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The energy and mass measurements of jets are crucial tasks for the Large Hadron Collider
experiments. This paper presents a new calibration method to simultaneously calibrate these
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(DNN). To address the specificities of the calibration problem, special loss functions and
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phase space. In particular, it consistently improves the energy and mass resolutions, with a
30% better energy resolution obtained for transverse momenta ?T > 500 GeV.
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1 Introduction

Jets – the collimated sprays of hadrons resulting from a high momentum quark or gluon emission – are
abundantly produced during the operation of the Large Hadron Collider (LHC). They are relevant to almost
all physics analyses of the collisions recorded by the LHC experiments, either because they are part of
the final state of the studied signal or because they generate background for the process of interest. To
achieve high-quality physics results, it is crucial to precisely measure the angular position and energy of
the jets. This task is made difficult by multiple effects including fluctuations in the parton showers or
in the interactions between the particles forming the jets and the detectors [1]. Another important task
is to measure the collimated hadronic decay of high-momentum heavy particles such as top quarks, , ,
/ or Higgs bosons. These are reconstructed as jets with large angular opening (large-' jets) and the
measurement of their mass as well as their energy is therefore necessary.

To measure the jet energy and mass from raw detector signals, the ATLAS and CMS collaborations use
calibration procedures comprising multiple steps [2, 3]. In these procedures, the main energy and mass
corrections are evaluated numerically from simulated collision events. The corrections are evaluated and
applied in two distinct successive steps, in bins of a limited (usually two or three) number of characteristic
variables. However, calibrating both highly correlated energy and mass while exploiting all shower
variables and their correlations in a single correction step is possible through approaches based on deep
neural networks (DNN). This paper presents a full implementation developed by the ATLAS Collaboration
using 13 TeV simulated collision events, overcoming several difficulties that are specific to the calibration
problem. This new calibration method aims at replacing the current simulation-based corrections of the
energy and mass of large-' jets. After a brief introduction to the ATLAS detector (Section 2), the paper
explains why jet energy and mass calibrations are necessary, reviews the current procedure in ATLAS and
motivates the new DNN approach (Section 3). The samples used and the selections applied to them are
described in Section 4. Section 5 details the specific methodology needed to construct and properly train
the network, while Section 6 discusses the validation and performance of the resulting DNN calibration,
comparing it with the current numerical method. Finally Section 7 identifies and discusses limitations in
this approach as well as some possible solutions.

2 The ATLAS detector

The ATLAS detector [4] covers nearly the entire solid angle around the collision point.1 It consists of an inner
tracking detector surrounded by a thin superconducting solenoid, electromagnetic and hadron calorimeters,
and a muon spectrometer incorporating three large superconducting air-core toroidal magnets.

The inner-detector system (ID) is immersed in a 2 T axial magnetic field and provides charged-particle
tracking in the range of |[ | < 2.5. The high-granularity silicon pixel detector covers the vertex region
and typically provides four measurements per track, the first hit normally being in the insertable B-layer
(IBL) [5, 6] installed before Run 2 of the LHC. It is followed by the silicon microstrip tracker (SCT), which
usually provides eight measurements per track. These silicon detectors are complemented by the transition

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the I-axis along the beam pipe. The G-axis points from the IP to the centre of the LHC ring, and the H-axis points
upwards. Cylindrical coordinates (A, q) are used in the transverse plane, q being the azimuthal angle around the I-axis.
The pseudorapidity is defined in terms of the polar angle \ as [ = − ln tan(\/2). Angular distance is measured in units of

Δ' ≡
√
(Δ[)2 + (Δq)2.
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radiation tracker (TRT), which enables radially extended track reconstruction up to |[ | = 2.0. The TRT
also provides electron identification information based on the fraction of hits (typically 30 in total) above a
higher energy-deposit threshold corresponding to transition radiation.

The calorimeter system covers the pseudorapidity range of |[ | < 4.9. In the region |[ | < 3.2, electromagnetic
calorimetry is provided by barrel and endcap high-granularity lead/liquid-argon (LAr) calorimeters, with
an additional thin LAr presampler covering |[ | < 1.8 to correct for energy loss in material upstream of
the calorimeters. Hadron calorimetry is provided by the steel/scintillator-tile calorimeter, segmented into
three barrel structures with |[ | < 1.7, and two copper/LAr hadron endcap calorimeters. The solid angle
coverage is completed with forward copper/LAr and tungsten/LAr calorimeter modules optimised for
electromagnetic and hadronic energy measurements respectively.

The angular and longitudinal segmentation of the calorimeters provides valuable 3-dimensional information
about the location of the energy deposits. This allows the calculation of quantities useful for the
characterization of the energy shower resulting from various type of particles or groups of particles such as
hadronic jets.

An extensive software suite [7] is used in data simulation, in the reconstruction and analysis of real and
simulated data, in detector operations, and in the trigger and data acquisition systems of the experiment.

3 Jets and their calibration with the ATLAS detector

After the parton emission, the complete hadronisation process results in a set of particles from which the
particle jets are formed. These are also named true jets in the context of simulated events discussed in
this paper. In practice the group of particles forming a true jet, its constituents, is obtained by applying a
physically motivated procedure called a jet clustering algorithm on the set of kinematic 4-vectors of all the
stable interacting particles of the collision (details are given in Section 4.1). The sum of the 4-vectors of a
jet’s constituents defines its momentum and thus the true jet energy and mass. These are the reference
quantities for the jet calibration that is applied to experimental jets reconstructed with the ATLAS detector.
Jet reconstruction is based on two types of primary signals: charged particle tracks, which are reconstructed
from measurements of hits in the inner detector [8, 9] and topological clusters, which are reconstructed from
energy deposits in the calorimeters [10]. Tracks and clusters can then be combined to form higher-level
objects, each characterised by a kinetic 4-vector [11, 12]. Together, these objects approximate the flow of
hadronic particles and are used as the constituents of the reconstructed jets. The final jets are obtained by
regrouping these constituents using the same jet algorithm as used for the true jets.

Due to various detector inefficiencies and limitations, the kinematics of the experimentally reconstructed
jets differ significantly from the corresponding true jets. Precise and complex corrections are thus applied
to the jet energy and mass before these quantities are used in physics analyses [2]. These corrections are
separated into two steps. Firstly, a series of corrections is obtained from simulation that allows alignment
between the reconstructed-level energies and masses and the generated-level ones; they ensure that the jet
energy scale (JES) or the jet mass scale (JMS) of reconstructed jets is correct (a more precise definition is
given below). They also compensate for the effect of multiple proton–proton interactions happening in the
same bunch crossing and residual effects in the detector from collisions in nearby crossings (these effects
are collectively referred to as pile-up). Secondly, other corrections obtained from real data, using known
physical processes or well-reconstructed objects such as photons, allow corrections for residual differences
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(of the order of 2–3%) to be made between real and simulated reconstructed jets. The calibration method
presented in this paper is an alternative for the simulation-based correction steps.

