

where the background metric ḡµν represents the external tidal
field that satisfies the vacuum Einstein equations, while hµν

parametrizes perturbative corrections in G to this tidal field
and, possibly, a response.

At this point, we can explicitly compute the one-point func-
tion of hµν induced by the external tidal field coupled to the
point particle by performing a path integral as follows:

⟨hµν(x)⟩=
∫

D [h]hµν(x)ei(SEFT+SGF) , (18)

up to a normalization factor. In the above action we have intro-
duced the usual gauge-fixing term SGF arising from a Faddev–
Popov procedure. Since we are ultimately interested in the
classical limit of the above equation, following Ref. [49] we
shall discard all diagrams with closed graviton loops. Hence,
we do not need to add any ghost field. Finally, in order to
maintain covariance of the final result with respect to the ex-
ternal metric ḡµν , we work with the following gauge-fixing
action,

SGF =−
∫

d4x
√
−ḡ ḡµν

Γ̄µ Γ̄ν , (19)

Γ̄µ ≡ ḡαβ

(
∇̄α hβ µ − 1

2
∇̄µ hαβ

)
. (20)

Here, ∇̄µ is the covariant derivative associated to the metric
ḡµν and ḡµν is the inverse of the background metric.

At a practical level, we shall expand also the tidal field as

ḡµν = ηµν +Hµν . (21)

The one-point function can then be constructed by considering
all Feynman diagrams with one external hµν . We will use the
following diagrammatic conventions:

≡ hµν ,

1

M µν
x

(a)

M

M

µν
x

(b)

M µν
x

(a)

M µν
x

(b)

M µν
x
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M µν
x

(d)

λ1 µν
x

(a)

λ2 µν
x

(b)

M µν
x

(a)

τ1

τ2

µν
x

q

k−q

k

(b)

τ
µν
x
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(a)

τ
µν
x

k−q k

FIG. 2. Feynman diagrams needed for the computation of hµν . Di-
agram (a) yields the order-rs correction to the linear tidal field solu-
tion. Diagrams (b), (c) and (d) represent instead order-rs corrections
to the tidal source at second order in the external field amplitude.

≡ Hµν ,

≡ point-particle source .

For the comparison with section III, we need to compute
the diagrams represented in fig. 1 and 2. Their explicit ex-
pressions can be found using the Feynman rules listed in ap-
pendix B. We shall compute all diagrams in the rest frame of
the point-particle, which means that τ = t and the worldline is
given by4

xµ = (t,0,0,0) , vµ = (1,0,0,0) , (22)

where vµ ≡ dxµ

dτ
.

The advantage of working with the background field
method is that, as we mentioned, the final result for hµν is
covariant under diffeomorphisms of the external metric ḡµν .
This means that we can choose the tidal field in any conve-
nient gauge of our choice. Hence, we choose the gauge such
that Hµν satisfies the vacuum Einstein equation on a flat back-
ground consistent with the Regge–Wheeler gauge used in sec-
tion III. In particular, to compare with the results of that sec-
tion we focus on a tidal field composed by just the harmonic
ℓ= 2. Written in cartesian coordinates, this reads

Hµν(x) = (ηµν +2vµ vν)Aαβ xα xβ , (23)

where Aµν is a symmetric-trace-free, purely spatial constant
tensor (of mass dimension 2), i.e., Aµν vµ = 0 and Aµν ηµν =
0. To be concrete, in spherical coordinates one has

Aαβ xα xβ = Em
r2

r2
s

Y m
2 (θ ,φ) , (24)

where r =
√

xix jδi j and we have chosen the amplitude Em of
the external tidal field in such a way as to match the notation
of section III.

