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Abstract

Given the urgency to reduce fossil fuel energy production to make climate tipping points less likely,
we call for resource-aware knowledge gain in the research areas on Universe and Matter with emphasis
on the digital transformation. A portfolio of measures is described in detail and then summarized
according to the timescales required for their implementation. The measures will both contribute to
sustainable research and accelerate scientific progress through increased awareness of resource usage.
This work is based on a three-days workshop on sustainability in digital transformation held in May

2023.
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1 The challenge

Climate change is real. What numbers tell us since
many years becomes more and more tangible for
everybody in events such as extreme weather con-
ditions, floods, or wild fires that come closer and
happen more frequently. This makes it harder and
harder to ignore the consequences that our actions
as human species have on the conditions for life
on our planet.

The discussion often focuses on an increase of
average temperature by 1.5 or 2 degrees. But this
number does not convey the severeness the climate
change will have. Each human induced change
of the climate increases the probability of reach-
ing a tipping point that leads to an irreversible
and uncontrolled development. A so far under-
estimated risk due to global-warming-induced
weather extremes like droughts, heat waves and
torrential rains may be the reduction of global
food production and the resulting expansion of
regions with hunger, migration, and conflicts [1-3].

We can decide to either accept those risks
or mitigate them. If we choose the latter this
means we have to drastically reduce greenhouse
gas emissions. Here it is important to note that
the integrated emission matters, such that the dif-
ferential emission per year needs to disappear.
Therefore time is a critical factor.

To meet the goal of the Paris agreement [4]
and reduce the risk of reaching tipping points,
the greenhouse gas emissions must be reduced
by 50% within 7 years as illustrated for the
worldwide energy production in Fig. 1. Here, the
consumption share of data centers is estimated
to be about 1% [5]. The curve labelled Fossil is
very relevant for ErUM-Data !, the digitization

LErUM: Research on Universe and Matter

of the research on Universe and Matter in Ger-
many [6, 7], because a large fraction of the COge 2
footprint of computing in ErUM sciences comes
from the energy consumption for processing and
storing data, which is continously growing in many
research fields.

If we accept the responsibility arising from our
actions and take the Paris agreement seriously,
we as a community must develop a plan to follow
the curve in Fig. 1 for the energy consumption
of our research. The general transition from fossil
to regenerative energies will help and on a time
scale of a decade or two there may be an abundant
supply of renewable and cheap energy. However,
additional savings will be required on short and
medium term which can be reached by techno-
logical innovations and changes of attitude and
behavior.

With these transformations we can on the one
hand contribute to research for sustainability. On
the other hand we must advance our own research
methods to make them sustainable.

The German government aims at achieving
greenhouse gas neutrality by 2045 [11]. While
this is an ambitious goal, it still poses challenges
in terms of remaining emissions until that year.
Figure 2 shows the time evolution of the energy
mix focusing on electricity production in Ger-
many, as well as a possible future development
based on the targeted expansion of renewables
[11-13] which takes into account both the end of
nuclear energy in 2023 and the phase-out of coal
by 2038.

The challenge of sustaining both, our own
research and the conditions for life on our planet,

2Several greenhouse gases CO5, CHy, N, O, HFC, PFC, SFg,
NF3 contribute to climate change. Their different effects are
normalized to the effect of CO2, the total effect is reported as
COz-equivalent ‘COge’ [8].
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Fig. 1 Graph based on the evolution of the worldwide energy production by sources [9] and projection with required

savings according to the Paris agreement by [10]

is huge, and particularly difficult for the ErUM
communities. An extensive compilation of gener-
ally relevant aspects for ErUM-related sciences
can be found in reference [14]. In this work we
will focus on aspects of digital transformation.
Remarkable advances in compute power, data
storage, and algorithm development have cata-
pulted the capabilities of modeling, analysis, and
simulations to unprecedented levels. In addition,
the ‘fourth paradigm’ [15] with its data-centric
methodology combined with new artificial intelli-
gence (AI) methods enables researchers to tackle
and decipher major scientific challenges. On top of
that, there is the increasing sensitivity of experi-
mental instruments and a corresponding increase
in data rates and volumes. In light of all this, there
are still ideas on how to address the seemingly
contradictory overall challenge of preserving both
nature and research-driven knowledge gain.

In this document we present practical measures
in the areas of data and software management,
algorithms and artificial intelligence, as well as
computing infrastructure discussed at a workshop
of ErUM-Data scientists [16]. Twelve questions
were formulated in advance which gave a structure
to the work and discussions (see Appendix A). The

measures can be the basis for the development of
a realistic plan for the required reduction of green-
house gas emissions in the next years while having
sufficient computing resources for our research.
There are three main approaches.

First, energy can be saved by avoiding
or reducing unnecessary computations, e.g. by
reusing existing results. This requires in particu-
lar FAIR 2 data [17] and FAIR research software
[18] as well as an increased awareness to properly
balancing knowledge gain with resource usage.

Second, we can increase the efficiency of the
calculations that are required for our research
without tapping into the classical rebound trap of
using efficiency gains to do more calculations. The
measures range from classical or automated code
optimizations to new technologies such as new
computing architectures and artificial intelligence.

Third, we can reduce the COse emissions
caused by our computing. This is mainly in the
hand of the computing providers and includes
measures such as locating sites close to renewable
energy suppliers and reusing the produced heat.

3FAIR: findable, accessible, interoperable, reusable.
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Fig. 2 Shares of the yearly electricity production in Germany [9] together with a possible extension scenario approximately

following expectations in [11-13]

To be able to implement the practical measures
discussed in this document certain competences
need to be acquired and the right support and
incentives need to be provided by funding agen-
cies, research centers, and universities. The accep-
tance and execution of the technical and non-
technical measures in everyday scientific research
will demand a difficult, but unavoidable transi-
tion period. Awareness at all levels is a critical
prerequisite for a successful transition.

