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Abstract

In this paper we study the multipole expansion of the long-wavelength effective action for ra-
diative sources in (d+1) spacetime dimensions. We present detailed expressions for the multipole
moments for the case of scalar-, electromagnetic-, and (linearized) gravitational-wave emission. For
electromagnetism and gravity, we derive expressions for the odd-parity, magnetic-type moments
as SO(d) duals of the ones traditionally used in the literature. The d-dimensional case features a
novel set of ‘Weyl-type’ moments, coupling to the spatial part of the Weyl tensor, which are absent
in three dimensions. Agreement is found in the overlap with previous known results, notably in
the d — 3 limit. Due to its reliance on dimensional regularization, the results presented here play
a crucial role for the further development of the Effective Field Theory approach to gravitational
dynamics, and in particular for the computation of the gravitational-wave flux, starting at the
third post-Newtonian order.

I. INTRODUCTION

Highly accurate analytic predictions are of prime importance for the signal analysis for
gravitational-wave (GW) detectors, notably when it comes to observing the inspiral phase
of binary compact objects. If the current ground-based LIGO-Virgo-KAGRA network is
mainly sensitive to rapidly coalescing black holes binaries [1], this will not be the case for
future generations of detectors. Indeed, both the spaceborne LISA instrument [2] and the
ground-based Einstein Telescope [3, 1| are expected to be quite sensitive to the inspiral
phase (see [5] in the case of LISA). It is thus crucial to provide accurate analytic waveforms
for the data analysis of those detectors.

When it comes to precise analytic predictions for the two-body gravitational problem, the
post-Newtonian (PN) approach is a paramount tool. Focusing on the weak-field and low-
velocity inspiral phase of merging compact objects, it allows us to derive the phase evolution
and GW amplitude perturbatively to the desired order in v/c (the relative velocity over the
speed of light). We let the reader refer to [(—9] for reviews on the topic. For non-spinning
bodies, the current state-of-the art is the 4.5PN precision for the phase [10] (i.e. the (v/c)®
correction to the leading order), the 4PN precision for both the GW flux and the dominant
quadrupolar amplitude mode [11] and the 3.5PN precision for the sub-leading ones [12—11].
For the case of spinning bodies, on the other hand, the state of the art is at 4PN for the
GW flux [15, 16] and to 3.5PN order for the amphtude [17=19]. These results were derived
through a combination of techniques, including the PN-MPM framework [20-21] (notably
for the non-spinning case), which relies on a careful matching between a PN expansion in the
vicinity of the source and a multipolar-post-Minkowkian (MPM) one outside the source; and
the effective field theory (EFT) approach [25-29], which also relies on a multipolar expansion,
together with a systematic separation on the relevant scales of the problem, but directly at
the level of the (effective) action [3, 9]. Although the EFT approach has also achieved the
4PN order of accuracy, or next-to-next-to-next-to-next-to-leading order (NNNNLO), in the
conservative sector for non-spinning bodies [30-32] (see also [33-38] for results at higher
orders), the computation of the GW flux has been performed only to NNLO, at 2PN [39].
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In order to move forward, towards higher levels of accuracy, the well-known divergences that

appear already at 3PN, both in the equations of motion [10] and in the non-linear radiative
corrections [27], must be carefully tackled. Within dimensional regularization, extensively
used in the EFT approach since the seminal work of [25] (see also [11, 12]), divergences

arise as poles o< (d — 3)7!, with d the number of spatial dimensions. Even though these
divergences can be carefully removed from observable quantities in the conservative sector to
4PN order [32], the computation of the GW flux requires a careful analysis of the multipole
expansion in d-dimensions.

The multipole expansion of the level of the action in three dimensions was originally
performed in [29]. The purpose of this paper is to extend those results to the case of
an arbitrary number of spatial dimensions. Building upon the analysis in [29] we study the
scalar, electromagnetic and (linearized) gravitational cases, in that order. Along the way, we
also verify that the three-dimensional limits of our results are consistent with those exposed
in [29, 13]. As it was argued in [I13], an important subtlety arises when considering odd-
parity (i.e. magnetic-type) moments. In three spatial dimensions, those are constructed as
irreducible representations of SO(3) wvia contractions between purely symmetric and trace-
free (STF) tensors and a Levi-Civita symbol [24, 29]. Such feature, however, is specific
to d = 3, since there is no simple generalization of the Levi-Civita symbol to arbitrary
dimensions. Therefore, when deriving multipole moments as irreducible representations of
SO(d), we must consider all possible Young tableaux, and magnetic moments will carry non-
trivial symmetry properties described by a mixed Young Tableaux [11—10]. Additionally, a
new set of multipole moments emerges, corresponding to a different mixed Young Tableaux,
which does not exist in three dimensions. We point the interested reader to [13] for a
more detailed discussion about this subtle point, and to [31-36] for some applications in the
conservative sector. The calculation of the GW flux to 3PN order within the EFT approach,
where the results derived here are of utmost relevance, will be reported elsewhere.

This work is organized as follows. The d-dimensional multipolar expansion of a scalar
field is presented in Sec. I, the electromagnetic case is treated in Sec. III, and gravity, in
Sec. IV. Sec. V concludes this work. Useful decomposition formulas are collected in App. A
and identities coming from conservation laws, in App. B. Finally, cumbersome computations
that are too long to be presented in the main text are displayed in App. C.

Notation: We use natural units ¢ = 1 = h, and work in a spacetime with one time
and d spatial dimensions, equipped with a mostly negative metric signature. Greek letters
denote Lorentz indices (running from 0 to d) and Latin letters, spatial ones (running from
1 to d). Bold symbols denote spatial vectors, e.g. x = x*, and we define the d’Alembertian
operator on the flat, Minkowskian background, as O = **9,0, = 97 — V2. We employ the
multi-index notation as introduced in [20], i.e. xt = zha® .. g¥-17% and [F = [hi2-ie-vie
and weight the (anti-)symmetrizations, e.g. T!) = ‘]S; (T*) = % (T* + ¢-permutations), or
Tlebl — EA; (T°%) = § (T — T"). The symmetric trace-free (STF) operator is denoted with
hats or brackets, as TL =T = S?F (TL). Last but not least, we follow the notation in

[13] for the magnetic- and Weyl-like multipole moments, introduced in Sec. 11T and IV, that
correspond to the mixed Young tableaux.



