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ABSTRACT 15 

The photoinduced relaxation dynamics of nucleobases and their thionated analogs have 16 

been investigated extensively over the past decades motivated by their crucial role in 17 

organisms and their application in medical and biochemical research and treatment. Most of 18 

these studies focused on the spectroscopy of valence electrons and fragmentation. The 19 

advent of ultrashort x-ray laser sources such as free-electron lasers, however, opens new 20 

opportunities for studying the ultrafast molecular relaxation dynamics utilizing the site- and 21 

element-selectivity of x-rays. In this review we want to summarize ultrafast experiments on 22 

thymine and 2-thiouracil performed at free-electron lasers. We performed time-resolved x-23 

ray absorption spectroscopy at the oxygen K-edge after UV excitation of thymine. In 24 

addition, we investigated the excited state dynamics of 2-tUra via x-ray photoelectron 25 

spectroscopy at sulfur. For these methods, we show a strong sensitivity to the electronic 26 

state or charge distribution, respectively. We also performed time-resolved Auger-Meitner 27 

spectroscopy, which shows spectral shifts associated to internuclear distances close to the 28 

probed site. We discuss the complementary aspects of time-resolved x-ray spectroscopy 29 

techniques compared to optical and UV spectroscopy for the investigation of ultrafast 30 

relaxation processes.  31 



                                                                                                                                                                            

INTRODUCTION 32 

Nucleobases and their thionated analogs play a crucial role in life. As core constituents of 33 

the DNA, nucleobases encode the genetic information and participate in different parts in 34 

metabolism. Nucleobases exhibit large UV absorption cross sections. In DNA, such UV-35 

induced excitations can lead to the formation of intrastrand dimers between neighboring 36 

nucleobase pairs [1]. These UV-induced lesions affect the reproduction of DNA and can 37 

eventually lead to mutations and cell death. However, the low quantum efficiency for these 38 

processes limits the rate of formation of such dimers. Already in isolated nucleobases one 39 

observes a competing relaxation mechanism: ultrafast relaxation from the photoexcited 40 

state back into the ground state provides a protective channel [2,3] by dissipating the 41 

photoexcitation as heat. For pyrimidine lesions, time-resolved UV pump-infrared probe 42 

studies show the complex interplay that ground-state relaxation and dimerization play in 43 

photoprotection [4]. 44 

Upon thionation, i.e. the substitution of oxygen atoms with sulfur, the photophysics and 45 

photochemistry of nucleobases significantly changes. Strong redshifts in the absorption 46 

spectrum allow thionucleobases to absorb in the UV-B or even UV-A spectral range. In 47 

combination with their structural similarity to canonical nucleobases, they find application 48 

medical biochemical research e.g., as biomarkers, but also as medication in 49 

immunosuppression or as antithyroid drug [5 8]. In contrast to their canonical counterparts, 50 

they efficiently relax into long-lived triplet states that promote intrastrand cross-linking or 51 

photolesions which can be exploited for photodynamic therapy [9]. However, these very 52 

same features make these molecules dangerous in their other forms of medication 53 

(immunosuppression) due to the abundance of UV-A in terrestrial sunlight. Apart from their 54 

medical and research applications, it is assumed that thionucleobases played a role in early 55 

biological structures [10 12]. 56 

A combination of ultrafast experiments and simulations have led to an increased 57 

understanding of the photoinduced dynamics of nucleobases and their thionated analogs 58 

[2,3,13 16]. Various experimental techniques have been used to investigate the electronic 59 

and nuclear dynamics and have been combined with extensive theoretical calculations to 60 

understand relaxation after UV excitation [14,15]. Conical intersections (CI) play a key role in 61 

the relaxation dynamics of these molecules [17,18]. These are regions in the potential 62 

energy landscape where the potential energy surfaces of two different electronic states 63 

approach each other and intersect. In these regions the Born-Oppenheimer approximation 64 

(BOA) breaks down. In short, the BOA allows to decouple electron and nuclear motion in 65 

quantum mechanical calculations as it assumes that the much lighter electrons can 66 

immediately react to any changes of the molecular geometry. However, as the energy gap 67 

between two PES decreases, the time scales of nuclear and electronic motion converge, 68 

coupling the two degrees of freedom. This allows the electronic wavepacket to release 69 

excess energy from optical excitations by changing molecular geometry and electronic state. 70 

Therefore, the shape and gradient of the PESs and which minimum can be reached fastest 71 



                                                                                                                                                                            

have a large influence in the relaxation pathway. In general, relaxation via conical 72 

intersections often dominates over radiative deactivation channels as fluorescence happens 73 

on much slower timescales. 74 

In many instances, the search for the exact relaxation pathways remains a struggle. 75 

