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In a somewhat forgotten paper [1] it was shown how to perform interpolations between relativistic
and static computations in order to obtain results for heavy-light observables for masses from,
say, mcharm to mbottom. All quantities are first continuum extrapolated and then interpolated in
1/mh = 1/mheavy. Large volume computations are combined with finite volume ones where
a relativistic bottom quark is accessible with small ambottom. We discuss how this strategy is
extended to semi-leptonic form factors and other quantities of phenomenological interest. The
essential point is to form quantities where the limit mh is approached with power corrections
O(1/mh) only. Perturbative corrections s(mh) +n are cancelled in the construction of the
observables. We also point out how such an approach can help to control systematics in semi-
leptonic decays with just large volume data. First numerical results with Nf = 2 + 1 and lattice
spacings down to 0.039 fm are presented in [2].
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A strategy for B-physics observables in the continuum limit

1. Introduction

B-physics is a possible portal to physics beyond the Standard Model. This is even more relevant
now than in the past since direct searches have not provided evidence for new physics. Small
tensions between standard model and experiment exist in B-physics, but others may be hidden by
large uncertainties or an inaccurate treatment of the theory. Indeed, precise theory predictions, e.g.
for B-meson decays are very challenging, because perturbation theory seems, generically, inaccurate
(see below) and non-perturbative computations on the lattice are complicated by the large ratio of
scales between the b-quark mass and the non-perturbative scales of QCD including the pion mass.

Because of the large scale ratio, all existing computations for B-physics on the lattice make
use of expansions in 1/mb, i.e. e ective field theories (EFTs), in one way or the other [3]. Also
so-called relativistic computations constrain the quark mass dependence of heavy-light observables
to forms motivated by an expansion in 1/mb [4–12]. It is important to reduce the number and
importance of assumptions made in the EFT treatment to a minimum. A step was taken a while
ago [1], combining the relativistic theory,

L = Lglue + Llight + Lh , Lh = ¯h(Dµ µ + mh) h , (1)

with the static e ective theory [? ] ( ¯stat
1+ 0

2 = ¯stat ,
1+ 0

2 stat = stat),

Le = Lglue + Llight + Lstat , Lstat = ¯stat(D0 + mstat) stat . (2)

The continuum limit is taken separately in both theories, which in practice, due to accessible a,
requires mh mb/2 in the relativistic case. Results for the physical quark mass, mb, are obtained
by interpolation in 1/mh, where the static e ective theory yields a point at 1/mh = 0, see fig. 1.

The above work [1] built on the introduction of step scaling in the static approximation [13]
and in HQET [14] as well as for finite mass heavy quarks [15, 16]. However, the applications to
semi-leptonic decays were complicated [17]. Here we discuss that semi-leptonic decays and more
can be included by a very simple generalisation. Instead of focusing on the 1/mh expansion of finite
volume e ects and step scaling as done in the past, the general strategy rests solely on the basic
requirement for a combination of static and relativistic results: observables have to admit a simple
interpolation in 1/mh as in fig. 1.

2. General strategy

Our general strategy is then to form suitable quantities which

i. can be computed in the continuum limit,
ii. can be combined to obtain the desired observables, e.g. decay constants or semi-leptonic form

factors,
iii. possess a simple behavior as a function of 1/mh, such that they can be interpolated in this

variable.

We need low energy quantities such that the 1/mh expansion is applicable. Furthermore, the static
limit mh has to exist with no logarithmic corrections but only power corrections O(1/mh).
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is not finite in the static limit.1 Therefore matrix elements of Ostat by themselves are not “suitable
quantities”. Instead, ratios of di erent matrix elements of the same operator and with the same mh

can be used. In the old step scaling method [1, 15, 17], the space-time volume and only it changed
between the two matrix elements that form the ratio. This leads to a rather impractical scaling of
the momenta for form factors. That restriction is unnecessary.

We turn to examples implementing the general strategy.