Simulation-based corrections are derived from studies of the individual response of the quantity of
interest � , the jet energy, (but all the following equations stand identically for the mass <), defined by
A� =

�reco
�true

where �true is calculated from the jets clustered from generated particles and �reco, from the
jets reconstructed after detector simulation (true and reco jets are more precisely defined in Section 4.2).
Because of the stochastic nature of both the quantum chromodynamics (QCD) shower and its interactions
with the detector, true jets that have the same parameters (such as energy, angular position, mass, . . . ) can
generate distributions of possible A� . Individual response distributions depend on these parameters and are
usually unimodal: their most probable value, their mode '� = mode({A�}), is called the average response,
JES (or JMS in the equivalent case for jet mass), or simply response when the context is non-ambiguous.
The mode, as opposed to the mean or the median, is chosen as the definition of such a central value
to avoid ambiguities or biases that can arise when the distributions are asymmetric. The width of the
distribution around the mode is used to define the resolution in � . In this paper, the chosen definition is
the inter quantile range (IQR) at 68%2 divided by the mode f� =

IQR68% ({A� })
'�

. Because of experimental
limitations, the average response may differ from unity and the objective of the calibration is to find the
relevant corrections such that '� = 1 for all populations of true jets (which formalizes the idea that true
and reco scales are on average identical), with f� as small as possible.

The individual response distributions can be parameterised by a set of parameters describing the true
jet (here taken to be the energy, pseudorapidity and mass) but also by inter-dependent parameters of the
reconstructed jets such as the energy, pseudorapidity, mass, fractions of energy deposited in the various
layers of the calorimeter, fraction of the momentum of the associated tracks, and others. Formally, it is
then possible to model the distribution as a probability distribution function 5 (®G) where ®G is the list of
input parameters that can be separated into the various true and reconstructed parameters ®G = (®Gtrue, ®Greco).
The average response for true jets with parameters ®Gtrue is then given by

'� (®Gtrue) = mode( 5 | ®Gtrue
). (1)

The aim of the calibration is then to find a function of the reconstructed parameters � (®Greco) defining
the calibrated quantity �calib = � (®Greco)�reco such that the most probable value becomes '�calib (®Gtrue) =
mode(6 | ®Gtrue

) = 1, where 6 is the probability distribution function obtained from 5 by changing �reco →
�calib and the mode is taken over all ®Greco.

In general this mathematical problem is difficult. It has an exact solution in simple cases where the response
depends on only one parameter, the quantity � itself, and when '� (�true)�true is an affine function [13].
In this case the solution is to choose the function � such as

∀G ∈ R, � (G'� (G)) =
1

'� (G)
. (2)

This solution is called the numerical inversion (NI) because '� (and thus the pair (G'� (G), 1
'� (G ) )) can

be obtained numerically from the simulated data and because �true'� (�true) represents an inversion of the
true quantity.3 This method (referred to here as standard calibration) is employed by ATLAS to obtain
sequentially a jet energy scale calibration and then a mass scale calibration. In practice the function '� (�)

2 IQR instead of the standard deviation is chosen here as the shape of the response distribution does not always follow a Gaussian
distribution, particularly for the jet mass.

3 For a given �true, the most probable �reco is by definition �true'� (�true).
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is evaluated as function of (�true, [true) (and <true for mass calibration) by collecting individual responses
in bins of these quantities [2]. This procedure gives satisfactory performance. The variables � , [ and <

are the principal dependencies of the JES and JMS and the use of true quantities to form the response
evaluation bins allows potential biases due to the energy or mass spectrum of the generated sample to be
avoided.

As mentioned above, there is much more information available to describe the reconstructed hadronic
showers than just the energy, pseudorapidity and mass. Using these additional variables can potentially
help obtain a more precise JES and JMS and improve their resolution, including subsamples of jets
such as quark-initiated or gluon-initiated jets. However, these variables can be correlated. Optimally
exploiting all the correlations in the same way as performed in the standard calibration would require
highly multidimensional bins, which is practically impossible. On the other hand the task of numerically
modelling a multidimensional function can be successfully performed with modern DNN techniques.
Furthermore, a key problem of the calibration evaluation, estimating the mode of distributions, is solvable
with these techniques; a solution is discussed in detail in Section 5.1. A proof of concept of using DNN for
JES and JMS calibration, including an implementation of the NI procedure, has already been presented
in [14] and DNN techniques are also employed to perform a particular step of the energy (but not the
mass) calibration for small-R jets [15]. Building on this, a complete and operational solution and its
performance is presented here. This new procedure extends several aspects of the DNN calibration but
does not implement NI to simplify the method by avoiding the need to train two DNNs sequentially, one to
model the function ' as a function of Gtrue, the second the function � as in Eq. (2). Instead, it evaluates
directly the uncalibrated responses in terms of reconstructed quantities, which means that the network
evaluates

'� (®Greco) = mode( 5 | ®Greco
) (3)

instead of mode( 5 | ®Gtrue
) as in Eq. (1). The calibration function is then chosen to be simply 1/'� (®Greco).

The price to pay for this simpler procedure is that the response mode( 5 | ®Greco
) a priori depends on the

distribution of the simulated input samples, which can bias the resulting calibration. However, because
®Greco includes many variables relevant to the description of the hadronic shower, it can be expected that the
response distributions at each point of the phase space are narrow enough so that the overall bias on the
mode is negligible. Although this hypothesis is not testable in practice because of the high dimensionality,
verifications are performed to ensure the input samples do not bias the performance (they are presented in
Section 6.3).

4 Samples and selections

4.1 Event simulation

The training and validation of the DNN is based on Monte Carlo simulations of proton–proton (??)
collisions at a centre-of-mass energy of

√
B = 13 TeV. All events were passed through the complete ATLAS

detector simulation based on Geant4 [16, 17]. Various physics processes were simulated as described in
Table 1 to train and test the DNN on different jet topologies.

