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Abstract: The phase problem is a well known ill-posed reconstruction problem of coherent19

lens-less microscopic imaging, where only the squared magnitude of a complex wavefront is20

measured by a detector while the phase information from the wave field is lost. To retrieve the21

lost information, common algorithms rely either on multiple data acquisitions under varying22

measurement conditions or on the application of strong constraints such as a spatial support. In23

X-ray near-field holography however, these methods are rendered impractical in the setting of24

time sensitive in situ and in operando measurements. In this paper, we will forego the spatial25

support constraint and propose a projected gradient descent (PGD) based reconstruction scheme26

in combination with proper preprocessing that significantly reduces artifacts for refractive re-27

constructions from only a single acquired hologram without a spatial support constraint. We28

demonstrate the feasibility and robustness of our approach on different data sets obtained at the29

nano imaging endstation of P05 at PETRA III (DESY, Hamburg) operated by Helmholtz-Zentrum30

Hereon.31

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement32

1. Introduction33

The phase problem is a well known ill-posed reconstruction problem of coherent lens-less34

microscopic imaging, where only the intensity of a complex wave field is measured by a detector35

while the phase information is lost [1–5]. In those imaging setups, the detector only measures36

the wavefront as an integral over a certain exposure time which is proportional to the squared37

magnitude of the wavefront. Naively, one would aim to recover the lost phase information in the38

detector plane. In practice however, the reconstruction target is not the lost phases at the detector39

plane but typically the transmission function of the object, that characterizes the interaction with40

the X rays. This inverse problem is under-determined, since this function is complex, whereas41

the detector data is real.42

Naturally, some approaches alleviate this issue by obtaining more data while slightly changing43

the experimental setup. This includes for example ptychography [6–8] or full-field imaging [9]44

with multiple distances [10–12]. However, measuring more data is not always possible or not45

https://opg.optica.org/library/license_v2.cfm#VOR-OA


always desired, for example in single-pulse imaging at X-ray free electron lasers or in situ/in46

operando studies of material degradation and battery charge cycles at other accelerator-based47

light sources like synchrotron radiation sources [13–16]. The beamline P05 at PETRA III (DESY,48

Hamburg) offers a lens-less X-ray in-line holography setup for nanotomography (Fig. 1) [17–20].49

Here, the object is fully illuminated by hard X-rays and in-line holograms are acquired in the50

so-called Fresnel regime. To minimize the X-ray dose on the objects as well as to maximize51

the measurements throughput, the object transmission function has to be recovered from a52

single hologram. While the reconstruction of weak interacting samples works well with simple53

approaches like the direct inversion using the contrast transfer function (CTF) [11] or standard54

alternating projection based algorithms like the famous Gerchberg-Saxton algorithm [21] and its55

successors [22–25], the reconstruction complexity increases with the interaction strength of the56

measured objects. For strongly interacting objects, many algorithms run into phase wrapping57

problems, take a very long time to converge to a solution or fail to reconstruct the object at all if58

it is not a phase object but it is also significantly absorbing [26].59

These problems can be partly addressed by spatial regularization. This is the finite spatial60

support of the object, together with a non-negativity constraint that enforces a positive electron61

density [27, 28]. However, employing a spatial constraint has limits. One is that the object62

has to posses a finite spatial support. Furthermore, the support has to be either manually set63

before the actual reconstruction or automatically found during the reconstruction process [13]64

which adds further computational complexity and refinement parameters. This renders a spatial65

support constraint unpractical for certain applications like time sensitive in situ and in operando66

measurements.67

To solve the phase wrapping problem, a projected gradient descent (PGD) based algorithm,68

denoted as refAP has been developed for the direct reconstruction of the projected refractive index69

of an object [26]. The advantages of this formulation are recapitulated in Sec. 3. In this work,70

we further refine this approach by proposing a preprocessing and reconstruction scheme which71

is able to reconstruct images from single holograms without a spatial support constraint while72

significantly suppressing artifacts. The paper is structured as follows. In the problem statement73

Sec. 2 we go into the details of the current reconstruction issues and the sources of possible74

artifacts. We then give an overview on the current state of preprocessing and reconstruction75

methods in Sec. 3. In Sec. 4, we propose multiple techniques to reduce reconstruction artifacts76

and to improve the convergence speed with respect to a standard iterative algorithm (refAP).77

An overview of the derived algorithms of Sec. 4 is shown in the appendix Sec. 7. In Sec. 5,78

we show reconstruction results of data from beamline experiments and compare the different79

enhancements against the current refAP. We will demonstrate that the proposed final algorithm is80

robust, requires only a few parameters that need to be manually tuned and performs efficiently with81

a small amount of iterations required, compared to the standard refAP. The data and the software82

underlying the results presented in this paper are available under DOI: 10.5281/zenodo.8349365.83

2. Problem statement84

Figure 1 shows a setup for X-ray near-field holography, using the divergent illumination of85

a nanofocusing optics to enable microscopy. The goal of the reconstruction is to retrieve the86

projected refractive index $̃ of a measured specimen with respect to its spatial coordinates from a87

hologram. The object transmission function describes the interaction of an object with the X-ray88

illumination. Commonly used algorithms are grouped into direct methods, alternating projection89

(AP) based [21–25] and projected gradient descent (PGD) based algorithms.90

To avoid the phase wrapping problem, a PGD-based algorithm, denoted as refAP has been91

developed [26]. Nevertheless, AP and PGD based algorithms both typically have problems with92

image artifacts unrelated to phase wrapping as illustrated in Fig. 2. The images in Fig. 2 were93

obtained by a standard refAP algorithm. These distinct artifacts originate from several different94



Detector
FZP

X-rays
SampleOSA

Beamstop

zf 01 z12

Fig. 1. Sketch of an experimental setup based on a Fresnel zone plate (FZP) for near-field
holographic microscopy. The FZP focuses the incoming coherent monochromatic X
rays to the focal spot located at 5 . There, an order sorting aperture (OSA) is placed that
blocks the higher diffraction orders of the FZP. The sample is put into the diverging cone-
shaped beam of the FZP at a distance I01. Behind the sample, the X-rays propagate to
the detector that is placed at the sample-to-detector distance I12. To protect the detector
from radiation damage, the direct beam is blocked by a beamstop behind the FZP [20].

