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A B S T R A C T   

Hydrodynamic cavitation is useful in many processing applications, for example, in chemical reactors, water 
treatment and biochemical engineering. An important type of hydrodynamic cavitation that occurs in a Venturi 
tube is vortex cavitation known to cause luminescence whose intensity is closely related to the size and number 
of cavitation events. However, the mechanistic origins of bubbles constituting vortex cavitation remains unclear, 
although it has been concluded that the pressure fields generated by the cavitation collapse strongly depends on 
the bubble geometry. The common view is that vortex cavitation consists of numerous small spherical bubbles. In 
the present paper, aspects of vortex cavitation arising in a Venturi tube were visualized using high-speed X-ray 
imaging at SPring-8 and European XFEL. It was discovered that vortex cavitation in a Venturi tube consisted of 
angulated rather than spherical bubbles. The tangential velocity of the surface of vortex cavitation was assessed 
considering the Rankine vortex model.   

1. Introduction 

Hydrodynamic cavitation has attracted attention in various contexts 
including chemical reactors [1,2], water treatment [3–5], biochemical 
engineering [6], synthesis of biodiesel [7–9], ex-situ biological hydrogen 
methanation [10], as well as degradation of harmful substances such as 
bisphenol [11], sulfamerazine [12], ammonia nitrogen [13], fatty acid 
[14], microcystis aeruginosa [15]. Several types of cavitating devices 
have been proposed, such as Venturi type [16], jet type [17], swirling 

vortex type [18] and rotor type [19]. In most cases, cavitation was not 
observed directly, so it was assumed to consist of spherical bubble(s) 
[20,21], even in the case of acoustic cavitation [22]. 

Experimental and numerical analyses were performed for cavitation 
reactors that use hydrodynamic cavitation. The cavitation performance 
of a rotor-radial groove (RRG) hydrodynamic cavitation reactor was 
analyzed using computational fluid dynamics to investigate the cavi
tating region without observing the cavitation [19]. The liquid–liquid 
emulsions were investigated experimentally using a vortex-based 
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hydrodynamic cavitation unit [23]; however, cavitation was not 
observed. The cavitation noise of hydrodynamic cavitation arising in jet 
pump cavitation reactors (JPCRs) was measured whilst varying the 
throat lengths, throat types, and diffuser angles and observing vortex 
cavitation, and the averaged aspects were discussed [17]. The mixing 
performance of a consecutive competing reaction system was numeri
cally investigated in a swirling vortex flow reactor (SVFR) considering 
turbulent eddies [18]. The cavitation cloud shedding and cavitating 
regions were simulated using bubble dynamics and compared with 
experimental results [24]. Although cloud cavitation and horseshoe 
cavitation were observed in a Venturi tube, the discussions of these 
phenomena were based on the assumption of spherical bubbles [25]. 
The re-entrant flow arising in a Venturi tube was also simulated [21]; 
however, the cavitating region was also assumed to consist of small 
spherical bubbles. Cloud cavitation arising in a Venturi tube [26] was 
recognized and simulated numerically; it was assumed that cloud cavi
tation consisted of small spherical bubbles [27]. It is concluded that 
hydrodynamic cavitation in various systems has so far been only eval
uated experimentally as systems of spherical bubble. Numerical simu
lation of ultrasonic cavitation was also performed. Once again, bubble 
dynamics was simulated using spherical bubbles [22]. Non-spherical 
bubbles were observed in ultrasonic cavitation, but it has so far 
proved impossible to extract further details [28]. In [20], the cases of 
both hydrodynamic and ultrasonic cavitation were considered spherical 
bubble(s). Intense cavitation is an infrequent event in both hydrody
namic [29] and ultrasonic cavitation [30]. For example, it was noted in 
[29] that only a few of 1000 cavitation clouds (less than 1 %) produced 
strong impacts, and only a few large impacts were generated by vibra
tions at 20 kHz [30]. If the mechanisms of cavitation could be eluci
dated, the efficiency of cavitation reactors and/or cavitation peening 
would be drastically improved. 

With respect to the numerical simulation of cloud cavitation, a model 
of cloud cavitation consisting of small spherical bubbles has been pro
posed [31], and numerical simulations were carried out considering 
cavitation-vortex interaction [32], the interaction of bubbles [33], the 
effect of cavitation on local flow pattern [34], surface tension [35], 
position of bubbles [36], and collapse of clouds [37]. In conventional 
numerical simulations of cloud cavitation, it is assumed that cloud 
cavitation consists of small spherical bubbles. However, recent numer
ical and experimental investigations of bubble dynamics have suggested 
that the intensity of a single bubble collapse is strongly affected by the 
geometry of the bubble and the distance between the bubble and the 
rigid wall [38,39]. Higher fidelity simulation of cavitation can be ach
ieved using conventional computational fluid dynamics if bubbles could 
be assumed to be non-spherical. As the effect of non-condensable gas 
was also revealed by a new Euler-Lagrangian cavitation model [40], the 
investigation of structure of vortex cavitation will helpful to develop the 
simulations. 