Training is performed on the QCD dĳet sample as this type of process is, by orders of magnitude, more
probable at the LHC and enters as a background to many analyses. In a validation step, it is verified that the
training generalises and produces a good calibration for other important physics processes such as those
listed in Table 1. All samples (except the Sherpa one) were produced using Pythia 8.230 [18] with the
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Table 1: Simulated samples used for training and validation

Use Process type Generator Number of jets passing the selections (in millions)
Training, validation QCD dĳet Pythia 8.230 ∼ 270
Validation ,// Pythia 8.230 ∼ 20
Validation Top quark Pythia 8.230 ∼ 15
Validation Higgs Boson Pythia 8.230 ∼ 15
Validation QCD dĳet Sherpa 2.2.5 ∼ 30

NNPDF2.3lo [19] parton distribution function (PDF) set and the A14 set of tuned parameters [20]. The
training sample containing jets originating from light quarks or gluons was obtained by generating dĳets in
slices of the jet transverse momentum, ?T, to sufficiently populate the kinematic region of interest (from
around 200 GeV up to 6000 GeV). For the validation samples, physics processes modelling phenomena
beyond the Standard Model are used to populate the high-?T region.

• The ,//-boson sample was obtained by generating the , ′ → ,/ → @@̄@@̄ process with
<, ′ = 2 TeV.

• The top-quark sample was obtained by generating the / ′ → CC̄ → ,+1 ,− 1̄ → 1@@̄ 1̄@@̄ process
with </ ′ = 4 TeV.

• The sample of Higgs bosons, which displays a broad Higgs boson ?T spectrum, was obtained by
generating the production of Randall–Sundrum gravitons �∗ in a benchmark model with a warped
extra dimension [21] over a range of graviton masses from 300 to 6000 GeV, where the graviton
decays according to �∗ → �� → 11̄11̄.

The Sherpa dĳet sample was generated using the Sherpa 2.2.5 [22] generator. The matrix element
calculation was included for the 2 → 2 process at leading order, and the default Sherpa parton shower [23]
based on Catani–Seymour dipole factorisation was used for the showering with ?T ordering, using the
CT14nnlo PDF set [24]. These samples used the dedicated Sherpa AHADIC model for hadronisation [25],
based on cluster fragmentation ideas.

Finally, the effect of multiple interactions in the same and neighbouring bunch crossings (pile-up) was
modelled by overlaying the simulated hard-scattering event (event of interest) with inelastic ?? events
generated with Pythia 8.186 [26] using the NNPDF2.3lo set of PDFs) [19] and the A3 set of tuned
parameters [27]. The number of overlaid events is representative of the amount of pile-up present in the
2017–2018 ATLAS ?? data sample.

4.2 Jet reconstruction and selection

In each event, the flow of hadronic particles is represented by a set of 4-vectors built by combining momentum
and energy measurements from the inner tracker and calorimeters. In this paper, the combination technique
producing unified flow objects (UFO) [28] is used. These input constituents are clustered into jets with the
anti-:C jet algorithm with angular radius ' = 1.0 [29] using the FastJet software package [30]. The jets
then undergo a grooming procedure aimed at suppressing soft radiation from pile-up and the underlying
event; the soft-drop procedure [31] is employed with parameters V = 1 and Icut = 0.1.

Stable particles, with a lifetime 2g > 10 mm, produced by the generators (with the exception of neutrinos
and muons) are also clustered into jets using the same algorithm to obtain true jets.
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To obtain training samples that are not biased by experimental effects such as pile-up, noise or misidentific-
ations, some requirements are imposed on the jets. Reconstructed jets are selected if they are matched to a
true jet and isolated as described in Ref. [2]. A reconstructed and a true jet are matched if they are within
an angular distance Δ' = 0.3. Two isolation requirements are then applied; reconstructed jets are rejected
if a true jet other than the matched one is found within Δ' = 2.5 or if another reconstructed jet is found
within Δ' = 1.5. Finally, both the reconstructed and true jets are required to have ?T > 50 GeV and, in an
event, only the two highest-?T jets satisfying these criteria are considered. The selection results in about
270 million jets being available for the DNN training sample.

5 Methodology of the deep neural network calibration

The simultaneous calibration of the jet energy and mass is performed using the calculations of a single
DNN taking as inputs reconstructed jet-level and event-level quantities. The DNN is set up to output
two numbers corresponding to the energy and mass responses. However, as mentioned in the previous
section, it is not possible to directly predict the exact individual � (or <) response for a given reconstructed
jet as each true jet corresponds to a distribution of possible responses. The DNN predictions are thus
interpreted as the most probable values of the possible responses for the input jets (that is, the modes of
their distribution). Following Eq. (3), the DNN is trained so that

'DNN
� (®Greco) ≃ '� (®Greco) ≡ mode( 5 | ®Greco

).

The calibrated energy (or mass) is then defined as

�calib =
�reco

'DNN
�

(®Greco)
.

Thus, the DNN output predictions are

®Hpred = ('DNN
� , 'DNN

< ).

During the training, the target quantities corresponding to the inputs ®Greco are the individual responses
discussed in Section 3:

®Htarget = ®Htrue = (A� , A<) = (�reco

�true
,
<reco

<true
).

These are not directly the desired average responses '� and '< and the necessity to predict distribution
modes (and not means nor medians) requires a careful choice of the loss function. Beside these mathematical
concerns, experimental difficulties related to the detector geometry – and especially the geometry of the
calorimeters – strongly interfere in the calibration predictions for certain angular regions. This is accounted
for by a dedicated processing of the jet angular position.

Finally, the mass calibration alone has specific difficulties. Firstly, the mass response distributions are
generally wider and asymmetric, making it harder for the DNN to predict their mode. Secondly, large-'
jets are mainly used to reconstruct heavy particles whose decays are collimated (top quarks, , , / , or

8



Higgs bosons) and for which the mass measurement is crucial. So the DNN performance needs to be
good for these jets, even if their topology differs from standard QCD jets. This has motivated the use
of a specific architecture (including a residual connection-like structure) and training procedure (with a
dedicated mass-only step).

5.1 Loss function

The loss function L(®Htrue, ®Hpred) is a crucial part of the DNN training as it defines what mathematical
quantity the DNN will learn to predict. This is particularly true in the case presented here where the targets
(®Htrue) are realizations of a stochastic distribution. In this case, it is proven that minimising the usual mean
square error loss (L = (®Htrue − ®Hpred)2) would have ®Hpred converge to the mean of the distribution, while
minimising the mean absolute error (L = | ®Htrue − ®Hpred |) would imply a convergence to the median [32].
Converging to the distribution mode, as is necessary for the jet calibration, would require taking a Dirac
delta distribution as the loss L = X(®Htrue − ®Hpred). This is not possible in practice and an approximate
function is therefore necessary. One possibility is the Gaussian kernel as suggested in Ref. [32], another
solution is inspired by mixture-density-network (MDN) techniques and is described below. Numerical
tests show the MDN losses are less biased than the Gaussian kernel losses. They are also found to converge
faster and allow more flexibility in the training procedure.