4 Notice that the normalization of vµ with respect to the Minkowksi metric
is simply vµ vν ηµν =−1.
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As a sanity check, we have verified that the sum of the dia-
grams in figs. 1 and 2 satisfies the gauge condition

Γ̄µ = 0 , (25)

and that the diagrams in fig. 1 give the Schwarzschild metric
up to order G2 in the gauge (25).5 This is consistent with the
well known result of, e.g., Refs. [49, 60] and reproduces the
background metric gSch

µν in section III.
We can now match the result of the other diagrams to

the full-theory solution δgµν derived in section III. However,
while Hµν is already in the gauge used in section III, ⟨hµν⟩ is
not. Therefore, to do the comparison we must first transform
⟨hµν⟩ from the coordinates xµ defined by the gauge condition
(25) into the coordinate xµ

RW defined by the Regge–Wheeler
gauge. The gauge transformation reads

κ⟨hRW
µν ⟩= κ⟨hµν⟩−ξ

ρ
∂ρ ḡµν −2ḡρ(µ ∂ν)ξ

ρ , (26)

where ξ µ = xµ

RW −xµ is given below. This allows us to define

δgEFT
µν ≡ Hµν +κ⟨hRW

µν ⟩ , (27)

which is now in the Regge–Wheeler gauge and can be com-
pared to the full-theory solution δgµν .

For simplicity, we will compare only the (tt) component,
the other components of δgµν being fixed in terms of δgtt via
the Einstein equations. Since ⟨hµν⟩ is static, then the gauge
transformation must be time-independent. Therefore, if we
focus on the (tt) component, the gauge transformation sim-
plifies to ⟨hRW

tt ⟩ = ⟨htt⟩− ξ i∂iḡtt . The derivative of the back-
ground metric is at least of order of the amplitude A of the
tidal field, hence, we only need to find ξ i up to order rsA.
Explicitly this is given by

ξ
i =

rs

2r

(
xi +2r2Ai jx j −A jkx jxkxi

)
. (28)

Moreover, since λ
(E)
2 is independent of m, it is enough

to perform the matching for any particular configuration of
(m,m1,m2) in order to compute its value and show that it
vanishes. For concreteness, we will consider the case where
m1 = 0 and m2 = 0, resulting in m = 0 at second order. Per-
forming the coordinate transformation above and projecting
the result on the (ℓ= 2,m = 0) harmonic, we find

δgEFT
tt |(ℓ=2,m=0) = E

r2

r2
s

(
1−2

rs

r

)
− 1

14

√
5
π

E 2 r4

r4
s

(
1− rs

2r

)
,

(29)
where E ≡ Em=0. The first term on the right-hand side, pro-
portional to E , results from the diagram 2(a) and reproduces
the rs/r correction at leading order in the tidal field [61]. The
second term on the right-hand side, proportional to E 2, results
from the last three diagrams in fig. 2. In particular, diagram

5 Intermediate divergences coming from diagram 1(b) are handled using di-
mensional regularization.

1

M µν
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x
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x
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x
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λ (E)
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λ (E)
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x

(b)
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x
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k

(b)

τ
µν
x

k−q k

(a)

τ
µν
x

k−q k

FIG. 3. Feynman diagrams for the (a) linear and (b) nonlinear tidal
deformation. Note that these diagrams contribute at the same order
in powers of the external field amplitude as the diagrams in figs. 2(a)
and 2(b)–(d), respectively.

(b) is simply the iteration of (a) due to the solution of the tidal
field at order E 2. Instead, diagrams (c) and (d) are a double
insertion of the lowest-order tidal field given in eq. (23). More
details on the calculation of these diagrams will be provided in
[62]. The sum of all the four diagrams matches the full-theory
solution, δgtt = (1− rs/r)H0, with H0 given in eq. (14) for
m = m1 = m2 = 0, upon expanding for small rs/r and using

G 2,2,2
0,0,0 = 1

7

√
5
π

.
The matching with the full theory in section III is obtained

without the inclusion of any of the higher dimensional oper-
ators (3) in the point-particle action. In other words, up to
quadratic order in the external source, the couplings associ-
ated with the diagrams in fig. 3, which capture the induced
response of the body, vanish for black holes. Note that, for
the ℓ= 2 induced response, this conclusion can be reached di-
rectly from a simple dimensional analysis: the higher dimen-
sional operators (3) correspond to a scaling ∼ 1/rℓ+1 in the
one-point function of hµν which is absent in the full solution
(14).

