
Analytic and numerical bootstrap for the
long-range Ising model

Connor Behan1, Edoardo Lauria2, Maria Nocchi1, Philine van Vliet3

1 Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory

Quarter, Woodstock Road, Oxford, OX2 6GG, UK

2 LPENS, Département de physique, École Normale Supérieure - PSL

Centre Automatique et Systèmes (CAS), Mines Paris - PSL

Université PSL, Sorbonne Université, CNRS, Inria, 75005 Paris

3 Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany

Laboratoire de Physique Théorique de l’École Normale Supérieure, PSL University,

CNRS, Sorbonne Universités, UPMC Univ. Paris 06

24 rue Lhomond, 75231 Paris Cedex 05, France

behan@maths.ox.ac.uk, edoardo.lauria@minesparis.psl.eu,

nocchi@maths.ox.ac.uk, philine.vanvliet@phys.ens.fr

Abstract

We combine perturbation theory with analytic and numerical bootstrap techniques to study

the critical point of the long-range Ising (LRI) model in two and three dimensions. We

use the inversion formula to compute infinitely-many three-loop corrections in the two-

dimensional LRI and near the mean-field end. We further exploit the exact OPE relations

that follow from bulk locality of the LRI to compute infinitely-many two-loop corrections

near the mean-field end, as well as some one-loop corrections near the short-range Ising end.

By including such exact OPE relations in the crossing equations for LRI we set up a very

constrained bootstrap problem, which we solve numerically using SDPB. We find a family of

sharp kinks for two- and three-dimensional theories which we compare with the perturbative

predictions for LRI, and with some Monte-Carlo simulations for the two-dimensional LRI.
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1 Introduction

The importance of studying Conformal Field Theories (CFTs) without a stress tensor can be

motivated from various angles. The past decade has seen a surge of interest in Quantum Field

Theories (QFTs) that live on a fixed AdS background. Due to the lack of dynamical gravity, the

CFT which encodes boundary correlation functions has no stress tensor and is therefore called

nonlocal. In particular, one can consider asymptotically heavy operators to recover the flat-space

S-matrix [1]. A closely related development is defect CFT [2] dealing with critical systems which

have part of their conformal symmetry broken by extended objects. While locality of the bulk

places some constraints on the admissible defects, correlators restricted to them will always obey

the axioms of a nonlocal CFT. Since the mass of a field in AdS and the co-dimension of a defect

can both be varied, it is easy for nonlocal theories to appear in continuous families.

Another motivation comes from the non-perturbative bootstrap [3], which has had a great

impact, both practical and philosophical, on the study of CFTs. Much of the bootstrap toolkit

works best when traditional assumptions about QFT such as locality are relaxed. One can

notice that the works [4, 5], in their efforts to study a local CFT, happened to produce several

bounds which were saturated by nonlocal CFTs. In fact, [6] is the only non-supersymmetric

numerical bootstrap study to date which has treated locality as an input instead of an output.

Hence, a complete picture of the solutions found by most numerical bootstrap studies requires

an understanding of nonlocal CFTs.

The goal of this paper is to bootstrap the critical long-range Ising (LRI) model in p dimensions,

one of the earliest known examples of a nonlocal CFT and likely one of the simplest. By analogy

with its short-range version (SRI) which comes from a classical lattice Hamiltonian with only

nearest-neighbour interactions, the critical p-dimensional LRI model is defined as the critical

point of

H = −J
∑

i,j

σiσj
|i− j|p+s

, J > 0 , σi = ±1 , (1.1)

which has interactions over an infinite distance [7]. Long-range interactions parametrized by s

in the Hamiltonian above means that the critical point of LRI should correspond to a family of

unitary and non-local conformal field theories. Initially, it was thought that the interval which

led to non-trivial critical behaviour was p
2
≤ s ≤ 2 [8] but it is actually slightly narrower. As we

will now discuss, each endpoint allows (1.1) to be reached from a weakly coupled flow, but the

bootstrap approach will allow us to move away from this regime.

Following the birth of the perturbative renormalization group [9], Fisher, Ma and Nickel
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introduced a continuum description of the LRI based on a quartic deformation of a generalized

free field φ̂ with ∆φ =
p−s

2
[8]. A free field φ having this scaling dimension must live in d = p+2−s

dimensions and it is a simple exercise to show that we can go from one to the other by considering

a trivial defect of co-dimension q = 2 − s. Writing bulk co-ordinates as xµ = (τa, yi) with

µ = 1, . . . d, a = 1, . . . p and i = 1, . . . , q, we can define a family of defect operators by

φ̂m(τ) =
1√
m!

: φ(τ, 0)m : , (1.2)

where : · · · : denotes normal ordering. In this notation, the nonlocal action1

S = NsN−s

∫
dpτ1d

pτ2
φ̂(τ1)φ̂(τ2)

|τ12|p+s
+

∫
dpτ

λ√
4!
φ̂4 , (1.3)

provides a description of the LRI based on a single mean field, henceforth referred to as the

mean-field description. The interaction in (1.3) becomes irrelevant below s = p
2
, and CFT data

at the fixed point can be expanded in powers of ε = 2s − p. Normally 0 < ε ≪ 1 is needed

for reliable results but the expansion can truncate in special cases. In particular, φ̂ and φ̂3 are

protected operators with the exact dimensions

∆φ =
p− s

2
, ∆φ3 =

p+ s

2
. (1.4)

For φ̂, this is because local interactions cannot renormalize a nonlocal kinetic term, a rigorous

proof of which was given in [10]. For φ̂3, (1.4) can be seen by applying a nonlocal equation of

motion [11]. As we will review shortly, both non-renormalization theorems become automatic

when we view the LRI as a defect in co-dimension 2− s.

If (1.4) held for all p
2
≤ s ≤ 2, as originally proposed by [8], the connection between the

LRI and SRI models would not be especially strong. Instead, Sak analyzed the weakly irrelevant

operator φ̂∂2φ̂ and concluded that ∆φ stops changing once it reaches the dimension of the short-

range spin field ∆∗
σ [12]. Understanding this crossover between two universality classes was a

puzzle for many years because the SRI (unlike mean-field theory with ∆φ =
p
4
) does not contain

a marginal local operator. The resolution, found in [13, 14], is that the requisite deformation of

the SRI by a nonlocal operator is equivalent to the action

S = SSRI +NsN−s

∫
dpτ1d

pτ2
χ̂(τ1)χ̂(τ2)

|τ12|p−s
+

∫
dpτgσχ̂ , (1.5)

henceforth called the short-range description. Here, χ̂ is a generalized free field of dimension

∆χ = p+s

2
. This guarantees that σχ̂ becomes irrelevant above s = p− 2∆∗

σ. We will again think

1The overall normalization has been chosen such that φ̂ and all of its powers (1.2) in the undeformed theory

are unit-normalized.
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of it as a defect mode of a free field χ in dimension d = p+ 2 + s and define

χ̂m(τ) =
1√
m!