First, as the DNN produces two outputs ®Hpred = ('DNN
�

, 'DNN
< ), two independent loss functions are

considered, the sum of them being the final minimised quantity:

LC>C = L� + L<.

The MDN loss is constructed from the assumption that the response distribution of the DNN targets is a
Gaussian distribution with central value ` and width f.

%(A� , (`, f)) ∝
4−(A�−`)2/2f2

f
.

With the parameter of interest being ` (the mode of the distribution), an estimator ˆ̀ (and f̂) can be
obtained from the maximum of the likelihood (LH) over a given sample of A�

LH(`, f) =
∏
A�

%(A� , (`, f)). (4)

As a consequence, a DNN outputting two values ®Hpred = (`pred, fpred) and trained with the loss:

LMDN = − log(%(®Htrue, ®Hpred)) = log(fpred) +
1

2

(A� − `pred)2

f2
pred

(5)

would minimise the logarithm of Eq. (4) and thus predict the estimators, that is (`pred, fpred) = ( ˆ̀, f̂).
Using this MDN loss, the DNN has to predict the width of this distribution (fpred) in addition to predicting
the mode of the response distribution. For an energy and mass calibration DNN:
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®Hpred =

©­­­­
«

`�
pred

f�
pred

`<pred

f<
pred

ª®®®®¬
,

where only the predicted modes are eventually used in the final calibration procedures.

In practice, the energy or mass response distributions are not perfect Gaussians distributions especially
for jets with low ?T and high mass or with high |[ |. To take this into account, the assumed underlying
distribution can be replaced by an asymmetric Gaussian distribution or a truncated Gaussian distribution.

%asym(G) ∼
{
4 (G−`)

2/2f2
1 if G < `

4 (G−`)
2/2f2

2 if G ≥ `
%trunc(G) ∼

{
4 (G−`)

2/2f2
if |G − ` | < #f

0 otherwise
(6)

Although not physically motivated these losses help with the numerical convergence of the network. In
particular, the asymmetric MDN loss (MDNA) helps to avoid biases from asymmetric shapes in the
response distributions, but it requires the DNN to output three values per prediction (`, f1, f2). The use of
a truncated distribution can apply to both the MDN and MDNA cases. In practice, truncation consists
of excluding from the loss evaluation jets for which |G − ` | > #f and adapting Eq. (5) with the relevant
distribution normalisation factor. Asymmetric loss helps to converge faster in regions of phase space
where the distributions are asymmetric and the truncation is used at the end of the training to improve the
accuracy of the calibration. Details of the choice and tuning of the parameters of the loss function are
further discussed in Section 5.4.

5.2 Input features

To obtain precise predictions, it is necessary to give the DNN an as complete description of the jet and the
event as possible. A list of 21 jet or event variables is chosen as the input to the DNN. These features are
chosen for their relevance in calibration or jet identification tasks as demonstrated in previous studies [2,
33]. They can be divided in four categories: the jet kinematics, which are the main dependencies of the
energy and mass responses;4 the jet substructure variables, which describe the particle-shower topology
used to classify jets; the detector variables, which quantify the relative charged-particle contribution and the
development of the calorimeter showers; and finally, the event variables that describe the jet environment.
Table 2 presents these input variables and their definitions. To have homogeneous inputs for the DNN, each
input is normalised so that its distribution falls in the range of [−1, 1].
In addition, the DNN has difficulties learning the sharp variations in the energy and mass responses along [

that are due to the complex ATLAS detector geometry and in particular to the poorly instrumented regions
between the central and forward calorimeters between |[ | = 0.8 and |[ | = 1.5.

In an effort to help the modelling, an additional input preparation step called [ annotation is implemented
as the first operation of the DNN. This step computes extra features based on [ that are passed along
with other input features to the rest of the DNN. These extra features are calculated as 58 ([) where 58 are
Gaussian functions with different central values and widths that are chosen to cover key angular regions

4 Although the rapidity provides a better estimate of the actual angular position of massive objects, the pseudorapidity is used in
this paper as used in the current ATLAS calibration; the performance is not expected to be affected by this choice
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The DNN contains approximately 764 000 trainable parameters and is structured in different parts as
indicated in Figure 2.:

• Input processing: contains the input layer with the 21 input features and the [ annotation described
above.

• Core: contains several hidden layers (210 neurons each) common to both the energy and mass
predictions.

• Early fork: premature splitting between the energy and mass predictions to allow for a strong
specialisation of the DNN in each calibration, both forks containing the same hidden layers. Having
independent weights also allows to freeze some of them during the training procedure.

• Multiplicative residual connection: loosely inspired from Ref. [39] with the substitution of the
addition by a multiplication to increase the class of functions that can be modelled by the network.
These layers link the input layer directly to the mass output, with the intention of making the DNN
learn which inputs are the most important for the mass calibration and thus helping to improve the
mass predictions.5

• Outputs: the DNN has two output predictions, one for the energy calibration and one for the mass
calibration, ®Hpred = (`�

pred, `
<
pred) = ('�##

�
, '�##

< ), along with subsidiary predictions (f�
pred, f

<
pred).

The activation function for each hidden layer is chosen to be the MISH function [40] and is given by:

5 (G) = G tanh(ln(1 + 4G)).

The only exception is the activation function of the last hidden layer of the residual connection that is the
softmax function: its outputs are restricted to [0, 1] and are used as multiplicative weights.

The last activation function applied to the output layers is chosen to be:

5 (G) = tanh(G) + 1

to obtain predictions between 0 and 2, which is the expected range of the energy and mass central
responses.

5.4 Training procedure

Establishing the training strategy cannot be left to a simple hyperparameter scan. Firstly, because the
energy and mass responses vary significantly across the phase space that is not uniformly populated and,
secondly, because converging to a loss minimum does not guarantee that the physics performance goals are
satisfied for the full phase space. Furthermore, these performance goals (described in Section 6) are costly
to evaluate and cannot be tested during the training procedure. As a consequence the strategy presented
here is obtained with a series of attempts and refinements gradually improving the performance. This
training strategy is described in Table 3: it totals 107 epochs and is divided into three parts.