2.2 Large volume

The form factors for B decays are very relevant for the determination of Vub, the test
of CKM unitarity as well as the search for deviations from the Standard Model. The QCD matrix
elements of the vector current determine two independent form factors, denoted by h and h in
the HQET basis. Labelling the hadronic states by the spatial momenta of the hadrons and using
non-relativistic normalisation2 for the B-meson state, the form factors are defined by (E2 = p2 +m2 )

(p )|Vk(0)|B(0) = 2pk h (E ) , (p )|V0(0)|B(0) = 2 h (E ) . (10)

Normalizing by the form factor at a reference energy E ref , we define

x = log hx(E )/hx(E ref) , x { , } , (11)

where in the static theory matching and renormalization factors cancel,

lim
mh

x =
stat
x = log hstat

x (E )/hstat
x (E ref) = log hstat,bare

x (E )/hstat,bare
x (E ref) . (12)

More precisely, the static limit is approached with power corrections only,

x =
stat
x + O(E /mh, /mh) , (13)

and i) as well as iii) are satisfied. The strategy now consists in the following steps.

a) Compute the lhs of eq. (13) in the relativistic theory for amh 1, such that a standard
Symanzik analysis applies and take the continuum limit. In practice one is limited to
mh mb/2 or similar.

b) A separate continuum limit in the static theory yields stat
x .

c) The b-quark mass scale can be reached by an interpolating fit, e.g.

fit
x =

N

n=0
tx,n

E
mH

n

(14)

1Also the renormalisation factors
ZO (g0) = 1 + ZO

1 g2
0 + ZO

2 g4
0 + . . . (7)

have a logarithmic dependence on a since g2
0 1/log(a ), but it is sub-leading.

2The normalization conditions in a finite spatial L L L volume are

B(p)|B(p ) = 2L3
p,p , B (p, )|B (p , ) = 2L3

p,p , , (8)

(p)| (p ) = 2E ,pL3
p,p , (9)

with k = 1, 2, 3 the polarisation of the vector meson state in the rest frame.
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to all continuum results, including stat
x . Here the heavy-light pseudo-scalar mass, mH , is

used as a proxy for the heavy quark mass and the fit function is finally evaluated at mH = mB

where mh becomes mb.

Eq. (14) is a model since logarithmic modifications of the power corrections (n 1) are neglected
and one has to truncate at some order N . However, since we do an interpolation and not an
extrapolation the model dependence is expected to be small, but this will have to be assessed
case-by-case. The leading n = 0 term is free of logs by construction.

We end this part by a modification which we expect to be useful in practice. It is always good
to have normalising factors defined in such a way that they are numerically very precise. Here this
suggests pref = 0 or equivalently E ref = m We recommend this for , but the form factor h is
not defined for vanishing momentum. Hence, we propose to switch to a di erent matrix element of
the spatial vector current. The vector meson decay constant,

f̂V k = B (0, )|Vk(0)|0 , (15)

can be determined precisely from zero momentum two-point functions of the vector current. We
thus propose to use

= log h (E )/h (m ) , = log E h (E )/(Lref f̂V ) (16)

in practice. The factors E and Lref get the mass dimensions straight and a particular choice
Lref = 1/ f is motivated by lowest order HMChPT where E f h (E )/ f̂V = gBB / 2 [20].

2.3 Step scaling

With the above, the E -dependence (q2 in a general frame) of the form factors can be computed
and compared to experiments. However, the absolute normalisation is lost. A determination of
|Vub | does also need the absolute normalisation. We thus also want a strategy for the computation
of f̂V and h (m ). It is provided by the step scaling approach of [1]. Compared to the strategy
above, the energy variable is replaced by the extent of a finite volume and a crucial point is that
one can compute quantities directly in the relativistic theory when the size of the volume is of the
order of L1 0.5fm, where lattice spacings are accessible such that amb 1. The matching
factors Cx(mRGI

b
/ ) are then replaced by a direct relativistic computation and step scaling functions

independent of Cx transport this information to large volume. A slight complication is that in finite
volume we need a non-perturbative proxy for the quark masses. The natural choice is a finite volume
heavy-light “mass” mH (L) with the property limL mH (L) = mH . The first step therefore is the
determination of the finite-size dependence of mH (L).