Experimental techniques that focus on studying only the valence electrons often cannot 76 

distinguish between electronic and nuclear degrees of freedom and have difficulties to 77 

identify electronic states involved in the relaxation without expensive theoretical 78 

calculations. This might lead to the proposal of multiple relaxation pathways that are all 79 

compatible with experimental findings, as was the case for thymine [19,20].               80 

With the evolution of x-ray free electron lasers over the past two decades, it became 81 

possible to investigate molecular dynamics from a completely different perspective using 82 

core-level electrons. FELs not only provide ultrafast, intense light pulses, but the high 83 

photon energies of hundreds to thousands of eV allow for probing highly localized core-level 84 

electrons inside the molecules. The element and site-selectivity that comes with the use of 85 

x-ray pulses allows for a systematical probe of different locations in the sample, and 86 

provides new information that allows to disentangle electronic and nuclear degrees of 87 

freedom, giving more direct insight into the relaxation dynamics of UV excited molecules.  88 

Nowadays, several FEL facilities offer the opportunity to study molecules and other 89 

materials with ultrafast x-ray light all over the world [21 28]. 90 

When studying the relaxation dynamics of molecules with x-rays, the usage of the gas phase 91 

comes with some advantages. First, the experiment can be often directly compared to 92 

theory. The simulation of isolated molecules can be accomplished at a higher level in 93 

approximation and, hence, a comparison is easier and faster. Second, the low density of gas-94 

phase targets allows for different experimental techniques to be employed on the molecular 95 

problems and, hence, offers the possibility to create a more holistic picture for the problem. 96 

Excited-state absorption, which is commonly used in solution-phase, is more time 97 

consuming in gas-phase due to the low density. The detection of charged particles, i.e. 98 

99 

observables. In contrast to optical transitions among molecular electronic states in time-100 

resolved absorption, the dipole selection rules in photoelectron spectroscopy are less 101 

confining due to the availability of ionization continua of different angular momentum [29]. 102 

The detection of ions also allows to retrieve information on the nuclear geometry based on 103 

Coulomb explosion imaging [30 32]. In solution phase, ion detection is prohibitive and 104 

electrons can, depending on their energy, only be collected from a rather thin surface layer. 105 

In addition to it, depending on the elemental composition of the solvent, the SXR pulses are 106 

strongly absorbed in the solvent. 107 

In this review we summarize our studies on thymine (Thy) and 2-thiouracil (2-tUra) 108 

performed at x-ray free-electron laser facilities over the past decade. We will start with a 109 

brief overview on the proposed relaxation pathways of both molecules based on the 110 

valence spectroscopy and simulations performed before. Subsequently, we discuss different 111 

methodological approaches in time-resolved x-ray spectroscopy for gas phase targets. We 112 



                                                                                                                                                                            

start with x-ray absorption, which allows us to disentangle the different electronic states 113 

involved in the relaxation. Then, we continue with photoelectron spectroscopy which is to 114 

deduce the localized charge at the probed atom via the observation of the Excited State 115 

Chemical Shift (ESCS). At the end, we discuss what can be learned from the Auger-Meitner 116 

decay that follows the core-ionization of UV-excited molecules. 117 

NON-ADIABATIC RELAXATION DYNAMICS OF THYMINE AND 2-THIOURACIL 118 

In this section we briefly review relaxation pathways for thymine and 2-thiouracil as 119 

proposed by different theoretical studies. This is accompanied by a summary of experiments 120 

performed in both gas and solution phase for the respective molecules. However, this 121 

summary is limited to experiments that use IR, visible or (V)UV light as the (soft) x-ray 122 

spectroscopy will be discussed in later parts of this review. 123 

The relaxation of molecules in the excited states is determined by the shape of their 124 

potential energy (hyper-)surfaces (PES) and in particular by the minima, saddle points, 125 

conical intersections and potential energy barriers which can affect the relaxation of the 126 

system. During radiationless relaxation, the nuclear wavepacket explores the PES by 127 

following the gradient towards lower energy, starting from the Frank-Condon region of the 128 

initially excited electronic state. This minimum energy path approach is a standard method 129 

to investigate the PES from a static perspective and to get an idea of possible reaction 130 

pathways and their time scales [33]. The role played by nonadiabatic coupling between 131 

states such as conical intersections is often studied with dynamical simulations such as 132 

semiclassical surface hopping or multiconfigurational time-dependent Hartree [34,35]. 133 

In experiments, nucleobases have shown weak fluorescence yields after optical excitation 134 

[36].   This indicates that non-radiative deactivation mechanisms dominate. Theoretical 135 

studies describing possible pathways are summarized in ref [16]. In short, the excitation 136 