: χ(τ, 0)m : . (1.6)

If one considers the SSRI theory to be known, (1.5) makes it possible to compute CFT data as

an expansion in δ = p−s

2
−∆∗

σ for 0 < δ ≪ 1. By the same arguments as before,

∆χ =
p+ s

2
, ∆σ =

p− s

2
(1.7)

are non-perturbative statements.

The dual descriptions (1.3) and (1.5) can help give a flavour for how observables behave as

exact functions of s. In our study of the critical LRI model, the first half will ensure that more

data is available for this purpose. The second half will carry out the numerical bootstrap and

show that the LRI at arbitrary values of s can be located to high precision. Both parts will

make essential use of exact relations between OPE coefficients which involve the basic protected

operators. If O1 is a scalar and O2 is a spin-ℓ tensor of SO(p), they take the form

λ12φ
λ12φ3

∝ Γ(
∆φ+∆12+ℓ

2
)Γ(

∆φ−∆12+ℓ

2
)

Γ(
∆

φ3+∆12+ℓ

2
)Γ(

∆
φ3−∆12+ℓ

2
)
!,

λ12σ
λ12χ

∝ Γ(∆σ+∆12+ℓ
2

)Γ(∆σ−∆12+ℓ
2

)

Γ(∆χ+∆12+ℓ

2
)Γ(∆χ−∆12+ℓ

2
)
, (1.8)

where the constant of proportionality is independent of O1 and O2. The spin-0 and general spin

versions of (1.8) were first derived in [11] and [15] respectively. Both of these derivations used

the nonlocal equation of motion. It was later realized in [16] that, as a consequence of bulk

locality, these relations hold in any defect CFT where the bulk is free, LRI being a particular

example as explained in [11]. Recently, [17] showed that they are important for enforcing locality

for more general QFTs in AdS. In a perturbative context, we will use the relations to gain an

order of perturbation theory which appears to be a new application of them. On the numerical

side, we will use the fact that crossing symmetry and unitarity become more powerful when

combined with (1.8). For the case of boundaries, which are a type of q = 1 defect, this was

already demonstrated in [18, 19]. The novelty here is that the LRI model requires us to consider

many values of s and therefore many co-dimensions (which are all fractional) since q = 2± s in

the two formulations above.

As a preview of our results, Table 1 compares the CFT data available in the literature to the

new batch we are able to compute in two and three dimensions. Along with (1.2) and (1.6), it

uses the double-twist notation

[ΦΦ]n,ℓ ∝ Φ∂2n+ℓΦ + . . . (1.9)

to mean the unique normalized primary with 2n contracted and ℓ uncontracted derivatives ap-

pearing in the self-OPE of the generalized free field Φ. In addition to the general dimension
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Observable Loops Ref

∆φ ∞ [8]

∆φ2 3 [20]

∆φ3 ∞ [11]

∆φ4 3 [20]

∆φm , m > 4 2 (3.41)

∆[φ̂φ̂]0,ℓ
, ℓ > 0 2 (3.13)

λ
φ̂φ̂mφ̂m−1 1 (3.37)

λ
φ̂3φ̂mφ̂m−1 1 (3.37)

Observable Loops Ref

∆σ ∞ [14]

∆ǫ 2 [14]

∆χ ∞ [14]

∆σχ 2 [14]

∆T 2 [14]

λσχ̂O, O ∈ SRI 1 (3.21)

λχ̂χ̂O, O ∈ SRI 2 (3.21)

λχ̂χ̂[χ̂χ̂]n,ℓ
2 (4.22)

Table 1: Scaling dimensions and OPE coefficients in the LRI model which are known to some

non-trivial order in both p = 2 and p = 3. Data in the left hand table, computed from (1.3) with

the ε expansion, have closed form expressions. Data in the right hand table, computed from

(1.5) with the δ expansion, are sometimes numerical. This difficulty comes from the integrals

generated by conformal perturbation theory and the lack of an exact solution for the 3d SRI

model.

results of Table 1, we also compute anomalous dimensions of [φ̂φ̂]n,ℓ operators to three loops

in p = 2 using analytic bootstrap methods [21]. Studying infinitely many operators at once

is possible thanks to the Lorentzian inversion formula [22] which is easiest to apply when the

conformal blocks are known in closed form.

The rest of this paper is organized as follows. In section 2 we build upon the construction

of critical LRI as a conformal defect to gain some exact information on the spectrum of LRI

at criticality. Most notably, we solve the bulk-defect bootstrap equation for the bulk two-point

function and derive the relations above. These results are non-perturbative, and in particular they

are valid regardless of the UV description of LRI. Sections 3 and 4 are devoted to perturbation

theory. In section 3 we review some results from the literature about the flows in equations (1.3)

and (1.5), as well as derive the new results for the CFT data in Table 1. This is done by combining

standard Feynman diagrams with the exact OPE relations, the latter allowing us to gain one

order in perturbation theory, as we will explain. We then move onto the inversion formula in

section 4 which computes an infinite amount of additional CFT data in two dimensions. In section

5 we turn into the numerical bootstrap machinery, where we use the exact OPE relations as an

input for the LRI crossing equations and compare favourably to the inversion and diagrammatic

calculations. A summary and suggestions for the future are given in section 6.
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2 Long-range Ising model as a defect CFT

The critical point of the p-dimensional long-range Ising model can be realized as a co-dimension

q = d − p conformal defect in a theory of a d-dimensional free massless scalar field [11]. As

discussed above, q can be either 2− s or 2 + s. The fact that the bulk theory is free allows us to

derive infinitely-many constraints and relations between defect conformal data [16, 18, 19]. This

will be the goal of this section. While the LRI spectrum is built out of operators constrained

to the p-dimensional defect, one has to be mindful of differences between the original LRI and

the defect description. The conformal defect description enjoys a manifest SO(p+1, 1)× SO(q)

symmetry, while in the original LRI there is no SO(q) symmetry. Hence, physical states of the

LRI should have zero transverse spin. In this section we discuss the bulk-defect spectrum, the

bulk two-point function of a free massless scalar field Φ, and the exact OPE relations derived

from bulk locality. We will then interpret results in the context of the LRI where Φ becomes φ

in one description and χ in the other.

2.1 Bulk two-point function of Φ

In this section we focus on bootstrapping the bulk two-point function of the free massless scalar

Φ which can be used to construct the LRI. We start with reviewing the admissible spectrum of

defect modes of Φ. We analytically solve the bulk-defect crossing symmetry constraint on this

two-point function to compute the relevant defect CFT data. We take both bulk and defect

operators to be unit-normalized.