The portfolio of measures concerns six areas
which are detailed in the following sections: smart
data transformation, practices in software devel-
opment and data analysis, algorithms including
artificial intelligence, computing with renewable
energies, education and training in sustainable
research, as well as funding and institutional
support.

2 Smart data transformation

Data transformation constitutes an essential
aspect of empirical sciences, and advancements in
technology are enhancing both its capabilities and
complexities, alongside resource utilization. We
refer to transformed data designed and susceptible
to further exploitation as smart data. As exper-
iments achieve higher resolutions, larger sample
sizes or sample quantities, the volume of raw data
necessitating processing and analysis increases.

An example are high-energy particle collider
experiments, where permanent storage of all raw
data is not feasible since several decades. Auto-
mated algorithms (‘trigger’) are designed to iden-
tify the raw data with most scientific value and
only retain this data for storage. Nevertheless,
current technical and economical boundaries are
exploited to maximize the scientific revenue. For
example in case of experiments at the Large
Hadron Collider at CERN in Geneva, this results
in the order of 100 PB of data being stored per
year.

In the field of astrophysics all data taken by
telescopes were archived traditionally and eval-
uated repeatedly. As computing and algorithms
evolved, sensitivity to previously unnoticed fea-
tures improved such that breakthroughs have
appeared from reprocessing of archival data (e.g.
[19]). Such research with archived data may be
particularly resource-efficient. In the future, stor-
ing all data will no longer be possible as newer
and more sensitive state-of-the-art facilities such
as the Square Kilometre Array Observatory will
produce data rates in the range of Terabits per
second that can no longer be stored, but must
instead be analyzed immediately and deleted after
processing.

In photon and neutron sciences, fast auto-
mated sample exchange and qualitatively



improved detectors cause similar effects. As pio-
neering examples, ‘stream based models’ are
explored by not storing raw data at all, and
performing all processing online [20].

Dealing with such large amounts of data nat-
urally requires significant compute resources with
non-negligible footprints in energy consumption
(see Section 5). Hence, smart data transformation
becomes increasingly important, especially in view
of further envisioned detector upgrades and new
science facilities.

For achieving our sustainability goals, teams
with in-depth knowledge of the relevant experi-
ments are needed to develop comprehensive data
management strategies. Their efforts are in direct
relation to the goals of the NFDI consortia [21-23].
The teams need to provide a data life cycle with
different phases of data use, from instant analyses
after data recording to completely new analyses
at a much later time (long-term archiving). In the
early stages, storage capacities could be substan-
tial to maintain some level of data redundancy
for backup and convenient access. In later phases,
the volume of data retained could be gradually
reduced over specified time intervals.

For the content assessment of the data, far-
reaching expertise is needed to define the exact
objectives of the data storage. The spectrum
ranges from timely thorough data analyses, to
reproduction of analyses, later cross-verification or
subsequent use in completely new contexts. For
the latter, potential future use cases should be
anticipated as best as possible.

It is thus mandatory to define which data
should be stored in which formats. The criteria
under the overarching FAIR data principle [17]
for data preservation should also be followed in
Universe and Matter research.

For data to be reused, their meaning must
be self-explanatory to scientists and convey infor-
mation about the conditions under which the
measurement data were obtained. Such metadata
on location, time, device, operating conditions,
instrument calibrations, etc. play a critical role in
understanding and processing the data in subse-
quent phases.

Another aspect of discoverability concerns the
descriptive language of the data. Within individ-
ual research communities, there are often specific
terminologies and vocabularies whose linguistic

nuances evolve over time and thus can present sig-
nificant obstacles to the use of archived data. In
some research areas, ontologies have been devel-
oped to describe preserved data. This approach
creates a standardized lexicon and thus simplifies
the matching between the description provided
with the data and a search query.

Finally, workflows are important for smart
data transformation, referring to software and
algorithms as well as processes involving humans.
In several areas of the ErUM community, it has
become common practice to take snapshots of
processed data at intermediate stages in work-
flows throughout the data processing chain and
store them temporarily. This approach allows for
later extensions and repetition of subsequent steps
without having to reinitiate the entire data pro-
cessing sequence. This efficient strategy saves time
and computational resources, albeit at the cost of
temporarily increased storage requirements.

With the goal of achieving scientific results as
soon as possible, there is an immediate motivation
for the efficient choice of such snapshots, and they
should improve energy efficiency. Orchestrations
of workflows are also being tried in large collabora-
tions where the same data on different aspects are
analyzed by individual research teams. However,
it requires a strong commitment and dedication
to collaborative efforts to prioritize resource effi-
ciency through joint action, especially in highly
competitive contexts.

As a summary, we note these actions for the topic
of smart data transformation:

® Make data FAIR to promote reuse, which can
be particularly resource efficient.

® Reduce and compress data, having the antici-
pated scientific value of the retained information
and the resource requirements in mind.

® Optimize the choice of storing intermediate
results against re-calculating them.

e Optimize job orchestration and scheduling in
workflows.

3 Software engineering and
data analysis

The relevance of human resources invested in soft-
ware development is increasing in view of the



ever-growing volumes of data and the correspond-
ing computing power required. Once written, code
is applied to increasingly more data. Therefore,
prioritizing software optimization is more than
justified.

A common practice in dealing with research
data is to code an exploratory analysis that inves-
tigates the potential of the data with respect
to a scientific question. In case of success, a re-
engineering of the used software into a professional
structure is mandatory to consolidate and enable
possibilities of enhancing the code base. Further-
more, especially in the case of complex data
analyses with many intermediate steps, it is essen-
tial to introduce a workflow management system
to ensure both the reproducibility of the analy-
sis and to avoid unnecessary recalculations [24].
Often, this revising step is skipped and it remains
with what is popularly known as ‘spaghetti code’
together with the researcher who has memorized
the order of the calculations for himself, inevitably
leading to ‘abandonware’. Experience shows, how-
ever, that a solid structure of the research software
and the use of workflow managers accelerates iter-
ative review processes and thus the publication of
the results.