5 This is only added for the mass calibration prediction as it is harder to predict than the energy calibration due to its response
distributions being broader and more asymmetric. The predicted energy calibration already shows excellent performance
without an additional residual connection.
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In a first initialisation step, the DNN is trained with small batch sizes and an MDNA loss with no or small
truncation of the loss. This aims at quickly converging to a rough estimate of the mode of the response
distributions thanks to small batch size (i.e., frequent weight updates) and a few epochs while adapting to
possible asymmetric distributions (e.g., at high [) with the MDNA loss.

The second step is designed to obtain very precise predictions by taking advantage of large batch sizes and
a progressive narrowing of the loss truncation. This narrowing allows a gradual focus on the centre of the
response distributions, improving the predictions. The larger batch sizes improve the calculation speed and
thus the training time.

The third step is a fine-tuning step with an exclusive mass training. The weights involved in the energy
prediction6 are frozen to their values at the end of the second step and only those involved in the mass
prediction7 are free to be tuned. This step is necessary in order to have as good predictions for the mass as
for the energy for which the two first steps are enough. For this last step, a MDN loss with a large truncation
at 1.0f is used in order to focus more on the core of the mass response distribution. A symmetric loss at
this stage is observed to converge better, possibly because it results in a simpler network, easier to optimize
on the central and more symmetric parts of the response distributions.

During the training two different optimizers are used, Rectified Adam [41] in the initialisation step and
diffGrad [42] in the common training and exclusive mass training. The learning rate is decreased in the
latter steps of the training following the improvements in the predictions.

Table 3: The specific training procedure of the DNN. MDN(A) stands for mixture density network (asymmetric).
The loss truncation is indicated in number of standard deviations, f. When � and < are not mentioned, it means that
the energy and mass losses are identical.

Steps N° Number of epochs Batch size Learning rate Loss

Initialisation

1 2 15 000 10−3 MDNA

2 2 25 000 10−3 MDNA

3 2 35 000 10−3 MDNA truncated ( 4.0f )

4 2 15 000 10−3 MDNA truncated ( 3.5f )

Common training

5 6 95000 10−3 MDNA truncated ( 3.5f )

6 6 95 000 10−3 MDNA truncated ( 3.5f )

7 6 125 000 10−3 MDNA truncated ( 3.2f )

8 6 125 000 10−3 MDNA truncated ( 3.2f )

9 10 155 000 5.10−4 MDNA truncated ( 3.0f )

10 15 95 000 10−5 MDNA truncated ( �: 3.0f, <: 2.0f )

Exclusive mass training 11 50 95 000 10−5 MDN truncated ( 1.0f )

6 Performance and validation of the calibration

The evaluation of the DNN performance and the validation of the predicted energy and mass calibrations
are presented in this section. Unless mentioned otherwise, these are evaluated on the dĳet sample, hence

6 These comprise the weights involved in the input processing, the core and the energy-dedicated fork of the network architecture.
7 These comprise the weights in the mass-dedicated fork and in the residual connection layers of the network architecture.
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for standard quark and gluon jets.

6.1 Technical performance

For this study, the validation data sample is a subset of the dĳet data sample that is set aside at the beginning
of the training (about ten million jets corresponding to ∼ 4% of the training data sample). Figure 3 shows
the evolution of the loss with the number of epochs (i.e., the number of jets processed). The training
and validation losses (obtained for the energy, the mass and their total) are shown as solid and dotted
lines, respectively. The different losses display very good agreement, showing that the DNN does not
overfit the training data sample, as expected given the size of the training data sample; overfitting would
take many more epochs. It also shows that the loss does not evolve significantly after two thirds of the
training. For a more common DNN set-up, it could be wise to stop the training earlier, as it seems – by that
metric alone – that its performance is not improving anymore. However, it is observed that the predicted
calibrations continue to improve even if the loss does not, which makes it difficult to find an optimum
training procedure.
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Figure 3: The loss evolution for the training (plain lines) and validation (dotted lines) data samples. The different
spikes and drops correspond to the transitions between training steps (see Table 3) and are due to the variations of the
loss function.

The consistency of the training is also verified by training DNNs that differ only by weight initialisation
and ensuring that their losses and calibration performance are identical.
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6.2 Calibration performance

The performance of the energy and mass calibrations are quantified using the response and the resolution
of the calibrated distributions, as defined in Section 3.

More precisely, from the predicted energy and mass response ®Hpred = ('DNN
�

, 'DNN
< ), the individual energy

(or mass) calibrated response is defined as:

A�calib =
�calib

�true
=

1

'DNN
�

�reco

�true
=

A�

'DNN
�

.

As discussed in Section 3, A�calib values are realisations of a distribution 6 from which the calibrated
response can be obtained: '�calib (®Gtrue) = mode(6 | ®Gtrue

). In practice, the individual responses A�calib are
collected in histograms for each bin of Gtrue (where typically Gtrue = (?true

T , <true, [true)). From these
histograms, '�calib (Gtrue) is extracted from a fit to a Gaussian distribution8 and the calibrated response
resolution f('�calib) from the calculation of the IQR.

In the following, the performance is presented by plotting the response or resolution as a function of one of
the bin-defining variables. Better performance is indicated by a response closer to 1.0 (called response
closure) and a resolution closer to 0.0 in all of the phase space. All plots include statistical uncertainties
computed from the fits of the response distributions but they are generally too small to be visible.

6.2.1 Performance on QCD dĳets

As a closure test, the DNN calibration is applied to the QCD sample used during training. This allows
verification that the DNN convergence translates into good physics performance in a sample with large
statistics. Overall, the calibration is found to perform very well for |[ | < 2 with the best results at high mass
in terms of response closure and resolution. Figure 4 presents the energy and mass calibrated responses as
a function of ?true

T and [true and the energy and mass resolution as a function of ?true
T for specific bins. It

shows excellent response closure for both energy and mass, closer to unity than the standard calibration [2].
The DNN calibration also shows an important improvement in the resolution relative to the standard
calibration. For the mass, the uncalibrated resolution appears better than the calibrated ones. However, this
is a relative quantity (as defined in Section 3) while the absolute value of the IQR scales with the central
value. As a consequence, comparing the uncalibrated resolution corresponding to responses significantly
differing from 1.0 with a calibrated resolution is not very meaningful.

Figure 5 presents the excellent consistency of the DNN calibration performance for different ?true
T bins.

