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In a somewhat forgotten paper [1] it was shown how to perform interpolations between relativistic
and static computations in order to obtain results for heavy-light observables for masses from,
say, Mcharm tO Mpoom- All quantities are first continuum extrapolated and then interpolated in
1/my, = 1/mpeayy. Large volume computations are combined with finite volume ones where
a relativistic bottom quark is accessible with small ampoom. We discuss how this strategy is
extended to semi-leptonic form factors and other quantities of phenomenological interest. The
essential point is to form quantities where the limit m;, — co is approached with power corrections
O(1/my,) only. Perturbative corrections ~ as(my)?*" are cancelled in the construction of the
observables. We also point out how such an approach can help to control systematics in semi-
leptonic decays with just large volume data. First numerical results with Ny = 2 + 1 and lattice
spacings down to 0.039 fm are presented in [2].

The 40th International Symposium on Lattice Field Theory,
31st July-4th August, 2023,
Fermilab, Batavia, Illinois, USA

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/



A strategy for B-physics observables in the continuum limit

1. Introduction

B-physics is a possible portal to physics beyond the Standard Model. This is even more relevant
now than in the past since direct searches have not provided evidence for new physics. Small
tensions between standard model and experiment exist in B-physics, but others may be hidden by
large uncertainties or an inaccurate treatment of the theory. Indeed, precise theory predictions, e.g.
for B-meson decays are very challenging, because perturbation theory seems, generically, inaccurate
(see below) and non-perturbative computations on the lattice are complicated by the large ratio of
scales between the b-quark mass and the non-perturbative scales of QCD including the pion mass.

Because of the large scale ratio, all existing computations for B-physics on the lattice make
use of expansions in 1/my, i.e. effective field theories (EFTs), in one way or the other [3]. Also
so-called relativistic computations constrain the quark mass dependence of heavy-light observables
to forms motivated by an expansion in 1/my [4-12]. It is important to reduce the number and
importance of assumptions made in the EFT treatment to a minimum. A step was taken a while
ago [1], combining the relativistic theory,

L = Lowe + Liight + Loy Lo = ¥n(Duyy + mp)yn )]
with the static effective theory (? 1] (lz statH% = '75 stat s H%wstat = Ystat),
Lefr = Lgiue + Liight + Lstat,  Lstar = Ustat(Do + Mt Wstar - (2

The continuum limit is taken separately in both theories, which in practice, due to accessible a,
requires my, < mp /2 in the relativistic case. Results for the physical quark mass, my,, are obtained
by interpolation in 1/my,, where the static effective theory yields a point at 1/my, = 0, see fig. 1.

The above work [1] built on the introduction of step scaling in the static approximation [13]
and in HQET [14] as well as for finite mass heavy quarks [15, 16]. However, the applications to
semi-leptonic decays were complicated [17]. Here we discuss that semi-leptonic decays and more
can be included by a very simple generalisation. Instead of focusing on the 1/my, expansion of finite
volume effects and step scaling as done in the past, the general strategy rests solely on the basic
requirement for a combination of static and relativistic results: observables have to admit a simple
interpolation in 1/my, as in fig. 1.

2. General strategy

Our general strategy is then to form suitable quantities which

i. can be computed in the continuum limit,
ii. can be combined to obtain the desired observables, e.g. decay constants or semi-leptonic form
factors,
iii. possess a simple behavior as a function of 1/my,, such that they can be interpolated in this
variable.

We need low energy quantities such that the 1/my, expansion is applicable. Furthermore, the static
limit m;, — oo has to exist with no logarithmic corrections but only power corrections O(1/my,).
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Figure 1: Sketch of interpolation between static and and relativistic data in the continuum.

In our context, logarithmic corrections means ~ a’*Y(mj,) while power corrections may (and will)
contain logs: a"(myp)/mp = O(1/my,).

The step scaling strategy of [1] satisfies these requirements, but it is too restrictive. As
a preparation for examples how a general strategy can be applied, we discuss the all-important
renormalisation in the static theory.

2.1 Renormalisation and matching in the static theory

While it is not proven, the static effective theory is renormalisable according to all that we
know. For a discussion and references we refer to sect. 1.6 of [18]. Beyond renormalisation any
effective theory has to also be matched to the fundamental one, such that the observables agree up to
power corrections, here O(1/my,). These two steps are cleanly separated by using renormalisation
group invariants. We briefly recall the facts which we need later, see e.g. [18] for details.