Accordingly, adherence to good software devel-
opment practices has the potential to save human
and energy resources through excellent code qual-
ity. The FAIR research software seal [18] now
exists in this area as well. Community-maintained,
easily accessible open source code is generally
more efficient than local stand-alone implementa-
tions. Effective coding practices of jointly devel-
oped software include tracking systems, version
control, rigorous testing, and benchmarking (see,
e.g. energy per luminosity in GWh/fb~! which is
particularly suited for particle physics [25]). Fur-
thermore, modularization and reuse of code, pos-
sibilities for parallelization of computations (vec-
torization), comprehensive documentation, and
continuous integration are important.

Generally, energy efficiency should play a cen-
tral role in software development, along with
broadly-accepted software-quality metrics. First
of all, unnecessary computations should be
avoided. This is helped not only by workflow man-
agers, but users can also execute initially small-
scale validations and monitor execution for early
detection of software or parameter problems. Code

developers can implement sanity checks on con-
figuration problems and input data. In this way,
wasting energy consumption by large, unsuccessful
runs can be avoided.

Great help in conserving resources comes from
using established runtime optimization techniques
through automated parallelization, adaptation
to new CPU architectures (i.e. ARM, RISC-V,
etc.) and Co-Processor architectures, vectoriza-
tion, memory layout optimization, and the use of
special compiler flags. All such measures gener-
ally lead to more energy-efficient code and are also
being further developed in expert groups in the
Universe and Matter research area [26].

In order to intensify the necessary awareness
for resource consumption, tools for monitoring
of resource consumption, trainings on the con-
scious use of resources (see Sec. 6), practical
optimizations of code as well as their computa-
tional processes need to be developed and made
available.

Ultimately, given the pivotal role of high-
quality scientific software in the research land-
scape, its development and maintenance should
receive increased and appropriate valuation. This
could encompass recognition through publications
and citations, funding allocation, enhanced access
to infrastructure resources, and the establishment
of dedicated career paths.

Summarizing practices of software engineering, we
note these actions:

e Make software FAIR and reliable by follow-
ing good software development practices and
ensuring sustainable support.

® Design software for optimized energy consump-
tion.

® Use workflow management to make processing
FAIR.

e Continue research on potential of new technolo-
gies for efficient use of resources.

4 Algorithms and artificial
intelligence

The energy efficiency of algorithms is crucial for
the reduction of computing resources and obvi-
ously closely linked to adherence to the above-
mentioned good software development practices.
Often, there are already optimized algorithms in



open-source standard libraries or domain-specific
libraries that can be utilized. A recent example
is experiments with Big Data in the form of mil-
lions of events, in which the formerly sequential
event loop has been replaced by parallel process-
ing of large event chunks [27-29]. Beyond this,
new challenges may soon arise from dynamic sus-
tainable energy supply of computing centers, to
which algorithms may also have to be optimally
adjusted.

The rapid progress in the field of artificial
intelligence (AI) is opening up completely new
possibilities. Machine learning is already acceler-
ating ErUM research in theoretical predictions,
in simulations, and in the analysis of experimen-
tal data. Moreover, innovative data analyses are
becoming possible via these data-driven modeling
techniques, in which the physics potential of an
experiment is exploited to a much greater extent
than originally expected (e.g., [30, 31]).

From many more examples, we mention here
also closed-loop experiments in X-ray and neu-
tron sciences with their direct feedback after
data taking from quasi-instantaneous data analy-
sis and control of the experimental parameters in
film growth [32], and more efficient searches in a
dedicated phase space for dispersion relations of
phonons or magnons [33]. Finally, we expect that
in the near future more and more tasks will be
performed by scientists using Al tools.

We argue that the full potential of machine
learning algorithms should be prioritized, respect-
ing the goal of reducing energy consumption in
ErUM research. The focus should therefore be on
developing and deploying models to perform tasks
that have the potential of great benefit to sci-
entific progress, or are particularly expensive in
terms of computational resources. Given the lim-
ited time window for reducing the COse footprint
of ErUM computing, developments in areas with
high potential for reducing energy consumption
must be advanced early.

However, since training machine learning mod-
els also leaves a COge footprint, the resources
consumed in training should be evaluated and doc-
umented for transparency. This should include all
training performed, including those to optimize
the models. Energy consumption during the infer-
ence period is likely to be low in comparison, but
should also be documented and compared to the
consumption of established alternative solutions.

In light of recent breakthroughs in generative
models, this is one area where the deployment
of machine-learning solutions has large potential
for fields of ErUM that rely on large samples of
simulated data. One such example is the detector
simulation at the LHC experiments, which at the
ATLAS experiment for example consumed 38%
of the total CPU resources in 2018 [34] and for
which a deep generative model is being deployed
that is O(500) faster than the simulation with
GEANT4 [35].

Another promising area is the adaptation of
large pre-trained models that are only refined
for the specific ErUM applications. Thus, refining
such pre-trained models would not only require
less computational resources in training, but also
enable smaller ErUM training datasets. In gen-
eral, the reusability of previously trained machine
learning models has the potential for more efficient
training in ErUM research.

Pre-trained models include recent Al devel-
opments in terms of large language models,
which are available to the general public as new
and powerful AI tools. These tools have great
potential to increase work efficiency in ErUM
research, for example, by helping with documen-
tation tasks. This includes computer code docu-
mentation, which is time-consuming and therefore
often neglected. Good code documentation has
the potential to increase the reusability of code in
general and of efficient code in particular. How-
ever, large language models can also be used to
directly suggest more energy-efficient algorithms.
These new capabilities are directly related to the
identified needs in Section 3.

It can hardly be overemphasized that scien-
tists have a key role in the choice of algorithms.
Their decisions on the use of self-coded algorithms,
library algorithms, or artificial intelligence algo-
rithms are crucial to the runtime of the jobs and
their resource consumption. Considerable exper-
tise is required especially for successful deploy-
ment of new AT algorithms, i.e., deployment that
is energy efficient and leads to scientific progress.