II. SCALAR FIELD

Let us start by investigating the simplest case of a scalar field ¢, linearly coupled to a
source J in a (d+1)-dimensional spacetime. The corresponding action reads

S¢_/dt/dd ( “¢aﬂ¢+J¢) (2.1)

and the equation of motion (EOM) outside the source is given by
Lo =0. (2.2)

We assume that the source is compact-supported, with typical size a, and that the spatial
evolution of the field outside the source is described by a typical scale A. Hereafter, we
work in the long wavelength approximation, i.e. in the regime where a < A holds. In this
framework, we are allowed to perform a Taylor expansion of the scalar field around a point
in space within the source, which for simplicity we choose to coincide with the origin of our
coordinate system. This translates in

= 1

= 2" (0n0) (,0) (2.3)

n!
n=0

which we then plug into the source term of the action

Seoumee = /dt /dde(t,x)gb(t,x) _ /dt i % ( /dde(t,x) xN> one. (2.4)

where Oy¢ = (On¢) (t,0). We can already recognize a multipolar structure, where the
multipole moments are given by the coefficients of the Oy¢ operators. We now need to
express those moments as irreducible representations of the rotation group SO(d). The
formula for an arbitrary symmetric tensor SV expressed in terms of fully STF tensors is
given by [11, 17]

m2
SN — Z ( ’fl2 )] Afld_)2pp5(i1izm §i2p—1i2p gi2p+1...in)a1a1.‘.apap’ (25)
n—2p)! ’
p=0

where [n/2] denotes the integer part of n/2 and we defined the coefficients

I'(4+n)
(d) = 2 . 2.
n,p 22pp! T (g +n 4+ p) ( 6)

In particular, we express the fully symmetric structures ¥ in terms of their STF counter-
parts

m
D D e T A (2.7)
p=0

with 7 = |x| and we substitute into (2.4), which now reads

[n/2] A
source /dt Z Z n n_ 22]?;) /ddXJ.ffN2Pr2paN2P V2p¢
n=0 p=0



=AY . .
= / dt > % / A% 0P Ji* ¥ ¢ (2.8)
2,j=0
where we used (2.2) in (2.8) to exchange the Laplacian operators into time derivatives on

the fields, which are then shifted onto the source moment J via integration-by-parts. It is
now trivial to read off the sought structure

= 1
Ssource = /dt Z E ILanb, (29)
=0
with multipole moments given by irreducible representations of SO(d) as
= T(4+¢ g
=3 — (2d ) , /ddxﬁf]Jr%:f:L. (2.10)
= 24T (5 +0+15)

In three dimensions, the combination AZ? becomes
(d=3) _ (2¢+ )N
b (2N (20+ 25 + )17

hence the three-dimensional limit of our result, (2.10), is fully consistent with the known
three-dimensional multipole expansion of a scalar field, e.g. Eq. (10) of [29].

(2.11)

III. ELECTROMAGNETISM
A. Framework description

An electromagnetic field A, linearly coupled to a source J* in a (d+1)-dimensional space-
time is described by the following action,

1
SEM = —/dt/ddx (Z_l: F#VFuy‘i_J“A#) ) (3]‘>

where F),, = 0,A, — 0,A,, is the usual field strength tensor. The current J* is conserved,
ie. 0,J% = 0. The field strength can be further decomposed in terms of the electric and
magnetic fields,

Ea = FaO - a11140 - a1514a ) Ba\b = Fab - a111417 - 8lﬂ4a . (32)

Instead of the usual magnetic field in three dimensions B, = 4. Fp./2, we adopt its dual
By, to avoid the ambiguity of Levi-Civita symbols in generic dimensions. In vacuum space
where J#* = 0, the equations of motion, Maxwell equations and Bianchi identity for the
electromagnetic field are given by

OF, =0, 0,F*=0 and  9uFp, =0, (3.3)
respectively, which can also be written as
0.E, =0, OaBapy = O, By 20y = 0, By OF, =0Bu, =0, (3.4)

in terms of the electric and magnetic fields.



B. Split of the action

Assuming a compact-supported source, we work in the long wavelength approximation.
The electromagnetic field can be safely Taylor-expanded as

Z% N (9w A" (£,0) . (3.5)

Plugging the Taylor expansion of the field into (3.1), the source term of the action becomes
= 1
Ssource = — /dt /d x JH(t X)Z HmNaNAN
n=1

/dt (/dde0> Ag
_ /dt ; N ( /ddx J%N> On Ay — /dt g % ( /ddx beN> OnAy.  (3.6)

In the second equality the expansion of Aj is separated into two sectors. The first term
which is free of derivatives, is nothing but the monopole representing the coupling of the
field to the total electric charge Q) = fddx J%. This term does not radiate, and thus is
singled out from the multipole expansion. The last two terms encrypt radiative modes,
which should couple to the two propagating degrees of freedom, E, and B, collectively.
For this purpose, the last coefficient in the action (3.6) can be conveniently expressed in
terms of its corresponding irreducible decomposition utilizing Young symmetrizers [11—10],
here denoted as Young tableaux through a slight abuse of notation

1 n b il .o in—l
d?x Jbz2N = b iy | |in -
/ XJx (n+1)! i1 i, |+ (n+1)! . —+ 1-perms
dy 7(b..N) 2n de 7lb..in]N—1
= [dxJYz") + ——8§ | [d'x JPz™ , (3.7)
n+1N
where, in the first equality, “+i-perms” means that all index combinations {1, ..., 4, } must

be added together. Implementing this decomposition and using the conservation law (B1),
the last term of the action (3.6) can then be rewritten as

1 =2 A
S;?)Iilrce - /dt Z m (/ddx J(bIL'N)) aNAb — /dt Z (n f1)| (/ddX J[bxln]N—l) aNAb
n=0 n— :

1

=1 > n
:/dt Z E </ddX JOQ;N) 8N,18tAin — /dt Z m </ddX Jbg;N> aNlebﬁn .
n=1 n=1

(3.8)
With this expression at hand, the source action is now split as
Ssource = SSC(())lrllrsce Ssrggrcev (3‘9)

6



with

Seoms = /dt@Ao, (3.100)

grad = / dt ZT — ( / d’x JO:);N> On_1E™
. n d,, 7a,.N
— /dt ; m (/d xJ% > aNleah‘n . (310b)

Just as in the scalar field case, a multipolar structure starts to manifest, which is yet to be
expressed in terms of irreducible representations of SO(d).

Before moving on to such reduction in the next section, let us point out the consistency
of the three-dimensional limit of the expansion (3.10) with known results. The monopole
term as well as the JO sector are trivial. As for the J* sector, in three dimensions any SO(3)
antisymmetric rank-2 tensor can be traded for its dual vector counterpart (see e.g. [11]).
Hence, we can define the three-dimensional magnetic field B, as the limit of the dual of
Ba|b7 by

: _ _ 1 :
(ljlig Ba\b = gachc Al Ba = §5abc (ljl_rg, Bb|ca (311>

where €4 is the three-dimensional Levi-Civita symbol. By injecting this limit in the last
line of (3.10b), in three dimensions the magnetic sector reduces to

hm Ssource = hm /dt Z CFS (/ddx JaxN) On-1Baji,
= /ng (Jaxb) xNilaNfl (5achc)
= /d3x (I xx)" 2N 'Oy 1B, . (3.12)

Such expression is the usual form of the magnetic expansion in three dimensions, see e.g.