137 

lower in energy, show weak oscillator strength for optical excitations due to the lone pair 138 

orbital n involved. However, conical intersections between these states and the ground 139 

state, often in the vicinity of the respective minima, facilitate non-radiative transitions with 140 

femtosecond to picosecond lifetimes. While tautomerism can have an effect on the 141 

relaxation dynamics of the molecule, pyrimidine-based nucleobases uracil and thymine, 142 

show negligible tautomerism even at high temperatures [37,38]. 143 





                                                                                                                                                                            

experiments in liquids by Buchner et al. yielded lifetimes of 70 fs and 410 fs which were 166 

attributed to different conical intersections between the 1 * and the ground state [49]. 167 

None of the photoelectron features were attributed to the n * state in this study. Time-168 

resolved infrared spectra taken by Manna et al. suggested a triplet formation within 4-6 ps 169 

depending on the solvent and a very fast * to ground state relaxation [50]. The fraction of 170 

molecules that ended up in the triplet state varied between 4% and 16% depending on the 171 

solvent as well. In a very recent study, Miura et al. performed EUV-TRPES on aqueous 172 

thymine and observed four time constants for the relaxation [51]. The * contribution had 173 

to be fitted with two lifetimes of 150 fs and 160 fs. An n * contribution was found with a 174 

lifetime of 2.5 ps. Also, a long-lived species with a lifetime larger than 20 ps was observed. 175 

For gas phase experiments comparable values were observed. A study of Kang et al. gave a 176 

time constant of 6.4 ps for the relaxation which was attributed to depopulation of the n * 177 

state [52]. Another long decay with >100 ps was assumed to originate from a small number 178 

of molecules ending up in triplet states. He et al. and Ligare et al. confirmed a long-lived 179 

dark state [52 54]. Following experiments by various groups refined and confirmed three 180 

major lifetimes in the thymine relaxation [19,37,51,55 57]. An initial ultrafast relaxation, 181 

which ranges between 40 fs and 500 fs, is followed by slightly slower relaxation of up to 182 

10 ps. A third very long decay was observed in the experiments but accurate values could 183 

not be given. The assignments of the lifetimes followed mostly the suggestion from Ullrich 184 

et al. [19,58]: The * state decays within a few ten or hundred femtoseconds and 185 

populates the n * state. Within a few picoseconds, this n * state decays either back into a 186 

hot ground state via a conical intersection or undergoes intersystem crossing (ISC) into a 187 

( *) triplet state which is supposed to be responsible for the observed nanosecond time 188 

constant.                                                                                                        189 

The UV-spectroscopy of photoinduced dynamics of thionated nucleobases differs 190 

significantly from their canonical counterparts. The introduction of the sulfur atom lowers 191 

the potential energy surfaces in these molecules leading to a significant red-shift in the UV 192 

absorption [14,15]. Furthermore, the increased spin-orbit coupling introduced by the sulfur 193 

makes inter-system crossings much more likely. Ultrafast ISC times of a few hundred 194 

femtoseconds lead to an increased ISC yield close to unity for most of the thionated 195 

nucleobases [15]. The triplet lifetimes span from picoseconds to microseconds.  196 

2-thiouracil (2-tUra) is one of the more thoroughly studied thionucleobases both 197 

theoretically and experimentally [55,59 65]. A scheme for a potential energy landscape of 198 

2-thiouracil is shown in figure 1 b). Calculations show that the first broad absorption band 199 

around 270 nm (4.6 eV) is dominated by transitions into two close lying * states with 200 

slightly different electron localization and similar oscillator strength [66,67]. However, Mai 201 

et al. state that excitations of higher lying * states will relax very quickly into the lowest 202 

singlet 1 * state so that their internal dynamics do not play a role in subsequent processes 203 

[66]. Interestingly, Mai et al. predict two minima for the lowest 1 * state: one showing 204 

strong pyramidalization at the sulfur site ( S 2*), which can also be accessed from higher 205 

lying states, and the other showing puckering and pyramidalization at the C6 atom ( S 6*) 206 



                                                                                                                                                                            

[66]. Both, however, show a CI with the 1n * state close to their respective minima. 207 

According to the calculations, the minimum corresponding to the S 6* electronic character 208 

might be preferred upon UV excitation [66,68]. Conical intersections between 1 * and the 209 

ground state have been predicted but are at higher energies compared to their canonical 210 

counterparts [14]. In the vicinity of the 1n * minimum, the stronger spin-orbit coupling 211 

introduced by the sulfur facilitates an intersystem crossing into 3 * triplet states. Again, a 212 

CI between 1n * and ground state is predicted but only reachable via an energy barrier. 213 

Intersystem crossing between the ground state and lowest 3 * state is predicted above the 214 

3 * minimum trapping possible population in the triplet manifold.                                                                           215 

Experiments, focusing again on probing via valence electrons, support the relaxation 216 

pathways proposed by Mai et al. [66,68,69] or Cui and Fang [70] i.e., the relaxation from 217 