Therefore, the strategic use of Al tools in the
scientific workflow needs prioritization between
the use of human and computer resources and in
the expected value of knowledge gain. As a con-
sequence, it needs to be decided where AI should
be used sensibly and where not. For example, for
some problems, comparable performance could be



achieved by human reasoning instead of resource-
intensive machine learning training. When Al-
generated code or machine learning is used for
ErUM research, it always requires extremely care-
ful validation by scientists. Thus, it is clear that
human interaction will remain a pillar of scientific
progress.

We see the following measures to be central in the
area of algorithms and artificial intelligence:

e Continue research on potential of Al or other
new technologies.

® Include particularly promising applications of
generative and pre-trained models.

e Expand detailed monitoring and documentation
of energy consumption and COse footprint in
training and inference.

® Use already optimized algorithms in open-
source standard libraries or domain-specific
libraries.

5 Computing and
infrastructures

In this section, we focus on sustainability related
to computing hardware and its operation. Dis-
cussions of practical measures involve adjusting
computing in space and time to the availability
of renewable energy, reusing the generated heat,
and extending the operating lifetime of hardware.
Implementing such measures requires a compre-
hensive information flow between the stakeholders
involved.

Greenhouse gas emissions are widely classified
in so-called scopes (e.g. [36]). There are no directly
produced emissions from computing for research
on the Universe and Matter (scope 1). However,
indirect emissions are produced by operating the
data centers with electricity that is not produced
from renewable sources (scope 2). Finally, indirect
emissions arise from the entire value chain, start-
ing with the production of buildings and computer
systems and later with their disposal (scope 3).

Renewable energy (scope 2):

First, with regard to scope 2, an essential compo-
nent of sustainable data processing is a detailed
overview of the power consumption of the various
systems and services, as well as a detailed account-
ing of past or planned activities. Data centers

generally have detailed measurements and records
of the power consumption of their various sys-
tems, although this information is generally only
available upon individual request and is not yet
directly accessible online in a comparable format.
For the annual electricity consumption of large
German data centers, we refer to the compila-
tion results in Tab. 1. For comparison, 1 GWh
roughly equals the electricity demand of 1,000
single-households per year in Germany.

Computing center Electricity/GWh  Ref.

MPCDF Garching (2022) 43 [37]
LRZ Garching (2021) 33 [38]
HLRS Stuttgart (2021) 32 [39]
JSC Julich (2012/13) 34 [40]

Table 1 Annual electricity consumption of large
computing centers

An example of the approximate breakdown
of energy consumption among the major com-
ponents of the CERN data center is 55% data
processing, 21% disk storage, 2% tape storage, 5%
network, and 17% services [41]. Details of these
numbers can be found in the Appendix B. During
the 13-year operation of the Large Hadron Col-
lider, power consumption has been fairly constant,
although computing capacities have increased by
a factor of 6 from 2012 to 2023. The high ser-
vice share comes about because of the special role
of the CERN computing center in the intercon-
nection of about 170 computing centers in the
Worldwide LHC Computing Grid ‘WLCG’ [41],
where CERN operates a large part of the central
services.

A next big step toward sustainable computing
would be to place data centers near sustainable
energy sources. Renewable energy supplies gener-
ally consist of solar panels and wind farms, but
also biogas power plants.

Practical approaches with data centers directly
at the producers already exist in Texas in the
USA, whose renewable energy capacity will reach
approx. 70 GW by the end of 2023 [42]. Transport-
ing electricity is a major problem due to lengthy
permitting processes for transmission lines. So
the idea of moving electricity consumers to the
point of generation was born. While this is dif-
ficult for most industries, scientific computing is
an ideal candidate for this relocation. On the



hardware side, data centers only need power and
fiber for the network. The user side of scientists
typically computes in batch mode, usually consid-
ering temporary interruptions due to insufficient
sun or wind and thus moderate delays in the
computations acceptable.

For Germany, a comparable data center sce-
nario could be built near the North Sea, where
most of the wind is available and most offshore
wind farms have either been built or are in the
planning stages. Substantial computing infras-
tructure could be built as green-field sites, as is
already explored commercially [43]. Tt is advis-
able to keep sufficient storage data capacity along
with the computing resources to reduce network
latency issues when data throughput is large.

Since in many communities experiments are
carried out worldwide and as international collab-
orations, data of interest to scientists working in
Germany could be relocated to such data centers
in the north. The cost and effort of laying the
required fiber optic cables for the networks likely
do not dominate. Transformed data with lower
volumes could optionally go to the universities for
further processing.

Overall, it makes sense to establish a joint
ErUM science cloud initiative timely, starting with
moderate equipment and scaling up once signifi-
cant funding has been successfully acquired. Even
in the initial pioneering phase, there are many
aspects to develop and explore, as we will discuss
below.

When setting up a data center near the power
producers, the following criteria should be taken
into account. Since the energy comes from renew-
able sources, the performance of a processor per
invested units of electricity (flops per watt) plays
a subordinate role. Thus, initially hardware could
be operated that does not belong to the latest gen-
eration and can therefore be obtained at relatively
low cost.

The key challenge for data centers is the
dynamics in supply from renewable energies [42,
44, 45]. Data centers must be able to dynami-
cally ramp up or down computing resources or
shift workflows as needed. Importantly, centers
must be equipped with valid forecasts of weather
conditions and expected energy supply (see below
paragraph on information flow and middleware).

There are two relatively straightforward ways
to reduce power consumption in a data center:

First, one can reduce the CPU clock rate. In prin-
ciple, this can be done immediately; jobs are only
slowed down, but continue to run. Studies show
that power consumption of compute nodes can be
reduced by 50%, with a corresponding slowdown
in processing [46].

Second, one can hibernate or power down
entire nodes. The order of nodes could follow a pri-
oritization list based on the operating age of the
hardware and thus their efficiency. Shutting down
CPUs works within seconds, while restarting can
take several minutes depending on the memory
requirements and the speed of the IO system [42].