2.1.1 Defect modes of Φ

The bulk-defect OPE of the free massless field is highly constrained by the Laplace equation. For

a massless scalar field of dimension ∆Φ, the symmetry allows the following bulk-defect expansion

Φ(x) =
∑

s

∑

ψ

bΦ,ps |y|∆−∆Φψs(τ)(w · y)s + . . . , (2.1)

where the ellipsis denotes derivatives with respect to the directions parallel to the defect and

we employed the notation of the introduction. In the expression above the ψs are defect local

primary operators of scaling dimension ∆ and transverse spin s (which we will take to be integers)

under SO(q) rotations, while w is an SO(q) polarization vector. When Φ is a free field, �Φ = 0

(away from contact points) fixes the scaling dimensions of the defect modes of Φ to be [2]

ψ(+)
s : ∆(+)

s = ∆Φ + s ,

ψ(−)
s : ∆(−)

s = ∆Φ + 2− q − s . (2.2)
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Notice that ψ(+)
s and ψ(−)

s form a shadow pair on the defect for all s. We will soon identify these

defect modes as either ψ(+)
0 = φ̂ and ψ(−)

0 = φ̂3, or ψ(+)
0 = χ̂ and ψ(−)

0 = σ.

We note that for p and q both integers, the restrictions from unitarity on the values of s for

‘−’ modes have been classified in [16]. There, special attention is paid to the cases of p = 1 and

p+ q = 2. As explained in the introduction, however, we will take p = 2, 3 and q fractional.

2.1.2 Bootstrapping the bulk two-point function for LRI

With the bulk-defect spectrum of Φ at hand, our next task will be to construct the full bulk

two-point function of Φ. We should think of 〈Φ(x1)Φ(x2)〉 as a deformation of the two-point

function with a trivial defect 〈Φ(x1)Φ(x2)〉triv, the latter of which contains only ‘+’ modes. Since

the interactions (1.3) and (1.5) do not introduce any dependence on the transverse angle with

respect to the defect, the only ‘−’ mode which can be present is the one with s = 0. The same

conclusion can be reached in a model independent way if we assume first that all transverse spins

are integers, and second that ‘−’ modes satisfy s ≤ 4−q
2

.2

Together with SO(p + 1, 1) × SO(q) symmetry, these assumptions allow us to write the

following expression for the bulk two-point function of Φ in the defect channel:

〈Φ(x1)Φ(x2)〉 =
1

(|y1||y2|)∆Φ

∑

s∈N

∑

p=±
(bΦ,ps )2ĝ(p)s (r̂, η̂) , (2.3)

where bΦ,±s are yet unknown, but bΦ,−s = 0 for s > 0. The functions ĝ(p)s (r̂, η̂) ≡ ĝ
∆

(p)
s ,s

(r̂, η̂) are

the defect channel conformal blocks, which read [2, 24]

ĝ∆,s(r̂, η̂) = r̂∆ 2F1

(p
2
,∆,∆,−p

2
+ 1; r̂2

) s!

2s
(
q
2
− 1
)
s

C
q

2
−1

s (η̂) , (2.4)

with r̂, η̂ two cross-ratios defined as

η̂ = cos θ , r̂ =
1

2

(
χ̂−

√
χ̂2 − 4

)
, (2.5)

where θ is the transverse angle and the cross-ratio χ̂ is

χ̂ =
|τ12|2 + |y1|2 + |y2|2

|y1||y2|
. (2.6)

In the Euclidean domain (r̂, η̂) ∈ [0, 1]× [−1, 1], while (χ̂, cos θ) ∈ [2,∞]× [−1, 1].

Let us now take a closer look at the dynamics of the system. We stated above that the trivial

defect two-point function contains only ‘+’ modes but the converse is true as well. If we allow

2In the context of [16], this is the unitarity bound for p > 1. Referring to it as such here would be an abuse

of terminology since unitarity is not guaranteed in fractional dimension; see [23] for a related discussion.
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for ‘+’ modes only, the resulting bulk two-point function is simply the unique Klein-Gordon

propagator with regular boundary conditions on the defect dictated by the bulk-defect OPE,

where the bΦ,+s are fixed to reproduce the contact term in the bulk. This two-point function with

a trivial defect can be expanded in the defect channel as [25]

〈Φ(x1)Φ(x2)〉triv =
1

(x212)
∆Φ

=
1

(|y1||y2|)∆Φ

∑

s≥0

(bΦ,+s,triv)
2ĝ(+)
s (r̂, η̂) , (bΦ,+s,triv)

2 =
2s (∆Φ)s

s!
. (2.7)

The non-trivial defect dynamics is entirely encoded in the correlations functions with the

scalar ‘−’ modes [16]. We are therefore led to conjecture that the actual LRI two-point function

should be3

〈Φ(x1)Φ(x2)〉 =
1

(|y1|||y2|)∆Φ

(
(bΦ,+0 )2ĝ

(+)
0 (r̂, η̂) + (bΦ,−0 )2ĝ

(−)
0 (r̂, η̂) +

∑

s>0

(bΦ,+s,triv)
2ĝ(+)
s (r̂, η̂)

)
,

(2.8)

for two (yet) unfixed coefficients (bΦ,±0 )2, but this is simply:

〈Φ(x1)Φ(x2)〉 =
1

(x212)
∆Φ

+

(
(bΦ,+0 )2ĝ

(+)
0 (r̂, η̂)− ĝ

(+)
0 (r̂, η̂) + (bΦ,−0 )2ĝ

(−)
0 (r̂, η̂)

)

(|y1|||y2|)∆Φ
. (2.9)

Around either endpoint of the LRI, the interactions in (1.3) and (1.5) will perturb the trivial

defect bulk two-point function (2.7) in a way that only affects the coefficients of scalar defect

blocks. In particular, they can (and will) generate the ‘−’ mode with the expected dimension.

Bulk-defect crossing

The bulk two-point function (2.9) must be bulk-defect crossing symmetric. As we have seen,

our ansatz is already written in a basis of defect channel conformal blocks, so in order to check

crossing we should verify that (2.9) can be decomposed into bulk channel blocks. Being free, the

bulk self-OPE of Φ features only primary operators [ΦΦ]0,ℓ of even spin ℓ and scaling dimensions

∆ℓ = d+ ℓ− 2. Using the bulk radial coordinates (r, η) defined in [24], we shall therefore write

〈Φ(x1)Φ(x2)〉 =
(r4 − 4η2r2 + 2r2 + 1)

∆Φ

(|y1||y2|)∆Φ
(4r)−2∆Φ

[
1 +

∑

ℓ=even

λΦΦ[ΦΦ]0,ℓa[ΦΦ]0,ℓgℓ(r, η)

]
, (2.10)

where a[ΦΦ]0,ℓ are the one-point functions of [ΦΦ]0,ℓ, gℓ(r, η) are given by

gℓ(r, η) = (4r)∆ℓ



(
1−p−ℓ

2

)
ℓ
2(

∆ℓ

2

)
ℓ
2

2F1

(
− ℓ
2
,
∆ℓ

2
;
p+ 1

2
; η2
)
+O(r2)


 , (2.11)

3We are grateful to Balt van Rees for discussions on this point.
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a defect localized interaction away from this point. This is either an interaction with the SRI or

a self-interaction depending on the duality frame.