sources:95

• Non-linear and non-convex optimization problems: These types of inverse problems tend96

to have multiple local minima, which can trap [29] or slow down iterative algorithms as97

they try to find a path to a global optimum. An algorithm may also converge to different98

local minima depending on the initial values.99

• Truncation of information: Due to the limited size of the detector, the hologram measured100

at the detector is truncated. If not handled properly, this loss of information can lead to101

different kinds of artifacts in the reconstruction. Ring-like or stripe-like artifacts that are102

particularly pronounced at the edges are common.103

• Forward model induced reconstruction bias: In X-ray near-field holography, the forward104

model is sensitive to the second spatial derivative of the measured object with respect to its105

refractive indices. This can be seen by calculating the Taylor expansion of the propagation106

kernel in the forward model ([30], Eq. 4.113). The steepness of edges of the reconstructed107

object and the residual reconstruction error are directly and proportionally coupled in a108

way that steep edges have a higher contribution to the residual reconstruction error than109

areas with small changes of the refractive index. Hence, typical iterative reconstruction110

algorithms tend to first reconstruct the edges before they reconstruct the object’s interior.111

This causes a slow reconstruction speed of large structures which have large values for $̃112

but small values for ∇$̃ and can lead to artifacts, if the algorithm stops too early.113

• Regularization induced reconstruction bias: Regularization techniques always entail a bias.114

The more regularization is applied, the stronger this bias is. This can be exploited to derive115

a warm-up phase for the reconstruction but can also manifest in artifacts, e.g. blurred object116

edges. The more parameters exist that have to be tuned for the reconstruction, the higher is117

the risk for bias and artifacts that depend on the used regularization techniques.118

• Structured noise from illumination: Unstructured measurement noise is a general issue in119

inverse problems that can be addressed using regularization strategies such as Tikhonov120



regularization. For structured noise, commonly used regularization strategies are less121

effective. Low spatial frequency artifacts are often observed, especially in object-free areas.122

In this particular measurement setup, various types of structured noise remain in the data123

e.g. by the illumination. First, changes in the illumination patterns, for example due to124

electron refills of the storage ring at the synchrotron radiation source, are not covered125

by a standard flat-field correction approach. Second, if the illumination of the measured126

object is larger than the reconstructed FOV, the measured hologram at the detector is partly127

superimposed by a wave field that has been propagated from outside of the selected FOV.128

To counteract this list of problems, many reconstruction methods in X-ray near-field holography129

rely on the acquisition of diverse data sets such as multi-distance scans [11, 12] or employ130

additional constraints such as applying a spatial support mask [27,28]. However, the application of131

these two particular constraints is either time consuming or object dependent. For in situ/operando132

measurements at the beamline, however, we have high demands on the reconstruction speed,133

quality, and robustness. Therefore, we have a strong need to find a method that performs high134

quality reconstruction from only a single hologram. In this paper, we propose a combined135

preprocessing/reconstruction scheme that addresses most of the above problems and produces136

artifact-free phase images from a single hologram, without the need for a spatial support constraint.137

3. Current state of reconstruction138

3.1. Refractive forward model for holographic imaging139

The physical properties of the object are encoded as complex refractive indices140

=(G, H, I) = 1 − X(G, H, I) + iV(G, H, I), (1)

along the spatial coordinates (G, H, I), where V ∈ R describes the absorption, i.e the attenuation,141

X ∈ R the dispersion, i.e. phase shifting properties and i is the imaginary unit. In this paper, we142

assume a sufficiently thin object to consider only the projection of the refractive indices over143

the object thickness 3 in beam direction. The object is illuminated by a monochromatic wave144

field k0. We follow the projection approximation of Paganin, section 2.2, equation 2.39 [30] and145

get the transmission function that describes the exit wave kexit from the interaction between the146

illumination and the object147

kexit (G, H) = exp
(
−i:

∫ 3

0
X(G, H, I) − iV(G, H, I) 3I

)
k0, (2)

where : = 2c
_

, with _ the wavelength of the illumination. For the sake of simplicity of these148

equations, we substitute the exponent of the exponential function and define the refractive object149

by150

$̃ (G, H) = −:
∫ 3

0
X(G, H, I) − iV(G, H, I) 3I = q(G, H) + iμ(G, H). (3)

We further omit in the following the notation of the spatial coordinates. In the substitution, q151

encodes the phase shifting properties and μ encodes the attenuation properties of the object.152

The reconstructions in this paper will aim to recover $̃. In idealized conditions, the object is153

illuminated by an aberration free coherent beam with constant amplitude. In this case, the exit154

wave behind the object is described by155

kexit ($̃) = exp
(
i$̃

)
�0 exp(iq0), (4)

with �0 : R2 ↦→ R the illumination amplitude and q0 : R2 ↦→ R the illumination phase
offset. Both parameters are in general unknown and have to either be estimated or reconstructed
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(a) Raw hologram a.1) acquired at the experiment. Flat-field corrected hologram a.2) that already shows two sources of
reconstruction artifacts: (I) A very noisy area where the illumination fades. This is the boundary of the Fresnel zone plate
(FZP). (II) The hologram truncation that also truncates the object at the bottom.
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(b) Reconstruction without a spatial support constraint. b.1) Maximum norm of the reconstructed phase shift values as
function of the iteration number. It can bee seen, that the maximum phase value overshoots during the first hundreds
of iterations. The corresponding overshooting artifact (OA) at the maximum, which is iteration 600, can be seen in the
marked spot in b.2). The reconstruction result b.3) after 5000 iterations is distorted by low frequency noise artifacts (LF),
ring-like truncation artifacts (TA), an overshooting artifact (OA), and a weak reconstructed area (WR).
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(c) Reconstruction with a static spatial support, panels analogue to sub figure (b). An overshooting artifact (OA) can
be observed at iteration 500. Due to the support constraint, the algorithm was able to recover from the overshooting at
around iteration 2500 cf. c.1). The result does not suffer from low frequency artifacts (LF) in the object free area, also
not inside of the support. Remaining issues are a truncation artifact which appears as a weakly reconstructed area at the
boundary (TA) and convergence issues (WR) resulting in a weakly reconstructed area in the center of the object.