However, it must be ensured that running jobs
are stopped properly without losing the results
achieved up to that point. Ideally, this can be
achieved by so-called checkpointing, i.e. the entire
program state is stored on disk and can be
resumed later. In practice, this feature is chal-
lenging for data processing jobs with many open
connections to external services. If the processing
consists of repetitive, independent steps, as is the
case with event processing in particle physics, an
alternative is event-level check-pointing, i.e., after
each processing step, the output is stored in its
entirety. In case of an interruption, processing can
be resumed after the last processed event, so that
only little CPU time is lost.

However, a minimum energy supply to the
data center must be guaranteed at all times. The
servers and network switches of the data center
should run continuously. A data center with CPU
and storage as in use for WLCG requires about
25% of power for hard-disk drive storage (HDD).
To avoid damage, these servers should not be shut
down frequently, resulting in a continuous power
requirement. Therefore, energy storage options
should also be planned for the data center from the
beginning. Depending on the environment, these
could be accomplished for example by batteries,
water storage, energy to gas plants, flywheels, and
bidirectionally charging electric vehicles.

Efforts to optimally use the supplied energy
for computing centers are rated by Power Usage
Effectiveness (PUE) which describes the total
amount of energy used by a center compared to
the energy delivered to the computing equipment.
For research infrastructures such as CERN in
Geneva, the Prevessin Site reaches PUE=1.1 [46],
the National Renewable Energy Laboratory in



Boulder (USA) reported annualized PUE=1.036
[47], and the German HPC center LRZ measured
a PUE of 1.06 for the SuperMUC-NG system
[48]. Beyond energy-supply discussions, modern
computer chips have very high heat output per
unit area, exceeding that of a conventional induc-
tion stovetop [49]. In terms of sustainability, it is
imperative to use the dissipated heat, for example,
to provide heating and hot water for the nearby
buildings. Also, residential units are provided with
data centers where best PUE values were achieved
for new residential buildings (PUE=1.024), but
also far-reaching improvements were obtained in
conversions of e.g. high-rise buildings from PUE
~ 2 to PUE=1.27 (both in [49]).

Hardware lifetime (scope 3):

A subject of its own are the sustainability issues
for the above-mentioned scope 3, which takes into
account the COqe footprints during manufactur-
ing and disposal. It is not easy to get exact data
for individual hardware components. There are
studies that put the manufacturing COse foot-
print at 20 — 30% of the total COse footprint
[50, 51]. Obtaining corresponding numbers for
e-waste turns out to be challenging.

At this scale, hardware lifetime is a relevant
issue. Complementary variables are power con-
sumption and lifetime. Data center equipment
runs 24 x 7 continuously for approximately 5 years,
containing the aforementioned approximately 25%
of fixed carbon. Extended life in certain mission
areas - i.e., larger science centers with dedicated
and experienced staff could explore more versatile
life extension options that result in 7-10 - or even
more - years of operation which is worth when
using renewable energies.

However, there is also a finger pointing at typ-
ical personal devices such as desktops, laptops,
smartphones, etc. Because of the much shorter,
integral operating times and sophisticated energy
efficiency, the COse footprint of manufacturing
here goes in at about 75% bound carbon. Accord-
ingly, life extension for devices for individual use
needs to be seriously considered.

Recent announcements indicate that industry
is now putting a stronger focus on energy efficiency
in data center devices as well [52]. The correspond-
ing component-based replacement and operation
of data center devices with renewable energy are
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clearly going in the right direction to address the
challenges of sustainability scopes 2 and 3.

Information flow and middleware:

Successful sustainable computing in the area
of research on Universe and Matter requires
comprehensive information flows between energy
providers, data centers and users. Furthermore,
conceptually new middleware tools are needed
for dynamic operation of the data centers. These
issues are addressed here.

First, monitoring of resource consumption is
central to further advancing energy efficiency.
What is the consumption per job, per user, per
publication, or the entire data center? Details such
as the resource profile within a computing job are
also required. With such tools, cost-benefit anal-
ysis and optimization efforts are made possible in
the first place.

Today, only a few researchers, groups and
departments receive information on the resource
usage of their computations. One example is the
National Analysis Facility (NAF) at DESY, which
recently set up a monitoring service to determine
the energy consumption of a job in the central pro-
cessing system and record this information in the
log file. The service also provides a COqe estimate
based on the current energy mix at the data cen-
ter site. Such systems need to be transferred to
provide every scientist with comprehensive energy
and COqe reporting.

The development of easy-to-use tools for
explicit measurement and profiling of energy usage
and COse footprint for developers and end users
is non-trivial. First, the COse footprint depends
on the energy resource used, which is known to
the energy provider only. The relation between
energy consumption and program runtime is not
necessarily strictly linear, since modern architec-
tures have dynamic power and frequency scaling.
In addition, a poorly optimized GPU implemen-
tation may run faster but consume more energy
than a CPU version due to differences in thermal
design performance.

A bidirectional flow of information between
users and the data center is also necessary. Users
should be able to estimate the requirements of
their job types, at least approximately. Detailed
accounting information about the energy con-
sumption and COse of each data processing



job, production task or data transfer would be
important and useful information. Similarly, users
should be able to provide information about what
specifications their algorithms tolerate and the
dynamics with which their algorithms can respond
to power shortage situations. Furthermore, it
should be possible to define whether certain delays
in batch jobs or even reduced job numbers are
compatible with their quality-of-service require-
ments. An example are High-Throughput Com-
puting applications of WLCG data processing,
which are — within boundaries — less time-critical.
In other words, for a major campaign that lasts
many days, delays of a few hours are not critical.

Conversely, users need information from the
data center on what the supply situation is —
whether, for example, computing resources will
be slowed down or even temporarily shut down —
and, finally, what the forecasts are for job comple-
tion. In general, one can expect downtime to be
acceptable as long as it is predictable on a daily
basis. Users would not submit jobs that cannot be
completed in the foreseeable future.