Energies defined and computed with the static Lagrangian eq. (2) are finite after additively
renormalising its bare mass,

1
Mg = finite + dm, om = —[cogg +...]. 3)
a
Since all energies of states with the quantum number of a single b-quark have the property
Ersltat(mstat) = Ersltat(o) + Mygat €))

energy differences ES® — ES% are finite and independent of the finite piece in eq. (3). These
differences then satisfy our criteria i.-iii. provided the energies correspond to low lying states and
momenta are small.

Furthermore there is considerable interest in transition matrix elements of local electroweak
operators, e.g. L, = V, — A, where V,,, A, are heavy-light currents. Depending on whether
parity changes or not, only A, or V,, contribute. These local fields are renormalised and matched
multiplicatively,

Osat(x; M) = Co(mR/A) ORG (%),  ORGl(x) = Zo(go) O8E=(x; 80) - ()

stat

Note that in the static limit Lorentz symmetry is of course broken and, e.g. O = Vyand O =V},
have different factors Cy; # Cy,, see [19]. Depending on the lattice regularization one may also
have Zy, # Zy,. An important fact is that

Co(my [ A) ™'~ [log(m, '/ A)P° (6)
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is not finite in the static limit.! Therefore matrix elements of Oy, by themselves are not “suitable
quantities”. Instead, ratios of different matrix elements of the same operator and with the same mj,
can be used. In the old step scaling method [1, 15, 17], the space-time volume and only it changed
between the two matrix elements that form the ratio. This leads to a rather impractical scaling of
the momenta for form factors. That restriction is unnecessary.

We turn to examples implementing the general strategy.

2.2 Large volume

The form factors for B — nw{v decays are very relevant for the determination of Vyp, the test
of CKM unitarity as well as the search for deviations from the Standard Model. The QCD matrix
elements of the vector current determine two independent form factors, denoted by &) and 4, in
the HQET basis. Labelling the hadronic states by the spatial momenta of the hadrons and using
non-relativistic normalisation? for the B-meson state, the form factors are defined by (E2 = p2 +m2)

(7(F)IVEO)BO)) = V2p hi(Ex),  (n(p)IVO(0)BO)) = V2 hy(Ex). (10)

Normalizing by the form factor at a reference energy EXf, we define

7o = log (I(Ex)/I(EED) . x € {111}, an
where in the static theory matching and renormalization factors cancel,

lim T, = Tstat — IOg (h;tat(En)/hitat(E;ef)) — IOg (h;tat’bare(En)/h?aLbare(E;ef)) ) (12)

X
mp —0o0

More precisely, the static limit is approached with power corrections only,
T = 0% + O(Ex /mp, Afmy,), (13)

and i) as well as iii) are satisfied. The strategy now consists in the following steps.

a) Compute the lhs of eq. (13) in the relativistic theory for am; < 1, such that a standard
Symanzik analysis applies and take the continuum limit. In practice one is limited to
my, < my /2 or similar.

b) A separate continuum limit in the static theory yields 73"

¢) The b-quark mass scale can be reached by an interpolating fit, e.g.

N n
E.

fit T
T = E Ix,n (m—) (14)

n=0 H

I Also the renormalisation factors
o o

Zo(g0) =1+20g5 + 2085+ ... (7

have a logarithmic dependence on a since g(2) ~ —1/log(aA), but it is sub-leading.
2The normalization conditions in a finite spatial L X L X L volume are

(B@IBG) = 23655, (B'BIBGLA) = 20365 5 640, ®)
x(@Px(3")) 2B, 51765 5 ©)

p:p’’
with k = 1, 2, 3 the polarisation of the vector meson state in the rest frame.
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to all continuum results, including 3%

4. Here the heavy-light pseudo-scalar mass, mpg, is

used as a proxy for the heavy quark mass and the fit function is finally evaluated at my = mp
where my, becomes my,.

Eq. (14) is a model since logarithmic modifications of the power corrections (n > 1) are neglected
and one has to truncate at some order N. However, since we do an interpolation and not an
extrapolation the model dependence is expected to be small, but this will have to be assessed
case-by-case. The leading n = 0 term is free of logs by construction.

We end this part by a modification which we expect to be useful in practice. It is always good
to have normalising factors defined in such a way that they are numerically very precise. Here this
suggests pref = 0 or equivalently E*' = m, We recommend this for 7|, but the form factor & is
not defined for vanishing momentum. Hence, we propose to switch to a different matrix element of
the spatial vector current. The vector meson decay constant,

fvet = (B0, DIV¥(0)|0), (15)

can be determined precisely from zero momentum two-point functions of the vector current. We
thus propose to use

7y = log (h(Ex)/hy(mz)) , 7o =log (EnhL(En)/(Lreffv)) (16)

in practice. The factors E,; and L. get the mass dimensions straight and a particular choice
Lt = 1/ fx is motivated by lowest order HMChPT where Ey fxh. (Ex)/fv = g8px/V2 [20].