As reviewed by Arndt [41], cloud cavitation has the form of a vortical 
flow. Typical vortex cavitation is the “tip vortex cavitation” which oc
curs at the tip of a screw propeller [42]. In the present work, the term 
“vortex cavitation” is used to describe the cavitation, as shown in Fig. 1 
[16]. Note that the luminescence intensity induced by the 

hydrodynamic cavitation in a Venturi tube is proportional to the shed
ding frequency and size of the vortex cavitation [16]. Vortex cavitation 
is a key factor in the aggressive intensity of hydrodynamic cavitation. 
The conventional model of vortex cavitation is based on the observation 
of vortex cavitation on a hydrofoil [43] and consists of small spherical 
bubbles. It is still used for unsteady cavitating flows [44] and cavitating 
flows around hydrofoils [45,46]. In another model of vortex cavitation, 
the surface of the vortex is smooth [47]. 

In the investigation of the cavitation cloud by X-rays, the void frac
tion of cloud cavitation around the Venturi [48–50] and hydrofoil 
[51–56] were evaluated. Vapor bubbles in the Venturi tube profile were 
detected at 3,000 frames per second using synchrotron radiation at the 
XOR 32-ID beamline of the Advanced Photon Source (APS), Argonne 
National Laboratory (ANL) [57]. The time averaged aspect of ultrasonic 
cavitation was also visualized by synchrotron radiation at the BMIT-BM 
05B1-1 beamline of the Canadian Light Source (CLS) [58]. The dynamic 
behavior of ultrasonic cavitation also investigated at I13-2 Diamond- 
Manchester Imaging Branchline of Diamond Light Source, UK [59–61], 
and the quasi-static bubble oscillation was reported [60,61]. Radio
graphs of the cavitating flow through the nozzle were captured at 
12,070 frames per second [62–64], then 67,890 frames per second 
[65,66] at the APS in ANL. The non-spherical bubble in the attached 
cavitation was recognized [62–64,66]. High-speed, kHz sampling rate 
4D tomography has be achieved using synchrotron radiation [67,68], 
whilst imaging rates exceeding a MHz are now possible using an X-ray 
free electron laser (XFEL) [69]. 

When the aggressive intensity of hydraulic cavitation through 
Venturi tube was evaluated by cavitation noise [70], a few pulses of 
intense cavitation noise were detected per second, although hundreds of 
clouds and/or vortex cavitation were generated as same as an impinging 
cavitating jet [71]. In the present study, in order to improve drastically 
the efficiency of a cavitation reactor using hydrodynamic cavitation, the 
behavior of vortex cavitation arising in a Venturi tube was observed by 
high-speed radiography using X-ray illumination at SPring-8 and 
European-XFEL. It was found that vortex cavitation consisted of angu
lated bubbles rather than spherical bubbles. The tangential velocity of 
the surface of vortex cavitation was also evaluated by considering the 
Rankine vortex, similar to the case of cavitation around the heart valve 
[72] and tip vortex cavitation [73]. 

2. Experimental apparatus and procedures 

Fig. 2 shows the schematic of Venturi tubes made of glass and acrylic 
resin in this work. In Fig. 2, d and D are the throat diameter and the inner 
diameter of the Venturi tube, respectively, and L is the length of the 
contraction-and-expansion-part of the Venturi tube. For d = 1.2 mm in 
Table 1, L was 20 mm, as in a previous report [16]. For all other Venturi 
tube, L was chosen based on the field of view at the observation. Table 1 
lists the materials of the Venturi tube and the hydrodynamic test 

Fig. 1. Typical vortex cavitation arising in Venturi tube [16].  

Fig. 2. Schematic geometry of the Venturi tube. (a) Glass tube for test condi
tion No. 1. (b) Acrylic resin tube for test condition No. 2c and 2v 
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conditions. The “c” and “v” letters associated with No. 2 denote the 
compression type and vacuum type test loop, respectively. To investi
gate the vortex cavitation arising in the Venturi tube, three types of 
Venturi tubes were prepared considering the material transparency to X- 
ray and fluid dynamics parameters, such as the Reynolds number and 
velocity at the throat, as listed in Table 1. Table 2 lists the test conditions 
for the X-ray visualization of the vortex cavitation phenomenon. 