Second, we can expect that in the medium
term, consumer energy prices will be time-
variable, and will depend on the availability of
renewable energies and on the overall energy
demand. In order for data center operators to per-
form energy-dependent work planning, it is impor-
tant to obtain information from energy providers
about current pricing and availability of renew-
able electrical energy, e.g., whether there is an
oversupply or undersupply. In addition, forecasts
for supply, including weather information and
price stability, are needed. Conversely, the energy
provider needs the requirements of the data center
for its own work planning in a timely manner.

To enable overall asynchronous communica-
tion flows, one possible approach to the required
information exchange between all stakeholders
could be to set up a centralized and scalable
or distributed monitoring infrastructure where
data is collected in real time and where everyone
can query the required information using stan-
dard protocols and APIs as well as standardized
communication content.

Beyond the aforementioned information flows,
data centers require conceptually new middleware
tools that enable efficient energy-aware schedul-
ing [53] based on the overall situation of user
demand and energy availability and implement
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dynamic CPU/GPU power modulation and load
limitation on existing systems. Good results can
be achieved with applications that adapt to
changes in resource availability (so-called mal-
leable jobs [54]). Also users need new middleware
tools to hand in their job requirements and receive
reports.

For longer-term periods of low sun or low wind,
energy storage technologies must also be devel-
oped and deployed. A scenario must be developed
on how to react in such situations. Historical
weather data could be used to define storage
capacities: how often and for how long do such
situations occur.

A possible contingency procedure could be to
first use up the energy storage, then freeze jobs or
only run high priority jobs for a certain period of
time, and finally use non-renewable energy. The
guiding principle should be to keep the COge
footprint of data center operations as minimal as
possible [45].

From the topic of computing with renewable ener-
gies we summarize the following demands:

® Monitor and report energy consumption at job
level including resource profiling within the job.

® Monitor and report energy consumption at
site and project level, provide information of
the individual use per scientist/project/publi-
cation.

® Extend monitoring of resources beyond COse
(water, material etc.).

® Consider carbon footprint for all planned invest-
ments and project plans.

® Adjust computing in space and time to the
availability of renewable energy, e.g. computing
centers close to off-shore wind parks with a job
scheduling using only or mainly the surplus of
renewable energy available at a given time.

® Develop software and middleware that can
respond dynamically to the availability of
energy.

® Optimize power usage effectiveness.

® Re-use produced heat.

e Adjust hardware lifetime considering emissions
due to procurement and operation.



6 Developing a culture for
sustainable science in the
ErUM communities

There is no disputing that remarkable advances
in computing power, data storage, and algorithm
development have greatly accelerated the capa-
bilities of modeling, analysis, and simulation to
unprecedented levels. This transformation has
opened new frontiers of scientific understanding
and progress that were impossible at the turn
of the century. Especially data-centric methodol-
ogy has revolutionized numerous scientific fields,
enabling researchers to tackle and decipher grand
challenges by studying systems at multiple levels
with unprecedented precision (see Section 4).

However, as a result of this development, there
has been a significant increase in energy consump-
tion, which needs to be accounted for in relation
to scientific progress, so there is an urgent need for
comprehensive, strategically designed education
that covers all of these areas.

Since the early 2000s, academic discussions
and surveys [55] have already underscored the
importance of sustainability-focused education
and the vital skills needed to equip the next gen-
eration of scientists with sustainability awareness
and the aptitude necessary for innovative research
and development. In addition, UNESCO describe
the World Programme of Action on Education
for Sustainable Development (2015-2019, 2020-
2030) [56] and offer detailed recommendations and
strategies on how to effectively integrate Al into
education systems in its comprehensive guide [57].

New university courses and workshops
designed to empower students and researchers
with the knowledge and skills to conduct sustain-
able digital research can help create a responsible
approach to knowledge gain in conjunction with
resource usage. Together with the portfolio of
measures described in this publication, these
educational tracks have the potential to promote
informed decision making about the use of com-
puting resources and to support more sustainable
practices in scientific research.

Especially when using data-driven methods,
a commitment to sustainability is essential. To
balance and monitor the seemingly inexhaustible
potential of AI, researchers and students must
have deep domain-specific knowledge. A solid
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foundation in mathematics and computation
paves the way for the deliberate integration of
efficient computation and algorithms, streamlined
models, and conscious decision-making through-
out the research process. This is where it
makes sense to inject one’s own intelligence first,
rather than reflexively increasing computational
power. A further temptation notes that effi-
ciency improvements trigger a rebound effect that
increases the demand for computing resources.
Thus, regular reviews and controls may be needed
to mitigate this phenomenon. This and other
incentives under development (e.g. [58]) can
certainly be beneficial. Even more robust mea-
sures such as COse-based fairshares, COse budget
allocations, and specific reduction commitments
(‘carrot and stick’ strategy) are conceivable.

Thus, for early-career researchers, knowledge
transfer, mentorship, resource allocation, and net-
working are central to cultivating their skills, deep
understanding and effective use of Al tools. For
experienced scientists in leading positions, it is an
important task to assess the COse footprint of
their current research, to develop, implement, and
monitor plans to reduce COge emissions, and to
consider COse emissions in future investments and
project plans. With these approaches and balance
between innovation, awareness, and responsibility,
we can continue pushing the boundaries of human
understanding while preserving the resources we
depend on for a sustainable future.

Overall, there are many technical aspects,
guidelines, developments, and scientific measures
to improve the current scientific work in our
research field with respect to the urgency of cli-
mate change. However, the success depends on the
implementation in the daily work of individual sci-
entists and therefore requires an urgent change in
awareness and responsibility of every scientist and
science manager.