V. CONCLUSIONS

In this work, we have derived the static nonlinear response
of Schwarzschild black holes in general relativity. We have
explicitly solved the nonlinear Einstein equations in the static
limit and up to second order in the perturbations of the
Schwarzschild metric. We have then performed the matching
with the worldline EFT, which provides a robust and unam-
biguous way of defining the tidal deformability of the object.
At given order in powers of the external field amplitude, dif-
ferent types of diagrams contribute in the EFT: there are the
diagrams in fig. 3 corresponding to the operators E2 and E3

in (3), and there are those in figs. 1 and 2 obtained from the
interaction vertices in (1) and (2). The former capture the true
induced (linear and quadratic, respectively) response of the
object, while the latter combine to resum the external source.
By comparing the full solution in general relativity with the
EFT, we have concluded that λ

(E)
1 = λ

(E)
2 = 0 in (3) up to

quadratic order in perturbation theory. For simplicity, we have
focused on the leading order in the derivative expansion in the
EFT and considered only parity-even perturbations. Our ap-
proach can be employed to study higher multipoles and odd
perturbations [62].

To summarize, the vanishing of the nonlinear Love numbers
is a consequence of the following results: (i) at quadratic or-
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der in perturbation theory the inhomogeneous solution is con-
structed from a source (see eq. (A18)) that is made of only the
linear tidal field; (ii) the point-particle EFT can be matched
with the full solution without turning on Love number cou-
plings, while nonlinear corrections to the static solution in
general relativity can be reconstructed from the EFT, at all
orders in rs, via just graviton bulk nonlinearities.

The result λ
(E)
1 = λ

(E)
2 = 0 was previously obtained in

[46] using a different approach, which relies on harmonic
coordinates and the framework of post-Newtonian theory. In
contrast, our approach is not bound to the post-Newtonian
expansion and is manifestly gauge invariant. Our methodol-
ogy can be applied to prove the vanishing of other types of
nonlinear Love numbers, such as those involving couplings
with the gravitomagnetic field, or to compute dynamical
nonlinear Love numbers beyond the static approximation;
see e.g. [46, 63]. Furthermore, defining the Love numbers
as Wilson coefficients of a worldline effective field theory
makes it more transparent that their vanishing necessitates the
existence of a nonlinear symmetry in general relativity, such
as those proposed for linear fields in [3, 4] (see also [5–7]).
It would be interesting to understand to what extent such
symmetries can be extended to higher orders in perturbation
theory. In addition, it will be interesting to see how our
conclusions change for rotating Kerr black holes, black
hole solutions in higher dimensions and different spins
[32, 34, 36, 37, 64]. We leave all these aspects for future
investigations.
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Appendix A: Second-order perturbation theory

In this section, we outline the derivation of the quadratic
equations for the perturbations of a Schwarzschild black hole
in the static limit. We shall denote the metric perturbation
tensor with δgµν = gµν −gSch

µν , where gSch
µν is the background

Schwarzschild metric, and further decompose it in even (po-
lar) and odd (axial) components as δgµν = δgeven

µν +δgodd
µν . A

general parametrization of δgeven
µν and δgodd

µν in four spacetime
dimensions is given by [65]:6

δgeven
µν =


(
1− rs

r

)
H0 H1 ∂θ H0 ∂φ H0

∗ H2 ∂θ H1 ∂φ H1
∗ ∗ r2 (K +W G) r2

(
∂θ ∂φ − cosθ

sinθ
∂φ

)
G

∗ ∗ ∗ r2 sin2
θ (K −W G)

 , (A1)