Eq. (35) of [29].

C. Irreducible decomposition of the moments

Let us now express the moments appearing in (3.10b) in terms of irreducible represen-
tations of SO(d). As they are of different nature, we treat the scalar sector composed of the
J? term, and the vector one involving J¢ separately.

Consider the scalar sector and apply the relations (A4) and (A9), which leads to

rad /dt Z ol (/ddX JO )GN_lEi"

n=1
A

¢ dd 2J OaAL 2jAEa
/d Z f £+2]+1)/ X0 St O




A(d

d 27 70 ral—1,.25 A e 1
/tzz = €+2j) /dx@tJ.iE r¥ OB, (3.13)

/=1 ]:0

which is already in the desired STF form. Next, we move on to the moments involving J¢,

y < /ddx J%N) ON-1Bai,, - (3.14)

The first step is to express the purely symmetric structure z*V in terms of its STF counterpart,
2N, Use the STF relations (A3) and (A9) we obtain

SJ“ _

rad —

dt
n=1 (Tl

(d)
S = /dt Z T /dd 0 J'a'trH by By

Z Z A | y
dt J dlx 9% Jozt=1421 9, | B,
/ (¢—1) €+2j+1)/ x 07 J* 2" Op—1Bapp
oo oo Agd) . A
dt E E »J dd a]-i- JaAL—l 2j8 R
+/ (=1 j=0 (6_1)!(€+2j—|—2)(d—|—2£_2)/ X 0y T 0

(3.15)

The action is not yet in the irreducible form at this stage, due to the vectorial nature of J*.
We hence need to reduce it more towards fully irreducible representations of SO(d). After
some cumbersome derivation presented in details in App. C 1, the final result is given by

Ssource —S cons + S rad S

rad
/dtQAo+/dt —ILaL B+ /dtz

with the d-dimensional electric and magnetic multipole moments reading respectively

d I'(¢+7) 25
L: 2 1 d 27 70 4 L2]
! Z 22jj!r(£l+£+j) ( +d+€—2)/d X T

00 / ' ~ 4
Z 2 +0) ! /ddxﬁfJHJiLrQJ, (3.17a)
221j'F Lt l+j)(d+E-2)

J' Or—1Bai,, (3.16)

Jj=0

galk — i +€) 3 [/dd o2 Jogt 2]}TF 7 (3.17b)

s 22JJ'F ($+ 0+

where J = Jo°. The electric and magnetic moments are indeed irreducible representations
of SO(d), as their symmetries are respectively given by the symmetric and mixed Young
tableaux [11-10]

ie liga|. .| ia | ih
TP =g lig—y|.. .| do | 13 and  JU = . (3.18)




In the d = 3 limit, (3.17) fully agrees with the known three-dimensional multipole
expansion results. It is trivial to recognize that the electric multipole (3.17a) reduces to its
three-dimensional counterpart, (47) of [29], whereas comparing magnetic moments requires
more work. In the three-dimensional limit, one can decompose the antisymmetric structure
of (3.17b) as a product of Levi-Civita symbols, leading to

, R (20 + 1)! . il
alL _ — _caig d 2] (~ePq TP .q\ 4L—1,.2]
m =g ijo @O (20 + 25 + ) Ud X O (Pt &
1
_ cazg J§L317 (319)

2

where we recover the three-dimensional expression of the magnetic moment, Eq. (48) of [29]

Hence, the magnetic sector of the action reduces to

hm nggnetlc = hm / dt Z

where we recall that the three-dimensional magnetic field B, is defined in (3.11). This limit
is in full agreement with the known three-dimensional result.

14
JG|L8L IBOLW /dtz f—l— ) Jd 38L lBu; (3 21)

IV. LINEARIZED GRAVITY
A. Framework description

Let us now consider the linearized approximation to General Relativity, by perturbing
the metric around a flat background as

hag

mpp

(4.1)

where 7,5 is the Minkowski metric and the reduced Planck mass reads m$, = 1/ (327G).

From the usual Christoffel symbols I'} ), we define the Riemann tensor as

R, 5= 0.1V, — 900, + T I, — T 7 (4.2)

at vp BT+ va

from which the Ricci tensor R.5 = R" opp and Ricci scalar R = 9P Rop.
We restrain ourselves to the linear approximation, implementing a coupling between the
graviton and a compact supported source, as

1
= —2m3, /dt /ddx vV—gR— S /dt/dde“”hW, (4.3)

comprised of the Einstein-Hilbert action and a linearized source term. The source term is
conserved at linear level, 9,7%° = O(h). The vacuum equations of motion leads to

Rag = O, 8 R” Buv — O, G[C,Ram#,, =0 and DRaguy =0. (44)
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The Riemann tensor can be further split into propagating degrees of freedom, depending on
their parity under SO(d), as

1
Eu, = Roaoy = (3aath0b + 0y0thoa — O} hay — 3aabhoo) ; (4.5a)
2mpy
1
Ba|bc = RbacO = (aaachOb + 8bathac - 8b80h0a - 8aathbc) ) (45b>
2mpy
1
Wabcd = Rabcd + m <5ad Ebc + 61)0 Ead - 5ac Ebd - 5bd Eac) ) (45C)
where the Riemann tensor R, at the linear order is explicitly given by
1
Rapea = (3bachad + 0a0ahie — 0a0:hig — 3b3dhac> : (4.6)
2mpy

By analogy with the electromagnetic case, the even-parity E, and odd-parity B,p. are
respectively dubbed “electric” and “magnetic” components of the Riemann tensor. Note
that, as advertised previously, we have to deal with the dual of the usual magnetic-type
component of the Riemann tensor By, which is antisymmetric in {a, b} and trace-free in
all its indices. Moreover, to avoid confusion, we point out there is no obvious symmetry in
{b, c}.