For the development of educational concepts
and to raise awareness, we summarize here key
concepts that should serve to refine priorities for
performing research sustainably:

1. Balance the knowledge gain of any (computa-
tional) work against the resources it needs.

2. Reliability is sustainability, avoiding unneces-
sary repetitions.



3. Thought-through, well-documented workflows
and standardization guarantee reliable results
and their re-use.

A further periodically appearing challenge of
working sustainably in ErUM sciences results
from project-oriented organization of the funding
schemes. The sustainable use of invested resources
requires improvements in the long-term organi-
zation of knowledge transfer and the exchange
of results and methods. For this continuous sup-
port, sufficient resources in the areas of software,
algorithms, and computation need to be allocated.

For developing a culture for sustainable science
in the ErUM communities we summarize the
following measures:

e Raise awareness of the climate challenge at all
levels.

® Disseminate knowledge of measures to address
the challenge.

e Train scientists in good practices.

® Strive to become a role model at all levels and
help to establish sustainability in everyday life.

® Enhance awareness of the trade-off between
research benefit and climate impact.

® Perform first, rough energy audit and develop
an initial COse reduction plan.

® Regularly review and update the COse reduc-
tion plan.

® Consider carbon footprint for all investments
and project plans.

® Include the resources needed for continuous IT
support into project planning.

7 Funding and institutional
support

From the perspectives of the federal and state
ministries as well as the top management of uni-
versities and research centers, there is a great deal
of attention being paid to the issue of sustain-
ability. This involves the development of strategic
concepts, reporting, measures and funding.

At the level of the German Federal Gov-
ernment, the United Nations Agenda 2030 [59]
has been transferred into a national strategy
named German Sustainable Development Strat-
egy 2021 [60]. A comprehensive general work on
the Digital Strategy Germany was published sub-
sequently [61, 62] which concerns science and
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research among many other aspects and is closely
linked to the sustainability goals. In more specific
contexts, the Federal Ministry of Education and
Research (BMBF) developed sustainability mea-
sures, e.g. which for science is called Research for
Sustainability (FONA) [63].

Within the framework programme ErUM [6],
the BMBF has strengthened the aspect of sus-
tainability in research on Universe and Matter in
their calls for proposals. For example, technolog-
ical and methodological development work that
contributes to climate- and resource-friendly oper-
ation of large-scale facilities and experiments can
be funded alongside projects (e.g. [64]).

In view of all the initiatives and activities to
date, however, major and urgent tasks remain
for all stakeholders to be mastered together. The
many measures described in this work require
appropriate support mechanisms and structural
alterations, some of which themselves must be sus-
tainable. For example, computing facilities local-
ized at power generators need infrastructure and
personnel. Furthermore, an expert group to advise
and support scientists for Digital Transformation
measures in ErUM could be implemented, e.g.
in a new phase of the ErUM-Data-Hub [65]. In
any case, a sustainable impact can definitely be
achieved by creating appropriate long-term posi-
tions in research data, software, and computing.

Efforts to lower bureaucratic and legal hurdles
for the implementation of sustainable dynamic
power generation and transfer are most welcome.
They are needed along with new communication
channels between power companies, data centers
and scientists as consumers to enable practical and
pragmatic solutions for the sustainable use and
operation of computing infrastructures.

8 Conclusions

Based on a three-day workshop on sustainability
in the digital transformation, interested colleagues
from the ErUM-Data community have developed
a portfolio of measures with which our research
area will massively reduce the emission of climate
gases in the sense of the Paris climate agreement
of 2015 [4] and turn to the use of renewable ener-
gies. In doing so, we are planning for a transitional
period until electricity will once again be avail-
able in abundance through the establishment of a
sufficient number of renewable energy sources.



‘ Item  Call-to-action
‘ Immediately or on short time scale with little effort these measures can be implemented:

S1 Raise awareness of the climate challenge at all levels.

S2 Disseminate knowledge of measures to address the challenge.

S3 Monitor and report energy consumption at job level.

S4 Consider carbon footprint for all investments and project plans.

S5 Enhance awareness of the trade-off between research benefit and climate impact.

‘ On a medium time scale of a few years the following measures can be realized:

M1 Make data FAIR to promote reuse.

M2 Reduce and compress data having the anticipated scientific value of the retained information
and the resource requirements in mind.

M3 Optimize the choice of storing intermediate results against re-calculating them.

M4 Optimize job orchestration and scheduling in workflows.

M5 Use workflow management to make processing FAIR.

M6 Make software FAIR and reliable by following good software development practices
and ensuring sustainable support.

M7 Design software for optimized energy consumption and provide tools to measure it.

M8 Continue research on potential of Al or other new technologies for efficient use of resources,
but balance gain of research action against resource consumption of these developments.

M9 Monitor and report energy consumption at site and project level, provide information of the
individual use per scientist/project/publication.

M10  Extend monitoring of resources beyond COse (water, material etc.).

M11 Train scientists in good practices.

M12 Regularly review and update the COge reduction plan.

M13  Strive to become a role model at all levels and help to establish sustainability in everyday life.
A longer term coordinated planning is required for the following measures:

L1 Adjust computing in space and time to the availability of renewable energy, e.g. computing
centers close to off-shore wind parks with a job scheduling using only or mainly the surplus
of renewable energy available at a given time.

L2 Develop software and middleware that can respond dynamically to the availability of
renewable energy.

L3 Optimize power usage effectiveness.

L4 Re-use of produced heat.

L5 Adjust hardware lifetime considering emissions due to procurement and operation.

L6 Include the resources needed for continuous IT support into project planning.

Table 2 Call-to-action in digital transformation: portfolio of measures to be taken, ordered in terms of effort and time

they take.

In light of the dramatic increase in data rates
from new or upgraded instruments and the enor-
mous potential for new knowledge gains from
developments in data-driven, Al-assisted method-
ologies, the awareness of each of our scientists is
critical during this transition period. Already by
applying the portfolio of targeted sustainability
measures described in this publication and con-
sciously balancing prospective knowledge gain and
resource usage, we expect to achieve efficiency
gains that will ultimately accelerate our fields of
research.
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In the portfolio, we see six areas: 1) consid-
ering sustainability as an important factor in the
planning of measurement data transformation, 2)
good practices in software development and data
analysis, 3) use and development of renowned and
efficient algorithms including AI, 4) data center
locations at sustainable energy providers along
with lifetime extension of hardware, 5) education
and training in a responsible approach of bal-
ancing knowledge gain and resource usage, and
6) targeted efforts of all stakeholders including
funding and institutional support.