1 * via 1n * into the triplet manifold. Solution-phase transient absorption spectroscopy 218 

studies observe two decay constants [62,63]. The first is in the order of a few hundred 219 

femtoseconds and is associated with the ISC to the triplet manifold. The response functions 220 

in both experiments were not short enough to resolve faster relaxations and, hence, the 221 

1 * 1n * relaxation which is predicted to happen within 100 fs could not be resolved. The 222 

second time constant observed is in the order of tens of picoseconds to nanoseconds and is 223 

attributed to the triplet lifetime. Gas-phase experiments on 2-tUra were conducted using 224 

valence photoelectron spectroscopy [55,61,65] and photoions [59,64]. All of the 225 

experiments show three very similar time constants for their observables. The first 226 

relaxation happens within less than 100 fs and is attributed to the depopulation of the 1 *. 227 

The second constant is in the order of a few hundred femtoseconds (200-800 fs) and fits the 228 

predicted time-scales for the ISC from the 1n * to the triplet manifold. The triplet lifetime is 229 

measured to be in the order of 100-200 ps through all the experiments. 230 

 231 

PROBING ELECTRON AND NUCLEAR DYNAMICS WITH X-RAYS  232 

In this following section, we briefly discuss the basics of the x-ray spectroscopic methods 233 

used, as well as their applications on thymine and thiouracil. X-ray probes provide an 234 

advantage over optical probing techniques due to element sensitivity and site specificity. 235 

Thus, ultrafast x-ray probing allows for a localized view of the molecular dynamics.  236 

Core-level energies differ significantly between elements. For the most important elements 237 

in organic compounds S, C, N and O, the 2p and 1s binding energies are separated by over 238 

100 eV starting from around 160 eV for S 2p, 290 eV for C 1s to 410 eV for N 1s and 540 eV 239 

for O 1s. The x-ray induced transitions are confined to small electronic core wavefunctions 240 

around the respective atoms in molecules, lending the scheme high spatial- or site - fidelity. 241 

For instance, probing the sulfur 2p core electrons in 2-tUra via x-ray photoemission gives 242 

direct sensitivity to local changes in the vicinity of the sulfur site in 2-tUra. In x-ray 243 

photoelectron spectroscopy (XPS, see Fig. 2 a-c), one uses this characteristic binding energy 244 

and thus the characteristic kinetic energy Ekin of the photoelectron to detect signals 245 

originating from the atom of interest. In order to investigate excited state dynamics, a UV 246 



                                                                                                                                                                            

pump x-ray probe scheme can be used. Fig. 2 a) shows an orbital scheme of XPS, with and 247 

without a UV excited valence state. The scheme in Fig. 2 b) displays the pump-probe 248 

measurement scheme in a multi-electron picture, highlighting the dependence of the 249 

binding energy on the nuclear geometry. The UV pulse launches the molecule on the 250 

valence-excited PES. Afterwards, the x-ray pulse leads to a core-level cationic state and an 251 

outgoing electron with a kinetic energy equal to the difference between the photon energy 252 

and the binding energy of the core level.  253 

Site-selectivity is even possible when multiple atoms of the same element are present in the 254 

molecule. This is due to so-called chemical shifts, i.e. eV-scale variations in the core-binding 255 

energy (and thus XPS kinetic energy) driven by electronegativity v256 

environment [71,72]. The electronegativity of different atoms in the molecule affects the 257 

distribution of the valence electrons over the molecule. This, however, impacts the 258 

screening of the nuclear charge for core-level electrons and therefore changes their binding 259 

energy with respect to the isolated atom. A prime example for this is ethyl-trifluoroacetate 260 

(C4H5F3O2), where the four C 1s peaks spread over a 10eV window [71,73]. Similar effects 261 

can also be observed in nucleobases and their thionated analogs [38,74,75]. In addition to 262 

the chemical shifts observed in molecules when compared to isolated atoms, the binding 263 

energy of core levels can be affected by excitations in the electronic state. The changes in 264 

electronic density caused by valence excitations affect the screening of nuclear charge that 265 

is felt by core electrons. We can exploit this change to follow dynamical processes, by 266 

monitoring the changes in core level binding energy as molecular relaxation occurs. Fig. 2 c) 267 

shows the redistribution of electric charge on the sulfur atom in 2-tUra that follows 268 

photoexcitation. The sensitivity of time-resolved XPS to Excited-State Chemical Shifts (ESCS) 269 

and how they relate to the electronic states will be discussed later in this review on the 270 

example of 2-tUra. 271 

The concepts of element- and site specificity discussed in the case of XPS also carry on to 272 

other x-ray methods, such as to x-ray absorption spectroscopy. Here, a core-level electron is 273 

promoted into unoccupied valence orbitals upon absorption of an x-ray photon. As those 274 

core-to-valence transitions appear close to the core ionization potential, the method is also 275 

called near edge x-ray absorption fine structure (NEXAFS) spectroscopy [76]. Experimentally, 276 