2.3 Step scaling

With the above, the E,-dependence (¢ in a general frame) of the form factors can be computed
and compared to experiments. However, the absolute normalisation is lost. A determination of
|Viup| does also need the absolute normalisation. We thus also want a strategy for the computation
of fy and h|(mg). It is provided by the step scaling approach of [1]. Compared to the strategy
above, the energy variable is replaced by the extent of a finite volume and a crucial point is that
one can compute quantities directly in the relativistic theory when the size of the volume is of the
order of L; ~ 0.5fm, where lattice spacings are accessible such that am; < 1. The matching
factors Cy (mgGI /A) are then replaced by a direct relativistic computation and step scaling functions
independent of C transport this information to large volume. A slight complication is that in finite
volume we need a non-perturbative proxy for the quark masses. The natural choice is a finite volume
heavy-light “mass” my (L) with the property limy o, mg(L) = mpg. The first step therefore is the
determination of the finite-size dependence of mg(L).

We introduce one length-scale L.s to form dimensionless observables and write (in principle
more steps o can be inserted)

Liegmp (L1) + 0 (1, y2) + pm(u2, yB), (17)
Liet[mpu(L2) — my(Ly)],  pm(u2, yB) = Liet[mp — mp(L2)]. (18)

Liesmp

O—m(ula yZ)

Here all quantities refer to the same heavy quark mass and the light quark masses are set to zero in
finite volume. Since the functions o, and p,, are differences of energies, they are finite in the static
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theory; om drops out. Steps a)-c) can therefore be carried out for p, o as written down for 7. The
variables u; are proxys for the sizes L; in the form of values of running couplings, u; = géF(Ll-) [21]
and the variables y; = Lf my(L;) are proxys for the b-quark mass. They are obtained recursively
going from large volume to small,

VB = Lermp, Y2 =YB — Ppm(U2,¥8), Y1 =y2 — om(u1,y2). (19)

Following this chain imposes that the quark mass is set to the physical b-quark mass. Of course,
starting from a different input, e.g. mp — mp, one uses a different heavy quark mass in all
subsequent steps.

2.3.1 Quark mass

When small lattice spacings are available and a non-perturbative renormalisation of the quark
mass is carried out [22], the function

mp(Ly) y
Uy, y) = = (20)
m m}l}GI LremeGI

can be computed in the continuum limit. Combined with y; it yields the renormalisation group
invariant b-quark mass
1
mRol = — L @1
Lyef mtm(u1, y1)

2.3.2 Decay constants and other multiplicatively renormalised matrix elements

As discussed above, the vector meson decay constant is likely to play an important role in a
precise determination of b — u semi-leptonic decays and the pseudo-scalar one yields a relevant
crosscheck through leptonic B decays.

Our strategy for their determination parallels the one for the quark mass and uses the already
known quark mass proxys y;. Decay constants are matrix elements of the currents V,, and A,, which
are multiplicatively renormalised and matched in the static theory. We obtain a basic equation which
is form-identical to (17) by defining the finite and infinite volume observables to be the logarithms
of the dimensionless matrix elements. We write it generically for any multiplicatively renormalised
matrix element, made dimensionless by our reference scale Ly, 3

log(Mo) = log(M(L1)) + o m(u1, y2) + pm(uz, yB), (24)
am(uy, y2) = log (M(Ly) /| M(L1)) s pm(ua, yB) = log (M [ M(L2)) . (25)

3We here focus on matrix elements of a single operator. There are also cases where a single operator in QCD is

mapped to more operators in the static theory which mix under renormalisation and under matching. Furthermore,
mixing can already be present in the relativistic theory. Then eq. (5) holds with a Np-component vector O and Np X Np
matrices C, Z. We then need to consider Ny different matrix elements of the operators; M is Ng X No with the first
index corresponding to the different operators and the second one to the different matrix elements. The master equations
(24-25) are changed to

Mo = pm(uz, yB) o pm(ur, y2) M(Ly), (22)
M2, yB) = Moo M(L2)™", o pq(ur, y2) = ML) M(Ly) ™" (23)
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In particular, for the vector decay constant, we choose in our practical implementation [2]

e

Xo=0 T

M(L) &< (L) = (B*(0, k); LIVK(0)|Q; LY = : (26)
1/2

Xo=0 T

Here the states are finite volume states, |Q2; L) has vacuum quantum numbers, |B*(6, k); L) is a zero
momentum B*-meson state with polarisation k. The matrix element is constructed from correlation
functions with Schrodinger functional boundary conditions [23, 24] as indicated in the equation.
A precise definition is 10g(L3/ 2 fV(L) / \/i) = @9 with @9 of [25], but with the projection to zero
topological charge as for the coupling [21].