Our ErUM community can respond now and
develop a realistic plan for the required reduction
of COse emissions. We have the tools at hand
or can develop them. In Table 2, the portfolio
of measures has been ordered according to the
timescales required for their implementation. Var-
ious measures can be launched by us immediately
or realized within a medium time period. The
third category requires our strategic preparations,
which involve coordinated efforts with additional
stakeholders.

Overall, the commitment and joint effort of
all stakeholders — funding agencies, institutional
bodies, computing centers, science managers, fac-
ulty, scientists, students — are needed to master
the challenges of sustainability in digital transfor-
mation in Universe and Matter research.
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ity Statement: No explicit data were used in this
study.
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Appendix A Twelve Guiding
Questions

The workshop on Sustainability in the Digital
Transformation of Basic Research on the Uni-
verse and Matter was structured around twelve
prepared questions, listed below [16].

Hardware € Research Data

1. Footprint: Constructing a comprehensive pic-
ture of the footprint of all ErUM-Data related
activities. Where does quantitative knowledge
exist, where is it lacking? What resource needs
do you see, what opportunities for savings?
What innovations are needed to keep sustain-
able use of resources in balance with demands?
To what extent does continuing education play
a role?” How can feedback reduce a footprint
through machine learning methods?

2. (Dynamic) Energy Supply: Where to locate &
operate computing systems incl. storage? How

15

could a dynamic energy supply look like, which
largely covers the needs of ErUM-Data related
activities with renewable energies? What infor-
mation flows would be required for this? What
mechanisms and what dynamics are required
on a supra-regional basis to create compensa-
tion possibilities for windless/sunless periods?

3. Hardware Lifetime: How could prolonged /
optimized usage of hardware resources in view
of technology evolution be modeled beyond
their usual lifetimes? What short- and medium-
term monitoring would be required to signal
indispensable replacements on the one hand,
and to execute computing jobs matching their
algorithmic requirements on prolonged or cur-
rent hardware on the other?

4. Hardware & Algorithms: Which adaptive mea-
sures for hardware and algorithms could have
a decisive impact on ErUM-Data? Which
types of hardware (including e.g., GPU, TPU,
FPGA, neuromorphic computing) could be
considered and which automated mechanisms
exist for adapting algorithms to non-specific or
dedicated hardware?

5. Smart Data: Deciding when and how to dis-
card information without losing scientific value,
based on learning from nature and experiment.
What mechanisms for transforming data to
smart data can be envisioned, and how can
evaluation and control of information gain or
loss be accomplished? How can archiving and
retrieving data be managed?

6. Cultural Change: What could a comprehensive
educational area for rethinking, among other
things, the use of computer hardware, actually
required information (smart data), prepara-
tion of data packages (event loops versus event
chunks), etc. look like? How can we change to
a culture of data reuse? Assessment of ethical
implications and risk assessment.

Algorithms € Mindset

7. Autonomization: We witness the transforma-
tion from the era of automation to an era of
autonomization (e.g., unsupervised learning).
Where will ErUM-Data benefit from autono-
mization, which innovations are necessary and
how can the reliability of the autonomously
obtained results be ensured?



10.

11.

12.

Inquiries & Dynamics: How can input ques-
tions be posed to generate the best possible
output from the machines? What relevance
will dynamic learning algorithms and machines
have for the field of ErUM-Data?
Algorithmics & Software: Our thinking in algo-
rithms and software has a direct impact on
resource requirements. What can sustainable
algorithm & software engineering and an asso-
ciated educational program in algorithm &
software development look like to get ErUM-
Data to the forefront of developers?

Machine Models: Pre-trained and generative
models have a high potential for energy sav-
ings in both their creation and usage of
machine learning. What innovations are needed
to achieve a reliable routine operation?
Injected Intelligence: How can reasoning by the
physicist, mathematician, or any other kind of
intelligence speed up the processes of learn-
ing or make them more energy efficient? What
measures can we apply to avoid constantly
reinventing the wheel? What can knowledge
discovery of work already performed look like?
Workflow & Stakeholders: How can well-
defined, reproducible workflows with high user
dynamics (data analyses) be captured that
remain functional in the long term? How can
an overall picture be created with all stakehold-
ers working together on a large-scale project
for the benefit of sustainability across their
departmental boundaries?

Appendix B Energy

consumption of
data center
components

For data centers as used in the Worldwide LHC
Computing Grid WLCG, typical numbers for
power consumption of modern computing hard-
ware in 2023 are:

CPU Modern CPUs have power consumption
in the region 3-8 W per core, e.g. dual AMD
EPYC 7513 node with 480 W for 64 cores [66]
and about 1700 HS23 (HS23-table) or 280 W

/ kHS23 #. Extrapolated to the whole avail-
able WLCG computing capacity (used by the
four LHC experiments) of about 14 MHS23
this would correspond to 3.8 MW (in reality
consumption is presumably larger since average
CPU hardware is older).

® Disk storage Modern storage servers have a
power consumption around 1-2 W per TB, e.g.
HP Raid-6 server with 14 x 16 TB HDD and
usable capacity of 192 TB consumes 240 W (=
1.2 W/TB). Extrapolated again to full WLCG
disk capacity of 870 PB this would correspond
to about 1.1 MW.

® Tape storage Estimates for power consump-
tion for tape storage are typically factor 10
lower than disk storage [41], i.e. around 0.1
W/TB.

® Networking Power consumption of network
routers and services are rather small, typically
at the level of 2-3% for a WLCG data center

There is an additional overhead for cooling rang-
ing from 10% for highly optimized sites with
direct warm-water cooling to 40% for traditional
air-cooled systems.
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