NEXAFS spectra can be measured either by detecting the transmitted light or the 277 

photoproducts i.e., electrons or ions, as a function of photon energy. The scheme for 278 

NEXAFS spectroscopy is shown in Fig2 d-f, again in a single-electron orbital picture (d) and 279 

multi-electron PES (e). The transition dipole of the excitation depends significantly on the 280 

orbital overlap of the involved core and valence orbital. As the core electrons are strongly 281 

confined around individual atoms, transitions will only occur into valence orbitals that have 282 

significant electron localization at the respective site. Thus, lone-pair orbitals, as the sulfur n 283 

orbital indicated in Fig.2f), showing a more atomic character will show a stronger absorption 284 

from respective sites than more delocalized valence orbitals such as  orbitals. This can be 285 

very helpful for the investigation of relaxation dynamics of molecules where n * states play 286 

a crucial role. 287 







                                                                                                                                                                            

determined by the fact that the sample consists of isolated molecules. In the following we 321 

will briefly describe the experimental scheme. Details of the apparatus at LCLS can be found 322 

in refs. [39,90] and for FLASH in ref. [91]. A sketch is shown in figure 3. The molecules which 323 

are solid at room temperature are brought into gas phase via an in-vacuum oven system 324 

described in ref. [39]. With this system, the molecules can be heated up to ca. 150°C and the 325 

vapor is directed to the interaction region with a small capillary at the end of the oven. 326 

The molecules are excited with a UV pump pulse with a wavelength around 270 nm and 327 

sub-100 fs pulse duration. The pulse energy is usually chosen in a way such that only a 328 

fraction of the molecules are excited in order to avoid nonlinear effects. An x-ray pulse 329 

provided by the FEL is tuned to core-excite or ionize the respective atoms probes the 330 

molecule. Photo- and Auger-Meitner electrons are collected and their kinetic energy is 331 

determined using a magnetic bottle electron time-of-flight spectrometer (MBES). The MBES 332 

allows for a high collection efficiency of almost 4 , due to its inhomogeneous and guiding 333 

magnetic field [92]. This large collection efficiency is favorable for dilute gas phase 334 

spectroscopy. 335 

Time-resolved NEXAFS spectroscopy 336 

We now present time-resolved NEXAFS spectra of thymine at the oxygen edge. The 337 

experiment delivers information which is complementary to the time resolved absorption 338 

and valence photoelectron spectroscopy. The static x-ray absorption spectra of isolated 339 

thymine at the oxygen edge observed in an experiment at LCLS (figure 4 a), black line) [93] 340 

agree with synchrotron measurements [74]. Two absorption peaks are observable at 341 

531.5eV and 532.5eV photon energy which can be attributed to transitions from the oxygen 342 

1s into linear combinations of * orbitals which conserve the high localization of electrons 343 

at the respective oxygen atom. 344 

We now concentrate on the effect of molecular UV excitation on the NEXAFS spectra [93]. 345 

The result for 2ps delay between UV pump and x-ray probe pulse is shown in figure 4 a) 346 

(green line). The main observation is the appearance of a new feature at around 526.5 eV. In 347 

addition, a very subtle bleach of the original 1s- * band can be observed around 531.5 eV 348 

which is due to a depopulation of the ground state. However, it is almost entirely 349 

compensated by a redshift of the K edge ionization feature in the excited state [93] and, 350 

hence, only barely visible in fig. 4a). The new appearing feature, which is located one UV 351 

photon quantum below the main resonance, represents a new absorption channel due to 352 

the UV-induced rearrangement of valence electrons. As the UV induces a * transition, a 353 

new 1s-  absorption channel opens. In addition, after the *-n * relaxation, which is the 354 

matter of this investigation, an 1s-n transition will show up in the absorption spectrum. The 355 

transition from a core-orbital to a lone pair orbital at the same atom is very strong, stronger 356 

than core-valence transitions to delocalized orbitals. Intuitively one would expect that the 357 

oxygen 1s-n transition dominates the UV-induced NEXAFS feature, and this was also 358 

confirmed by a transition-strength calculation in [93]. This strong atomic absorption feature 359 

has also been used in a liquid jet experiment of water radiolysis [94]. 360 



                                                                                                                                                                            

The two-dimensional false color plot in figure 4 b) shows the time-resolved bleach at the 1s-361 

* resonance (531 eV, blue) and rise of the 1s-n resonance (526.5 eV, red). This reveals the 362 

dynamics of the *-n * relaxation. The bleach at zero delay of pump and probe indicates 363 

the UV induced * excitation. The 1s-n absorption signal, reflecting the n * population, 364 

occurs with a delay of ca. 60fs. We therefore attribute a time constant of 60 fs to the *-365 

n * relaxation in agreement with the first attributions [19] but in strong contrast to the 366 

 
Figure 4: a) Ground and excited-state NEXAFS spectrum of thymine. The red bump indicates 
the appearance of a new strong feature in the UV excited spectrum. b) Delay-dependent 
false-color map of NEXAFS difference spectra. c) Integrated regions of interest in the false-
color map. A slight shift of the rising edge can be observed between bleach and gain 
features. The figure was taken from Fig. 2 in Ref. [93] without changes and reused under a 
Creative Commons Attribution 4.0 International (CC BY 4.0) License. 
 



