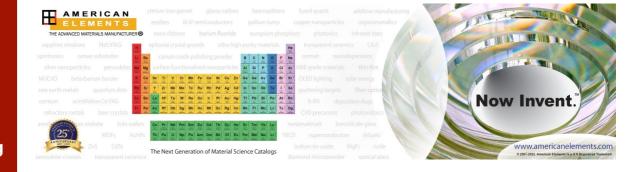
Li(C_2N_3) as eutectic forming modifier in the melting process of the molecular perovskite $[(C_3H_7)_3N(C_4H_9)]Mn(C_2N_3)_3^{\pm}$

Special Collection: Challenges and Perspectives in Materials Chemistry—A Celebration of Prof. Sir Anthony K. Cheetham's 75th Birthday

Silva M. Kronawitter ⁽¹⁾; Sebastian A. Hallweger ⁽¹⁾; Jan Meyer ⁽¹⁾; Carmen Pedri ⁽¹⁾; Stefan Burger ⁽¹⁾; Ahmad Alhadid ⁽¹⁾; Sebastian Henke ⁽¹⁾; Gregor Kieslich [™] ⁽¹⁾


APL Mater. 11, 031119 (2023) https://doi.org/10.1063/5.0143404

CrossMark

28 November 2023 12:27:01

Li(C₂N₃) as eutectic forming modifier in the melting process of the molecular perovskite $[(C_3H_7)_3N(C_4H_9)]Mn(C_2N_3)_3^{\pm}$

Cite as: APL Mater. 11, 031119 (2023); doi: 10.1063/5.0143404 Submitted: 23 January 2023 • Accepted: 6 March 2023 •

Published Online: 27 March 2023

Silva M. Kronawitter, De Sebastian A. Hallweger, De Jan Meyer, De Carmen Pedri, De Stefan Burger, De Stefan Burger, De Carmen Pedri, De Ca

Ahmad Alhadid,² D Sebastian Henke,³ D and Gregor Kieslich^{1,a)}

AFFILIATIONS

- Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
- ²Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof Forum 2, 85354 Freising, Germany
- ³Department of Chemistry and Biological Chemistry, Technical University of Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany

Note: This paper is part of the Special Topic on Challenges and Perspectives in Materials Chemistry - A Celebration of Professor Sir Anthony K. Cheetham's 75th Birthday.

^{a)}Author to whom correspondence should be addressed: gregor.kieslich@tum.de

ABSTRACT

Coordination polymer (CP) glasses have recently emerged as a new glass state. Given the young state of the field, the discovery of concepts that guide the synthesis of CP glasses with targeted thermal and macroscopic properties is at the center of ongoing research. In our work, we draw inspiration from research on inorganic glasses, investigating the impact of Li(C₂N₃) as a modifier on the thermal properties of the new molecular perovskite $[(C_3H_7)_3N(C_4H_9)]Mn(C_2N_3)_3$ (with $[C_2N_3]^-$ = dicyanamide, DCA). We derive the phase diagram and show that $Li(C_2N_3)$ and $[(C_3H_7)_3N(C_4H_9)]Mn(C_2N_3)_3$ form a eutectic mixture, in which the melting temperature is decreased by 30 K. Additionally, for the eutectic mixture at $x_{\text{LiDCA}} \approx 0.4$, a CP glass forms under slow cooling, opening interesting pathways for scalable synthesis routes of CP glasses. Given the virtually unlimited parameter space of hybrid modifiers, they will play a major role in the future to alter the glass' properties where the availability of rigorously derived phase diagrams will be important to identify material class overarching trends.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0143404

INTRODUCTION

Coordination polymers (CPs) are composed of inorganic and organic building units, offering a large chemical space to address various applications, such as water harvesting,1 ferroelectrics,² fine chemical catalysis,³ and sensing⁴ among many more. The discovery of glass-forming CPs is one of the latest milestones in the field,^{5,6} conceptually closing the gap between inorganic and polymer-based glasses. Examples of glass-forming CPs are zeolitic imidazolate frameworks, such as ZIF-4 ([Zn(Im)₂], $Im^- = imidazolate)$, ZIF-62 ([$Zn(Im)_{1.75}(bIm)_{0.25}$], $bIm^- = benz$ imidazolate), and ZIF-62(M)-b Im_x^9 (M = Co^{2+} , Zn^{2+}), thiocyanate