We introduce one length-scale Lref to form dimensionless observables and write (in principle
more steps can be inserted)

LrefmB = LrefmH (L1) + m(u1, y2) + m(u2, yB) , (17)

m(u1, y2) = Lref[mH (L2) mH (L1)] , m(u2, yB) = Lref[mB mH (L2)] . (18)

Here all quantities refer to the same heavy quark mass and the light quark masses are set to zero in
finite volume. Since the functions m and m are di erences of energies, they are finite in the static
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theory; m drops out. Steps a)-c) can therefore be carried out for , as written down for . The
variables ui are proxys for the sizes Li in the form of values of running couplings, ui = ḡ2

GF(Li) [21]
and the variables yi = Lref mH (Li) are proxys for the b-quark mass. They are obtained recursively
going from large volume to small,

yB Lref mB , y2 = yB m(u2, yB) , y1 = y2 m(u1, y2) . (19)

Following this chain imposes that the quark mass is set to the physical b-quark mass. Of course,
starting from a di erent input, e.g. mB mD , one uses a di erent heavy quark mass in all
subsequent steps.

2.3.1 Quark mass
When small lattice spacings are available and a non-perturbative renormalisation of the quark

mass is carried out [22], the function

m(u1, y) = mH (L1)
mRGI
h

=
y

LrefmRGI
h

(20)

can be computed in the continuum limit. Combined with y1 it yields the renormalisation group
invariant b-quark mass

mRGI
b =

1
Lref

y1

m(u1, y1) . (21)

2.3.2 Decay constants and other multiplicatively renormalised matrix elements
As discussed above, the vector meson decay constant is likely to play an important role in a

precise determination of b u semi-leptonic decays and the pseudo-scalar one yields a relevant
crosscheck through leptonic B decays.

Our strategy for their determination parallels the one for the quark mass and uses the already
known quark mass proxys yi. Decay constants are matrix elements of the currents Vµ and Aµ which
are multiplicatively renormalised and matched in the static theory. We obtain a basic equation which
is form-identical to (17) by defining the finite and infinite volume observables to be the logarithms
of the dimensionless matrix elements. We write it generically for any multiplicatively renormalised
matrix element, made dimensionless by our reference scale Lref , 3

log (M ) = log (M(L1)) + M(u1, y2) + M(u2, yB) , (24)

M(u1, y2) = log (M(L2) /M(L1)) , M(u2, yB) = log (M /M(L2)) . (25)

3We here focus on matrix elements of a single operator. There are also cases where a single operator in QCD is
mapped to more operators in the static theory which mix under renormalisation and under matching. Furthermore,
mixing can already be present in the relativistic theory. Then eq. (5) holds with a NO-component vector O and NO NO
matrices C, Z . We then need to consider NO di erent matrix elements of the operators; M is NO NO with the first
index corresponding to the di erent operators and the second one to the di erent matrix elements. The master equations
(24-25) are changed to

M = M (u2, yB) M (u1, y2) M(L1) , (22)

M (u2, yB) =M M(L2) 1 , M (u1, y2) =M(L2)M(L1) 1 . (23)
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In particular, for the vector decay constant, we choose in our practical implementation [2]

x =0 T0M(L) f̂V (L) = B (0, k); L |Vk(0)| ; L = ——————————- . (26)

x =0 T0

1/2

Here the states are finite volume states, | ; L has vacuum quantum numbers, |B (0, k); L is a zero
momentum B -meson state with polarisation k. The matrix element is constructed from correlation
functions with Schrödinger functional boundary conditions [23, 24] as indicated in the equation.
A precise definition is log(L3/2 f̂V (L)/ 2) = 19 with 19 of [25], but with the projection to zero
topological charge as for the coupling [21].

3. Lines of Constant Physics and continuum limits

Lines of Constant Physics (LCP) specify how bare parameters are scaled as the resolutions
a/Li of the lattice theory change. They can di er from quantity to quantity. Indeed, it is useful to
define the LCP adapted to the physics involved.