                                                                                                                                                                            

picosecond constant predicted later [20,43,95]. The 60fs time constant for the *-n * 367 

relaxation demonstrates a very direct path for access to an efficient internal conversion. 368 

Transient x-ray absorption spectroscopy is an important technique in the hard x-ray domain 369 

and it is mainly used in the context of metal-containing molecules in liquid environments 370 

[96,97]. In gas phase and the soft x-ray domain, several ultrafast experiments using 371 

inherently broadband high harmonic generation sources have been performed. The 372 

investigate for instance strong field ionization dynamics and UV excited ring-opening 373 

reactions [98 101].                                                                                                                     374 

 375 

Time-resolved x-ray photoelectron spectroscopy 376 

The electronic relaxation of molecules through different electronic states after excitation is 377 

often accompanied by significant movement of valence charge around the molecule. This 378 

relocation of electric charge affects the screening of nuclear charge for strongly localized 379 

electrons and, hence, will impact their binding energy. In the case of 2-thiouracil, the two 380 

highest occupied molecular orbitals, the  and the n orbital, show significant localization at 381 

the sulfur atom. The unoccupied * orbital - which 382 

optically excitable transition in the molecule- shows, in contrast, a strong delocalization over 383 

the pyrimidine ring. An excitation from  to * will, thus, shift electron charge from the 384 

sulfur to the ring. This is shown in the charge difference maps in Fig. 5 a). The red color 385 

indicates a more positive charge with respect to the molecular ground state and blue more 386 

negative charge. The sulfur indeed loses valence charge while the neighboring carbon atom 387 

seems to receive most of it. With the decrease of screening at the sulfur it can be expected 388 

that core-localized electrons at the sulfur, i.e. 1s, 2s and, 2p, will increase their binding 389 

energy due to a higher Coulomb force. Vice versa, the C 1s electron would be expected to 390 

reduce their binding energy due to an increased screening. 391 

We have measured the time-resolved photoelectron spectra at the sulfur site of 2-tUra at 392 

FLASH free electron laser [102]. The fig. 5 b) shows the static (blue) and pre-excited (orange) 393 

spectrum for the S 2p photoelectrons. Due to the relatively large bandwidth of the FEL, the 394 

spin orbit splitting of the photoline cannot be resolved. Synchrotron data (shown in black) 395 

shows the fine structure in the electron spectrum. The photoline is accompanied by a small 396 

satellite feature at lower kinetic energies originating from shake-up processes during the 397 

ionization. The UV excitation of the molecule alters the shape of the spectrum. The main 398 

photoline bleaches and new signal rises at lower kinetic energies. The shift of the excited 399 

state signal amounts to ca. -3 eV. This indicates an increase of the binding energy for the S 400 

2p electrons which agrees with the above made prediction. 401 

The observed shift is an immediate response after the excitation and lasts for at least 100ps 402 

which agrees with previous results on the lifetime of the triplet states. Figure 5 c) shows the 403 

excited state signal for small delays between pump and probe pulse as a false color map. 404 

Following the contour lines, a change of the shape of the feature can be observed within the 405 

first picosecond of the relaxation that follows an oscillatory behavior. The band broadens 406 





                                                                                                                                                                            

correlation between local valence charge, core-level binding energy and electronic states. 415 

Both singlet and triplet n * states show the highest partial charge at the sulfur and also the 416 

highest shift in binding energy while * states give rise to less but still significant redshifts. 417 

The calculations also suggest that geometrical changes during the relaxation play little to no 418 

role.  419 

Studies on time-resolved XPS on small molecules are still rather limited but other recent 420 

experiments show the possibilities the method offers. In 2018, Leitner et al. [103] and 421 

Brauße et al.  [104] published the first studies where ultrashort x-ray pulses from FLASH 422 

were used to investigate dissociation dynamics of small molecules in the gas phase. Brauße 423 

et al. studied the photodissociation of CH3I using velocity map imaging of electrons and ions 424 