and nitrile-based CPs, such as $[Cu_2(SCN)_3(C_2bpy)]^{10}$ $(C_2bpy^+ = 1$ ethyl-[4,4-bipyridin]-1-ium) and [Ag(mL1)(CF₃SO₃)]·2C₆H₆ (mL1 = 1,3,5-tris(3-cyanophenylethynyl)benzene),11 and low-dimensional CPs, such as $[Zn(HPO_4)(H_2PO_4)_2] \cdot 2H_2Im^{12}$ and $[Au(SPh)]_n^{13}$ (SPh = thiophenolate). In addition to the fundamental interest in this new glass-state, CP-based glasses show potential in various applied areas, such as gas separation¹⁴ and solid electrolytes. 15,16 CP glasses are typically synthesized by rapid cooling of a melt that is obtained by heating a crystalline CP. Therefore, the melt, as a key intermediate state toward CP glasses, deserves close attention, where conceptual progress for tailoring the melting temperature (T_m) through chemical and compositional changes to suppress parasitic decomposition processes is of great importance. 9,17,18

More recently, a series of ABX3 molecular perovskites $[Pr_4N]B(C_2N_3)_3$ ($[Pr_4N]^+$ = tetrapropylammonium, B = Mn^{2+} , Fe²⁺, and Co²⁺) was reported to melt before thermal decomposition $(T_{\rm m} < T_{\rm d})$ and to form a stable coordination polymer glass upon rapid cooling. ^{19,20} Subsequently, the manipulation of $T_{\rm m}$ by A- and B-site substitution was investigated for AB[C_2N_3]₃ CPs; T_m decreases with increasing alkyl chain length of the A-site cation $([Pe_4N]^+ > [Bu_4N]^+ > [Pr_4N]^+$ with Pe = pentyl, Bu = butyl, and Pr = propyl) or decreasing Shannon ionic radius of the B-site metal $(Mn^{2+} > Fe^{2+} > Co^{2+})$. A similar impact of A-site cation substitution on $T_{\rm m}$ and the glass transition temperature $(T_{\rm g})$ was observed for 2D perovskite-related A₂BX₄ materials, such as [A]₂PbI₄ with six alkylammonium A-site cations (n-bua, sec-bua, 1-me-bua, n-hexa, 1-me-hexa, and 2-et-hexa with me = methyl, et = ethyl, bu = butyl, hex = hexyl, and a = ammonium), 22,23 despite the chemically different bonding situation within the inorganic 2D layers. These studies show that melting properties are heavily impacted by the A-site cations' entropic contributions and that B-site substitution allows for fine-tuning the materials' thermal properties. Therefore, ABX₃ perovskite-type CPs have proved as a powerful model platform for studying composition-structure-thermal property relationships by systematic compositional changes on the A-, B-, and X-site. An open opportunity that has yet not been explored for glass-forming perovskite-type materials is tailoring of glass formation properties, i.e., T_g and T_m , by the use of glass


Our work is inspired by decades of work on inorganic glasses, where the addition of modifiers is established as a tool for tailoring glass properties,²⁴ i.e., their structural,²⁵ optical,²⁶ and electronic²⁷ properties. Recent studies on the impact of various glass-network modifiers, i.e., inorganic metal oxides (Li₂O, Na₂O, CaO, MgO, BaO, and ZnO) on the thermal properties and glass forming ability of phosphate and aluminate glasses, emphasize the suitability of this approach toward CP glass chemistry. 28,29 Additionally, it was recently shown that the superprotonic properties of CsHSO₄ are preserved through the formation of a binary CsHSO₄-CP system that shows eutectic behavior.³⁰ Here, we report a new molecular perovskite [Pr₃NBu]Mn(C₂N₃)₃, investigate its melting behavior and glass-forming ability, and explore the impact of Na(C2N3) and $Li(C_2N_3)$ on these processes. We identify $Li(C_2N_3)$ as a suitable compound for the formation of a eutectic mixture, which stabilizes the formation of a CP glass at high amounts. Our study emphasizes that the established principles from inorganic glasses are an important research compass to unlock the potential of CP glasses, which we expect to be key in deriving CP glasses with targeted thermal properties in the future.