In every bin of (?true
T , <true, [true) with ?true

T > 200 GeV, <true > 40 GeV and |[true | < 2, the DNN
calibration is equally or more performant than the standard calibration with a better response closure
and resolution. Improvements of a few percent up to around 10% are observed in both energy and mass
response closure and resolution.

8 Firstly, the histograms are smoothed with a Savitzky–Golay filter [43] to improve the fit stability in low-statistics bins. Then,
heuristics are employed to limit the fit around the central value by setting the fitting range around the mean of the histogram to
be between ±#f, where f is the standard deviation.
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Figure 4: Jet energy (left) and mass (right) responses (a, b, c, d) and resolutions (e, f) for different calibrations
(squares: no calibration, triangles: standard calibration, circles: DNN calibration) as a function of ?true

T (a, b, e, f)
and [true (c, d). The horizontal bands in (a, b, c, d) represent 1% (dark) and 5% (light) up and down divergences from
closure.
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Figure 5: The (a) jet energy and (b) mass calibrated response for the DNN calibration as a function of [true and for
multiple bins in ?true

T . The horizontal bands represent 1% (dark) and 5% (light) up and down divergences from
closure.

6.2.2 Effect of ( annotation

Section 5.2 describes the necessity to add the [ annotation to help the DNN adapt to the complex detector
geometry. The assumption is that the extra information represented by the angular encoding together with
the related weights allows the training process to specialise the predictions according to the detector region.
As a validation step, Figure 6 shows a comparison of the jet energy and mass response closure between two
DNN setups with the same training procedure and the same architecture except for the [ annotation step.
Its inclusion clearly improves the DNN calibrated response closure in the almost complete [ range and
especially in the calorimeter transition region above |[ | = 1.2. The JMS improvement is less important, as
expected since the uncalibrated response (squared markers) variations for the mass are less important than
for the energy.
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Figure 6: The (a) jet energy and (b) mass response before calibration (squares) and after the DNN calibration with
(triangles) or without (circles) the [ annotation step as a function of [true. The horizontal bands represent 1% (dark)
and 5% (light) up and down divergences from closure.
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These improvements are present in every ?T and [ bin, proving the importance of the [ annotation step.

6.2.3 Performance on other topologies

Physics analyses mainly use large-' jets to reconstruct the decays of massive and boosted particles like
top quarks, , , / or Higgs bosons. These decays result in jets with different shower topologies than those
originating from the dĳet samples with which the DNN is trained; this can have an impact on the mass
response as demonstrated in Ref. [15] where significant differences between ,-initiated and @/6-initiated
jets were observed. It is hence very important to verify that the DNN predictions generalise to other such
topologies as the same calibration is applied to all jets in data as their origin will be unknown. For this,
simulated samples of processes with heavy hadronically decaying particles, as described in Section 4.1, are
considered. For each sample, the same jet selection and DNN calibration as for QCD jets are applied and
the resulting scale and resolution are evaluated in mass bins centred on the mass of the corresponding
massive particle. The population of these massive, high-momentum jets is then expected to be entirely
dominated by the hadronic decays of the heavy particles considered so that the effect of the topology can
be assessed.

Figure 7 presents the jet mass response distributions obtained with boosted massive jets (,// , Higgs boson
and top-quark decay) for different calibrations (uncalibrated, standard calibration and DNN calibration).
It shows the benefits of the DNN calibration compared with the standard calibration or the absence of a
calibration; the distributions are narrower with less asymmetric tails and are better centered on 1.0.

Figure 8 shows the jet energy and mass average responses as a function of the true ?T for the same samples
and calibrations. As expected, large differences between the different topologies are observed before
calibration, especially in the mass response. While both the standard and the DNN calibrations reduce
these response differences, the DNN calibration outperforms the standard one as it gives better closure for
each topology, showing that the DNN predictions generalise well to more complex topologies. A small
non-closure in the energy response is however observed for all the boosted topologies at low ?true

T for the
DNN calibration. For the ,// and Higgs boson jets, this small under-performance can easily be explained
by the internal structure of the boosted massive jets; at high momentum, ,// and Higgs boson large-'
jets are usually composed of two sub-jets with an angular separation of Δ' ∼ 2<

?T
. At low ?T, their angular

separation becomes comparable to the large-' jet radius of 1.0, and the structure becomes neither 1-prong
nor 2-prong. Such a structure is possibly rare in the dĳet training sample or not captured by the input
substructure variables, making it impossible for the DNN to learn to correct for this effect. For top-quark
jets, a similar effect could be at play when the 3-prong decay C → ,1 → @@′1 is not fully contained within
the jet radius, thus leading to atypical jets. To solve this difficulty, a dedicated additional network structure
and training can be envisaged and is discussed in Section 7.

Figure 9 presents the jet energy and mass resolution for the boosted topologies. Here as well, the DNN
calibration shows improved performance relative to the standard calibration. The resolution differences
between the topologies here can be explained by the increasing mass bins in which the responses are
evaluated; the resolution usually gets better at higher masses.

6.3 Validation of the DNN calibration

An extensive series of tests are performed to ensure the good physical behaviour of the DNN calibration.
As described above, both the standard and DNN calibrations are tested and compared.
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Figure 7: (a) Boosted ,// , (b) Higgs boson and (c) top-quark mass response distributions (normalised to unity) for
different calibrations: uncalibrated (plain line), standard calibration (dotted line) and DNN calibration (dashed line).

Spectrum dependency: The DNN is trained and validated on a specific set of jets produced through a
particular Monte Carlo process with a large range of energy. This set of jets leads to specific distributions
of the input variables. The DNN calibration performance should be independent of the distribution to
which it is applied, so it can be used in different physics analyses with different event selections resulting
in different input distributions. Since the calibration is already assessed as a function of true ?T, the
impact of the distribution of this variable (or the energy one) is not expected to be strong. However, other
input variables are correlated with the ?T and are not binned in the performance tests; their distribution
shapes may thus impact the calibration. To verify this, the performance is re-evaluated by changing the
response distributions using statistical weights when constructing the response histograms. The weights are
chosen to obtain a flat jet energy distribution, entirely different from the original one used in the training as
illustrated in Figure 10(a).9 The performance is then evaluated in large ?T bins similar to those that physics
analysis may use and inside which distribution differences may have significant effects. Figure 10 (b, c)
shows the jet energy and mass responses obtained with the DNN calibration with (square markers) and
without (triangular markers) re-weighting. The differences between the two calibrated response closures are
very small, proving that the DNN calibration does not depend significantly on the input jet distribution.