[104]. They were able to identify a chemical shift in the electron spectra that corresponded 425 

to the formation of atomic iodine with a rise time of ca. 20fs coinciding with the temporal 426 

resolution of their experiment. Leitner et al. studied the photodissociation of iron carbonyls 427 

using a magnetic-bottle time-of-flight spectrometer [103]. The chemical shifts observed in 428 

Fe(CO)3, Fe(CO)4 and Fe(CO)5 gave insight into the bond changes between the different 429 

complexes. 430 

More recent studies have further pushed the capabilities of TRXPS. Allum et al. studied the 431 

photodissociation of 1-iodo-2-methylbutane also at FLASH [105]. In the experiment, the 432 

group exploited the dual-sided velocity map imaging setup of the CAMP endstation at 433 

FLASH1 to test a electron-ion partial covariance imaging scheme for photoelectron 434 

spectroscopy. Chemical shifts observed in the I 4d photoline could again be attributed to the 435 

formation of atomic iodine. Faccialà et al. used circularly polarized x-ray pulses from FERMI 436 

to investigate the photoexcited Rydberg states of fenchone by a combination of TRXPS and 437 

time-resolved photoelectron circular dichroism (TR-PECD) [106]. The chemical shift 438 

observed in the x-ray photoelectron spectra could be attributed to charge relocation as the 439 

highest occupied molecular, which is depopulated upon excitation, is a lone pair orbital 440 

localized at the C1, C2 and C3 atoms. The combination with the PECD, however, appears 441 

challenging due to the low signal-to-noise ratio during the experiment. Nonetheless, the UV-442 

induced chemical shift isolated the C2/C3 contribution in the PECD whose dynamics could 443 

thus be studied and rationalized. Gabalski et al. recently revisited the photodissociation 444 

dynamics of CS2 using TRXPS at FLASH [107]. They show that the experimentally observed 445 

chemical shift upon UV excitation can be attributed to the formation of the photofragments 446 

CS and S as their binding energy drastically differs from CS2. In addition, they show that 447 

TRXPS is also sensitive to the vibronic state of the fragments. Though most of the studies 448 

mentioned here face different problems such as limited signal-to-noise or a lack of energy or 449 

temporal resolution, they show the capabilities of TRXPS for studying ultrafast relaxation 450 

processes and with future improvements of FELs these limitations might be overcome.  451 

Time-resolved Auger-Meitner spectroscopy 452 





                                                                                                                                                                            

lower energies with respect to the ground state, however, contrast a further nuclear 468 

relaxation and suggest an electronic relaxation. In combination with dynamics calculations, 469 

the results again towards an ultrafast relaxation channel into singlet n * state. 470 

Similar experiments were performed at FLASH with 2-tUra [108]. Here, the sulfur 2p edge 471 

was probed and the Auger band was recorded. Again, a fast shift towards higher kinetic 472 

energies can be observed upon UV excitation. This shift can be also attributed to a nuclear 473 

relaxation. The reduction of nuclear charge screening upon ionization of the S 2p electrons 474 

favors a C-S bond elongation to minimize the energy of the cationic states. An elongation of 475 

the C-S bond upon excitation was predicted by previous theoretical studies [66,68]. Further 476 

dynamics of the Auger band, however, cannot be explained by a pure nuclear relaxation and 477 

must be the results of electronic relaxation. Simulating Auger-Meitner spectra in detail is 478 

relatively elaborate, and this is the reason that very little studies use this as an observable. 479 

For low-lying dicationic states however this restriction is somewhat eased. 480 

Resonant AM decay can be used to derive the x-ray absorption spectra of molecules as 481 

resulting Auger electrons lead to an enhancement in the electron yield and, thus, can 482 

indicate resonant excitation channels. The absorption spectra in [93] were derived that way. 483 

The underlying resonant AM decays were studied in [109], and two interfering de-excitation 484 

channels are observed. One of these de-activation channels is the population of a * 485 

triplet state which has been also proposed in a previous VUV study [57]. 486 

DEVELOPMENT OF THE FIELD  487 

Several developments are currently occurring using ultrafast x-rays as probe methods. First, 488 

new, higher repetition rate FEL sources are available with the European XFEL, at an effective 489 

repetition rate of 27 kHz, and LCLS II, at a projected repetition rate of 1 MHz. The high 490 

repetition rate allows for using charge particle coincidence methods, such as COLTRIMS 491 

reaction microscopy [110,111] for time-resolved molecular spectroscopy, and first examples 492 

from these sources on molecules in the ground state show the power of Coulomb explosion 493 

imaging for retrieving the molecular geometry [30].  In addition, the signal-to-noise in any of 494 

the spectroscopic schemes presented above will increase, allowing for investigation of dilute 495 

samples and also of samples in a liquid phase environment, where an additional background 496 

from absorption of the jet poses difficulties at some x-ray edges at current repetition rates. 497 