RESULTS AND DISCUSSION

Synthesis and thermal properties of $[Pr_3NBu]Mn(C_2N_3)_3$

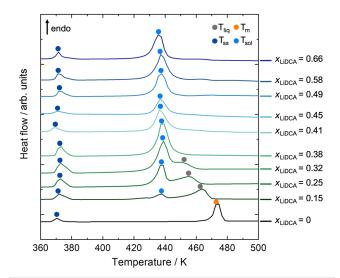
In the first step, the A-site cation butyltri-n-propylammonium ([Pr₃NBu]⁺) was synthesized from tri-n-propylamine and 1-bromobutane in a one-step nucleophilic substitution reaction, see the supplementary material (S-2) for details and Fig. S1. Single

crystals of the molecular perovskite [Pr₃NBu]Mn(C₂N₃)₃ were obtained by following an established mild solution synthesis route by starting from [Pr₃NBu]Br, MnCl₂·6H₂O, and Na(C₂N₃) in H₂O, see Fig. S2 and the supplementary material (S-3). The structure of [Pr₃NBu]Mn(C₂N₃)₃ was determined via single crystal x-ray diffraction, see Fig. 1(a), Table S1, and Fig. S5 for crystallographic data. At room temperature, [Pr₃NBu]Mn(C₂N₃)₃ crystallizes in the space group Pbcn with the cell parameters a = 16.5315(17) Å, b = 17.5441(17) Å, and c = 32.348(3) Å, $V = 9382.0(17) \text{ Å}^3$. Thermogravimetric analysis-differential scanning calorimetry (TGA-DSC) was carried out on the as-synthesized [Pr₃NBu]Mn(C₂N₃)₃ material, showing thermal decomposition at $T_{\rm d}$ = 570 K. Two endothermic events were observed at 371 and 474 K in the DSC signal before thermal decomposition, see Fig. S11. Variable temperature powder x-ray diffraction (VTPXRD) and cyclic DSC (Differential scanning calorimetry) measurements show that the heat event at $T_{\rm ss}$ = 368 K belongs to an irreversible crystalline-to-crystalline (solid-to-solid, T_{ss}) phase transition, see Fig. 1(d) and the supplementary material (Figs. S15, S16, and S26). Comparing the PXRD pattern of the high-temperature phase with the PXRD of the molecular perovskite [Pr₃NBu]Ni(C₂N₃)₃ suggests that both materials are isostructural. In turn, both crystalline phases of [Pr₃NBu]Mn(C₂N₃)₃ exhibit a perovskite-type structure motif, making [Pr₃NBu]Mn(C₂N₃)₃ to another molecular perovskite that shows tilt and shift polymorphism,³¹ see the supplementary material (Figs. S14, S17, and S18) for details on the structure discussion. Furthermore, VTPXRD shows that the second heat event at $T_{\rm m}$ = 469.4 K, which occurs significantly before $T_{\rm d}$, corresponds to a crystalline-to-amorphous phase transition, see Figs. 1(d) and Fig. S25. Following on from previous reports on the melting behavior of related dicyanamide-based materials,

FIG. 1. (a) Structure visualization of the molecular perovskite $[Pr_3NBu]Mn(C_2N_3)_3$, where $[Mn(C_2N_3)_3]^-$ forms a 3D ReO₃-type network and the A-site molecule sits in its void for charge balance, forming the perovskite structure motif (color code: Mn polyhedral—light gray, N—dark blue, C—dark gray, and H atoms were deleted for better visualization). Optical images of the as-synthesized crystals (b) and the melt-quenched $[Pr_3NBu]Mn(C_2N_3)_3$ (c). (d) PXRD patterns ($\lambda=0.206\,79\,\text{Å}$) during heating from 290 to 485 K, showing a crystalline-to-crystalline phase transition at approximately $T_{ss}=371\,\text{K}$ (dark to light blue), followed by amorphization (gray) on holding at 485 K.

such as $[Pr_4N]Mn(C_2N_3)_3$ and $[Bu_4N]Mn(C_2N_3)_3$, 20,21,32 the second heat event is assigned to a solid-to-liquid phase transition, i.e., melting of $[Pr_3NBu]Mn(C_2N_3)_3$. This is further supported by the glass-like appearance of the melt-quenched material, see Fig. 1(c).