9 Distributions are shown after transformation and normalisation, e.g., the histogram shows 5 (�) = B × log(�) + > where B and
> are such that 5 (�) is mostly distributed in [−1, 1]
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Figure 8: Boosted W/Z, top-quark and Higgs boson jet energy (left) and mass (right) responses as a function of ?true
T

for different calibrations: (a, b) no calibration, (c, d) standard calibration and (e, f) DNN calibration. The horizontal
bands represent 1% (dark) and 5% (light) up and down divergences from closure.

21



500 1000 1500 2000 2500 3000 3500 4000 4500

 [GeV]true

T
p

0

0.05

0.1

0.15

0.2

0.25

0.3)
E

r(
σ

J
e
t 
E

n
e
rg

y
 R

e
s
o
lu

ti
o
n
, Standard calibration

 [70, 100] GeV∈ true
mW/Z jet, 

 [110, 140] GeV∈ true
mHiggs jet, 

 [150, 200] GeV∈ true
mtop jet, 

 = 13 TeV, Pythia 8s

 [0.0,0.2]∈ trueη

ATLAS Simulation

(a)

500 1000 1500 2000 2500 3000 3500 4000 4500

 [GeV]true

T
p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

)
m

r(
σ

J
e
t 
M

a
s
s
 R

e
s
o
lu

ti
o
n
, Standard calibration

 [70, 100] GeV∈ true
mW/Z jet, 

 [110, 140] GeV∈ true
mHiggs jet, 

 [150, 200] GeV∈ true
mtop jet, 

 = 13 TeV, Pythia 8s

 [0.0,0.2]∈ trueη

ATLAS Simulation

(b)

500 1000 1500 2000 2500 3000 3500 4000 4500

 [GeV]true

T
p

0

0.05

0.1

0.15

0.2

0.25

0.3)
E

r(
σ

J
e
t 
E

n
e
rg

y
 R

e
s
o
lu

ti
o
n
, DNN calibration

 [70, 100] GeV∈ true
mW/Z jet, 

 [110, 140] GeV∈ true
mHiggs jet, 

 [150, 200] GeV∈ true
mtop jet, 

 = 13 TeV, Pythia 8s

 [0.0,0.2]∈ trueη

ATLAS Simulation

(c)

500 1000 1500 2000 2500 3000 3500 4000 4500

 [GeV]true

T
p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

)
m

r(
σ

J
e
t 
M

a
s
s
 R

e
s
o
lu

ti
o
n
, DNN calibration

 [70, 100] GeV∈ true
mW/Z jet, 

 [110, 140] GeV∈ true
mHiggs jet, 

 [150, 200] GeV∈ true
mtop jet, 

 = 13 TeV, Pythia 8s

 [0.0,0.2]∈ trueη

ATLAS Simulation

(d)

Figure 9: Boosted ,// , top-quark and Higgs boson jet energy (left) and mass (right) resolutions as a function of
?true

T for different calibrations: (a, b) standard calibration and (c, d) DNN calibration.

Pile-up dependency: The impact of the pile-up conditions is tested and evaluated by considering the
dependency of the response on two quantifying variables: the number of reconstructed primary vertices in
an event, NPV, and the average number of collisions per bunch crossing, `. For this, the energy (or mass)
response '�calib is estimated in bins of (EPU, �

true, [true) where EPU is NPV or `. A linear fit to '�calib

against EPU is then performed for each (� true, [true) and the corresponding slope, the gradient relative to
EPU denoted as m'�

mEPU
, is extracted. Figure 11 presents the gradient relative to NPV of the energy and mass

calibrated response modes as a function of [. For both the energy and the mass, the DNN calibration shows
smaller gradients than the standard calibration. Similar results are obtained for `.

This shows that the grooming procedure performed during the jet reconstruction is not enough to suppress
pile-up effects, while the DNN is able to do so by including NPV and ` as input variables.

Jet flavour dependence: As discussed above, the DNN performance is assessed with different topologies
(QCD, ,// , top-quark, or Higgs boson jets). It is also important to understand the dependency of the
DNN calibrations on the actual parton that initiated the jet, also known as its flavour (light-quark (D, 3, B, 2),
1-quark or gluon jets), as different responses for different flavours will translate into systematic uncertainties
through the uncertainty in the flavour composition of the jets.
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Figure 10: Normalised distributions of (a) the jet energy before (black) and after (red) re-weighting. And the
corresponding (b) jet energy and (c) mass responses obtained with the DNN calibration as a function of ?true

T for these
two energy distributions, the unweighted distribution (squares) (as used for training) and the flat-energy weighted
distribution (triangles). The horizontal bands represent 1% (dark) and 5% (light) up and down divergences from
closure.

Figure 12 presents the energy and mass calibrated responses as a function of the jet energy for different jet
flavours, comparing the DNN calibration to the standard calibration. The jet flavour is defined here as
the flavour of the parton with the highest energy in the parton shower. These show that the DNN predicts
better calibrations for the different partons, with smaller inter-flavour differences relative to the standard
calibration, especially at low ?T.

Dependency on the generator: The DNN calibration will be applied to all simulated samples used in
ATLAS analyses that are produced with a variety of generators, as well as jets in real data events. Therefore
it is desirable to evaluate if the performance of the network is strongly affected by the modelling of jets
within Pythia8. Generators have specific ways of evaluating the parton shower and hadronisation resulting
in differences in the predicted particle flow and simulated detector showers. Since such differences can be
representative of those between simulation and real data, it is important to verify they are not detrimental
to the performance of the DNN calibration.
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Figure 11: The dependence of (a) the jet energy and (b) the mass response on NPV for different calibrations (squares:
no calibration, triangles: standard calibration, circles: DNN predicted calibration) as a function of |[true |. The
horizontal band represent 0.1% up and down divergences from a null gradient.
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Figure 12: Jet energy (left) and mass (right) responses versus � true for different jet flavours, calibrated with the
standard calibration (a, b) and the DNN calibration (c, d). The horizontal bands represent 1% (dark) and 5% (light)
up and down divergences from closure.
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A data sample of Sherpa-generated dĳets with the same data preparation as described in Section 4.2 is
used to compute jet energy and mass responses with the standard calibration and the DNN calibration.10

Both are then compared with the performance obtained with the Pythia dĳet data sample. Figure 13
shows this comparison. The DNN energy calibration shows almost identical performance for the two
generators, except at low ?true

T where a small under-performance is observed with the Sherpa data sample
although closure is however still obtained. Moreover, the DNN calibration shows a lesser dependency on
the generator than the standard calibration for the energy. For the mass calibration with the Sherpa data
sample, the DNN response closes within 5% but outside 1% in all the ?true

T range. This can be expected as
the jet’s mass is more dependent on its particle flow structure. This under-performance is observed to be
reduced in higher mass bins. The standard mass calibration shows smaller differences between the two
generators but overall, the DNN mass calibration is still better than the standard one for both the Pythia

and Sherpa generators.
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Figure 13: Jet energy and mass responses versus ?true
T calibrated with (a, b) the standard calibration and (c, d) with

the DNN predictions for a dĳet data sample generated with Pythia (squares) or Sherpa (triangles). The horizontal
bands represent 1% (dark) and 5% (light) up and down divergences from closure.