Reynolds number, Re, was defined by d, the flow velocity at the 
throat U and kinematic viscosity of water νw, and U was obtained from 
the pressure difference between the upstream pressure p1 and down
stream pressure p2 of the throat, as follows: 

Re =
dU
νw

=
d

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2
ρ (p1 − p2)

√

νw
, (1)  

where ρ is the density of water. 
The cavitation number σ was defined by p1, p2 and the vapor pressure 

of water pv as, 

σ =
p1 − p2
1
2 ρ U2 =

p2 − pv

p1 − p2
. (2) 

Fig. 3 illustrates the three types of test loops of hydrodynamic 
cavitation through a Venturi tube. In configuration (a) compression 
type, compressed air was charged in the pressure tank using a 
compressor, and the test water was installed in tank 1. After the 
beamline hutch door was interlocked, valve 1, which was an electro
magnetic valve, was opened, and the test water was passed through a 
Venturi tube to generate hydrodynamic cavitation. 

A vacuum type setup was conceived to reduce the cavitation number 
and flow velocity in the Venturi tube. In (b) vacuum type, the air in Tank 
2 was evacuated using a vacuum pump. Valve 1 was opened after the 
hutch door was interlocked, and the water stored in tank 1 flowed 
through the Venturi tube to tank 2 as p1 > p2. 

Fig. 3(c) illustrates a diaphragm pump type similar to that used in a 
previous report [16]. Test water, pressurized using a diaphragm pump, 
was injected through the Venturi tube and returned to the tank. For all 
three types, the upstream and downstream pressures were measured 

using pressure gauges, and the pressures were controlled by the down
stream valve, and either the pressure/vacuum in the tanks or the rota
tional speed of the diaphragm pump. 

Test condition No. 1 was chosen as that of the previous study on 
vortex cavitation arising in a Venturi tube [16]. As the main purpose of 
the present study was to use X-ray to visualize and investigate the 
bubbles in vortex cavitation, the choice of Reynolds number was an 
important factor. Test condition No. 2c was chosen to match the Rey
nolds number used in test No. 1, i.e., Re ≈ 4 × 104, considering the field 
of view and recording speed, by increasing the throat diameter d to 
decrease U (see Eq. (1)). To investigate vortex cavitation more clearly, 
test condition No. 2v was chosen to reduce the flow velocity U at a 
similar cavitation number to test No. 1, i.e. σ ≈ 0.4, by decreasing the 
pressures p1 and p2 (see Eq. (2)). In the European XFEL test No. 3, 
Megahertz capture rates are available [69,74]; however, the field of 
view is limited. Consequently, d = 0.5 mm was chosen and the cavitation 
number was set similar to that of test No. 1, i.e., σ ≈ 0.4. 

The uncertainties of measured upstream pressure and downstream 
pressure were shown in Table 1. Note that the pressures of compressive 
type and vacuum type were slightly decreased due to the volume of 
pressure tank and vacuum tank. In the case of diaphragm pump type, the 
upstream pressure was fluctuated about 10 % due to the diaphragm 
pump [16]. As U was obtained from p1 and p2, the uncertainty of U, Re 
and σ were obtained as shown in Table 1 considering error analysis [75]. 

The experiments were conducted on two beamlines, BL28B2 at 
SPring-8, Japan [67] and SPB-SFX at European-XFEL, DESY, Germany 
[76]. High-speed cameras were used to visualize vortex cavitation. The 
field-of-view and recording speed for each test are listed in Table 2. The 
spatial resolution of X-ray imaging was 10.5 μm/pixel for BL28B2 and 
2.5 μm/pixel for SPB-SFX. At BL28B2, SPring-8, the aspect of vortex 
cavitation was simultaneously observed by visible light using a high- 
speed video camera at 21,600 frames per second. A high-speed video 
camera for X-rays was aligned horizontally, while the visible light 
camera was placed at the inclination of 18.9◦ below horizontal, as 
shown in Fig. 4. The details of high-speed photography using X-rays are 
provided in references [67–69,74,76]. 

3. Results 

3.1. Periodical shedding of vortex cavitation 

Figs. 5 and 6 show the aspects of hydrodynamic cavitation through a 
Venturi tube using visible light and X-rays. The direction of the main 
flow through the Venturi tube in Figs. 5 and 6 was from the left side to 
the right side. In the present study, to show images in the same flow 
direction for both images observed by visible light and X-rays, the left 
and right sides of the images observed by visible light were reversed. The 
four-digit numbers in each frame in Figs. 5 and 6 reveal the time in 
milliseconds. The test condition of Figs. 5 and 6 was “No. 1” in Tables 1 
and 2. In the present study, we focused on vortex cavitation and 
observed the area around the trailing edge of the cavitating region, as it 
was found that the collapse of the vortex cavitation produced intensive 

Table 1 
Schematics of the Venturi tube and hydrodynamic test condition.  