Melted and glassy state of [Pr₃NBu]Mn(C₂N₃)₃


Compared to other ABX₃ molecular perovskites, $T_{\rm m}$ = 474 K for [Pr₃NBu]Mn(C₂N₃)₃ is the lowest reported melting temperature to date, and the difference of $\Delta T = 96$ K between T_d and T_m stands out being 61 K higher than for $[Pr_4N]Mn(C_2N_3)_3$ ($\Delta T = 35$ K), see Fig. S11. However, it is important to mention that related ABX₃ non-perovskite [C₂N₃]⁻-based CPs, such as [Bu₄N]Mn(C₂N₃)₃ and [Pe₄N]Mn(C₂N₃)₃, have been reported to melt at around 423 K. Therefore, by drawing comparisons to ionic liquids, these results suggest describing AB(C₂N₃)₃ materials as AX·BX₂ compounds, a perspective that highlights the inorganic-organic-ionic nature of CP melts and helps in rationalizing their thermal properties.³³ Following this train of thought, the T_m of [Pr₃NBu]C₂N₃·Mn(C₂N₃)₂ agrees with previous reports: with increasing the alkyl chain length of the quaternary ammonium A-site cation, an increased entropy of melting is observed, resulting in a monotonic decrease of $T_{\rm m}$ along the series $[Pr_4N]C_2N_3 \cdot Mn(C_2N_3)_2$ (535 K) $> [Pr_3NBu]C_2N_3\cdot Mn(C_2N_3)_2 (474 K) > [Bu_4N]C_2N_3\cdot Mn(C_2N_3)_2$ $(458 \text{ K})^{21,32} > [\text{Pe}_4\text{N}]\text{C}_2\text{N}_3 \cdot \text{Mn}(\text{C}_2\text{N}_3)_2 (422 \text{ K}).$

Taking a closer look at the melting process of [Pr₃NBu]Mn(C₂N₃)₃ via cyclic DSC measurements, reversible melting is observed with a small decrease of T_m of ~4.5 K from the first cycle $T_{\rm m}$ = 469.4 K to the second cycle $T_{\rm m}$ = 464.9 K, see Fig. S26. The thermogravimetric analysis combined with mass spectrometry was used to search for potential decomposition processes during melting, see Fig. S38. No evidence for material decomposition was found up to 493.15 K, and the first fragmentation products of the A-site alkyl chain were observed at T = 513.15 K. Furthermore, ¹H NMR spectroscopy of the acid-digested solid after melting shows no additional signals, see Fig. S9. Therefore, decomposition processes during the melting process are expected to play a minor role if any. Slowly cooling the melt to room temperature at a rate of 5 K min⁻¹ leads to recrystallization, which is observed in the DSC as a sharp exothermic event at $T_c = 452.7$ K, see Figs. S24 and S26. Interestingly, recrystallization after melting, which might open opportunities for new synthesis routes of functional, crystalline thin film CPs, can still be considered as an unusual behavior for CPs and has only been reported for a few examples, such as Co-bis(acetamide)³⁴ and Cu(isopropylimidazolate).³⁵ Applying a rapid cooling procedure by quenching the [Pr₃NBu]Mn(C₂N₃)₃ melt in liquid N₂ suppresses recrystallization and leads to x-ray amorphous, glass-like fragments, see Fig. 1(c) and Fig. S19. Elemental analysis of the melt-quenched [Pr₃NBu]Mn(C₂N₃)₃ agrees with the ABX₃ stoichiometry of the starting compound, see details in the supplementary material (S-5). DSC measurements of the melt-quenched [Pr₃NBu]Mn(C₂N₃)₃ show a glass transition at around $T_g = 253.28$ K, see Fig. S37. Therefore, the molecular perovskite $[Pr_3NBu]Mn(C_2N_3)_3$ forms a stable liquid upon heating and a coordination polymer glass upon rapid cooling akin to previous reports on [Pr₄N]B(C₂N₃)₃ $(B = Mn^{2+}, Co^{2+}, and Ni^{2+}).$