In the three-dimensional limit, it reduces to the usual magnetic-type component of the
Riemann tensor, By, as

: 1 :
(lil—rg) Ba\bc =¢cwiBed & Ba = Escd(a (111_1;% Bg\db) ’ (47)

where underlined indices are excluded from antisymmetrization. As for the new component
Waped, it denotes the d-dimensional Weyl tensor, and hence bears its particular parity under
SO(d). Such object should vanish in three dimensions,’ as the number of its independent
components is given by

d(d+1)(d+2)(d—3)

# of Weyl components = 1 : (4.8)

Hence, in three dimensions the spatial Riemann tensor in terms of E,, Can be expressed as
lim Rabcd = —Eabe€edf lim Eef y (49)
d—3 d—3

where the right-hand side involves Levi-Civita symbols. Nevertheless, this work takes place
in an arbitrary number of spatial dimensions, thus we need to consider Wy,.q as being as
relevant as Eq, or Bgjpe [13]. The three propagating degrees of freedom correspond to the
symmetric and mixed Young tableaux as [11-10]

b | c al c
Eab = a b s Ba|bc = and Wabcd = . (410)
a b | d

! This can be easily understood by considering its SO(3) dual Cyp ox (8ap W, — 2W°, ), which is vanishing
as the Weyl tensor is traceless by construction.
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In addition to being obviously traceless from (4.5), these propagating degrees of freedom
obey Maxwell-like equations, derived from (4.4)
Eaa = 07 Ba\bb = 07 Wabac = 07 (411&)
aaE’ab = 0, aCBc|ab = atE’aba acBa|bc = 07 (411b)
(d—3)

28[cE’a]b = ath\aba 2 a[t:Bg|Qd] = atRabcd7 adVVcdab (d 2)

atBb|ac 5 (411C)

where underlined indices are again excluded from antisymmetrization.

B. Split of the action

We assume that the source is compact-supported and work in the long wavelength ap-
proximation. Plugging the Taylor expansion of the gravitational field

o0

W (t,x) Z% N (Oxh"™) (t,0) , (4.12)
n=0

into the source term of the gravitational action, the latter gives

Qmm / dt / d% T (t,x) h,w (t,x)

5 1
=~ o /dt /dd T+ tx —_x o
_ Z - dy, 700, .N _ Z dye 00, N
= 2mpl /dt 2 ol (/d xTx ) 6Nh00 Mol /dt n' (/d xT ) 6Nh0a
1 - 1 d b, .N
— — T ) 4.1
Sy /dt nEO . (/d xT%x )aNhab (4.13)

Just as in the electromagnetic case, the action requires further partition in the conserved
sectors and radiative ones. For the purpose of expressing the radiative sector of the source
action in terms of the propagating degrees of freedom Ey,, B,pe and Wypeq, We investigate
the couplings to hog, hos and hg, in (4.13) separately.

We start with the hgg part of the action,

1 =1
Shoo = — dty  — | [dxT%N | onh
source 2mp1/ ; n (/ X X N'L00

1 1
= / dt / A% T ) hoy — / dt / d¥% T | 9,heo
2mp1 2mP1

1 - 1 d 00,.N
ST /dtnz . (/d x TN ) Onhoo (4.14)

=2

Ssource = -

where M = [d?x T is the total energy of the source, and G* = ([d?™xTz") /M is the
center of mass (CoM) position.
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Just like in the electromagnetic framework, the coefficients coupling to hg, can be ad-
ditionally broken down into their irreducible representation via the use of Young tableaux
symmetrizers and substituting J* with 7°*. We further consider (B2a), thus we can write

1 1
Shoa = — / dt ( / dix TOa) hog — — / dt ( / dix TOaxb) Ohoa
mpy mpy
dt A% TN ) Onhoy
mPl / Z </ * v ) VT
1 1
- / dt ( /ddx TO“) hog — —— / dt ( /ddx TO[%“) Ohoa
mpp mp)
dt dix 7@y N) h
mPl/ Z </ * ’ aN 0
/ Z ( / d'x To[axi"]N_l) Onhoa
mPl
1 1
= — / dt ( / d’x TO“) hoa — / dt { / d'x (T2’ — TObx“)l Aphoa
mpy 2mp;
1 =1
+ S /dtz I {/ddx TO%N] On—2 (azn L Othoi, + ainathm‘n,l)
/ Z |:/ddX Toal'N:| GN,l (@-nhOa — 0ah0in) . (415)
mPl

where the first two terms in the last equality contains the coupling to the conserved quan-
tities, the total linear momentum, P® = fddeO“, and the total angular momentum,
Lab fdd (TOamb - TObI'a).

Finally, the decomposition via Young symmetrizers (once again here denoted as Young
tableaux) for coefficients coupling to hg, yields [11-10]

1 n —|— 1 a b il . Z'n,1
dIx TN =—— b iy |...] 40 |+ + ¢-perms
/ (n+2) L7 Sl I N Ry P TR (N P P
n — 1 a b il in_g + .
i-perms

4 1
— / dix ) 4 20D ooy ( / dx T“(”xN))
n-+2 abN ain

A= D gy g </ddeabe>. (4.16)
n -+ 1 Naipbip_1

Therefore, with the additional help of (B2b) and (B2c), the hgy, term in the action reads

1 =1
[ —— dt = [d% TN ) Onhy
source Qmpl / nz% n' ( / X iy N b
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1 — 1 dy (ab..N)
=~ S /dtz - (/d xT\*x Onhap
1
/ Z n + (/ddXTa(bl,N)) 8Nhab
mPl —) n' n+2 ain
—1) d b N
dt S — dx Tz | Onhg
mPl/ Z n—l—l)' ‘;’L}Lblfll (/ * R
_ 4 do 00 N 27
e (o
/ Z [/dd T N} On—2 (8:,00Mi,_ya — BaOihi,_,s,)
mPl
n_
Aty ——— | [dx TN o Wi bi 4.1
+/ ;mm! (/ o )aN Waintin-s 1

- n—1 o ,
dt dd Taa N Tinin—1 N-2 2 — 9T %in aN—1 a B Ez P
+/ nZ;(n+1)!(d—2) V x (T + S )| 2B,

Note that in this derivation, the coefficients carrying antisymmetrization operators over
group of indices {a, i, } and {b,i,,_1} yielded couplings to the purely spatial Riemann tensor,
which in turn is replaced by its traceless counterparts using (4.5¢).

Adding all the components together, we write the source action (4.13) as

SSOUTCQ = Sscgtlllrsce + S;?Srce ’ (418>
where
Ssource = / (Mhoo + M G*dyhoo + 2P%hoq + L0, hop )
2mp

S;gl(llrce / Z (/ddXTOO N) aN—QEin—lin
d aa N inin—1,..N—2 .2 ain .aN—1 ) )
/ Z n+1 d 3 de(T g g Tinin-1gN =22 _geingaN=1) | gy B,

oS (fenre) o

n— a
+ /dtzz m </ddXT bl’N> aN*ZWainbin_l . (419&)

The radiative sector is expressed only in terms of couplings to propagating degrees of free-
dom, and the multipolar structure manifests.