Symbol Material Diameter of 
throat d mm 

Diameter of 
tube D mm 

Upstream 
pressure p1 MPa 

Downstream 
pressure p2 MPa 

Temperature tw 
◦C 

Velocity at 
throat U m/s 

Reynolds 
number 

Cavitation 
number 

No. 1 Glass  1.2  3.6 0.560 ± 0.028 0.166 ± 0.008 26 ± 2 28.1 ± 1.0 (3.9 ± 0.1) 
× 104 

0.41 ± 0.03 

No. 2c Acrylic 
resin  

2.0  4.0 0.377 ± 0.019 0.180 ± 0.009 26 ± 2 19.8 ± 1.1 (4.5 ± 0.2) 
× 104 

0.90 ± 0.10 

No. 2v Acrylic 
resin  

2.0  4.0 0.078 ± 0.004 0.027 ± 0.001 26 ± 2 10.1 ± 0.4 (2.3 ± 0.1) 
× 104 

0.47 ± 0.04 

No. 3 Acrylic 
resin  

0.5  3.0 0.350 ± 0.035 0.100 ± 0.001 21 ± 2 22.4 ± 1.5 (1.1 ± 0.1) 
× 104 

0.39 ± 0.05 

Note. – Pressures given are absolute pressure. 

Table 2 
Test conditions for visualization of the vortex cavitation by X-rays.   

Used test loop of 
Venturi tube (see  
Fig. 3) 

Test site, 
Beam line 

Field of view 
(mm × mm) 
[pixel × pixel] 

Recording 
speed (frame/ 
sec) 

No. 
1 

Compression type SPring-8, 
BL28B2 

(13.5 mm ×
6.75 mm) 
[1280 pixel ×
640 pixel] 

69,600 

No. 
2c 

Compression type 

No. 
2v 

Vacuum type 

No. 
3 

Diaphragm pump 
type 

European- 
XFEL, SPB/ 
SFX 

(1.28 mm ×
0.8 mm) [400 
pixel × 250 
pixel] 

1,128,668  
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collapse [16]. This vortex cavitation was similar to horseshoe vortex 
cavitation which was shedding from the attached and/or cloud cavita
tion on hydrofoil [43,64,77,78], and it was revealed that the horseshoe 
vortex cavitation was severely erosive cavitation [77,78]. Based on 
earlier report [16], the trailing edge is indicated by dotted yellow lines 
in Fig. 5 to identify the periodical shedding of the vortex cavitation. 
When the time interval of the shedding of vortex cavitation in Fig. 5 was 
considered, we found that for the cases shown it was 0.093–0.417 ms, 
0.417–0.972 ms, 0.972–1.296 ms, 1.296–1.574 ms, 1.574–1.713 ms, 
1.713–2.407 ms, 2.407–2.546 ms, 2.546–2.870 ms, i.e., the duration of 
sequential vortex cavitation shedding were 0.342 ms, 0.556 ms, 0.324 
ms, 0.278 ms, 0.139 ms, 0.694 ms, 0. 139 ms, and 0.324 ms, respec
tively. These seem like almost multiples of 0.14 ms with the exception of 
0.324 ms and 0.342 ms. The subharmonic frequency, which was the 
lowest shedding frequency, was ~ 1.44 kHz. It is similar to the value 
reported in a previous study [16], i.e., c0 (688 σ + 961) = 1.24 ± 0.12 
kHz. Here, c0 is constant and equal to 1 Hz. In the previous experiment 
[16], test water was pressurized by the diaphragm pump, which pro
duced pressure fluctuation at 57.0 ± 2.5 Hz. In the present experiment, 
the test water was injected into the Venturi tube more stably using 
pressurized air, as shown in Fig. 3 (a). In other words, vortex cavitation 
was periodically shed by injecting stable conditions. 

By observing the trailing edge of the cavitating region, that is, the 
slope of the dotted yellow lines in Fig. 5, considering the frame interval, 
the shedding velocity of vortex cavitation near the trailing edge was 7.9 
± 2.6 m/s. In Fig. 5, the remarkable vortex cavitation sequences are 
indicated by yellow arrows. The distance between vortex cavitation was 
1.66 ± 0.08 mm; subsequently, the time interval of vortex cavitation 
shedding was 0.21 ± 0.07 ms and it corresponded to 4.8 ± 1.6 kHz. 
Thus, it can be concluded that the small vortex cavitations combined 
together, forming a large vortex cavitation, as 4.8 kHz > 1.44 kHz. 