δgodd
µν =


0 0 − 1

sinθ
∂φ h0 sinθ∂θ h0

∗ 0 − 1
sinθ

∂φ h1 sinθ∂θ h1

∗ ∗ − 1
sinθ

(
∂θ ∂φ − cosθ

sinθ
∂φ

)
h2

1
2 sinθ

(
∂ 2

θ
− cosθ

sinθ
∂θ − 1

sin2 θ
∂ 2

φ

)
h2

∗ ∗ ∗ sinθ
(
∂θ ∂φ − cosθ

sinθ
∂φ

)
h2

 , (A2)

where the asterisks denote symmetric components and where
we introduced the differential operator W ≡ 1

2 (∂
2
θ
− cosθ

sinθ
∂θ −

1
sin2 θ

∂ 2
φ
). Each component of δgeven

µν and δgodd
µν can be fur-

ther decomposed in spherical harmonics as, for instance,
H0 = ∑ℓ,m H0Y m

ℓ (θ ,φ), where Y m
ℓ (θ ,φ) are normalized as∫

dΩY m∗
ℓ (θ ,φ)Y m′

ℓ′ (θ ,φ) = δℓℓ′δ
mm′

. Since δgeven
µν and δgodd

µν

have opposite transformation rules under a parity transforma-

6 Note that the definition of h2 differs by a sign with respect to [65, 66]. In
addition, the definition of G differs by the subtraction of a trace, and we
have reabsorbed a factor 1/(1− rs

r ) in the definition of H2.

tion, the spherical symmetry of the background ḡµν ensures
that δgeven

µν and δgodd
µν do not couple at the level of the lin-

earized equations of motion. Mixing will appear starting from
quadratic order.

1. Quadratic solution from even tidal field

In this section, we derive the even quadratic equations for
the metric perturbations in the static regime and solve them
under the assumption of a purely even tidal field at large dis-
tances. Without an odd tidal field, since the linear odd static
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solution is divergent at the horizon,7 we can set δgodd
µν to zero

altogether and just focus on the even perturbations δgeven
µν .

Gauge fixing. At each order in perturbation theory, we
choose to fix the Regge–Wheeler gauge as follows [39, 65,
67]:

H0 = H1 = G = 0 . (A3)

Since this is a complete gauge fixing, it can be performed di-
rectly in the action without losing any constraints [68].

Constraint equation. With the gauge choice (A3), the
only off-diagonal metric component in δgeven

µν is thus H1,
which is a constrained variable. It is not hard to see that, in
the static limit and in the absence of odd perturbations,

H1 = 0 , (A4)

at each order in perturbation theory. This follows from solv-
ing Gtr = 0, where Gµν = Rµν − 1

2 gµν R is the Einstein ten-
sor. In fact, by construction, Gtr is at each order propor-
tional to (derivatives of) H1, i.e., it vanishes when H1 van-

ishes. As a result, with the gauge choice (A3) and the non-
linear solution (A4) in the static limit, the metric pertur-
bation δgeven

µν boils down to the diagonal form: δgeven
µν =

diag
[
(1− rs

r )H0,H2,r2K,r2 sin2
θK

]
[69]. Next, we plug this

into the Einstein–Hilbert action, which we expand up to cu-
bic order in the perturbations H0, H2 and K. Taking then the
variation with respect to each of the three metric components,
we can write down the quadratic equations for H0, H2 and K.
Two of them will lead to constraints, while only one will give
the static equation for the physical (even) degree of freedom.
To make this manifest, it is first convenient to perform the fol-
lowing field redefinition,

H2 ≡ ψ +
r2

r− rs
K′+

r2

2(r− rs)2

[
2− 3rs

r
+∆S2

]
K , (A5)

where ∆S2 = ∂ 2
θ
+ cosθ

sinθ
∂θ + 1

sin2 θ
∂ 2

φ
is the spherical Lapla-

cian on the 2-sphere, defined with line element dΩ2 ≡ dθ 2 +
sin2

θ dφ 2 and satisfying ∆S2K = −ℓ(ℓ+ 1)K. The resulting
equations are

ψ
′+

(
ℓ2 + ℓ+2

)
r+2rs

2r(r− rs)
ψ −

ℓ(ℓ+1)r
[(
ℓ2 + ℓ−2

)
r+3rs

]
4(r− rs)3 K =

r2

r− rs

∫
dΩY m∗

ℓ (θ ,φ)S1(r,θ ,φ) , (A6)