Before turning to the reduction of those multipole moments as irreducible representations
of SO(d), let us confirm the results so far at the three-dimensional limit. The conservative
part of source’ and electric sectors are trivially in perfect agreement with the known three-
dimensional multipolar expansion, see e.g. Egs. (78) and (79) of [29]. As for the magnetic

2 The orbital angular momentum vector L is recovered via L = g**°Le.
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sector, by employing the three-dimensional limit of the magnetic field (4.7), it becomes

o qBajpe s S 2n dy, 0a, N o
}ll_IgSsource —(111_I>ﬂ3 /dt; (n+ 1)' (/d xT % )8N_2an_”n

_ S 2n dy ~inbarpOa, bN—1
= — /dt; m (/d Xe T aN_z Bin—lin s (420)

in full agreement with the three-dimensional result, Eq. (79) of [29]. Finally, due to the
vanishing of the Weyl tensor in three dimensions, the last term of the radiative action (4.19a)
is not relevant in such limit.

C. Irreducible decomposition of the moments

The last step is to rewrite the moments in (4.19a) in terms of the irreducible representa-
tions of SO(d). Similar to the electromagnetic case, we treat the different components of T
separately depending on their tensorial nature. We present in the main text the procedure
followed to reduce the purely symmetric structure ¥ in (4.19a) to the STF counterpart
2%, and refer the interested reader to App. C2 for the technical details of the remaining
computation regarding the complete reduction of the moments. We introduce hereafter the
following notations for some reoccurring factor combinations

ag; =(+2j+1)(0+25+2) 0, (4.21a)
Be;=U+2j+1)(0+25+3) ¢, (4.21Db)
Yo = (d—2)(0+25+2)(0+25+3) ¢!, (4.21c¢)

together with the contractions

70 = 70 T = T% and T =T%%, (4.22)

?

1. Scalar sector

We start with the scalar sector of the radiative action, namely the parts of the ac-
tion (4.19a) involving T% and T%. These terms are already symmetric in the indices, thus
we only need to implement the STF relations (A4) and (A9). The T% piece then becomes

Srj:;o :/dtz % (/ddX TOOZ’N) 8N_2E,-n_1in
n=2
> A , .
= /dt P /ddxafﬂTo%a%Lr?ﬂ' OLEw
tj=0 Y
= /dt P /ddxafJTOOi"“erQj 01 Ea,

a{ .
t=0 =

< AP (0+1) A o
dt (] /dd 82]T00 6b<a ~L).25+2 ) E,
+/ e;o ag; (d+20) o o b
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0o oo (d) /
dt dd a?jTOOAbL—l 2j+2 aAa \E,
U3y Jr AT

(=1 j=0

g A ; E(f - 1) , A
t dd aQJTOOAL—Q 2j+4 aa WE..
+/ :2;:;@“ d+2£ 2)(d+2€—4)/ oL pL—2"ab

(4.23)

Using the identity in (C6a), the T% piece can be further

o /dt Z S M /ddx82JT00 W22 5 B, (4.24)
Op—2j

J=0

which is explicitly in the irreducible STF form. Similarly the T** term in the action which

given by
aa - 1
ST = — / E e </ddXTm ZL‘N) ON-2Ei, i, - (4.25)

can be rewritten in the STF form as

shi= fay > 2

o /ddx82’T““ R S (4.26)
(=2 j=0 J

following the same procedure.

2. Vector sector

We now move on to the vector sector, namely the 7% and T = T®z" terms. First the
T terms can be written as

st = | d’fZ T (o) v

> A<d> .
=2 /dt Z ﬁe] /dd a2jToabe T2j aLBa|bc
00 (d)
/dd a2jT0a ~bel 2] aL albe
B@]

:Q/dtz A

< AP (0+1) 4 .
2 [dt »J dd aZJTOa 5b<c ~L),.25+2 ) Ba .
/ E 5e,j(d+2£)/ X0y T LDalb
Zd)g
92 »J d QJ'TOaAbLfl 2j4+2 4 B
+ /dtzgﬁéj d—|—2£—2> /dxat X r acLl albe

0o oo (d)
/dt Z Z AZ] 4 (ﬁ - 1) /ddX 82jT0a§7L—27’2j+4 aAb L—QB b
Bej (d+20—2)(d+20—4) ' cL—2albe

/=2 ]:O
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Ay

2 a zbe
2 fary" Y - Jatx oot oy,
J=0 ’

(=2

0o o0 Aéd) (ﬁ — 1) A -
2 [dt E g »J dd 82j+1T0aAbL_2 2]8 B E'a Lo
" / =2 j=0 Be-1,j (d+20—2) / X0 x r Op—2Lap , ( )

where in the last equality we apply (C6b) and (C6c) to rearrange the indices by symmetry.
Notice the similarity with the vector sector (3.15) in the electromagnetic case. After some
manipulations we arrive to the irreducible decomposition of the 7% part of the radiative
action

=AY (e-1) , .
QT _ dey 2J+10(asbL—2), 2j+2
Stad Q/dt E E B d—|—€ %) /d x0T T rTe 01 _9Ep

(=2 j=0
AY (e-1) L .
—2 [dt dix 9P H1F04abL-2,2j 5
/ Z j=0 6@ 1_7 d“_g 2) / Xat r r aL 2-ab
2 [|dt Edj)f(g_ 1 dix §270azbel—2,.2] TFé B
" / ZJZE' (+25—1)(l+1) / X0 t " L—2Dalbc -

(4.28)

We proceed in the same way for the Te piece of the action, which can be written as

1 ~.

(d)
—Q/dt Z Aﬁ /ddxﬁfjfaxbij:rzj éLEab
=0 Vb
< A .
—Q/dt Z > /ddx82JT“Aer2] OrLE.
- L5

£,7=0
d)é

—2 [dt dix 9P Tezl-1p242 5 B
/ Z]z_;% qt i 2)/’” o e

=— 2/dt Z Z S /dd OFT 12 9y 1 Ey, . (4.29)

(=1 j=0

Srad

and the final result is given by

Ta—_
Srad 2/d ;ZVE 2,7
0o (d)'

o i = L9 2 9 A
4/dt Z Z d+€ 2) /ddxﬁf]Tx bL=2)21=2 0 B

2j e L3y 2 A
( m) /ddX83]T< Jl'bL 2>r27 8L72Eab
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TF

1) bl 2 .
_ 2/dt ; Z ’Ve 1; |:/ddx atZHlTaxb L—2,.2] aL—2Ba|bca (4.30)
7=0
where the technical details of the computation for the 7% and T terms can be found in

App. C2h.