Fig. 2. Comparison of reconstruction artifacts between a reconstruction from (a) a holo-
gram, (b) without a spatial support constraint and (c) with a spatial support constraint.
The images in Fig. 2 were obtained by a standard refAP algorithm (Alg. 2 with and
without spatial support constraint). The scale bars indicates 10 µm.



separately. The measurement process of a hologram is then modeled by propagating kexit to
the detector and taking the squared magnitude of the propagated wave field. We summarize
the illumination-interaction-propagation process into an operator DFr ($̃) and take the squared
magnitude as an extra step:

DFr ($̃) = F −1 ◦ exp

(
−i · c

(:2
G + :2

H)
Fr

)
◦ F ◦ kexit ($̃) (5)

Idet = |DFr ($̃) |2 (6)

DFr is an approximation of the free space propagation for the near field and is called the Fresnel156

propagator in operator form [30]. Here, the function F describes the 2D Fourier transform of the157

wave field and F −1 its inverse respectively with respect to the spatial coordinates (G, H) and the158

coordinates in frequency space (:G , :H). The Fresnel number Fr depends on the geometry of the159

illuminating beam. In a parallel beam setup, the Fresnel number is derived from the pixel size of160

the detector ΔG, the wavelength of the source _ and the propagation distance between sample and161

detector I12:162

Fr =
ΔG2

_I12
. (7)

In order to enable microscopy through holographic imaging, the object has to be placed into163

a divergent beam in a defocused position. The Fresnel number must then also incorporate the164

magnification through the cone beam which can be derived from the Fresnel scaling theorem [30].165

The theorem states that the cone beam setup can be transformed to a virtual parallel beam setup166

by calculating a new effective propagation distance I∗12 = "I12 from the object magnification " .167

The divergent beam magnifies the sample by a factor168

" =
I01 + I12

I01
(8)

that is given by the proportion of the total propagation distance I01 + I12 to the focus-object169

distance I01. The Fresnel number for a cone beam becomes170

Fr =
ΔG2

_"I12
. (9)

3.2. Preprocessing171

Reconstruction algorithms in X-ray near-field holography assume idealized conditions for the172

source and the setup components. An ideal setup has aberration-free optics and perfect coherent173

illumination which are not fulfilled in practice. An important tool for any reconstruction is to174

prepare the acquired data in a preprocessing step such that the assumptions of the forward model175

are met while respecting issues and limitations of certain implementations. Two important issues176

that are typically handled in a preprocessing step are non-uniform static illumination and spectral177

leakage originating from the fast Fourier transform of a non-periodic data set.178

3.2.1. Flat-field correction179

To sufficiently approximate ideal conditions for a reconstruction, a flat-field correction approach is180

often applied on the detector data, that corrects the static part of aberrations. For that, a synthetic181

flat-field image Iflat is derived first from measurements without an object in the beam by principle182

components analysis [31,32]. The raw data Iraw is then divided by this flat-field to yield a flat-field183

corrected hologram Icorr:184

Icorr =
Iraw

Iflat
. (10)



3.2.2. Padding185

The acquired hologram consists of a discrete set of detector pixel values forming a 2D image.186

Part of the forward model is the Fourier transform, computed by its discrete implementation, the187

Fast Fourier Transform (FFT). For the FFT, all data and operators have to be sampled properly at188

a sufficient rate. For the Fresnel propagation operator, it has been shown that this function, which189

is a chirp, has to be sampled at least by # ≥ 1
Fr pixels in each spatial dimension [33]. A possible190

method to match the required sampling rate in the frequency domain is to pad the hologram in191

the spatial domain. Various methods for padding data already exist [34]. Typical methods are192

padding with a constant value, a repetition of the marginal values or mirroring of the existing193

data towards each orthogonal and diagonal directions.194

3.2.3. Windowing195

Handling spectral leakage issues of the FFT has been widely studied in the field of signal196

processing. An assumption of the FFT is that the input data is periodic and the sampled data197

covers a full period and can therefore be repeated into each spatial direction. If the input data does198

not cover a full period of a signal, spectral leakage will occur in form of a convolution between199

the true spectrum and a sinc shaped function. A common approach to handle this problem is200

to transform the data into a pseudo periodic signal, before a Fourier transform is applied. To201

this end, a Hadamard product of the discrete data and window image fades the data towards the202

margin. Nevertheless, common windows still create a convolution with a sinc shaped function.203

However, common windows also shape the main lobe, i.e. the passband and the side lobes i.e. the204

stopband in their respective Fourier transforms according to desired properties. Some examples205

are the Hamming, Hann or Blackman windows [35, 36].206

3.3. Reconstruction problem and constraints207

When the X-ray wave field arrives at the detector, the involved processes can be described by208

linear operations (Eq. 5) except the measurement itself (Eq. 6). Due to the measurement process,209

the phase information of the propagated wave field is lost and the object reconstruction a non-210

linear inverse problem. First papers on this topic [10, 21] introduced algorithms that are based on211

alternating projections onto constraint sets for one or more constraints. They attempt to solve the212

feasibility problem213

find k ∈ Idet ∩Ω (11)

i.e. to find the intersection of two sets namely the holograms Idet and a set of object constraints214

Ω. These algorithms converge to points of shortest distances to the constraint set and posses the215

property to follow a performance criterion named Summed Distance Error (SDE) [29] stated216

SDE(k) =


PIdetk − k




2 + ‖PΩk − k‖2 , (12)

where PG are the projections of k onto the constraint sets.217

In recent decades huge progress has been made in the field of convex analysis, providing us218

with a mathematical framework and necessary tools to approximate solutions to different kinds219

of inverse problems [37–39]. Many of the reconstruction algorithms used in X-ray holography220

can be associated with relatives [21–23] or have been even actively derived from concepts of221

convex analysis [24, 25].222

A common approach in convex optimization is to formulate an objective function that has to be223

optimized. The solution of this optimization problem yields the desired reconstruction result. An224

objective function typically consists of multiple terms, where at least one describes the consistency225

of a solution with the set of measurements and some additional terms to include prior knowledge226

and regularization. Here, given a single exposure hologram Idet, the reconstruction problem227



for the refractive index in X-ray near-field holography can be formulated using a regularized228

least-squares approach229

$̃∗ = argmin
$̃

1
2




|DFr ($̃) | −
√
Idet




2

2
+ XΩ ($̃). (13)