The overall scale Lref could be taken e.g. as the gradient flow (GF) scales t0 [26] or w0 [27].
Since we work with finite volumes, it is more natural to define the scale through the GF running
coupling in one of the used volumes. In our numerical example [2] practical considerations lead to
the choice [28]

Lref = 4L0 , ḡ2(L0) = u0 = 3.949 , [L1 = 2L0, L2 = 4L0 = Lref] , (27)

in terms of the GF coupling defined exactly as in [21]. The arguments ui = ḡ2(Li) of our scaling
functions are then given by the precisely known [21] coupling step scaling functions

u1 = (u0), u2 = (u1) . (28)

Taking the knowledge of (ui) for granted, we need three LCP’s for the above strategy. In principle,
they only di er by the values of the renormalised coupling u and the proxy for the heavy quark
mass y. For the latter one chooses a set of values compatible with amh 1. The LCPs are the set
of conditions

S0 = ḡ2(g0, L/a) = u,
L
a

MH (g0, amh, L/a) = y , mPCAC
l = 0, l = 1 . . . Nl , MH = amH ,

(29)
where the dimensionless arguments are the bare coupling, g0, bare heavy quark mass, amh =

1/(2 h) 4, and resolution L/a. The bare light quark masses are fixed by the last Nl conditions.
The lattice approximants for the step scaling functions (we use the special case Lref = 2L1) are

m(u, y, a/L) = 2L/a [MH (g0, amh, 2L/a) MH (g0, amh, L/a)]S0 , (30)

M(u, y, a/L) = log M(g0, amh, 2L/a)M(g0, amh, L/a) 1
S0
, (31)
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where we are interested in u = u1 and a range of y.
Analogously, the small volume function is given by

m(u, y) = lim
a 0

m(u, y, a/L) , m(u, y, a/L) = MH (g0, amh, L/a)
MRGI

h
(g0, amh, L/a) S0

, MRGI
h = amRGI

h .

(32)
In large volume, massless light quarks are not desired. We therefore introduce a massive LCP,
Sm. It may correspond to the physical point of isoQCD [3] or the symmetric point of CLS
(m = mK 410 MeV) [29]). It is implied that the volume is large enough such that finite
size e ects are negligible. Sm applies straight forwardly to the pure large volume quantities
M = lima/Lref 0 M(g0, amh, ami), while for the functions connecting large volume and finite L
one has, e.g.

M(u, y) = lim
a 0

RM(u, y, a/L) , RM(u, y, a/L) = log
M(g̃0, am̃h, ami)Sm

M(g̃0, am̃h, L/a)S0

, (33)

where S0 defines the parameters in the denominator and Sm in the numerator. The improved bare
parameters g̃0, am̃i are defined in [30, 31]. Since the light quark masses vanish for S0, we have
M(g̃0, am̃h, L/a)S0 =M(g0, amh, L/a)S0 .

4. Conclusion and Outlook

We have pointed out that the core idea of [1] is applicable beyond the step scaling in volume.
Extrapolations of the relativistic theory to the b-quark mass can be turned into interpolations in
any situation where the static theory result is free from logarithms in the heavy quark mass mh.
Generically such logs are present. They originate from loop-corrections in the matching of the
e ective theory to QCD. Because of the simple structure of the static theory it is easy to find
functions where all mh-dependence cancels. For matrix elements of local operators one takes ratios
of matrix elements between di erent states. This means that the simple interpolation of fig. 1 can
determine the energy dependence of the form factors, but not the normalisation. The latter becomes
accessible by adding step scaling in the volume. A single step with just one appears to be enough
and first results are encouraging [2].

The somewhat involved step scaling part has to be done only once but including a continuum
limit. The result can then be used with any action and one can concentrate on the particular
challenges appearing in large volume, e.g. controlling excited state e ects [32] and form-factor
parameterisations [33, 34].

We note that the strategy is applicable beyond the explicit cases discussed. E.g. footnote 3
applies to the 2 2 mixing problem encountered in BB̄ mixing in the standard model with twisted
mass fermions or with exact lattice chiral symmetry [35].
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