3. Tensor sector

Finally, the remaining 7% terms in the action (4.19a) are given by

T“b }: dy, Minin—1,.N—2,2 ]
rad d 2 / + 1 </d XT x ) a.]V 2E7/n 1n
§ n-—- a
+ /dt —~ m (/ddXT bl’N> 8N72Wainbin,1 . (431)

This tensor sector is unique to the case of linearized gravity and has no electromagnetic
equivalent. Plugging in the STF relations (A4) and (A9), the 7% terms can be rewritten as

o) (d)

. Ay A s
St = /dt Z = /ddxaf’T“ber2]+2 OEa
Ve

o0 A,f,d ~2) | .
/dt Z — - /ddX 8§]Tabx0diL7”2j O W.achd
£,7=0
00 (d)

A A A
= /dt Z s /ddxaf]TabiLr2]+2 OrEa
. Ve,

= AW (d-2 , .
/dt Z Z] ) /ddx atQJTab:i,chTQJ aLWacbd

£,7=0

> Agd (041)(d—2) . o
dt »J dd 2]Tab 5d(c ~ L) .25+2 .
/ Zo ve; (d+ 20) / X 0y xr O Wacha

oo Agf‘j) 0(d—2)
—0 Ye,j (d + 20 —2

d 2jrrab ~dL—1,.25+2 4

0o oo (d) N i
33 A1) (d-2)
ves ([d+20—2)(d+20—4

A (d-2)

do 02jabaL—2, 2j+4 A
) /d x 07 TZ"“r ™ Oar—oWachd

d 2§ rab scdL—2,.25 A
/d x0T % 0 01,—aWachd

= j=0 -2

o 2 AD (g —3)
_9 [at £,5 dd 82J+1TabAcL 1 2]+28 Bca
/ ZZ’}/@J (d+2€+])/ D
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= 2j(d_3) /d 27 b~L 27 A
Te 20, F 4.32
s M BUSDY fgpraisir,, a3

4, j=0

where in the last equality (C6f) is applied to contract the Kronecker symbols. And the final
results in terms of the irreducible representations are given by

E;l‘;b /dt Z Z - /dd 82]T ab L-2) 2]+2 8L 2Eab
2,j

(=2 j=0
© LAY (d—1)(d+20+25—1) . .
+2 [dt J /dd 62]T<abAL—2> 2]+2a B Ea
/ ;Z oy d+f—1><d+€—2> RO e
A (d=1)(d+20427 =)\ o0 coiiamsioz) 2 A
+4 dtz P B ey 1— CET RS A% 9P TGP =22 5, LB,
. {— 2] - -
]7

o X j(d+20+25—1) y -
2 [dt dd ]TpAabL—Q 27 B Ea
+ / Zj Yo 2] d—f-g—l)(d—i—é—Z)/ Xat px r 6’L2 b

© LAY G20 - 1) (d—2) + (d+20) (d — 3)] . o
4 J d QJTAabLfZ 252 JF
+ /dtzz o~ 2](d+£—1)(d+£—2) /dx@t z T Or_oE.

(=2 j=0

2 AP €+2j+2)(d 2) | TF
2 [dt »J dd 62J+1Ta(bAch2) 2j+2 Or Ba .
- / Zzwlj D(d+0—1) Uxt S fme Py

(=2 j5=0
o0 AD (=1)[2j(d—2)+ (£+1)(d—3)] TF
_9 L3 d 2j+1TaAbcL—2 2j A B
/dt;]z; ")/g,Lj (£+1)(d+£_1) |:/dX8t X T 8[,2 albe

o > AM) (0+25) (0 +2]+1)(d—2)
Yoo ((+1)((+2)

TF
|:/ddX aijabi'CdL_2r2j:| éL—QVV(M:I)d .
(4.33)

where the details of the reduction to irreducible representations of SO(d) is presented in
App. C2ec.

4. Final expressions for the moments

At this stage, all contributions to the radiative part of the source action are written
in terms of irreducible representations of SO(d) and we are ready to add them together.
The lengthy expression of the final sum is presented in (C19) of App. C2d. Making use
of the conservation laws for the stress-energy pseudo-tensor (B2) to replace the coefficients
involving T'%%-1 Tt TY% and T%, the final action can be compacted into an elegant form

Ssource — COHS+S;TOO +S?aa +Sra,d +Sr +Sl’"Tab
1
=— dt (Mhgo + M G*Oyhoo + 2P*hog + L®0,hep)
2mp
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a
J' 8L QBGLWW 1

/dt Z —ILaL 2Fiyi,, /dt Z

+ /dt
=

with the exact expressions for the d-dimensional electric, magnetic and Weyl multipole
moments respectively

[e%¢) d g . _ ) . .
7L _Z ( + ) 14 4j(d—=1)(d+Ll+j—2) dx GHTOO G2
2%4!IT ( )

Or—2Waisbip_y » (4.34)

= ( +£+j) d—2)(d+0—1)(d+{—2
Z +€) Z(d_]‘> (d+€+2j—]‘> /dd 82]+1TO ~L 2]
022{7'1“ d4l+j)(d=2)(d+L—-1)(d+{~2)

J

—|—€) 1 2j(d—1) do n2iraa AL, .2
*Zgwr ([T )@-D (1 @ ey JexTe

7=0

[e.e]
o0
o0

(4 +¢) (d—1) i n2iias A
d J+TAL 27
3 zwr +£+j)(d—2)(d+£—1)(d+£—2)/ XTI,

7=0
(4.35a)
> I (4+90) 2j TF
Ja‘L :A : 2 <1 + ) [/danQJTOa ~ L 2]:|
aiejZOZQJj!F(§+£+j) (d+0—1)
> I'(4+90) 1 o
— A 2 / ddx o Tty 2]} , 4.35b
aie;22ﬂjlr(§+€+j)(d+€—1) { ( )
K =A A Y — - (2d ) : [ /ddx 8t2JT“%Lr23] . (4.35¢)
aig big_y s 227917 (5 + £ +])
The electric moment correspond to the symmetric Young tableau
I =g figa|... | d2 | 41 |, (4.36)
when the two other moments are respectively given by the mixed Young tableaux [11-1(]
it _ o bo—1|. .| 12 | 11 o el _ Ge |to_1lie_o|...| 12 | 11 | (4.37)
a a|b

Note that the three-dimensional limits of the multipoles I* and (the dual of) J%* per-
fectly agree with the known three-dimensional results, (105) and (106) of [29], whereas the
additional set of moments K is absent in three-dimensions.

V. CONCLUSIONS

We have extended to a generic number of spatial dimensions the results presented in [29)]
for a scalar field, electromagnetism and linearized gravity. Our results confirm that electric-
type moments can be readily generalized to d spatial dimensions, while magnetic-type mo-
ments have to be represented by expressions having the symmetries of a mixed Young
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tableaux. Furthermore, within the framework of linearized gravity, we have identified a
novel set of ‘Weyl-type’ moments, with symmetries of another type of mixed Young tableaux.
These additional moments couple to the spatial Weyl tensor and are absent in three dimen-
sions, in agreement with the discussion presented in [13]. The expressions of the gravitational
moments (4.35) are crucial ingredients towards high accuracy gravitational waveforms within
the EFT framework. Indeed, they are the key ingredients of the GW flux, the computation
of which entails (logarithmic) divergences starting at the 3PN order. This provided our
main motivation for this work, since one then needs to obtain the expression of the (source)
mass quadrupole moment, /¥, in arbitrary dimensions. The derivation of the 3PN GW flux
will be discussed elsewhere. Needless to say, the results given in this work will be building
blocks towards constructing accurate waveforms at even higher PN orders. To conclude, let
us remark that we have excluded throughout this work the inclusion of non-linear terms in
the action. We reserve this exciting new avenue for future work.