Trivial defects have bΦ,+0 = 1 and bΦ,−0 = 0 which are equivalent to aΦ2 = 0. After a deforma-

tion, the allowed one-point functions in figure 1 are negative when ∆Φ = ∆φ and positive when

∆Φ = ∆χ. In terms of the small parameters ε and δ, these deformations affect the codimensions

as

q = 2− p+ ε

2
, q = 2 + p− 2(δ +∆∗

σ) , (2.14)

respectively. In the former case, we have aφ2 ≤ 0 from the φ̂4 flow while in the latter case we

have aχ2 ≥ 0 from the σχ̂ flow.

It is interesting to ask what happens to aφ2 when aχ2 = 0 or vice versa. This is a question

about large ε and δ. In our language, the conjecture of [14] is that bχ,−0 = 0 when bφ,+0 = 0.

Instead of the trivial defect, we are therefore dealing with a dual starting point defined by

bφ,+0 = 0 , (bφ,−0 )2 =
Γ
(
q
2

)
Γ (p−∆φ)

Γ (∆φ) Γ
(
4−q
2

) =
Γ
(
1 + p

2
− δ −∆∗

σ

)
Γ (∆∗

σ + δ)

Γ (p−∆∗
σ − δ) Γ

(
1− p

2
+ δ +∆∗

σ

) . (2.15)

We can equivalently express the results above in terms of aφ2 via eq. (2.12) to find

aφ2 =




δ − 1 + ∆∗

σ = −7/8 + δ , p = 2 ,
√
π cot(π(δ+∆∗

σ))Γ(δ+∆∗
σ− 1

2)
4Γ(δ+∆∗

σ−2)
= −0.575408 +O(δ) , p = 3 ,

(2.16)

where for p = 2 we used ∆∗
σ = 1/8, while for p = 3 we used ∆∗

σ = 0.5181489. In order to

accommodate both such descriptions of LRI while being consistent with bulk-defect crossing and

unitarity, we should allow at least

−7/8 ≤ aφ2 ≤ 0 , p = 2 ,

−0.575408 ≤ aφ2 ≤ 0 , p = 3 . (2.17)

This is the interval in which we will let aφ2 vary when looking at the numerical conformal

bootstrap in section 5. A very similar calculation could be used to estimate aχ2 at small ε. This

result also follows from

Γ(p+2−q
2

)

Γ(2−q
2
)

[
a−1
χ2 − Γ(p)Γ( q−2

2
)

Γ(p
2
)Γ(p+q−2

2
)

]
=

Γ(p+q−2
2

)

Γ( q−2
2
)

[
a−1
φ2 − Γ(p)Γ(2−q

2
)

Γ(p
2
)Γ(p+2−q

2
)

]
, (2.18)

which we will derive in the next subsection.

2.2 OPE relations

In any defect CFT, bulk locality imposes several constraints on the dynamics.4 For correlation

functions between the bulk field Φ and two defect insertions Ô, T̂ , and away from contact points,
4Bulk locality plays an important role in the context of general QFTs in AdS, as discussed recently in [17].
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it requires the correlator to be an analytic function of the coordinates away. This leads to

constraints on defect three-point functions with Ô, T̂ and the defect modes of Φ which have

been written schematically in (1.8). For the LRI specifically, the relations we will use were all

derived in [15] following the the special cases considered in [11]. Here, we will review the modern

derivation from [16, 18, 19] as it applies to a broader class of models. This will also show how

the prefactor of (1.8) is physically related to the one-point function aΦ2 .

2.2.1 Review of the derivation

Consider the case where Ô is an SO(p) scalar, and T̂ is a symmetric and traceless tensor of

parallel spin ℓ. Both Ô and T̂ are taken to be scalars under transverse rotations (s = 0).

Without loss of generality we can place the third operator at infinity and so we investigate:

〈Φ(x1)Ô(τ2)T̂
(l)(θ,∞)〉 . (2.19)

We recall that Φ is a free bulk massless scalar field, so its defect modes are written in (2.2) with

coefficients bΦ,±s (bΦ,−s = 0 for s > 0). In the defect channel, the correlator above will be written

in terms of the OPE coefficients

〈ψ(p)
0 (τ1)Ô(τ2)T̂

(l)(θ,∞)〉 =
λψp

0ÔT̂

|τ12|∆
p

0+∆
Ô
−∆

T̂

. (2.20)

We could now resum the bulk-defect OPE to obtain the complete expression for (2.19) in terms

of the data in the defect channel, as was done in [16], but we will not need it in the following.

The next step is requiring analyticity of (2.19), where we take Ô to be either another zero mode

ψ
(p)
0 or a parity-even scalar ε of scaling dimension ∆ε. Using repeatedly eq. (28) of [16] one finds

λ
ψ
(+)
0 ψ

(+)
0 T̂

= κ1(∆T̂ , ℓ)λψ(−)
0 ψ

(+)
0 T̂

, λ
ψ
(−)
0 ψ

(−)
0 T̂

= κ2(∆T̂ , ℓ)λψ(−)
0 ψ

(+)
0 T̂

,

λ
ψ
(−)
0 εT̂

= κ3(∆T̂ , ℓ)λψ(+)
0 εT̂

, (2.21)

with

κ1(∆T̂ , ℓ) = −R(aΦ2)
Γ
(
4−q
2

)
Γ
(
ℓ+∆

T̂

2

)
Γ
(
ℓ+p+q−2−∆

T̂

2

)

Γ
(
q
2

)
Γ
(
ℓ+p−∆

T̂

2

)
Γ
(
ℓ+2−q+∆

T̂

2

) ,

κ2(∆T̂ , ℓ) = − 1

R(aΦ2)

Γ
(
q
2

)
Γ
(
ℓ+∆

T̂

2

)
Γ
(
ℓ+p−q+2−∆

T̂

2

)

Γ
(
4−q
2

)
Γ
(
ℓ+p−∆

T̂

2

)
Γ
(
ℓ−2+q+∆

T̂

2

) ,

κ3(∆T̂ , ℓ) = − 1

R(aΦ2)

Γ
(
q
2

)
Γ
(

2ℓ+p−q+2+2∆
T̂
−2∆ε

4

)
Γ
(

2ℓ+p−q+2−2∆
T̂
+2∆ε

4

)

Γ
(
4−q
2

)
Γ
(

2ℓ+p+q−2+2∆
T̂
−2∆ε

4

)
Γ
(

2ℓ+p+q−2−2∆
T̂
+2∆ε

4

) . (2.22)
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We have defined

R(aΦ2) ≡ bΦ,−0 /bΦ,+0 , (2.23)

where bΦ,±0 and aΦ2 further satisfy (2.12).