Li(C₂N₃) as eutectic forming modifier

Drawing inspiration from research works on inorganic glasses, we investigated the impact of $M(C_2N_3)$ (with $M = Li^+$ and Na^+) as a modifier on the melting behavior and glass formation of [Pr₃NBu]Mn(C₂N₃)₃. Na(C₂N₃) is commercially available and was used as purchased, while Li(C2N3) was synthesized in a modified literature procedure starting from Na(C2N3), see preparation details in the supplementary material (S-4). The phase purity of Li(C2N3) was confirmed by TGA-DSC analysis and IR spectroscopy, see Figs. S10 and S39-S41. Both Li(C₂N₃) and Na(C₂N₃) undergo a trimerization reaction upon heating while no melting is observed, see the supplementary material (S-13). Before preparation of modifier-[Pr₃NBu]Mn(C₂N₃)₃ mixtures of various mole ratios, both M(C₂N₃)₃ salts and [Pr₃NBu]Mn(C₂N₃)₃ were dried, see preparation details in the supplementary material (S-12). In the first step, we screened the impact of the modifier on $T_{\rm m}$ via TGA-DSC experiments of different mole fractions, see Figs. S12 and S13. From this screening series, it can be observed that the melting point of [Pr₃NBu]Mn(C₂N₃)₃ decreases when mixing with increasing mole fractions x_{LiDCA} of $Li(C_2N_3)$, while $Na(C_2N_3)$ as modifier has no evident impact. Applying established equations that describe the solid-liquid thermodynamics in the studied system, our experimental results suggest a large difference in theoretical melting temperatures of $Li(C_2N_3)$ and $Na(C_2N_3)$, which can be expected based on their different crystal structures; for a more elaborate discussion, see the supplementary material (S-37).

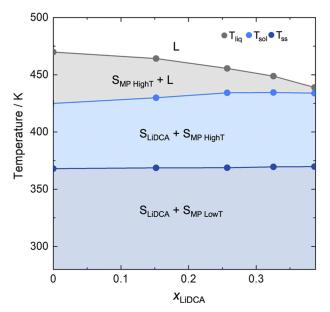

Subsequently, we explored the impact of Li(C_2N_3) on T_m as a function of increasing mole fractions $x_{\rm LiDCA}$ ($x_{\rm LiDCA}$ = 0, 0.15, 0.25, 0.32, 0.38, 0.41, 0.45, 0.49, 0.58, and 0.66) via DSC in more detail, see Fig. 2 and Figs. S27–S35. From the DSC traces, it is evident that an increase in $x_{\rm LiDCA}$ has no significant impact on $T_{\rm ss}$ of

FIG. 2. DSC curves of Li(C_2N_3)–[Pr₃NBu]Mn(C_2N_3)₃ mixtures with varying the amount of modifier salt, x_{LiDCA} . The DSC data of various mole fractions obtained on heating were used to build a phase diagram. For better visualization, the curves are offset by a random shift.

 $[Pr_3NBu]Mn(C_2N_3)_3$. This is expected as there is no obvious pathway of how Li(C2N3) as a modifier impacts the internal structural reorganization of [Pr₃NBu]Mn(C₂N₃)₃ prior to melting. In contrast, already at $x_{LiDCA} = 0.15$, two distinct endothermic signals become visible in the DSC traces, which belong to the liquidus ($T_{\rm liq}$) and the solidus temperature (T_{sol}), see Fig. S27. Further increasing x_{LiDCA} leads to a monotonic decrease of $T_{\rm liq}$ until approximately $x_{\rm LiDCA}$ \approx 0.4, where the eutectic mixture ($T_{\rm sol}$ = $T_{\rm liq})$ is reached. Furthermore, in the second heating cycle of the mixtures $x_{LiDCA} = 0.15, 0.25,$ 0.32, and 0.38, an exothermic event is observed, see Figs. S27-S30. This exothermic event reflects a structural reorganization related to crystallization and is known as cold crystallization (T_{cc}). Overall, for $x_{LiDCA} = 0.38$, a decrease of ~30 K in the melting of the homogeneous mixture (T_{liq}) is observed; for comparison purposes with literature data, the offset temperature of T_m is used for the discussion, while Table S3 contains both $T_{\rm m}$ as determined from peak onset and offset. Taken together, the data provide the basis to build a temperature–composition phase diagram up to $x_{LiDCA} = 0.41$, see Fig. 3. To the best of our knowledge, this is the first report of a molecular perovskite-related eutectic mixture, showcasing the applicability of established concepts to tailor the thermal properties of melting coordination polymers.