ACKNOWLEDGMENTS

It is a pleasure to thank L. Blanchet, G. Faye, Q. Henry and R. A. Porto for enlight-
ening discussions and comments. The work of F.L. and Z.Y. was funded by the ERC
Consolidator Grant “Precision Gravity: From the LHC to LISA” provided by the Euro-
pean Research Council (ERC) under the European Union’s H2020 research and innovation
program (grant agreement No. 817791). The work of L.A. was supported by the Interna-
tional Helmholtz-Weizmann Research School for Multimessenger Astronomy, largely funded
through the Initiative and Networking Fund of the Helmholtz Association.

Appendix A: Formulas for irreducible tensor decomposition in d dimensions

This appendix lists expressions and relations that are useful when computing the irre-
ducible decomposition of tensors of SO(d).

Arbitrary symmetric tensors SV are expressed in a STF guise as

me
SN _ ( n2 )l A7(Id_)2pp6(i11‘2m §i2p_1i2p S«igp+1...in)a1a1.‘.apap ’ (Al)
Z n — 2p)! ’
p=0

where [n/2] denotes the integer part of n/2 and where we defined

d
w=__ LG*n) (A2)
P22l T (4 40+ p)
Therefore, products such as x¥ can be rewritten as as [11, 12]
[n/2] nl W
N _ : (2P A N—2P) 2



where 627 is a product of p Kronecker symbols. With a little manipulation, this leads to the
extremely useful relation

>~ 1 o AD .
Dot =) %r%L V¥, . (A4)
! = 0

=0

Given a tensor J%F, STF in the indices {L}, and a tensor 7%, separately STF in the
pair {a,b} and the indices {L}, one can extract the symmetric and antisymmetric parts
as [13]

20

al _ g(al) laig] L—1 A
It =T+ 58T : (A5a)
4 1 40 —-1
TabL — T(abL) + (6 + ) SS A Ta(bL) + (f ) S ./4. A TabL ) (A5b>
{42 abL aig {4+ 1 L aigbip_q

The irreducible decompositions of the same objects into their corresponding TF counterparts
read [13]

aL aL]1TF ((d+20—4) a(iy L—1) (-1 (igio—1 HL—2)a
= o:ue _ 2l—1
A A ey 1Y Ty K v oy vy o vy LA
| (A6)
an
TabL — [TabL:| TF
20(d+20—4) aip | a/bL—1 44 (bL—1)
(d+f—2)(d+2€—2)a§L5 [H +(d—2)(d+2€)H
20(0—1) . bL—2 4/ _
_ §lete—1 a (abL-2)
(d+€—2)(d+2€—2)a§L {H +(d—2)(d+2€)%
- 20 (d + 20 — 4) 5ab H(igL—l)
(d—2)(d+€—2)(d+20)
C(0—1)(d+2¢—6) aip sbig 1 pL—2
TR s i—ndra—ne’ L
_ 20 (é — ]‘) (é — 2) (d + 20 — 6) S 5a(ig 6@5,11‘2,2 £L73)b
(d+0-=3)(d+0—4)(d+20—-2)(d+ 20 —4) ab
+ ¢ (6 _ 1) (é — 2) (6 — 3) 5(1’21'@,1 5z'g,2ig,3 £L—4)ab
(d+€—=3)(d+l0—4)(d+20—2)(d+ 2¢ —4)
B ((l—1)(d+20-6) §ob glicier pL=2) (A7)

d+0—3)(d+l{—4)(d+20—2)(d+20—4)

where we defined the trace-free parts of the tensors as [ 7] T _ T]]E‘ J* and [T] ™ _

Tblz 7L and introduced the tensors
a

QL—l = jaaL—l 7 HL = T;F TaigaL—l and EL—2 = TababL—2 ’ (AS)
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which are STF in all their indices. Applying those relations to the simplest case of coordi-
nates and derivatives, one finds the relations

. {—1)r?2 .
i,L — a:u i,L*l _ Cg—i_ 2£)j4 51@(2[,1 i,L72> , (Aga)
A A (-1
O = 0,01 — dr2—4 iy (ig_ laL V7, (A9b)

that are used extensively throughout this work.

Appendix B: Conservation laws for the electromagnetic current and the stress-
energy pseudo-tensor

This appendix contains useful formulas deriving from the conservation laws of the sources.
In the case of electromagnetism described in Sec. I1I, the conservation of the four-current
0o J® = 0 yields the identities (valid for any j,¢ > 0)

/ddxa JOTQ]:L, /dd (ﬂ] ze:EL 1) ,r_2j _|_2ijL 2j— 2> ’ (Bl)

where we recall our notation J = J%z®,

Similarly, in the case of linearized gravity investigated in Sec. [V, the conservation of the
stress-energy pseudo-tensor 9,7 = 0 can be translated into a set of relations (valid for
any j,¢ > 0)

/ddX T(ig_ling—Q)r2j+2 _ ; 1 - /ddX atTO(ing—l),’,,Zj-i-? . 2 <€j +11) /dd wa 1),,,,2]"
(B2a)
/dde”xL Ly2i g/ddxatTo Lyp2i v /ddexL 25-2 E/dde‘meT%, (B2b)

/ddX TO(ingfl)r2j+2 1 /ddxa TOO L 2j+2 2 (] + 1) /dd TO L 2] (BQC)
¢ l
/ddx Ta(ngL—l)T2]+2 _ Z /ddx 8tT0aZL'LT2J+2 _ % /ddX TaJ,’LT2] : (B2d)

with the help of integration-by-parts. We remind the reader the shorthand notations intro-
duced in (4.22), namely T° = T%g% T = T%zb and T = Tz,

Note that, although derived in d dimensions, these relations are similar to the three-
dimensional ones used in [29].

Appendix C: Technical details of the irreducible decomposition
This appendix collects technical steps that are followed when decomposing the multi-
pole moments into their irreducible counterparts, for both electromagnetism and linearized

gravity.
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1. Electromagnetism

Let us detail how we decomposed the electromagnetic radiative source terms (3.13)
and (3.15) into irreducible multipoles, as given in (3.16).