2.2.2 Special cases

For certain special values of the parameters, some of the blocks in the decomposition of (2.19)

are already regular before constraints are introduced. These correspond to poles of the gamma

functions in (2.21) which cause the exact relations to degenerate. This phenomenon is most

interesting when the possibility of operator dimensions infinitesimally close to these special values

is disallowed by symmetry. In fractional q models like the LRI, this only happens when

∆T̂ = p+ ℓ+ 2n, ℓ odd. (2.24)

This condition, which guarantees κ1(∆̂T̂ , l) = κ2(∆̂T̂ , l) = 0 and hence λ
ψ
(+)
0 ψ

(+)
0 T̂

= λ
ψ
(−)
0 ψ

(−)
0 T̂

=

0, is essencial for odd-spin operators because they can only appear in mixed OPEs by Bose

symmetry. Importantly, all odd-spin operators in ψ(+)
0 × ψ

(−)
0 are of this type.

The BCFT setup of [18, 19] also had special cases realized by even-spin operators which were

distinguished from the continuum by Ward identities instead of Bose symmetry. These operators,

known as the displacement and its higher-spin cousins, satisfied the following conditions.

1. ∆T̂ = 2∆
(+)
0 + 2n+ ℓ implies κ1(∆T̂ , ℓ) = ∞, λ

ψ
(+)
0 ψ

(−)
0 T̂

= 0 and λ
ψ
(+)
0 ψ

(+)
0 T̂

unfixed.

2. ∆T̂ = 2∆
(−)
0 + 2n+ ℓ implies κ2(∆T̂ , ℓ) = ∞, λ

ψ
(+)
0 ψ

(−)
0 T̂

= 0 and λ
ψ
(−)
0 ψ

(−)
0 T̂

unfixed.

For fractional q on the other hand, we cannot construct any s = 0 operators out of the bulk

currents which obey Ward identities. Algebraically, this reduced freedom can be seen from the

fact that ∆(±)
0 do not differ by integers meaning there is no way to satisfy both conditions at the

same time.

2.2.3 Duality relation

We can now consider a shadow transformation that exchanges ∆
(+)
0 and ∆

(−)
0 . According to

(2.2), the one that does the job is q ↔ 4 − q. In terms of LRI parameters, this is equivalent to

changing the sign of s. The first line of (2.21) then becomes

λ
ψ
(−)
0 ψ

(−)
0 T̂

= κ̃1(∆T̂ , ℓ)λψ(−)
0 ψ

(+)
0 T̂

, λ
ψ
(+)
0 ψ

(+)
0 T̂

= κ̃2(∆T̂ , ℓ)λψ(−)
0 ψ

(+)
0 T̂

. (2.25)

The κ̃i, however, are not simply the κi with s ↔ −s applied. This new description of the same

LRI has a different bulk so it must use the ‘±’ modes appropriate to the new co-dimension. This

12



means that if the original set of relations used R(aφ2), the new set will have R(aχ2) in its place.

Note that nothing has changed about this physics so it is possible to compare OPE coefficients

and find

κ̃1(∆T̂ , ℓ) = κ2(∆T̂ , ℓ) , κ̃2(∆T̂ , ℓ) = κ1(∆T̂ , ℓ) . (2.26)

By comparing to eq. (2.22) we see that

R(aφ2)R(aχ2) = 1 , (2.27)

which can be rearranged to give (2.18).

A consequence of this fact is that a co-dimension 2−s defect with one-point function aφ2 gives

the same numerical bootstrap bounds as a co-dimension 2+s defect with one-point function aχ2 ,

as far as this small set of correlators is concerned. Applying this duality to the bounds obtained

in refs. [18, 19] should therefore lead to consistent bounds for co-dimension three defects, and it

would be interesting to study this further CB: If we say this now, our next paper will

sound less original.EL: better?

3 Perturbation theory

We can use the exact OPE relations derived in the previous section to study the LRI in pertur-

bation theory. As discussed, the LRI admits two dual descriptions: as a GFF coupled to itself –

see eq. (1.3) – and as a GFF coupled to the SRI – see eq. (1.5). When the interaction in (1.1)

decays sufficiently slowly or sufficiently quickly, one of these flows becomes weakly coupled and

hence describes a perturbation of the trivial defect.

As we will review, at the IR fixed point of (1.3) the critical coupling is λ∗ ∼ ε with ε being a

small parameter. Observables such as the anomalous dimensions and OPE coefficients of (unit-

normalized) LRI operators, as well as the ratio R that appears in the OPE relations, can be

expanded in powers of ε as

∆ = ∆(0) + ε∆(1) + ε2∆(2) + ε3∆(3) +O(ε4) ,

λijk = λ
(0)
ijk + ελ

(1)
ijk + ε2λ

(2)
ijk + ε3λ

(3)
ijk +O(ε4) ,

R(aφ2) = R(0) + εR(1) + ε2R(2) + ε3R(3) +O(ε4) . (3.1)

At the IR fixed point of (1.5) the critical coupling is g2∗ ∼ δ with small δ. Quantities such as

the scaling dimensions and the ratio R that are invariant under the Z2 symmetry that flips the

sign of g∗ can be expanded in powers of δ as

∆ = ∆(0) + δ∆(2) + δ2∆(4) +O(δ3) ,

R(aφ2) = R(0) + δR(2) + δ2R(4) +O(δ3) . (3.2)
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Depending on their Z2 charges, OPE coefficients will contain either odd or integer powers of δ1/2

(not both) so for them we consider either of:

λijk = λ
(0)
ijk + δλ

(2)
ijk + δ2λ

(4)
ijk +O(δ3) ,

λijk = δ1/2λ
(1)
ijk + δ3/2λ

(3)
ijk + δ5/2λ

(5)
ijk +O(δ7/2) . (3.3)

Notice that here ∆(n) is defined as the shift with respect to the scaling dimension at ε = 0

or δ = 0. Tree-level scaling dimensions can be linear in the small parameter so ∆(n) is in general

different from the anomalous dimension γ(n), which is naturally defined in perturbation theory

around zero coupling with ε or δ finite.

3.1 Review of results in the literature

In this section we shall review some of the available perturbative results for the LRI model

and its O(N) generalization. Starting from the mean-field end we will consider the following

perturbations:

S = NsN−s

∫
dpτ1d

pτ2
φ̂(τ1)φ̂(τ2)

|τ12|p+s
+

∫
dpτ

λ

4!
φ̂4 , N = 1 , (3.4)

S = NsN−s

∫
dpτ1d

pτ2
φ̂(τ1) · φ̂(τ2)

|τ12|p+s
+

∫
dpτ

λ

4
(φ̂ · φ̂)2 , N > 1 ,

where (·) denotes the O(N) scalar product and the constant

Ns =
2−sΓ(p−s

2
)

π
p
2Γ( s

2
)

, (3.5)

has been chosen in order to have unit-normalized propagator in position space. In complete

analogy with the LRI model, the long-range O(N) can be written as a defect for the free,

massless O(N) vector model [28]. Since the interaction is marginal when ε = 2s − p vanishes,

loop diagrams can generate inverse powers of ε. Even though we are interested in finite ε, we

will treat these as poles to be subtracted. This is a scheme which preserves the property that

observables accurate to O(εn) require diagrams with up to n loops. The two-loop fixed point in

this scheme is [28] (see [20] for a three-loop result)

λ∗ =
Γ(p

2
)

3πp/2
ε+

2Γ(p
2
)

9πp/2
[ψ
(p
2

)
− 2ψ

(p
4

)
+ ψ(1)]ε2 +O(ε3) , N = 1 < (3.6)

λ∗ =
Γ(p

2
)

2πp/2(N + 8)
ε+

Γ(p
2
)(5N + 22)

πp/2(N + 8)3
[ψ
(p
2

)
− 2ψ

(p
4

)
+ ψ(1)]ε2 +O(ε3) , N > 1 .