K′−2
(

1− rs

r

)
H ′

0 −
ℓ(ℓ+1)+1

r− rs
K − ℓ(ℓ+1)

rs
H0 −

2
r

(
1− r

rs

)
ψ =− 4r

M2
Plrs(r− rs)

∫
dΩY m∗

ℓ (θ ,φ)cscθS2(r,θ ,φ) , (A7)

ψ
′+

r[rs − ℓ(ℓ+1)r]
rs(r− rs)

H ′
0 +

r[rs − ℓ(ℓ+1)r]
2(r− rs)2 K′− ℓ(ℓ+1)r(r− rs)− rs(2r+ rs)

rrs(r− rs)
ψ

+
ℓ(ℓ+1)r(r−2rs)

rs(r− rs)2 H0 −
r
[
ℓ(ℓ+1)

(
ℓ2 + ℓ−5

)
rrs − (ℓ−1)ℓ(ℓ+1)(ℓ+2)r2 +(2ℓrs + rs)

2
]

2rs(r− rs)3 K

=− 4r3

M2
Plrs(r− rs)2

∫
dΩY m∗

ℓ (θ ,φ)cscθS3(r,θ ,φ) , (A8)

where S1, S2 and S3 are source terms, quadratic in the fields—
which we will not write explicitly. The goal is to solve (A6)-
(A8) in perturbation theory. After straightforward manipu-
lations, one finds that the field components H2 and K can be
solved algebraically for in terms of H0 and derivatives thereof.
Hence, the problem reduces to solving the H0’s equation of
motion, which, after some massaging of (A6)-(A8), is found
to be

H ′′
0 +

2r− rs

r(r− rs)
H ′

0 −
ℓ(ℓ+1)r(r− rs)+ r2

s

r2(r− rs)2 H0 = S̃H0 , (A9)

where S̃H0 is a linear combination of (derivatives of) the
source terms in (A6)-(A8).

7 This is equivalent to saying that the linear Love numbers vanish.

The homogeneous part of (A9) is a (degenerate) hypergeo-
metric equation, which can thus be solved in closed form. To
bring it in standard hypergeometric form, it is convenient to
perform the following field redefinition,

H0(r(x)) = xℓ+1(1− x)−1u(x) , x ≡ rs

r
. (A10)

Using (A10), the homogeneous equation takes on the form

x(1− x)u′′(x)+ [c− (a+b+1)x]u′(x)−abu(x) = 0 , (A11)

with parameters

a = ℓ−1 , b = ℓ+1 , c = 2ℓ+2 , (A12)

satisfying the relation c− a− b = 2. The two linearly inde-
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pendent solutions are8

u1(x) = 2F1(ℓ−1, ℓ+1,2ℓ+2;x) , (A13)

u4(x) = (−x)−ℓ−1
2F1 (−ℓ,ℓ+1,3;x−1) . (A14)

Since the first argument of u4 is a non-positive integer and the
third argument is a positive number, we can use the formula
[34]

(−x)−ℓ−1
2F1(−ℓ,ℓ+1,3;x−1) =

= (−x)−ℓ−1
ℓ

∑
n=0

(−ℓ)n(ℓ+1)n

(3)nn!
x−n ,

(A15)

where (·)n is the Pochhammer symbol. Notice that only this
second solution leads to a H0 that is regular at x = 1 (u1 con-
tains instead a logarithmic divergence). In particular, H0 con-
structed out of u4 is a finite polynomial with only positive
powers of r—we recover in other words the well-known fact
that Love numbers of black holes in four spacetime dimen-
sions vanish.