The decreased $T_{\rm m}$ of $[Pr_3NBu]Mn(C_2N_3)_3$ by the formation of a eutectic mixture with $Li(C_2N_3)$ as a modifier provides improved opportunities for glass formation compared to currently employed TGA–DSC-based processes. Additionally, opening the gap between

FIG. 3. Partial phase diagram of the binaryLi(C_2N_3)–[Pr_3NBu]Mn(C_2N_3)₃ system at ambient pressure showing simple eutectic behavior, with S= solid phase, L= liquid phase, MP = molecular perovskite, and LiDCA = Li(C_2N_3). We would like to note that the phase diagram was built from DSC data of the initial heating run up to $\chi_{LiDCA}=0.41$ since T_{liq} of mixtures with higher mole fractions ($\chi_{LiDCA}=0.41, 0.45, 0.49, 0.58, 0.66$) are not possible to determine. For small mole fractions, we observed a very weak signal without a clear peak onset and offset, and for larger mole fractions, we assume that T_{liq} raises quickly above the temperature where trimerization of $Li(C_2N_3)$ and/or decomposition of $[Pr_3NBu]Mn(C_2N_3)_3$ start.

 $T_{\rm m}$ and $T_{\rm d}$ is expected to further suppress any potential decomposition processes. To demonstrate this, we performed simple model experiments by heating 20 mg of mixtures near the eutectic (x_{LiDCA} = 0.38 and 0.41) to 443 or 441 K in a glass vial under Ar atmosphere, see method details in the supplementary material (S-5). Initial melting started after 10 min, and after 30 min, the melting process was completed. After cooling slowly to room temperature, the remaining solids were transparent and had a drop-like appearance, see Fig. S4. Comparing the PXRD pattern prior to and after melting of the mixture closest to the eutectic ($x_{LiDCA} = 0.41$), all sharp reflections disappeared, see Fig. S23. For the mixture of $x_{LiDCA} = 0.38$, however, evidence for crystalline domains remained, which is expected from the observed recrystallization event in the DSC traces of the $x_{\text{LiDCA}} = 0.38$ mixture when cooled slowly, see Figs. S21, S22, and S30. Importantly, an excess of Li(C_2N_3) ($x_{LiDCA} = 0.41$ and higher) avoids any recrystallization even when cooled slowly. This suggests that the composition of the eutectic mixture is at a mole fraction of approximately $x_{LiDCA} \approx 0.4$. In parallel, for all mixtures with a mole fraction $x_{LiDCA} \ge 0.41-0.66$, a clear glass transition T_g is visible, which decreases from $T_{\rm g}$ = 312.3 K ($x_{\rm LiDCA}$ = 0.41) to $T_{\rm g}$ = 301.3 K ($x_{\rm LiDCA}$ = 0.66), see Figs. S31–S35. Furthermore, miscibility of [Pr₃NBu]Mn(C₂N₃)₃ and Li(C₂N₃) in the liquid state is assumed since only a single T_g was obtained for mixtures between $x_{\text{LiDCA}} = 0.41$ and 0.66, see Figs. S31–S35. Therefore, Li(C₂N₃) is a suitable modifier for tailoring the melting behavior of the molecular perovskite [Pr₃NBu]Mn(C₂N₃)₃.

CONCLUSION

We report the synthesis of the new molecular perovskite $[Pr_3NBu]Mn(C_2N_3)_3$, investigate its melting behavior, and show that $Li(C_2N_3)$ is a suitable eutectic forming glass modifier. For the eutectic mixture at $x_{LiDCA} \approx 0.4$, we observe a decrease of T_m of 30 K and show that a CP glass can be obtained even when cooled slowly. Our results underpin that established principles for inorganic glasses are a suitable compass for progressing the area of CP glasses, and specifically, the use of eutectic mixtures provides a myriad of opportunities to alter the glass' resulting macroscopic properties.

In going forward, the use of "non-innocent" glass modifiers, i.e., modifiers with an intrinsic physical property, such as optical activity or interesting photophysics, might offer a pathway to incorporate new properties in the resulting glass beyond its impact as a modifier per se. For instance, for an AX modifier, A+ might be optical active while X- guarantees high miscibility with the parent material when chosen according to the chemistry of the glass forming CP. Additionally, we propose that established formulas that describe the underlying solid-liquid thermodynamics can guide the search for other potential eutectic formers for CP forming glasses such as purely organic [C₂N₃]⁻-based modifier salts with suitable melting temperatures for [C₂N₃]⁻-based molecular perovskites. Future research opportunities include the investigation of materials' mechanical properties, such as compressibility, bulk moduli, and thermal expansion behavior, as a function of mole fractions x_{LiDCA} . Therefore, we believe that the use of modifiers will become an increasingly important research branch in the field of CP glasses, for which our results provide an important fundamental groundwork.