The scalar sector, (3.13), is already in the sought form, so we will deal here with the
vector one, (3.15), namely

x X A . .
— d 2j yasbL—1,.25 B
S /t;;(g_l gy [ 0,
0o 00 Agd) . 2t .
»J J asL—1,2j5 a
+/d’fzz (=11 (0+2j+2)(d+20-2) /dxat ST O B
(=1 j=0

(C1)

The first line has nearly the appropriate symmetries for a magnetic-type moment: it is STF
in its {b, L — 1} indices and antisymmetric in {a,b}, so it only requires a removal of the
trace, which is easily done by applying the relation (A6). As for the second line, let us first
symmetrise it, using the relation (A5a)

/ddx atzj-l-l(]aiL—lTQj éL—lEa _ /ddX atQj-i‘l J(ajL—l)TZj éL—lEa

L2l ( /ddxafﬂ'“ﬂ%if—llL—%?j) Op1E*. (C2)

14 L—1

Using the Maxwell equations (3.4), the relations (A9), and removing the traces with the
help of (AG6), one obtains irreducible expressions for the coefficients entering both the first

line of (C1) and (C2) as

~bL—1 A ~bL—11TF A
Jz Or—1Bap = [J*2" '] Or—1Buap

(¢ — 1)2 r? (asL—2) A
— a -~ E
(d+0—3)(d+20—4) JEET 020
(—1 - A
+ m Ji“aL_2 8L_28tE" s (C3a)
J(a.ﬁ%Lil)éLflEa _ J(a‘,ﬁL71> aALflEa
2 (£ — 1) (£ ) J<QJA7L_3> éL 3@2Ea
0(d+20—4)(d+ 20— 6) o
2(6_1) (6_2) T7sal—3 A 2 17a
C0(d+20—4)(d+20—6) JE 0030, B, (C3b)
~7 —2 A 1 a ~bl—
L§1 J[aQ? e-1ll=2 OL_lEa = 5 [J (EbL 2] 8L—2atBa|b
_ (é — 2)3 r’ J(aj:Lf?)) 3L7382Ea
2(d+ 0 —4) (d+ 20 — 6) !
—9)? - .
+ (=2 J2 30, 307 E” (C3c)

2(d+0—4)(d+20—6)
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where J = J2® Those identities allow us to rewrite (C1) in terms of irreducible represen-
tations of SO(d) as

[e.e] o A(d) . ~ y
S — —[dt 4,5 /dd 2j+1 jaal—1,2j 5 pa
o / ;;(4—1)! ((+2j+2)(d+€—2) x0T JET Y Opy

33 Af) . A
i =D+ 2) +2) (d+ 0 =2)

o oo Aéd) / A | TF )

/dt Z Z (0 —:1)' {/ddx atz]‘]aibL_lr%} aL—lBalb- (C4)
=1 j=0 :

Adding the scalar sector S7; (3.13) and using the conservation of the current, (B1), the
electromagnetic radiative action can be written as

NV 2 A
Srad :/dt Z g—;] (1—|—m) /ddxaf]JOx“L 1,r2] aLEa

¢,§=0
0o o0 (d)

S ey fatort et gy
= 0 (d+0—2)

)¢ . 1 .
+ /dt >N ﬁ [ /ddxafu%ﬂ—lr?ﬂ] Or—1Bapy - (C5)

This final expression directly gives the result for the irreducible decomposition of the elec-
tromagnetic action, (3.16) and (3.17).

2. Linearized gravity

Let us now turn to the case of linearized gravity, described in Sec. IV C. This appendix
hence details the necessary steps to decompose in an irreducible fashion the radiative action
(4.19a). Hereafter, we will often use the following identities, that are consequences of the
formulas exposed in App. A

((d+20—4)

~alL—1 A B
RS A (C6a)

52 5, B, =

&% Su(p Oy Bejap = Ef— 1 7 Oy -1 Bejap — 1) (d2i 20— 9 7 Oyr—1Bupa,  (C6D)
" Outa Oy B = ej— T aBo — (5 i 37—yt OB, (C60)
T3 5, Op—) Eaa = = 1)C(l d_+22 5 T34 0,5 By | (C6d)
Jrab scdl—2 Suts 3L_2> B = (0 —2)(d+20-8) Tebgbedl=3 5 (C6e)

((—1)(d+20—6)

7 bL—2 A
t 0L o By
é—lx L—2Lap

+
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(d+20—4)

Tab 5d<CAL> é  obd = TabAdL—l éc B » C6f
7 Ot Waebd EDICES ) T L—1Wacbd 5 (C6f)
. r2T? 200 —2)7? -,
Tab ~abl—2 __ T — P ~L—-2 T<Zg_2 ~L—3)
’ ( d+2€—4)x d+20—4 (CGg)

(0 —2)(¢—3) rt Tlie—2ie—3 5L—4)
(d+20—4)(d+ 20 —6) '

a. Scalar sector

The T% and T% terms are treated in the main text, in Sec. IV C 1. Their expressions in
terms of irreducible decomposition of SO(d) are given in (4.24) and (4.26), respectively.

b. Vector sector

The T° and T* terms are respectively given by (4.27) and (4.29),
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Exactly as is the case for electromagnetism in App. C 1, the first line needs only its trace
to be removed, whereas the two other lines require more work. Upon using (Aba), we can
decompose
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Using the Maxwell-like equations (4.11), relations displayed in the appendices, and removing
traces with (AG6), one can irreducibly reduce all pieces appearing in those expressions as
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+

After some manipulation, we recover the irreducible expressions of the 7% and T sectors,
displayed in (4.28) and (4.30), namely
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c. Tensor sector

Let us now turn to the 7% sector, displayed in (4.32),
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In order to apply the formulas of App. A, we need to take the STF part of 7% (as the tensor
T entering (A5b) and (A7) has to be separately STF in its two first indices, as well as its
¢ other). Hopefully each of Eu, Bejay and Wyeq are traceless. Hence, one can safely replace
T by its STF part, 7%, in (C11)
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Once again, the first line is nearly in the sought form, only its trace needs to be removed,
which is to be done with the help of (A7)
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As for the second line, after some manipulation, one can irreducibly decompose
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In order to apply this formula to (C12), one simply need to downgrade the value of ¢ by
one. Finally, for the last line, let us first (anti-)symmetrize it by using (A5b)
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Working out those coefficients with the set of relations at hand, we find
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Injecting all those relations into (C12), we recover the result displayed in (4.33), that we
recall here
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d.  Summing all sectors
The full radiative action is
Stad = Sha + St + Sha + ST+ ST (C18)

where the irreducible decompositions of the five terms are displayed in respectively in
(4.24), (4.26), (4.28), (4.30) and (4.33). Putting everything together, it comes
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Implementing the conservation laws (B2) to replace the coefficients involving T%¢%-1, T,
TV and T it finally comes
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from which we extract our final result, (4.34) and (4.35).
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