The term XΩ is an indicator functions, defined by230

XΩ ($̃) =
{

0 $̃ ∈ Ω

+∞ else
(14)

that models prior knowledge of the setup and the object. An established choice of Ω is a constraint231

set that consists of the following:232

Ω = Ω% ∩Ω( (15)

withΩ% being the set of physically valid reconstruction values that models the interaction between233

X rays and the object such that234

Ω% =
{
∀ G ∈ $̃ : Re(G) ∈ [−∞, 0], Im(G) ∈ [0,∞]

}
. (16)

Ω( is the spatial support of the object. As stated in Sec. 2, we aim to omit this constraint.235

4. Methods236

4.1. Data Preprocessing237

In this section, we aim to reduce truncation artifacts that result from the limited detector size. We238

also take care of spectral leakage that is caused by the fast Fourier transform on the non-periodic239

measured hologram.240

4.1.1. Padding241

The proposed padding scheme for the preprocessing aims to reduce truncation artifacts that242

result from edges that are introduced at the hologram border. These edges appear for example243

as propagation fringes when a truncated wavefield is propagated from the detector plane to the244

object plane. To avoid this, edges have in general to be avoided when the data is continued beyond245

the truncation edge. In one dimension, this can be easily achieved by a repetition of the marginal246

values of the hologram. In two dimensions it is more complex since a simple repetition in one247

direction introduces edges in the orthogonal direction. Our approach here is to extend the data248

by mirroring the acquired hologram (see Fig. 3a) into each direction (see Fig. 3b). Although249

mirroring is not a physically correct model and the truncated hologram continues in a way that is250

unknown, it is a way to avoid truncation artifacts through consistency. At the mirroring border,251

we avoid sudden edges while in the extended area, instead of truncation artifacts, the data will252

simply resolve to a copy of the reconstructed object. We then pad the mirrored hologram with253

the value �0 of the constant probe model from Eq. 4 to the necessary size to match the sampling254

rate of the Fresnel propagation operator as described in Sec.3.2. The result is shown in Fig. 3c.255

We choose �0 such that it is consistent with the flat-field corrected hologram. An ideal flat256

field correction would normalize �0 to one. However, after applying the flat-field approach as257

described in Sec. 3.2.1, an offset remains. Currently, the offset parameter �0 has to be tuned258

manually.259

4.1.2. Windowing260

Fig. 4 illustrates the steps for the creation of the fading window. To reduce spectral leakage in261

the frequency domain, we apply a two dimensional window function on the extended detector262
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Fig. 3. Preprocessing scheme. The raw hologram is flat-field corrected a) by a PCA
approach [31,32]. To solve the marginal problem, the flat-field corrected hologram is
mirrored along each direction, yielding b). To match the required sampling rate of the
Fresnel propagation convolution kernel, the result is padded by a constant which is the
estimated illumination �0, yielding c). A two dimensional fadeout mask (Fig. 4.c) is
then applied, yielding d).
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Fig. 4. Window function. a) A one dimensional Blackman function is sampled to the
size w of Eq. 17. b) The window function is split in half and the gap filled with ones,
until desired fading start and fading end is reached. The result is then zero padded until
the window width matches the size of the input data for the reconstruction. From that,
the two dimensional window function c) is derived by a repetition in each direction.

data, such that after mirroring and padding, the values of the original hologram in the center are263

unchanged. To create such a window, we modify one of the common fading windows which are264

typically bell shaped. Note that an unmodified window would induce a fading into the original265

hologram that we aim to preserve. We start with a one dimensional Blackman window266

H(F, G) = 0.42 − 0.5 · cos
(

2cG
F − 1

)
+ 0.08 · cos

(
4cG
F − 1

)
. (17)

Here, F is the window width and G the one dimensional spatial coordinate. To preserve a fading267

free area in the center, we split the one dimensional window Fig. 4a at the center and continue268

to fill the gap with the constant value one, until the desired starting points and end points for269

the fading are reached. The result is then zero padded to match the size of the input data for270

the reconstruction. The new one dimensional window is shown in Fig. 4b. From that, the two271

dimensional window function is derived by a repetition of the one dimensional function into each272

spatial direction, yielding Fig. 4c that leaves a rectangular shaped fading free area in the center.273

The respective hologram with the applied window is shown in Fig. 3d.274

The processing described here in Sec. 4.1 is summarized in Alg. 1 in the appendix.275



4.2. Reconstruction276

In this section, we aim to increase the convergence rate and reduce the image artifacts discussed277

initially in the problem statement. In the following subsections, we start first with the introduction278

of a basic support-less algorithm for comparison. We then propose two modifications to address279

convergence issues and artifacts and eventually combine these in a final algorithm.280

4.2.1. Basic algorithm without a spatial support constraint281

We begin with the construction of the basic algorithm that finds a solution for equation 13 under282

the constraint set Ω = Ω% without the spatial support constraint Ω( discussed in Sec. 3.3. Ω% is283

the non-negativity constraint that enforces a positive electron density in the calculated solution,284

which is a convex set.285

Ω% =
{
∀ G ∈ $̃ : Re(G) ∈ [−∞, 0], Im(G) ∈ [−log(�0) ,∞]

}
. (18)

As a boundary for the set of physical solution, −log(�0) instead of 0 is used, which is the direct286

consequence of the constant probe model �0 that has been used in Sec. 4.1.1. We get a projector287

PΩ%
of $̃ onto Ω% by projecting the real and imaginary part separately and pointwise onto the288

defined intervals:289

PΩ%
($̃) = min

(
0,Re

(
$̃

) )
+ i max

(
−log(�0) , Im

(
$̃

) )
. (19)

For gradient descent methods, it is in general not recommended to use a standard gradient290

descent step for the optimization of a non-convex function 5 in form of G8+1 = G8−U∇ 5 (G8) [40,41].291

This standard algorithm is known for having trouble with optimizing functions that contain local292

minima, flat surfaces or ravines. Instead, we make use of the Nesterov accelerated gradient293

(NAG) [42, 43] with momentum W and step size [. The modified gradient ∇6 is given by:294

∇6($̃8) = W∇6($̃8−1) + [∇ 5 ($̃8 − W∇6($̃8−1)). (20)

with ∇6($̃0) = 0. Here, ∇ 5 ($̃) is the non-accelerated gradient of the data fidelity term, given
by [26, 44]:

5 ($̃) = 1
2
‖|DFr ($̃) | −

√
Idet‖2

2 (21)

∇ 5 ($̃) = −i · exp
(
i$̃

)
· D−1

Fr

(
DFr ($̃) −

√
Idet � sgn

(
DFr ($̃)

) )
(22)

sgn(G) =
{

0 if G = 0
G
|G | else

(23)

Recalling the preprocessing scheme Alg. 1, we also model the previous extension of the hologram295

as a prior knowledge into the reconstruction. At the beginning of each iteration : , we apply296

the same preprocessing steps on the current solution $̃: . The complete PGD algorithm with a297

Nesterov momentum accelerated gradient step is shown in Alg. 2 in the appendix.298

4.2.2. Regularization for Im
(
$̃

)
299

In order for Alg. 2 to reach a minimum of the cost function Eq. 13 fast, the Nesterov acceleration300

weight needs to be as high as possible. However, high momentum values entail the risk of301

overshooting in the gradient descent step, that causes overshooting artifacts (problem statement302

(Fig. 2)). Here, we aim to counteract the overshooting in single pixels by the following strategy.303

In the forward model Eq. 5, one single pixel of the calculated exit wave can be described as a304

vector with an amplitude inversely proportional to Im
(
$̃

)
and an angle proportional to Re

(
$̃

)
.305



For a vanishing vector amplitude, the reconstruction of the angle becomes numerically unstable.306

Furthermore, high Nesterov momentum values entail a risk of overshooting Im
(
$̃

)
in single307

pixels and Re
(
$̃

)
such that vanishing amplitudes and simultaneously large angles are produced,308

which could be observed in Fig. 2 b.1 and c.1. To stabilize the reconstruction, we propose a309

Tikhonov-like regularization only for the amplitude and extend the target cost function by an !2310

term for the absorption values, i.e. the imaginary part of $̃:311

$̃∗ = argmin
$̃

1
2




|DFr ($̃) | −
√
Idet




2

2
+ XΩ ($̃) + V‖Im

(
$̃

)
‖2. (24)

We can account for this additional term by a slight modification of the gradient in Alg. 2

5 ($̃)′ = 1
2
‖|DFr ($̃) | −

√
Idet‖2

2 + V‖Im
(
$̃

)
‖2 (25)

∇ 5 ($̃)′ = −i · exp
(
i$̃

)
· D−1

Fr

(
DFr ($̃) −

√
Idet � sgn

(
DFr ($̃)

) )
+ R($̃) (26)

R($̃) =
{

0 if $̃ = 0
iV Im

(
$̃

)
‖Im

(
$̃

)
‖2

else
. (27)

The corresponding algorithm is the same basic approach as Alg. 2, extended with a modified312

gradient and a parameter update loop, which yields Alg. 3 in the appendix.313

4.2.3. Suppression of high spatial frequencies314

Here, we propose two approaches to counteract the slow reconstruction of low spatial frequencies.315

In general, this can be done either by increasing the contribution of low spatial frequencies or by316

decreasing the contribution of high spatial frequencies to the objective function.317

First, we suppress the acceleration of high spatial frequencies by the Nesterov accelerated318

gradient, which causes overshooting of pixel groups down to single pixels for high momentum319

values. Here, we aim to compensate for the Fresnel propagation kernel’s property of being sensitive320

to the second derivative, which makes a momentum based gradient descent acceleration unstable321

for high spatial frequencies. Our goal is to reduce the momentum for high spatial frequencies322

while maintaining a high momentum for low spatial frequencies. To this end, we replace the323

momentum W by an operator g which first transforms the Nesterov accelerated gradient into the324

Fourier domain and then applies frequency-dependent weights with Gaussian distribution:325

g = W F −1 ◦ exp
(
−2c2 (:2

G + :2
H)f2

)
◦ F , (28)

which yields then the Nesterov accelerated gradient326

∇6($̃8) = g∇6($̃8−1) + [∇ 5 ($̃8 − g∇6($̃8−1)). (29)

with the parameters W and f included in g. The second approach is a multigrid method. Here an327

approximate low resolution solution is obtained on coarse grid first. Formally, this can be done328

by solving the optimization problem329

$̃∗ = *−1

[
argmin

$̃

1
2




|DFr ($̃) | −
√
*Idet




2

2
+ XΩ ($̃)

]
, (30)

where * and *−1 are the corresponding down- and up-sampling matrices. The approximate330

solution to this problem is then used as an initial guess in the above optimization problem on331

a refined grid, represented by new down- and up-sampling matrices. This process is iterated332

until the original resolution is restored. The stopping criterion is a maximum iteration number. A333

detailed breakdown of the algorithm can be found in Alg. 4 in the appendix.334



4.2.4. Artifact-Suppressing Reconstruction Method335

We create the final algorithm by combining all proposed methods to a global artifact-suppressing336

reconstruction method which we call ASRM. We start again with the basic algorithm Alg. 2 and337

extend the algorithm by first apply the weighted regularization term V‖Im
(
$̃

)
‖2 of Sec. 4.2.2.338

We also add the high frequency suppression and the multigrid method from Sec. 4.2.3, which339

is the extension of the objective function by a down sampling matrix *, an up sampling matrix340

*−1 and the modified momentum operator g in the Nesterov accelerated gradient. The objective341

function to reconstruct the complex refractive object is then342

$̃∗ = *−1

[
argmin

$̃

1
2




|DFr ($̃) | −
√
*Idet




2

2
+ XΩ ($̃) + V‖Im

(
$̃

)
‖2

]
. (31)

In each iteration, a Nesterov accelerated gradient ∇6($̃) is calculated by

g = W F −1 ◦ exp
(
−2c2 (:2

G + :2
H)f2

)
◦ F (32)

∇6($̃8) = g∇6($̃8−1) + [∇ 5 ($̃8 − g∇6($̃8−1)). (33)

where ∇ 5 ($̃) is the analytical gradient of the data fidelity term combined with the !2 regulariza-
tion of the imaginary part of $̃:

5 ($̃) = argmin
$̃

1
2




|DFr ($̃) | −
√
Idet




2

2
+ V‖Im

(
$̃

)
‖2 (34)