3. Lines of Constant Physics and continuum limits

Lines of Constant Physics (LCP) specify how bare parameters are scaled as the resolutions
a/L; of the lattice theory change. They can differ from quantity to quantity. Indeed, it is useful to
define the LCP adapted to the physics involved.

The overall scale Lyt could be taken e.g. as the gradient flow (GF) scales /1y [26] or wg [27].
Since we work with finite volumes, it is more natural to define the scale through the GF running
coupling in one of the used volumes. In our numerical example [2] practical considerations lead to
the choice [28]

Lt =4Ly,  §%(Lo) =up=3.949, [L; =2Lo, Ly = 4Ly = Lyg], @27)

in terms of the GF coupling defined exactly as in [21]. The arguments u; = g*(L;) of our scaling
functions are then given by the precisely known [21] coupling step scaling functions

up = o(ug), ux=o(up). (28)

Taking the knowledge of o(u;) for granted, we need three LCP’s for the above strategy. In principle,
they only differ by the values of the renormalised coupling # and the proxy for the heavy quark
mass y. For the latter one chooses a set of values compatible with amy;, < 1. The LCPs are the set
of conditions

Sy = {gz(go,L/a) = u, %MH(go, amp,L/a) =y, meAC =0,1=1 Nl} , My =amg,

(29)

where the dimensionless arguments are the bare coupling, gg, bare heavy quark mass, am;, =
1/(2kp) — 4, and resolution L/a. The bare light quark masses are fixed by the last NV} conditions.

The lattice approximants for the step scaling functions (we use the special case L..s = 2L;) are

Zn(u..a/L)
Eywy.a/L) = log (M(go.amy.2L/a) M(go.amy. Lia)™) . (D)

0

2L/a [Mp (g0, amp, 2L/a) — My (g0, amp, L/ a)]s, » (30)
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where we are interested in # = u; and a range of y.
Analogously, the small volume function is given by

Am(u, y) = lim I, (u, y,a/L), Tl,(u,y,a/L) = Mri (g0, amy, L/ ) , M}}GI = am,l:GI.
a—0 MEGI(g(), amy, L/a) S

(32)
In large volume, massless light quarks are not desired. We therefore introduce a massive LCP,
Sm. It may correspond to the physical point of isoQCD [3] or the symmetric point of CLS
(m; = mg =~ 410MeV) [29]). It is implied that the volume is large enough such that finite
size effects are negligible. S, applies straight forwardly to the pure large volume quantities
M = limgyr, .0 M(go, amp, am;), while for the functions connecting large volume and finite L

one has, e.g.

M(go, arip, am;)s,,
M(go, aiy, L/ a)s,

paley) = lim Ryuy.a/L).  R(uy.alL) = log J. e
where Sy defines the parameters in the denominator and Sy, in the numerator. The improved bare
parameters go, arm; are defined in [30, 31]. Since the light quark masses vanish for Sy, we have

M(&o, ainy, L/a)s, = M(go, amy, L/a)s,.

4. Conclusion and Outlook

We have pointed out that the core idea of [1] is applicable beyond the step scaling in volume.
Extrapolations of the relativistic theory to the b-quark mass can be turned into interpolations in
any situation where the static theory result is free from logarithms in the heavy quark mass my,.
Generically such logs are present. They originate from loop-corrections in the matching of the
effective theory to QCD. Because of the simple structure of the static theory it is easy to find
functions where all mj,-dependence cancels. For matrix elements of local operators one takes ratios
of matrix elements between different states. This means that the simple interpolation of fig. 1 can
determine the energy dependence of the form factors, but not the normalisation. The latter becomes
accessible by adding step scaling in the volume. A single step with just one o~ appears to be enough
and first results are encouraging [2].

The somewhat involved step scaling part has to be done only once but including a continuum
limit. The result can then be used with any action and one can concentrate on the particular
challenges appearing in large volume, e.g. controlling excited state effects [32] and form-factor
parameterisations [33, 34].

We note that the strategy is applicable beyond the explicit cases discussed. E.g. footnote 3
applies to the 2 X 2 mixing problem encountered in BB mixing in the standard model with twisted
mass fermions or with exact lattice chiral symmetry [35].
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