The remarkable features of vortex cavitation observed under visible 
light and X-rays illumination are shown in Figs. 5 and 6 and indicated by 
the arrow(s). Note that the observation angles of visible light (Fig. 5) and 
X-rays (Fig. 6) were slightly different, as shown in Fig. 4. The time of 
capture was also different because the recording speeds were different, 
as shown in Table 2. As shown in Fig. 6, the typical vortex cavitation was 
indicated by the arrow at 0.330 ms. The topology of the vortex cavita
tion phenomena will be addressed in a later section. 

3.2. Attached cavitation and vortex cavitation 

To precisely investigate the relationship between vortex cavitation 
and attached cavitation that developed near the throat, the aspect of 
hydrodynamic cavitation through the Venturi tube, which was made of 
acrylic resin and whose L in Fig. 2 was approximately 13 mm, was 
observed using visible light and X-rays, as shown in Figs. 7 and 8. Fig. 8 
(b) shows a magnified view of Fig. 8(a) from 1.538 ms to 1.596 ms. The 
test condition of Figs. 7 and 8 are shown as “No. 2c” in Tables 1 and 2, 
respectively. The main flow directions shown in Figs. 7 and 8 are from 
the left to right. Hydrodynamic cavitation was recorded at 21,600 fps 
using visible light; four skipped images are shown in Fig. 7. As shown in 
Fig. 7, the attached cavitation developed near the throat and the vortex 

Fig. 3. Schematics of the test loop of hydrodynamic cavitation through 
Venturi tube. 

Fig. 4. Positions of cameras at BL28B2, SPring-8.  
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Fig. 5. Periodical shedding of vortex cavitation at d = 1.2 mm, p1 = 0.560 MPa, p2 = 0.166 MPa, σ = 0.41 observed by visible light.  
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Fig. 6. One cycle of vortex cavitation from shedding of trailing edge to collapse at d = 1.2 mm, p1 = 0.560 MPa, p2 = 0.166 MPa, σ= 0.41 observed by high speed X- 
ray imaging. 
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cavitation was mainly shed from the trailing edge of the attached cavi
tation. The minimum cavitating length was at 0.000 ms, 1.852 ms, 
4.444 ms and 6.481 ms, and the time intervals of the vortex shedding 
were 1.852 ms, 2.593 ms and 2.037 ms, respectively. Thus, the shedding 

frequency of the vortex cavitation was about 470 ± 80 Hz. Compared to 
the shedding frequency of 1.6 kHz predicted from the current cavitation 
number, σ = 0.90, and the earlier relation for fs [16], this represents a 
significant difference. This suggests that the shedding frequency of the 

Fig. 7. Cyclic phenomena of cloud attached cavitation and vortex cavitation shedding at d = 2.0 mm, p1 = 0.377 MPa, p2 = 0.180 MPa, σ= 0.90 observed by 
visible light. 
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vortex cavitation through the Venturi tube depends also on the geometry 
of the Venturi tube. 

To reveal the internal structure of vortex cavitation, the remarkable 
vortex cavitation in Figs. 7 and 8 is indicated by a blue arrow. The vortex 
cavitation at 1.667 ms in Fig. 7 and 1.667 ms in Fig. 8 is a longitudinal 
vortex cavitation with a vortex core inclined at 45◦ to the flow direction. 
The diameter of the vaporized core of the vortex cavitation at 1.667 ms 
was approximately 0.4 mm. The vaporized vortex core was composed of 
angulated rather than spherical bubbles. Now, we examine the initiation 
of this vortex cavitation using the magnified images shown in Fig. 8(b). 
The area of magnified view was indicated by light blue box in Fig. 8(a). 
At 1.538 ms and 1.553 ms, no bubbles were recognized in the region 
where the vortex cavitation was later observed. The region was indi
cated by a red rounded rectangle. The first bubbles were observed 14 μs 
later at 1.567 ms, which coalesced into a longitudinal vortex cavitation, 
which was indicated by a red arrow, a further 14 μs later at 1.581 ms. 
The diameter of the vaporized core of the vortex cavitation was about 
0.1 mm at this time, which increases to ~ 0.15 mm at 1.596 ms. This 
result suggests that the vortex cavitation in the vortex core was gener
ated by vortical flow. In the case of the visualization of a cavitating flow 
by X-rays, the depth of focus is considerably large compared to the ob
servations using visible light, and the spatial resolution used was 

approximately 10 μm per pixel. These are significant advantages of the 
present observation method using X-rays. Thus, it can be concluded that 
there were no bubbles in this region. In the case of visualization using 
visible light, it is very hard to say “no bubble” due to its depth of focus 
and spatial resolution. Thus, it can be concluded by X-ray imaging that 
the vortex cavitation, which was observed at 1.667 ms in Figs. 7 and 8 
(a), was initiated by a vortical flow without air bubbles downstream of 
the attached cavitation. 