∇ 5 ($̃) = −i · exp
(
i$̃

)
· D−1

Fr

(
DFr ($̃) −

√
Idet � sgn

(
DFr ($̃)

) )
+ R($̃) (35)

sgn(G) =
{

0 if G = 0
G
|G | else

(36)

R($̃) =
{

0 if $̃ = 0
iV Im

(
$̃

)
‖Im

(
$̃

)
‖2

else
(37)

The summarized algorithm is shown in Alg. 5 in the appendix.343

5. Experiments344

5.1. Experimental Setup345

We obtained four datasets at the beamline P05 at PETRA III, located at DESY in Hamburg,346

operated by Helmholtz-Zentrum Hereon [17–19]. A Fresnel-zone-plate-based setup for NFH as347

shown in Figure 1 was used [20]. The detector is a scintillator (10 µm Gadox) sCMOS camera348

(Hamamatsu C12849-101U) with 6.5 µm pixel size at 16 bit image depth and 2048× 2048 pixels.349

We chose the following samples for our demonstration: A spider attachment hair (Fig. 5)350

[45–47], the tip of a cactus needle (Fig. 6), a sample of a human tooth prepared by focused ion351

beam milling (Fig. 7) and a partly corroded biodegradable magnesium wire (Fig. 8) [14, 48–50].352

The measurement parameters for each of the samples are shown in Appendix B, Tab. 2.353

5.2. Reconstruction Setup354

We chose the samples with increasing complexity for the reconstruction. The samples increase355

each in their thickness and their interaction strength with the X-ray illumination possessing356

consecutively larger phase shifts and stronger attenuation properties. The interaction strength357

increases with respect to the given sample order above. The detector data was preprocessed358



by Algorithm 1 before the actual reconstruction. The synthetic flat-field �flat for the flat-field359

correction according to Eq. 10 was generated from 50 empty images with a PCA approach [31,32].360

The preprocessed data was reconstructed with the reference method and each of the different361

proposals outlined above:362

Alg. 2: Standard PGD method.
Alg. 3: Additional !2 regularization for the absorption values of $̃.
Alg. 4: Suppression of high spatial frequencies.
Alg. 5: The combination of Alg. 3 and Alg. 4.

363

We implemented our algorithms in Python using the PyTorch library for GPU acceleration364

[34, 51, 52]. The reconstruction was performed on the Maxwell computing cluster at DESY on a365

NVIDIA A100 GPU with 40GB memory [53].366

5.3. Analysis of Reconstruction Quality367

In the following, we show the reconstruction results for each variant after 2000 iterations and368

horizontal cross sections. We measure the reconstruction quality in terms of the ability to re-369

construct large phase shifts in the object’s interior while maintaining sharp object edges and370

low background noise in the object free area. The reconstruction parameters for each sample are371

shown in Appendix B. Three out of the available parameters remained sample dependent and372

had to be tuned beforehand: (i) the source intensity value �0 of the constant source model, (ii)373

the Gaussian filter width of PΩNest and (iii) the optimal Fresnel number Fr of the forward model.374

The resulting figures 5 to 8 have the same structure and show the reconstruction variants as listed375

above in their respective panels. We classify the remaining artifacts into categories, according to376

the respective artifacts in the problem statement Sec. 2:377

LF: Low frequency noise
TA: Truncation artifacts
OA: Overshooting artifacts
WR: Weak reconstruction

6. Results378

For all samples and every algorithm variant, truncation artifacts TA are significantly less visible379

in the reconstruction results. The remaining artifacts are, depending on the algorithm variants, LF,380

OA and WR that we summarized into Tab. 1, where we compared the different samples for the381

algorithm variants and occurring artifacts. The proposed algorithm variants perform as follows:382

Algorithm 2, the basic algorithm, yields the worst results in all cases. It failed to reconstruct the383

object’s interior of the cactus needle, the tooth and the magnesium wire. The results of the spider384

hair and the magnesium wire possess clearly visible overshooting artifacts. Also, low frequency385

artifacts are very prominent.386

Algorithm 3 reduced the overshooting artifacts of Alg. 2 that were visible in the spider hair387

and magnesium wire results. The algorithm still failed to completely reconstruct the object’s388

interior of the cactus needle, the tooth and the magnesium wire. The results also suffer from low389

frequency artifacts, either in form of a static offset for the spider hair or background variations390

for the cactus needle, tooth and magnesium wire.391

Algorithm 4 significantly suppressed all overshooting artifacts of Alg. 2. Compared to Alg. 3,392

the algorithm also improved the background variations as well as the reconstruction of the object’s393

interior. For the cactus needle, the algorithm succeeded to suppress artifacts in the reconstructed394

phase image and almost reconstructed the object’s interior of the tooth.395

Algorithm 5 offers the best reconstruction quality if compared to the other approaches. The396

combination of both approaches significantly reduced overshooting artifacts and low frequency397



noise. The algorithm also succeeded in the reconstruction of the object’s interior for all tested398