Around the short-range end we will only consider the N = 1 action:

S = SSRI +NsN−s

∫
dpτ1d

pτ2
χ̂(τ1)χ̂(τ2)

|τ12|p−s
+

∫
dpτgσχ̂ , (3.7)
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which leads to results depending on the short-range CFT data quoted below [29, 30].

∆∗
σ =

1

8
∆∗
ǫ = 1 cT = 1 (p = 2)

∆∗
σ = 0.518157 ∆∗

ǫ = 1.41265 cT = 1.419815 (p = 3) (3.8)

Taking δ = p−s

2
−∆∗

σ to be small, the two-loop beta function for g can be computed numerically

with conformal perturbation theory [31]. This was done in [14] leading to the fixed point

g2∗ =




0.788392δ +O(δ2) , p = 2

0.8155(3)δ +O(δ2) , p = 3
. (3.9)

Although separate numerical calculations would be needed for each value of N , it is clear that

(3.9) can be generalized to O(N) fixed points in principle.5 We will also make speculative

comments later on about long-range fixed points based on minimal models. The most optimistic

hypothesis one can make from [14] is that any Ginzburg-Landau model with a nonlocal kinetic

term can be reached by coupling its short-range partner to a GFF.

Anomalous dimensions near the mean-field end

Let us now discuss anomalous dimensions of LRI operators. We shall recall that the funda-

mental field φ̂ does not renormalize, its scaling dimension being fixed by the non-local equation of

motion. For the leading scalar φ̂2 = φ̂ · φ̂/
√
2N among O(N) singlets, the anomalous dimension

is computed at three loops in [20] (two-loop results were originally obtained in [35]) and reads:

∆
φ̂2

=
p

2
+
ε

2

N − 4

N + 8
− ε2

(N + 2)(7N + 20)

(N + 8)3

[
ψ
(p
2

)
− 2ψ

(p
4

)
+ ψ(1)

]
(3.10)

− ε3
(N + 2)(7N + 20)

4(N + 8)5
(19N3 − 60N2 − 432N − 256)

[
ψ
(p
2

)
− 2ψ

(p
4

)
+ ψ(1)

]2

+ ε3
3(N + 2)

4(N + 8)4
(N2 − 12N − 16)

[
ψ′(1)− ψ′

(p
2

)]

− ε3
6(N + 2)(5N + 22)

(N + 8)4
Γ(1 + p

4
)3Γ(−p

4
)

Γ(p
2
)

[
ψ′(1)− ψ′

(p
4

)]
+O(ε4) .

The next quantity that is know is the two-loop scaling dimension ∆[φ̂φ̂]0,ℓ
of the leading spin-ℓ

operator [φ̂φ̂]0,ℓ, which was computed in [36] (see also [15]) for the case of N = 1. As discussed

there, we can compute this quantity by considering the three-point function 〈φ̂φ̂[φ̂φ̂]0,ℓ〉, and the

5The duality between the large N versions of (1.3) and (1.5) has been explored in [32]. References [33, 34]

discuss a similar co-dimension one duality between large-N free/critical vector modes coupled to a free massless

bulk scalar field with Dirichlet/Neumann boundary conditions.
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first correction comes from the two-loop diagram:

k k

k − k′ − k′′

k′

k′′ k′′

(3.11)

Setting for simplicity the insertion of the spinning operator to zero external momentum and

repeating the calculations of [36] we obtain the following result for two-loop correction

6(N + 2)(λµε)2

N 4
s

∫
dk′dk′′

(2π)2p
k′′(a1 . . . k

′′
aℓ)

|k′|s|k − k′ − k′′|s|k′′|2s

=
6(N + 2)λ2

(4π)pN 4
s

Γ(ℓ+ p
2
− s)Γ(p−s

2
)2Γ(2s− p)

Γ(s)Γ( s
2
)2Γ(ℓ+ 3

2
p− 2s)

∣∣∣µ
k

∣∣∣
ε

= 6(N + 2)λ2
πpΓ(ℓ)

εΓ(p
2
)Γ(p

2
+ ℓ)

+O(1) , (3.12)

where we divided by the tree-level result.6 Since there is no wave-function for φ̂, the 1/ε pole

in this diagram is removed by a wave-function renormalization for [φ̂φ̂]0,ℓ, which in turn leads to

the following scaling dimension for [φ̂φ̂]0,ℓ at the IR fixed point

∆[φ̂φ̂]0,ℓ
=
p+ 2ℓ

2
− ε

2
− ε2

N + 2

(N + 8)2
3Γ(p

2
)Γ(ℓ)

Γ(p
2
+ ℓ)

+O(ε3) . (3.13)

This generalizes the result in [15, 36] and also corrects a factor of 2 for the N = 1 result.

Anomalous dimensions near the short-range end

There are fewer perturbative results near the short-range end. The leading scalar’s anomalous

dimension was computed at two loops in the δ expansion in [14], which found

∆ǫ =




1 +O(δ2) , p = 2 ,

∆∗
ǫ + 0.27δ +O(δ2) , p = 3 .

(3.14)

The anomalous dimension of the leading spin-two operator Tµν can be obtained from multiplet

recombination [37, 38] (see also [18]), i.e. by exploiting the fact that conservation of SRI’s stress-

tensor Tµν fails as soon as we turn on g. In turn, this strategy allows us to gain one order in

6As the spinning operator does not carry momentum, derivatives will produce the same effect no matter

how they are distributed: they simply contribute the same factor of k′′a1
. . . k′′aℓ

. The tree-level diagram is also

proportional to the same factor.
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perturbation theory. The resulting scaling dimension of T depends on the central charge in (3.8)

and is [14, 13]

∆T = p+
8πp

cTΓ(
p
2
)2
∆∗
σ(p−∆∗

σ)

p2 + p− 2
g2∗ +O(g4∗) . (3.15)

For the specific case of the p = 2 LRI we can use Virasoro multiplet recombination methods

to compute the anomalous dimensions of higher-spin Virasoro currents in SRI. At spin-4, the

dimension of Λ ≡
(
L−4 − 5

3
L2
−2

)
|0〉 has been computed in [15] to be

∆Λ = 4 +
1335

2048
π2g2∗ +O(g4∗) . (3.16)

Increasing the spin leads to a proliferation of currents and a computationally intensive problem,

but for anomalous dimensions up to spin-10 it should become manageable using the techniques

of [39]. We leave this problem for future work.