Figs. 7 and 8 show the two typical types of vortex cavitation. One 
type was generated by shedding part of the attached cavitation. In the 
second type, vortex cavitation was initiated by the vortical flow down
stream of the attached cavitation. The vortical flow of the vortex cavi
tation is discussed in Section 3.4. Tangential velocity of vortex cavitation”. 

3.3. Angulated bubbles in vortex cavitation 

To precisely investigate the bubbles in vortex cavitation, Figs. 9 and 
10 reveal the typical aspects of vortex cavitation arising in the Venturi 
tube observed by visible light and X-rays, as the shape and void ratio are 
closely related to the bubble collapse impact [38,39]. As mentioned 
previously, the conventional view is that vortex cavitation consists of 
small spherical bubbles. To examine the aspect of vortex cavitation, test 

Fig. 8. Vortex cavitation from shedding of trailing edge to collapse at d = 2.0 mm, p1 = 0.377 MPa, p2 = 0.180 MPa, σ= 0.90, observed by high speed X-ray imaging. 
(a) Standard view of one cycle. (b) Magnified view 
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condition “No. 2v” was performed to decrease the flow velocity whilst 
maintaining a similar cavitation condition as “No. 1” with σ ≈ 0.4. The 
main flow through the Venturi tube in Figs. 9 and 10 is from left to right. 
Notable vortex cavitation is indicated by a blue arrow at 0.926 ms in 
Figs. 9 and 10. 

Notable vortex cavitation was initiated from the trailing edge of the 
attached cavitation and became longitudinal vortex cavitation, as shown 
in Fig. 9. When notable vortex cavitation was observed by the syn
chrotron, the vaporized vortex core consisted of angulated bubbles, as 
shown at 0.926 ms in Fig. 10. The bubbles in the vaporized core were 

Fig. 8. (continued). 
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considerably large, and cylindrical bubbles are aligned in the vortex 
core, then the shape of the bubbles of core looks like a spine. Some 
typical boundaries of the bubbles in vortex cavitation, such as those at 
0.681, 0.868, and 0.926 ms in Fig. 10, appear as bamboo nodes. The 
vortex cavitation in Fig. 10 is also inclined 45◦ to the flow direction, as 

shown in Figs. 7 and 8. The diameter of the vaporized core of the vortex 
cavitation in Fig. 10 was about 1.2 mm at 0.681 ms and 0.8 mm at 0.926 
ms. From these observations it is clear that the bubbles in the vortex core 
are not spherical bubbles, but consist rather of the angulated bubbles. 
This is very important for simulating the cavitating flow numerically, as 

Fig. 9. Periodical shedding of typical vortex cavitation at d = 2.0 mm, p1 = 0.078 MPa, p2 = 0.027 MPa, σ = 0.47 observed by visible light.  

H. Soyama et al.                                                                                                                                                                                                                                



Ultrasonics Sonochemistry 101 (2023) 106715

11

the impact of bubble collapse near the solid wall strongly depends on the 
bubble shape [38,39]. 

3.4. Tangential velocity of vortex cavitation 

To investigate the tangential velocity of the vortex cavitation, Fig. 11 
shows the images taken at 1,128,668 fps, that is, an interval time of 886 
ns, using X-rays at SPB/SFX, European-XFEL. The test condition was 
“No. 3” in Tables 1 and 2. The direction of the main flow through the 
Venturi tube was from left to right. As shown in Fig. 11, a typical vortex 
cavitation was observed, as shown in Figs. 7-10. The vortex cavitation 
shown in Fig. 11 also consisted of angulated bubbles, and the vortex core 
was inclined at 45◦ in the flow direction, as shown in Figs. 7-10. The 
maximum diameter of the vaporized core of the vortex cavitation was 

approximately 0.3 mm. 
To obtain the tangential velocity of the surface of vortex cavitation, a 

distinctive area on the vortex cavitation surface was chosen, and the 
area was marked by green or yellow rectangles on the images from 
20.378 μs to 28.352 μs. The observed moving velocity of the distinctive 
area was obtained by the positions of the distinctive area on images and 
the time interval of images. The dotted white line indicates the esti
mated vaporized vortex core. The shedding speed at the center of the 
vaporized vortex core in the flow direction was obtained by the position 
of vortex core and the time interval, and it was 17 ± 7 m/s. The observed 
moving velocity of the distinctive area on the vortex cavitation surface, 
obtained by moving the velocity of the area in the flow direction 
considering the vortex core inclination, was 29 ± 14 m/s. The observed 
moving velocity of the distinctive area included the shedding speed of 