objects.399

Sample
Alg. 2 Alg. 3 Alg. 4 Alg. 5

LF OA WR LF OA WR LF OA WR LF OA WR

Spider hair X X ↓ X ↓ ↓ X ↓ ↓ ↓ ↓ ↓

Cactus needle X ↓ X X ↓ X X ↓ ↓ ↓ ↓ ↓

Tooth X ↓ X X ↓ X ↓ ↓ X ↓ ↓ ↓

Magnesium wire X X X X X X ↓ ↓ X ↓ ↓ ↓

Table 1. Reconstruction artifacts that are present in the respective result panels of
Fig. 5, 6, 7, 8. The truncation artifact (TA) issue was already resolved by preprocessing
and is left out in this table. The abbreviations under the algorithm numbers correspond to
the artifact types defined as (LF) Low frequency noise, (OA) Overshooting artifacts and
(WR) Weak reconstruction. An arrow downwards ↓ indicates a significant suppression
of the artifact, an X indicates that the artifact is visibly present.
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Fig. 5. Spider hair. The result of Alg. 2 shows a clearly visible overshooting artifact in
the dense area in the middle that emits fringes into the background. The object itself is
optically well reconstructed in panels of Alg. 3 and Alg. 4. However, both approaches
still show LF artifacts across the whole phase image. The panel of Alg. 5 shows the
best reconstruction. The dashed line indicates the position of the cross section. The
scale bar indicates 8 µm.
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Fig. 6. Cactus Needle. The algorithm Alg. 2 has not completely reconstructed the
object’s interior. In the background around the object are some LF variations visible.
The panel of Alg. 3 offers a better phase reconstruction but suffers from LF artifacts
in the top area and LF variations in the background. The panel of Alg. 4 and Alg. 5
reconstructed the object almost identical, with significantly reduced LF variations. The
dashed line indicates the position of the cross section. The scale bar indicates 20 µm.
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Fig. 7. Tooth. The algorithms Alg. 2 and Alg. 3 have not completely reconstructed
the object’s interior. In the background are some LF variations visible. In the cross
section, the error increases towards the image border. Alg. 4 and Alg. 5 significantly
reduce the LF variation in the cross section. Alg. 5 posses the highest rate of maximum
reconstructed phase shift to noise in the object free area. The dashed line indicates the
position of the cross section. The visible dense structure at the bottom of the image
belongs to the sample and is Gallium from a focused ion beam. The scale bar indicates
10 µm.
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Fig. 8. Magnesium wire. Here, the effects of the regularization techniques are particularly
visible. The quality of reconstructed phase values increases gradually in the panel order
Alg. 2, Alg. 3, Alg. 4, Alg. 5. Alg. 3 reduced the overshooting artifacts of Alg. 2,
especially in the right area of the object but was unable to reconstruct the object’s
interior. The result of Alg. 4 is free of overshooting artifacts but the object’s interior
is still not completely reconstructed. Only the combination of all approaches, Alg. 5,
yields a well reconstructed phase image with the completely reconstructed object’s
interior and significantly reduced artifacts. The dashed line indicates the position of the
cross section. The scale bar indicates 50 µm.



7. Summary400

In the problem statement Sec. 2, we investigated the reconstruction of objects with a state-of-the-401

art projected gradient descent approach of [26], without a support constraint and from a single402

hologram. The reconstruction result suffered from various artifacts that we sorted into different403

categories. We found that the algorithm overshoots the reconstructed phase values during the404

first few hundred iterations. It could also be seen that the algorithm is had weak reconstruction405

capabilities of small image gradients. Due to the limited field of view of the detector, the truncated406

hologram also caused artifacts at the image border. In Sec. 4, we proposed methods to reduce the407

artifacts that were identified in Sec. 2:408

i. To avoid truncation artifacts, we improved the preprocessing of measured holograms. This409

included the derivation of an appropriate padding scheme by mirroring the hologram into410

each direction and by adjusting the constant padding value with respect to the flat-field411

correction error. Eventually, we also applied a proper window function to the padded data.412

To suppress overshooting artifacts and to increase the reconstruction speed, we introduced413

a warm-up scheme for the projected gradient descent reconstruction. The new algorithm414

employs multiple regularization techniques.415

ii. To suppress the overshooting, we regularized the absorption values of the reconstructed416

refractive object with a weighted !2 regularization.417

iii. To increase the reconstruction capability of low spatial frequencies, we combined a multi-418

grid reconstruction with a suppression of high frequencies in the Nesterov accelerated419

gradient.420

In Sec. 5, we tested our approaches on different kind of real objects that where measured at421

the beamline P05 at PETRA III, located at DESY in Hamburg. The objects covered interaction422

strengths weakly interacting samples which do not exceed phase shifts of 2c to multi material423

samples that produce a phase range beyond 6c. In general, each of our approaches show quality424

improvements when compared to a simple approach with a standard projected gradient descent425

algorithm. Our preprocessing scheme (i) successfully suppressed truncation artifacts. The !2426

regularization of the absorption values (ii) reduced significantly overshooting artifacts and offered427

an improved reconstruction of the object envelope for three of four objects. The high frequency428

suppressing method (iii) resulted in stronger improvements of the reconstruction quality than the429

regularization approach (ii). In all examples, no overshooting artifacts where visible and the low430

frequency artifacts were reduced. For two of four objects, this standalone approach was still not431

successful to reconstruct the complete object envelope. It could be seen that the results of the HF432

Suppression approach can be further improved by adding the !2 regularization of the absorption433

values. The combination of all approaches successfully suppressed artifacts in all cases with a434

good reconstructed object envelope.435

In this paper, we have demonstrated that the proposed preprocessing and reconstruction scheme436

enables a significant suppression of artifacts in the reconstruction of phase images without a437

spatial support using only a single hologram. The combination of the !2 regularization for the438

absorption values and the high frequency suppression offers a superior reconstruction quality439

than each of the individual approaches. We showed that the implemented algorithm is robust440

with respect to a wide range of real objects, that strongly differ in their interaction strength with441

the X-ray illumination. We could also identify a common set of parameters that were well suited442

and could be generalized over the tested objects. Two object dependent parameters, f for the443

Nesterov accelerated gradient weights and the illumination parameter �0 in the forward model444

still need to be explored in future work.445

With the advent of fourth generation synchrotron radiation sources, coherent full-field imaging446

techniques are gaining more interest in new application areas, for example in high pressure447



physics [54], while for established science fields, the trend is aiming for dynamic studies of448

specimen, i. e. in situ and in operando studies. The latter is followed by increasing requirements449

on the measurement process in terms of acquisition parameters. Consequently this increases also450

the requirements on the reconstruction process. This work is a step further towards simplified451

and automatized processing of large amounts of holographic data sets, which could enable an452

online reconstruction to monitor and control the state of dynamic measurements.453
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Appendix472

A. Algorithms473

Algorithm 1: Preprocessing of reconstruction input Idet

Input: Detector data Iraw ∈ R#×" , synthetic flat field Iflat ∈ R#×" , Fading window width
F ∈ R, Source intensity �0

Output: Pre-processed detector data Idet

Idet =
Iraw
Iflat

⊲ Flat-field correction

Idet = mirr(Idet) ⊲ Extend the hologram by mirroring

Idet = pad�0 (Idet) ⊲ Padding with �0

Idet = fade(Idet) ⊲ Apply fading window

return Idet
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Algorithm 2: Basic reconstruction of $̃
Input: Pre processed measurements Idet, update rate [ for the gradient step, Nesterov momentum W,

filter coefficients Ω� , initial guess $̃0
Output: Approximated solution $̃∗

60 = 0 ⊲ Nesterv accelerated Gradient

repeat
$̃′

:
= gaussΩ�

(fade(mirr($̃:)))