SUPPLEMENTARY MATERIAL

See the supplementary material for the complete material synthesis, characterization and thermal analysis of the studied perovskite, modifier salts, and perovskite–modifier mixtures.

DEDICATION

Dedicated to the 75th Birthday of A. K. Cheetham.

ACKNOWLEDGMENTS

We like to thank Alba S. J. Méndez and Martin Etter for their support during data collection at Beamline P02.1 at the Deutsche Elektronensynchrotron DESY (PETRA III, Hamburg, Germany). G.K. gratefully thanks the Fonds der Chemischen Industrie and the DFG (Project No. 450070835) for financial support.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Silva M. Kronawitter: Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Validation (equal); Visualization (equal); Writing – original draft (equal). Sebastian A. Hallweger: Data curation (equal); Investigation (equal). Jan Meyer: Investigation (equal). Carmen Pedri: Investigation (equal). Stefan Burger: Investigation (equal); Writing – review & editing (equal). Ahmad Alhadid: Data curation (equal); Investigation (equal); Writing – review & editing (equal). Sebastian Henke: Validation (equal); Writing – review & editing (equal). Gregor Kieslich: Conceptualization (equal); Funding acquisition (equal); Project administration (equal); Resources (equal); Supervision (equal); Writing – review & editing (equal).

DATA AVAILABILITY

The data that support the findings of this study are available within the supplementary material.

REFERENCES

- ¹H. Kim, S. Yang, S. R. Rao, S. Narayanan, E. A. Kapustin, H. Furukawa, A. S. Umans, O. M. Yaghi, and E. N. Wang, Science 356, 430 (2017).
- ²Y.-M. Xie, J.-H. Liu, X.-Y. Wu, Z.-G. Zhao, Q.-S. Zhang, F. Wang, S.-C. Chen, and C.-Z. Lu, Cryst. Growth Des. 8, 3914 (2008).
- ³L. Jiao, Y. Wang, H.-L. Jiang, and Q. Xu, Adv. Mater. **30**, 1703663 (2018).
- ⁴L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. van Duyne, and J. T. Hupp, Chem. Rev. 112, 1105 (2012).
- ⁵T. D. Bennett and S. Horike, Nat. Rev. Mater. 3, 431 (2018).
- ⁶S. Horike, S. S. Nagarkar, T. Ogawa, and S. Kitagawa, Angew. Chem., Int. Ed. 59, 6652 (2020).