Fig. 10. One cycle of typical vortex cavitation from shedding of trailing edge to collapse at d = 2.0 mm, p1 = 0.078 MPa, p2 = 0.027 MPa, σ = 0.47 observed by high 
speed X-ray imaging. 
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Fig. 11. Rotation of vortex cavitation arising in the Venturi tube observed by XFEL. (Test condition (3): d = 0.5, p1 = 0.35 MPa, p2 = 0.1 MPa)  
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the vortex core, as shown in Fig. 12. The estimated tangential velocity of 
the surface of the vaporized vortex core was therefore approximately 5 
m/s (≈ (29 – 17) / sin 45◦). 

4. Discussions 

As mentioned in the introduction, vortex cavitation around the heart 
valve and/or tip vortex is assumed to be a Rankine vortex [72,73]. The 
tangential velocity of the surface of vortex cavitation in Figs. 11 and 12 
are discussed considering the Rankine vortex. In the case of the Rankine 
vortex, the vortex is considered a combined vortex with an inner core 
and outer part, which is assumed to be an irrotational vortex (see Ap
pendix A). Circumferential velocity vθ was described as follows: 

vθ = ωr(r ≤ r0) (3)  

vθ =
C
r
(r ≥ r0) (4)  

where r is the distance from the vortex center, r0 is the combined posi
tion between the inner and outer layers, ω is the angular velocity at the 
inner core, and C is a constant. Pressure p can be expressed by the 
following equation: 

p = p0 +
1
2

ρ ω2 r2 (r ≤ r0) (5)  

p = p∞ −
1
2

ρ C2

r2 (r ≥ r0) (6)  

Here, p0 is the pressure at vortex center, p∞ is the pressure at r → ∞, and 
p∞ was assumed as p∞ = p2 in the present experiment. At r = r0, vθ and p 
are equivalent at the inner core and outer part, respectively; then, 

C = ω r0
2 (7)  

p∞ − p0 = ρ ω2 r0
2 (8)  

Thus, p at r = r0 is obtained by substituting Eq. (7) into Eq. (6) as follows: 

p = p2 −
1
2

ρ ω2 r0
2 (9)  

When it was assumed that it was cavitated at r ≤ r0, i.e., p = pv at r = r0, 
vθ was denoted by the following equation. 

vθ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2
ρ ( p2 − pv)

√

(10)  

When ρ = 9.98 × 102 kg/m3, p2 = 0.1 MPa, and pv = 2.49 kPa were 
substituted into Eq. (10), vθ = 14.0 m/s was obtained. The observed 

velocity of the vortex surface was approximately 5 m/s, which was lower 
than 14 m/s. Thus, the observed vortex may include small air bubbles at 
initiation. When the distribution of local flow velocity around the vortex 
cavitation, which were shown in previous papers [16,79,80] was ob
tained by “correlation method,” which was a digital image-processing 
technique for analyzing motion by means of a series of images [80], 
the tangential velocity was obtained for several vortex cavitation [80]. 
The measured velocity was lower than that of vθ obtained by Rankin 
vortex model [81]. Namely, the previous results [81] also revealed the 
similar tendency of the present paper. 

As shown in “3.2. Attached cavitation and vortex cavitation”, there are 
two typical types of vortex cavitations: attached and vortex cavitation. 
One is the shedding from the trailing edge of the attached cavitation, and 
the other is initiated downstream of the attached cavitation. The former 
contains more air bubbles, that is, gaseous cavitation, whereas the latter 
contains fewer air bubbles, that is, vaporous cavitation. In the case of 
gaseous cavitation, the impact at the bubble collapse was weaker owing 
to the cushion effect [82]. Visualization of vortex cavitation by high- 
speed photography using X-rays has provided valuable information 
such as the bubble shape and tangential velocity of the vortex, which 
suggested the air content ratio in the vortex cavitation. It has been re
ported that one vortex cavitation out of 1000 generates an intense 
impact [29], and it is worthwhile to investigate vortex cavitation pre
cisely using X-rays to improve the efficiency of chemical reactors and/or 
cavitation peening using hydrodynamic cavitation. 