H:+1 = $̃′
:
− W6:

6:+1 = W6: + [∇
[

1
2




|DFr (H:+1) | −
√
Idet




2

2

]
=:+1 = PΩ%

($̃′
:
− 6:+1)

$̃:+1 = cutfov(=:+1)
until Stopping criterion reached;

$̃∗ = $̃:+1

return $̃∗

475

Algorithm 3: Reconstruction of $̃ with !2 regularization for Im
(
$̃

)
Input: Preprocessed measurements Idet, update rate list [ for the gradient step, Nesterov momentum

list W, filter coefficients Ω� , !2 regularization weight list V, initial guess $̃0
Output: Approximated solution $̃∗

E0 = 0, 9 = 0 ⊲ Nesterv accelerated gradient E and index 9 of parameter update loop

// Regularization levels
repeat

// Iterate in given level
repeat

$̃′
:+1 = gauss

Ω
9

�

(fade(mirr($̃:)))

H:+1 = $̃′
:
− W 96:

6:+1 = W 96: + [ 9∇
[

1
2




|DFr (H:+1) | −
√
Idet




2

2
+ V 9

[ 9 ‖�<(H:+1)‖2

]
=:+1 = PΩ%

($̃′
:
− 6:+1)

$̃:+1 = cutfov(=:+1)
until Stopping criterion reached;

9 = 9 + 1
until 9 > 9max;

$̃∗ = $̃:+1

return $̃∗

476



Algorithm 4: Reconstruction of $̃ with high frequencies suppression
Input: Pre processed measurements Idet, update rate list [ for the gradient step, Nesterov

momentum operators g, filter coefficients Ω� , down-sampling operator list *, initial guess
$̃0

Output: Approximated solution $̃∗

E0 = 0, 9 = 0 ⊲ Nesterov accelerated gradient E and index 9 of parameter update loop

// Regularization levels
repeat

// Iterate in given level
repeat

$̃′
:+1 = gauss

Ω
9

�

(fade(mirr($̃:)))

H:+1 = $̃′
:
− g 96:

6′
:+1 = g 96: + [ 9∇

[
1
2




|DFr (H:+1) | −
√
* 9Idet




2

2

]
=:+1 = PΩ%

($̃′
:
− 6′

:+1)

$̃:+1 = cutfov(=:+1)
until Stopping criterion reached;

$̃:+2 = * 9+1 (
* 9

)−1
$:+1

6:+2 = * 9+1 (
* 9

)−1
6:+1

9 = 9 + 1
until 9 > 9max;

$̃∗ = $̃:+2

return $̃∗
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Algorithm 5: ASRM reconstruction of $̃ created from a combination of Alg. 3 and Alg. 4
Input: Pre processed measurements Idet, update rate list [ for the gradient step, Nesterov

momentum operators g, !2 regularization weight list V, filter coefficients Ω� ,
down-sampling operator list *, initial values for $̃0

Output: Approximated solution $∗

E0 = 0, 9 = 0 ⊲ Nesterov accelerated gradient E and index 9 of parameter update loop

// Regularization levels
repeat

// Iterate in given level
repeat

$̃′
:+1 = gauss

Ω
9

�

(
fade(mirr($̃:))

)
H:+1 = $̃′

:
− g 96:

6′
:+1 = g 96: + [ 9∇

[
1
2




|DFr (H:+1) | −
√
* 9Idet




2

2
+ V 9

[ 9 ‖�<(H:+1)‖2

]
=:+1 = PΩ%

($̃′
:
− 6′

:+1)

$̃:+1 = cutfov(=:+1)
until Stopping criterion reached;

$̃:+2 = * 9+1 (
* 9

)−1
$:+1

6:+2 = * 9+1 (
* 9

)−1
6:+1

9 = 9 + 1
until 9 > 9max;

$̃∗ = $̃:+2

return $̃∗
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B. Reconstruction Parameters479

Sample Energy I01 I02 Fr C

Spider hair 11.0 keV 79.95 mm 19.661 m 7.790 × 10−5 1.0 s

Cactus Needle 17.0 keV 28.54 mm 19.652 m 4.347 × 10−4 0.8 s

Tooth 17.0 keV 81.708 mm 19.652 m 1.231 × 10−4 0.8 s

Magnesium Wire 11.0 keV 43.70 mm 19.661 m 4.337 × 10−4 1.5 s

Table 2. Parameters for the setup shown in Fig. 1, the calculated effective Fr and the
exposure time C.

FWHM for f in g at Downsampling

16× 4× 2× 1× �0

Spider hair 16 8 64 - 0.98

Cactus needle 16 8 64 - 0.98

Tooth 16 8 64 - 0.96

Magnesium wire 4 8 32 - 1.1

Table 3. Sample dependent parameters. Values of f in g given as full width at half
magnitude (FWHM) in pixels. f can be derived by calculating f = �,�"/2.35.
Value �0 for the constant probe model.



* [ W V

Panel Iterations Downsampling Update Rate Momentum !2 Weight Filter $̃

Alg. 2 2000 - 1.1 0.99 - 2.0 / 8.0

Alg. 3 1500 - 1.1 0.99 10.0 2.0 / 8.0

500 - 1.1 0.99 - 2.0 / 8.0

Alg. 4 700 16× 1.1 1.0 - 2.0 / 0.0

300 4× 1.1 1.0 - 2.0 / 8.0

500 2× 1.1 1.0 - 2.0 / 8.0

500 - 1.1 1.0 - 2.0 / 8.0

Alg. 5 700 16× 1.1 1.0 10.0 2.0 / 0.0

300 4× 1.1 1.0 1.0 2.0 / 8.0

500 2× 1.1 1.0 0.1 2.0 / 8.0

500 - 1.1 1.0 - 2.0 / 8.0

Table 4. Setup and sample independent reconstruction parameters for algorithms 2
to 5 that were used to generate results in figures 5 to 8. The filter $̃ values are given
in Full Width at Half Magnitude (FWHM) for real and imaginary parts in form of
FWHMreal/FWHMimag.
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