- ⁷T. D. Bennett, J.-C. Tan, Y. Yue, E. Baxter, C. Ducati, N. J. Terrill, H. H.-M. Yeung, Z. Zhou, W. Chen, S. Henke, A. K. Cheetham, and G. N. Greaves, Nat. Chem. 6, 8079 (2015).
- ⁸T. D. Bennett, Y. Yue, P. Li, A. Qiao, H. Tao, N. G. Greaves, T. Richards, G. I. Lampronti, S. A. T. Redfern, F. Blanc, O. K. Farha, J. T. Hupp, A. K. Cheetham, and D. A. Keen, J. Am. Chem. Soc. 138, 3484 (2016).
- ⁹L. Frentzel-Beyme, M. Kloß, P. Kolodzeiski, R. Pallach, and S. Henke, J. Am. Chem. Soc. **141**, 12362 (2019).
- ¹⁰S. S. Nagarkar, H. Kurasho, N. T. Duong, Y. Nishiyama, S. Kitagawa, and S. Horike, Chem. Commun. 55, 5455 (2019).
- ¹¹C. Das, T. Ogawa, and S. Horike, Chem. Commun. **56**, 8980 (2020).
- ¹²D. Umeyama, S. Horike, M. Inukai, T. Itakura, and S. Kitagawa, J. Am. Chem. Soc. 137, 864 (2015).
- ¹³S. Vaidya, O. Veselska, A. Zhadan, M. Diaz-Lopez, Y. Joly, P. Bordet, N. Guillou, C. Dujardin, G. Ledoux, F. Toche, R. Chiriac, A. Fateeva, S. Horike, and A. Demessence, Chem. Sci. 11, 6815 (2020).
- ¹⁴Y. Wang, H. Jin, Q. Ma, K. Mo, H. Mao, A. Feldhoff, X. Cao, Y. Li, F. Pan, and Z. Jiang, Angew. Chem., Int. Ed. **59**, 4365 (2020).
- ¹⁵T. Ogawa, K. Takahashi, S. S. Nagarkar, K. Ohara, Y.-L. Hong, Y. Nishiyama, and S. Horike, Chem. Sci. 11, 5175 (2020).
- ¹⁶N. Ma, S. Kosasang, A. Yoshida, and S. Horike, Chem. Sci. 12, 5818 (2021).
- ¹⁷H. Kimata and T. Mochida, Chem. Eur. J. 25, 10111 (2019).
- ¹⁸M. Lusi, Cryst. Growth Des. 18, 3704 (2018).
- ¹⁹B. K. Shaw, A. R. Hughes, M. Ducamp, S. Moss, A. Debnath, A. F. Sapnik, M. F. Thorne, L. N. McHugh, A. Pugliese, D. S. Keeble, P. Chater, J. M. Bermudez-Garcia, X. Moya, S. K. Saha, D. A. Keen, F.-X. Coudert, F. Blanc, and T. D. Bennett, Nat. Chem. 13, 778 (2021).
- ²⁰ J. M. Bermúdez-García, M. Sánchez-Andújar, S. Yáñez-Vilar, S. Castro-García, R. Artiaga, J. López-Beceiro, L. Botana, Á. Alegría, and M. A. Señarís-Rodríguez, Inorg. Chem. 54, 11680 (2015).
- ²¹ B. K. Shaw, C. Castillo-Blas, M. F. Thorne, M. L. Ríos Gómez, T. Forrest, M. D. Lopez, P. A. Chater, L. N. McHugh, D. A. Keen, and T. D. Bennett, Chem. Sci. 13, 2033 (2022).
- ²² A. Singh, M. K. Jana, and D. B. Mitzi, Adv. Mater. **33**, 2005868 (2021).
- ²³T. Li, W. A. Dunlap-Shohl, E. W. Reinheimer, P. Le Magueres, and D. B. Mitzi, Chem. Sci. **10**, 1168 (2019).
- ²⁴J. Lu, Z. Shan, J. Zhang, Y. Su, K. Yi, Y. Zhang, and Q. Zheng, J. Non-Cryst. Solids: X 16, 100125 (2022).
- ²⁵N. Ghribi, M. Dutreilh-Colas, J.-R. Duclère, T. Hayakawa, J. Carreaud, R. Karray, A. Kabadou, and P. Thomas, J. Alloys Compd. 622, 333 (2015).
- ²⁶A. Marzuki and D. E. Fausta, IOP Conf. Ser.: Mater. Sci. Eng. 858, 012035 (2020)
- ²⁷B. Roling and M. D. Ingram, J. Non-Cryst. Solids 265, 113 (2000).
- ²⁸Y. He, X. Shen, Y. Jiang, and A. Lu, Mater. Chem. Phys. **258**, 123865 (2021).
- ²⁹ K. Griebenow, C. B. Bragatto, E. I. Kamitsos, and L. Wondraczek, J. Non-Cryst. Solids 481, 447 (2018).
- ³⁰ N. Ma, N. Horike, L. Lombardo, S. Kosasang, K. Kageyama, C. Thanaphatkosol, K. Kongpatpanich, K.-I. Otake, and S. Horike, J. Am. Chem. Soc. **144**, 18619 (2022)
- ³¹S. Burger, S. Grover, K. T. Butler, H. L. B. Boström, R. Grau-Crespo, and G. Kieslich, Mater. Horiz. 8, 2444 (2021).
- ³²J. A. Schlueter, J. L. Manson, and U. Geiser, Inorg. Chem. **44**, 3194 (2005).
- ³³J. Dupont, Acc. Chem. Res. 44, 1223 (2011).
- ³⁴M. Liu, A. H. Slavney, S. Tao, R. D. McGillicuddy, C. C. Lee, M. B. Wenny, S. J. L. Billinge, and J. A. Mason, J. Am. Chem. Soc. **144**, 22262 (2022).
- ³⁵T. Watcharatpong, T. Pila, T. Maihom, T. Ogawa, T. Kurihara, K. Ohara, T. Inoue, H. Tabe, Y.-S. Wei, K. Kongpatpanich, and S. Horike, Chem. Sci. 13, 11422 (2022).