5. Conclusions 

To investigate the structure of vortex cavitation, which is closely 
related to the cavitation intensity of chemical effects such as lumines
cence, the vortex cavitation of hydrodynamic cavitation arising in the 
Venturi tube was observed by high-speed photography using X-rays at 
SPring-8, Japan, and European-XFEL, Germany. The results are sum
marized as follows.  

(1) The vortex cavitation arising in the Venturi tube consists of 
angulated bubbles rather than spherical bubbles.  

(2) There are two typical types of vortices used for vortex cavitation 
generation. One was shed from the trailing edge of the attached 
cavitation developed near the throat. The other was generated in 
the downstream region of the attached cavitation owing to 
vortical flow and it might cause intense collapse due to lesser 
cushion effect.  

(3) The vortex cavitation was shed periodically at stable injection 
pressure.  

(4) The shedding frequency of the vortex cavitation depended on the 
geometry of the Venturi tube. 

(5) The observed tangential velocity of the surface of vortex cavita
tion, whose vaporous diameter was 0.3 mm, was about 5 m/s.  

(6) The vaporized core of a typical vortex cavitation was inclined 45◦

to the main flow direction. 
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Appendix A. . Schematic of Rankine vortex 

Fig. A1 illustrates the schematics of pressure p and circumferential 
velocity vθ of a Rankine vortex changing with the distance from the 
vortex center r. As described in the main text, the Rankine vortex is a 
combined vortex with an inner core (r ≤ r0) and an outer part (r ≤ r0). 

Appendix B. Supplementary data 

Supplementary data to this article, that is videos of Figs. 5, 6, 7, 8, 9, 
10, and 11, are found online in the electronic version. Supplementary 
data to this article can be found online at https://doi.org/10.1016/j. 
ultsonch.2023.106715. 
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[78] M. Dular, M. Petkovšek, On the mechanisms of cavitation erosion – coupling high 
speed videos to damage patterns, Exp. Therm. Fluid Sci. 68 (2015) 359–370, 
https://doi.org/10.1016/j.expthermflusci.2015.06.001. 

[79] H. Soyama, K. Ohba, S. Takeda, R. Oba, High-speed observations of highly erosive 
vortex cavitation around butterfly valve, Trans. JSME 60B (1994) 1133–1138. 
https://www.jstage.jst.go.jp/article/kikaib1979/60/572/60_572_1133/_pdf/ 
-char/ja. 

[80] K. Ohba, H. Soyama, S. Takeda, H. Inooka, R. Oba, High-speed observations of 
highly erosive vortex cavitation using image processing, Journal of Flow 
Visualization and Image Processing 2 (1995) 161–172, https://doi.org/10.1615/ 
JFlowVisImageProc.v2.i2.50. 

[81] H. Soyama, K. Ohba, T. Ikohagi, R. Oba, Behavior of severe erosive vortex 
cavitation : Local velocity distribution around vortex, Turbomachinery 23 (1995) 
315–318. https://www.jstage.jst.go.jp/article/tsj1973/23/6/23_6_315/_pdf. 

[82] H. Soyama, Y. Iga, Laser cavitation peening: A review, Appl. Sci. 13 (2023) 6702, 
https://doi.org/10.3390/app13116702. 

H. Soyama et al.                                                                                                                                                                                                                                

http://refhub.elsevier.com/S1350-4177(23)00427-3/h0375
http://refhub.elsevier.com/S1350-4177(23)00427-3/h0375
https://doi.org/10.1364/optica.6.001106
https://doi.org/10.1364/optica.6.001106
https://doi.org/10.1299/kikaib.54.2727
https://doi.org/10.1299/kikaib.54.2727
https://doi.org/10.1016/j.expthermflusci.2015.06.001
https://www.jstage.jst.go.jp/article/kikaib1979/60/572/60_572_1133/_pdf/-char/ja
https://www.jstage.jst.go.jp/article/kikaib1979/60/572/60_572_1133/_pdf/-char/ja
https://doi.org/10.1615/JFlowVisImageProc.v2.i2.50
https://doi.org/10.1615/JFlowVisImageProc.v2.i2.50
https://www.jstage.jst.go.jp/article/tsj1973/23/6/23_6_315/_pdf
https://doi.org/10.3390/app13116702

	Revealing the origins of vortex cavitation in a Venturi tube by high speed X-ray imaging
	1 Introduction
	2 Experimental apparatus and procedures
	3 Results
	3.1 Periodical shedding of vortex cavitation
	3.2 Attached cavitation and vortex cavitation
	3.3 Angulated bubbles in vortex cavitation
	3.4 Tangential velocity of vortex cavitation

	4 Discussions
	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A . Schematic of Rankine vortex
	Appendix B Supplementary data
	References