A further promising development in the FEL community is the scaling of external seeding to 498 

higher repetition rates. Currently, almost all free-electron lasers rely on self-amplified 499 

spontaneous emission (SASE), meaning they deliver a noisy spectral and temporal structure 500 

that changes with every shot. The FERMI free electron laser [23] presents a famous 501 

exception, as it is externally seeded by a UV laser and operates at harmonics of this 502 

radiation. This results in high longitudinal coherence and excellent spectral stability. Scaling 503 

the seeding scheme from around 100 Hz at FERMI to higher repetition rates will allow to 504 

explore many more methodologies, such as resonant inelastic x-ray scattering  [112], ion 505 

trap spectroscopy and again coincidence methods. At the FLASH free-electron laser, seeded 506 



                                                                                                                                                                            

operation up to 5 kHz effective repetition rate is planned [113]. The increased spectral 507 

control with more coherent x-ray laser sources will also result in the realization of nonlinear 508 

probe schemes [114 116] building experimental success with lasing and Raman emission 509 

with SASE sources [117,118].  510 

With regard to the development of sample sources, different techniques have been 511 

developed in the past to bring large molecules into the gas-phase, for example matrix-512 

assisted laser desorption/ionization [119] or electrospray ionization [120]. They find 513 

application so far mostly limited to mass spectrometry. However, there is ongoing work in 514 

improving those techniques with respect to sample density, stability and their application in 515 

electron or coincidence measurements [121,122]. Laser-induced acoustic desorption was 516 

already used in femtosecond spectroscopy with laboratory laser sources [123,124] and 517 

could be an option at free-electron lasers. There is also ongoing work in purifying molecular 518 

sample beams and selecting individual conformers and quantum states [125 127]. 519 

                                                                                                                                                              520 

CONCLUSIONS                                                                                             521 

The advent of short-wavelength FELs in the last decade started the investigation of light-522 

induced, ultrafast molecular dynamics using femtosecond x-ray pulses. Utilizing the 523 

element- and site-selectivity of x-rays allows to disentangle electronic and nuclear degrees 524 

of freedom during the relaxation and test proposed relaxation pathways more directly. In 525 

this review we have discussed the applications of different x-ray spectroscopy methods for 526 

investigating the relaxation dynamics of molecules based on our research on the well-527 

studied nucleobase thymine and the thionucleobase 2-thiouracil. 528 

We showed that the ambiguity in the proposed relaxation pathway for the molecule 529 

thymine could be solved with the help of x-ray absorption spectroscopy [93]. By directly 530 

accessing resonant transitions between the oxygen 1s core and the half empty n-valence 531 

-induced feature in the absorption 532 

spectrum. In combination with an observed 60 fs delay in its appearance, this technique 533 

allowed to unambiguously point towards a sub-534 

ed energy barrier. 535 

We studied the UV-induced excited-state chemical shifts in the x-ray photoelectron spectra 536 

of 2-thiouracil. We discovered the connection between shift and valence charge flow over 537 

the molecule upon UV excitation [102]. This agrees with the classical model of chemical 538 

shifts, where the binding energy of core-level electrons is strongly dependent on the local 539 

valence electronic charge. We succeed in observing the electronic changes due to internal 540 

conversion and intersystem crossing that lead to a redistribution of charge over the 541 

molecule. Probing the binding energies of core electrons at different sites and elements 542 

inside the molecules will allow to track charge movement completely and will thus create an 543 

electronic molecular movie. 544 



                                                                                                                                                                            

Time-resolved Auger-Meitner spectroscopy shows sensitivity to geometrical changes in the 545 

vicinity of the core-hole. Both thymine and 2-thiouracil show an initial shift in the Auger-546 

Meitner electron energy towards higher kinetic energies at the O 1s and S 2p edges, 547 

respectively [39,108]. From electrostatic considerations, this can be attributed to an initial 548 

bond elongation between carbon and the respective heteroatom. However, further 549 

relaxation dynamics cannot be attributed to geometrical changes, more expensive 550 

theoretical models are needed to capture the electronic relaxation that drives AM spectral 551 

shifts after the initial bond elongation. In future, time-resolved Coulomb-explosion imaging 552 

and ultrafast x-ray or electron diffraction, will allow to follow the nuclear geometry changes 553 

with much higher level of detail. Together with the high-fidelity data on electronic dynamics, 554 

this will allow for the reconstruction of the complete electronic and nuclear geometry 555 

changes in molecular excited-state dynamics. 556 

In the future, the ongoing development of FELs in terms of repetition rate and seeding will 557 

enable a wide range of spectroscopic techniques for molecular samples to study both 558 

nuclear and electronic degrees of freedom in a time-resolved manner. Ongoing 559 

development on sources for more complex samples will also allow for the investigation of 560 

much larger biological systems than presented in this review. 561 
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