10 The DNN is trained with the Pythia sample as discussed in the previous sections.
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7 Limitations and possible solutions

Despite the satisfying results obtained with the calibration methodology presented above, some limitations
and open questions are identified. They are discussed together with possible solutions in this section.

7.1 Training convergence and ending criterion

A weakness in this DNN training procedure is the lack of a clear criterion to mark the final convergence
of the network and end the training. It is observed that early interruptions of the training (as soon as the
losses start to fluctuate around a minimum) result in worse calibration performance in terms of JES, JMS
or resolution in significant parts of the phase space. Instead, training for numerous additional epochs
(such as described in Section 5.4) during which the training loss remains essentially constant is found
to be necessary. A possible explanation is that the goodness of the performance is based on relatively
strict expectations (e.g., closure within 1% for the energy response) to be obtained over all the (� , [, <)
phase space while only a part of it is statistically dominant in the training sample. As a consequence, the
global loss can be mostly determined by this dominant phase space region in which the optimum is quickly
reached, while it requires more training to improve the sparsely populated regions. This behaviour also
resembles the ‘grokking phenomenon’ observed in some DNN problems where sometimes performance
suddenly increases after a very long training period [44].

Although the present study shows that training long enough allows coverage of the full phase space, a robust
methodology would require a well-understood criterion to stop the training. Evaluating the calibration
performance across all the phase space is not a practical option as it is too costly to perform automatically
at each epoch. An interesting approach would be to evaluate the loss in predefined, well-chosen bins (in
terms of statistical contents and of physics relevance) of the phase space. Monitoring the losses in these
bins with training and validation samples would possibly be more indicative than monitoring the virtually
flat total loss.

7.2 Calibration of heavy boosted jets

During the validation of the DNN calibration performance for ,// , Higgs boson and top-quark jets, non-
closures of up to a few percent are observed for the energy (see Figures 8). While this under-performance is
also visible for the standard calibration, the DNN calibration performance is slightly worse in these cases.
Contrary to the DNN calibration presented here, the standard calibration is obtained using different types
of jets. At high ?T (above ∼ 500 GeV) QCD jets are used, while at low ?T the calibration is only derived
from ,// jets as this choice leads to better calibration performance for both ,// jets and QCD jets.

A similar approach with mixed training samples is possible with the DNN. However, simply adding ,//
samples to the training does not improve – or even degrades – the performance for mass regions away from
the , and / masses. This issue could be mitigated with the availability of special pseudo-,// samples
having a flat mass distribution. Alternatively, an ad hoc solution mimicking the standard calibration is
possible by adding a subnetwork to the already QCD-trained DNN. This subnetwork would branch from
the input layer with [ annotation, produce output values used as multiplicative correction factors to the
main network predictions and enforce these factors to be 1.0 for large ?T jets (typically above 500 GeV) to
maintain the good performance of the DNN in this phase space. The subnetwork could then be trained on
,// samples, while keeping the main network frozen to improve the lower ?T regions.
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7.3 Importance of the features

Insights into which input features are the most influential on the DNN predictions are important for two
reasons. Firstly, they generally help to understand the jet energy and mass responses. Secondly, they can
indicate if some features could be removed from the inputs, potentially leading to a simpler DNN or even
to better performance if the removed variables are confusing the network. A simple way to quantify the
importance of a feature is to measure the average of the relative variation in the prediction when this
feature is systematically varied for each input jet. A ranking of the different features obtained by following
this method is shown in Figure 14 where each feature is varied by ±1% of the standard deviation of its
overall distribution. Both the energy and mass prediction variations are displayed for each feature. As
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Figure 14: The variation of the energy (upward triangles) and mass (downward triangles) predictions when input
features are varied (see the text for details).

expected, the variables � , [, and < have a large influence on the predictions according to this measure.
Some substructure features11 have a stronger impact on the mass prediction than on the energy prediction.
This is also expected since the mass depends on the structure of the particle flow objects in the jet. While
by this metric ` and NPV do not seem so important, it was demonstrated in Section 6.3 that these features
are important as they allow the DNN calibration to remove the response dependence on these variables.
Further investigations are therefore necessary to understand more precisely the importance of the features.
Those could consist of considering the magnitude of the DNN gradient with respect to its inputs in bins of
?T or mass, or to apply the SHAP methodology.12

8 Conclusion

A full implementation of a deep neural network based simultaneous calibration of the energy and mass of
large-' jets with the ATLAS detector is presented. It solves problems that are specific to the calibration
task. Firstly, rather than segmenting the calibration in angular slices, a single network covers multiple

11 The Width, groomMRatio, ChargedPTFrac, ChargedMFrac, Split12, and C2.
12 SHapley Additive exPlanations [45].
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detector regions and a dedicated encoding of the jet angular direction is included to help it to adapt to
the corresponding strongly varying response. Secondly, the network architecture is designed to efficiently
accommodate both the energy and the mass predictions. Finally, loss functions are carefully chosen so that
the DNN prediction converges as desired toward the most probable value of the energy or mass response
distribution; this also implies non-trivial training procedures involving variants of the loss functions.

The resulting calibration is compared to the standard calibration on QCD jets and on other jet topologies
not seen during the DNN training. Over all the phase space and for all processes of interest, the DNN
is found to achieve better energy and mass scale closure and similar or better resolution, with a typical
30% improvement in the energy resolution for ?) > 500 GeV. The DNN calibration is also shown to be
robust against various tests such as pile-up dependency or changes to the sample distribution. Finally,
some limitations and possible improvements are discussed. Overall, as this method can directly replace the
current simulation-based steps of the ATLAS large-' jet calibration chain, no adaptation of the data-based
methodology is required and this DNN procedure can be used for the calibration of large-radius jets used
in future ATLAS analyses.
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