In terms of H0, the two linearly independent solutions read

H(1)
0 (r) =

( rs
r

)ℓ+1

1− rs
r

2F1 (ℓ−1, ℓ+1,2ℓ+2; rs
r ) , (A16)

H(4)
0 (r) =

(−1)ℓ+1(
1− rs

r

) 2F1 (−ℓ,ℓ+1,3; r
rs
) . (A17)

The solution to the inhomogeneous solution (A9) is

H0(r) =
∫

∞

rs

G(r,r′)S̃H0(r
′)dr′ , (A18)

where the Green’s function satisfies[
∂

2
r +

2r− rs

r(r− rs)
∂r −

ℓ(ℓ+1)r(r− rs)+ r2
s

r2(r− rs)2

]
G(r,r′)= δ (r−r′) .

(A19)
For r ̸= r′, the most general solution for G(r,r′) that is regular
at the horizon and is continuous across r = r′ is given by the
combination

G(r,r′) =
1

W (r′)

[
H(1)

0 (r)H(4)
0 (r′)θ(r− r′)

+H(1)
0 (r′)H(4)

0 (r)θ(r′− r)
]
, (A20)

where H(1)
0 (r) and H(4)

0 (r) can be read off from eqs. (A16)
and (A17), and where W is the Wronskian,

W (r) = H(4)
0 (r)∂rH

(1)
0 (r)−H(1)

0 (r)∂rH
(4)
0 (r)

=W0
rs

r

(
r
rs
−1

)−1

.
(A21)

W0 is an ℓ-dependent constant, which can be written in closed
form as

W0 =
1

3rs
(−1)−ℓ2−ℓ−2

{
3(ℓ−1) 2F1 (−ℓ,ℓ+1;3;2) 2F1

(
ℓ,ℓ+2,2ℓ+3; 1

2

)
−4(ℓ+1) 2F1

(
ℓ−1, ℓ+1,2ℓ+2; 1

2

)
[2ℓ 2F1 (1− ℓ,ℓ+2,4;2)−3 2F1 (−ℓ,ℓ+1,3;2)]

}
. (A22)

All in all, the inhomogeneous solution that is regular at the
horizon can be written as

H0(r) =
1

W0r2
s

[
H(1)

0 (r)
∫ r

rs

H(4)
0 (r′)(r′2 − rsr′)S̃H0(r

′)dr′

+H(4)
0 (r)

∫ r0

r
H(1)

0 (r′)(r′2 − rsr′)S̃H0(r
′)dr′

]
. (A23)

In (A23) we introduced an arbitrary radius r0. This is com-
pletely immaterial as the integral evaluated at r0 can always
be reabsorbed by a redefinition of the integration constant of
the homogeneous solution that is regular at the horizon.

Appendix B: List of Feynman rules

In this appendix, we list the Feynman rules used in the main
text for the EFT matching computation:

µν ρσ
k

=
i

k2 − i0+
Pµνρσ , (B1)

8 This case corresponds to line 20 of the table in Sec. 2.2.2 of [70], with
m = ℓ−2, n = ℓ and l = 2. The two independent solutions can be found in

eqs. 2.9(1) and 2.9(13) of [70]. There is a typo in the case 20 of the table
in Sec. 2.2.2: the “u2” should be instead “u4”.
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α1β2

α2β2

α3β3

k1
k2

k3

= iκ(2π)4
δ
(4)(k1 + k2 + k3)V

α1β1α2β2α3β3
3 , (B2)

α2β2

α3β3

k2

k3

= iHα1β1(−k2 − k3)V
α1β1
3 α2β2α3β3 , (B3)

α3β3

α4β4

k2

k3

= i
∫ d4q

(2π)4 Hα1β1(q)Hα2β2(−k2 − k3 −q)V α1β1α2β2
4 α3β3α4β4 , (B4)

M
µν

k
= iκ

M
2

∫
dτ e−ik·x(τ) vµ vν , (B5)

where the cubic vertex V3 is obtained from expanding the
Einstein–Hilbert action up to cubic order in hµν . The cu-
bic and quartic vertices V3 and V4 are obtained by expanding

eqs. (1) and (19) up to quadratic order in both hµν and Hµν .
Their tensorial structures are handled using the xAct package
for Mathematica [71].
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