Results in the literature in both perturbative settings have mostly focused on anomalous

dimensions and fewer results are available for the OPE coefficients. We will present some new

results about OPE coefficients in both settings in the next sections.

3.2 Using OPE relations from the short-range end

Let us first discuss how to use the OPE relations near the short-range end, so that g2∗ ∼ δ and

0 < δ ≪ 1. Importantly, the expansion does not start from the trivial defect bφ,−0 = 0 but rather

bφ,+0 = 0, see eq. (2.15). The ‘±’ modes are σ and χ̂ respectively, which means the first two OPE

relations in (2.21) read

λσσO
λσχ̂O

= R(aφ2)
Γ(p/2−∆σ)Γ(

ℓ+∆
2
)Γ( ℓ+2∆σ−∆

2
)

Γ(∆σ − p/2)Γ( ℓ+p−2∆σ+∆
2

)Γ( ℓ+p−∆
2

)
, (3.17)

λχ̂χ̂O
λσχ̂O

= R(aφ2)
−1 Γ(∆σ − p/2)Γ( ℓ+∆

2
)Γ( ℓ+2p−2∆σ−∆

2
)

Γ(p/2−∆σ)Γ(
ℓ−p+2∆σ+∆

2
)Γ( ℓ+p−∆

2
)
.

If O is a primary in the SRI which diagonalizes dilations, then λχ̂χ̂O starts at O(g2∗) while λσχ̂O
and R(aφ2)

−1 start at O(g∗). The OPE relations can therefore give information about two-loop

perturbation theory with one-loop data as input. In practice, the first non-vanishing terms in

λσχ̂O and λχ̂χ̂O can both be computed from the star-triangle relation in (B.2), using it once for

the former and twice for the latter. We will therefore compute the OPE coefficients in (3.17)

directly and treat R(aφ2) as the unknown quantity. If we take O to be a scalar, the integrals
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arising in conformal perturbation theory can now be easily computed to get

λσχ̂O = πp/2g∗λ
∗
σσO

Γ(∆∗
σ − p/2)Γ(p+∆∗

2
−∆∗

σ)Γ(
p−∆∗

2
)

Γ(p−∆∗
σ)Γ(∆

∗/2)Γ(∆∗
σ −∆∗/2)

+O(g3∗) , (3.18)

λχ̂χ̂O = πpg2∗λ
∗
σσO

Γ(∆∗
σ − p/2)2Γ(p+∆∗

2
−∆∗

σ)Γ(p−∆∗
σ −∆∗/2)

Γ(p−∆∗
σ)

2Γ(∆
∗−p
2

+∆∗
σ)Γ(∆

∗
σ −∆∗/2)

+O(g4∗) .

Either one of these results is enough to compute R(aφ2) upon going back to (3.17) and the fact

that they agree is a check. We find

R(aφ2)
−1 = πp/2g∗

Γ(p/2−∆∗
σ)

Γ(p−∆∗
σ)

+O(g3∗) . (3.19)

Upon plugging in ∆∗
σ and g∗ numerically and using (2.12), the result above is equivalent to the

following

aφ2 =




−7

8
+ 9.896δ +O(δ2) , p = 2 ,

−0.575408 + 37.13δ +O(δ2) , p = 3 .
(3.20)

The power of this approach is that, with (3.19) in hand, the OPE relations can be used to quickly

upgrade (3.18) to a spinning version of it. As a result,

λσχ̂O = πp/2g∗λ
∗
σσO

Γ(∆∗
σ − p/2)Γ( ℓ+∆∗

2
)Γ( ℓ+2∆∗

σ−∆∗

2
)

Γ(p−∆∗
σ)Γ(

ℓ+p−2∆∗
σ+∆∗

2
)Γ( ℓ+p−∆∗

2
)
+O(g3∗) , (3.21)

λχ̂χ̂O = πpg2∗λ
∗
σσO

Γ(∆∗
σ − p/2)2Γ( ℓ+p−2∆∗

σ+∆∗

2
)Γ( ℓ+2p−2∆∗

σ−∆∗

2
)

Γ(p−∆∗
σ)

2Γ( ℓ−p+2∆∗
σ+∆∗

2
)Γ( ℓ+2∆∗

σ−∆∗

2
)

+O(g4∗) ,

has been concluded using only the (scalar) star-triangle relation. Deriving it directly would have

required the more complicated conformal integrals in [40]. We could now apply (3.21) in 3d,

inputting the numerically determined CFT data from the SRI, some of which has been bounded

rigorously in [30]. In 2d, the caveat requiring O to diagonalize the generator of dilations becomes

important. One way to satisfy this is to find the eigenstates at a given level of the Virasoro ǫ

multiplet and choose O from this set. Conversely, operators in the Virasoro identity multiplet

will mix with derivatives of σχ̂ which precludes a diagonalization solely within the SRI.

3.3 Using OPE relations from the mean-field end

Let us now consider the mean-field end, where g∗ ∼ ε, 0 < ε≪ 1 and the expansion starts from

the trivial defect. This time the ‘±’ modes are φ̂ and φ̂3 respectively, and the first two OPE
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relations in (2.21) read:

λφ̂φ̂O
λ
φ̂φ̂3O

= R(aφ2)
Γ(p/2−∆φ)Γ(

ℓ+∆
2
)Γ(

ℓ+2∆φ−∆

2
)

Γ(∆φ − p/2)Γ(
ℓ+p−2∆φ+∆

2
)Γ( ℓ+p−∆

2
)
, (3.22)

λ
φ̂3φ̂3O

λ
φ̂φ̂3O

= R(aφ2)
−1 Γ(∆φ − p/2)Γ( ℓ+∆

2
)Γ(

ℓ+2p−2∆φ−∆

2
)

Γ(p/2−∆φ)Γ(
ℓ−p+2∆φ+∆

2
)Γ( ℓ+p−∆

2
)
.

All operators are taken to be unit-normalized. Setting ∆φ = p−ε
4

shows that the OPE relations

now constrain the CFT data in a different way. By plugging the λijk coefficients at O(εn) into

(3.22), we can learn about R(aφ2) and ∆ at O(εn+1).

We will begin with the concrete example of ∆
φ̂2

and R(aφ2) at O(ε2). The process starts by

inputting the tree-level OPE coefficients

λ
(0)

φ̂φ̂φ̂2
=

√
2 , λ

(0)

φ̂φ̂3φ̂2
=

√
3 , λ

(0)

φ̂3φ̂3φ̂2
= 3

√
2 , (3.23)

into the first two OPE relations in eq. (3.22). By further expanding them in ε, it is a simple

exercise to show that the OPE relations are satisfied if and only if

∆
(1)

φ̂2
= −1/6 , R(0) = 0 , R(1) =

Γ
(
1− p

4

)
Γ
(
p
2

)

3
√
6Γ
(
p
4
+ 1
) . (3.24)

In particular, we have reproduced the known anomalous dimension γ(1)
φ̂2

and also R(1) computed

directly in appendix B.

At the next-to-leading order we shall need the OPE coefficients at O(ε). Computing λ(1)ijk in

position space starts with integrating a GFF four-point function with respect to τ while keeping

ε finite. In all cases, this produces an ε−1 pole to be subtracted, a logarithmic term associated

with anomalous dimensions, and the finite term we are after. As we will see, the latter is always

proportional to

Ap ≡ ψ
(p
2

)
− 2ψ

(p
4

)
+ ψ(1) . (3.25)

For λ(1)
φ̂φ̂φ̂2

the unique diagram is:

− λ√
2

(3.26)

where the factor 1/
√
2 comes from the definition of the empty vertex (i.e. the insertion of φ̂2)

and we are integrating over all possible insertions of the λ vertex, which is here represented by

the full dot. The diagram is computed in appendix B where we find

I1,1,2 = −λπ
p/2

√
2

Γ(p
2
)−1

|τ13|
p−ε
2 |τ23|

p−ε
2

[
2

ε
+Ap + log

∣∣∣∣
τ13τ23
τ12

∣∣∣∣+O(ε)

]
. (3.27)
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For λ(1)
φ̂φ̂3φ̂2

we have three diagrams:

− 3λ

2
√
3

− λ√
3

− 3λ√
3

(3.28)

Using the results of appendix B we see that the first diagram has no O(1) term, while the second

starts at O(ε). The third diagram has a finite part which is proportional to (3.27) and equals

I1,3,2 = −3λπp/2√
3

Γ(p
2
)−1

|τ12|
p−ε
2 |τ23|p−ε

[
4

ε
+Ap + 2 log

∣∣∣∣
τ12τ

2
23

τ13

∣∣∣∣+O(ε)

]
. (3.29)

Finishing with λ(1)
φ̂3φ̂3φ̂2

, we have five diagrams:

− 3λ√
2

− λ√
2


 +


 (3.30)

− 6λ√
2


 +


− 3λ√

2
(3.31)

The first one is 72/ε to the desired order, the second and third are zero to the desired order, and

all O(1) terms come from the last three diagrams. As shown in appendix B the result is

I3,3,2 = −3λπp/2√
2

Γ(p
2
)−1

|τ12|p−ε|τ13|
p−ε
2 |τ23|

p−ε
2

[
14

ε
+ 5Ap + 2 log

∣∣τ 512τ13τ23
∣∣+O(ε)

]
. (3.32)

Altogether, the 1/ε poles in (3.27), (3.29) and (3.32) can be subtracted by a wave-function

renormalization for φ̂2 and for φ̂3, which in turn give the correct anomalous dimensions at the

IR fixed point, and from the finite part we get

λ
(1)

φ̂φ̂φ̂2
= − Ap

3
√
2
, λ

(1)

φ̂φ̂3φ̂2
= −Ap√

3
, λ

(1)

φ̂3φ̂3φ̂2
= −5Ap√

2
. (3.33)

We can now plug these results into the OPE relations, and expanding in powers of ε we find

that they can be satisfied if and only if

∆
(2)

φ̂2
=

Ap

9
, R(2) = −Γ

(
1− p

4

)
Γ
(
p
2

)

36
√
6Γ
(
p
4
+ 1
)
[
13ψ(p

4
) + 3ψ(−p

4
)− 8ψ(p

2
)− 8ψ(1)

]
. (3.34)
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Again, we have reproduced the correct result for ∆
φ̂2

– see eq. (3.10) – but this time we have

also obtained the next-to-leading order prediction for R(aφ2). Note that, via eq. (2.12), the latter

implies the following expansion for aφ2 :

aφ2 = ε2a
(2)

φ2 + ε3a
(3)

φ2 +O(ε4) , (3.35)

a
(2)

φ2 = − Γ
(
p
2

)2

3
√
6Γ(p)

R(1) ,

a
(3)

φ2 = −Γ(p
2
)3Γ(1− p

2
)Γ(1− p

4
)

216Γ
(
p
4
+ 1
)
Γ(p+ 1)

[
4− Γ(p

4
)2Γ(1− p

4
)2

Γ(p
2
)Γ(−p

2
)

− 96
√
6Γ
(
p
4
+ 1
)

Γ
(
−p

4

)
Γ
(
p
2

) R(2)

]
.

In particular, for p = 2 and p = 3 we get

aφ2 = − 1

27
ε2 +

(
1

54
− 8 log 4

81

)
ε3 +O(ε4) (p = 2) (3.36)

= −0.037037ε2 − 0.118399ε3 +O(ε4) ,

aφ2 = − π5/2

576
√
2Γ
(
7
4

)2 ε2 +
4
√
2π

6075
(13π − 28− 64 log 2)Γ

(
9

4

)2

ε3 +O(ε4) (p = 3)

= −0.0254242ε2 − 0.0667824ε3 +O(ε4) ,

which are analogous to (3.20).

We can use the OPE relations to compute anomalous dimensions of φ̂m operators. We use the

third line of eq. (2.21) with T̂ = φ̂m, ε = φ̂m−1, as well as the ε expansion for R(aφ2) computed

earlier. The relevant OPE coefficients all come from the same integrals which appeared in the

derivation of (3.33). Working out the correct combinatorial factors, they read

λ
φ̂φ̂m−1φ̂m

=
√
m
(
1− ε

6
(m− 1)Ap +O(ε2)

)
,

λ
φ̂3φ̂m−1φ̂m

= (m− 1)

√
3m

2

(
1− ε

6
(3m− 4)Ap +O(ε2)

)
. (3.37)

Plugging these into the OPE relations and expanding for small ε, at one loop we find that

12
[
∆

(1)

φ̂m−1
−∆

(1)

φ̂m

]
+ 4m− 7 = 0 , (3.38)

which allows ∆
(1)

φ̂0
= 0 to be used as a boundary condition. Solving (3.38) and also converting

the result to an anomalous dimension yields

∆
(1)

φ̂m
=
m(2m− 5)

12
, γ

(1)

φ̂m
=
m(m− 1)

6
. (3.39)

Knowing (3.24), this result can be written as γ(1)
φ̂m

=
(
m
2

)
γ
(1)

φ̂2
which is the same relation between

one-loop anomalous dimensions that holds in the local Wilson-Fisher fixed point [37]. This is not
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surprising because Wick contractions in these theories have the same structure. At two loops we

find instead

18
[
∆

(2)

φ̂m−1
−∆

(2)

φ̂m

]
− (m− 1)(3m− 8)Ap = 0 , (3.40)

and so

γ
(2)

φ̂m
= ∆

(2)

φ̂m
= −m(m− 1)(m− 3)

18
Ap . (3.41)

To our knowledge, for m > 4, this quantity has not been computed before since the three-loop

results of [20] stop at m = 4. Notice that (3.41) vanishes for m = 1 and m = 3, as it should

since the ‘±’ modes have protected scaling dimensions. The OPE relations allowed us to obtain

a two-loop result using only CFT data at lower order.

3.4 Generalization to long-range O(N) models

Long-range O(N) models are on the same conceptual footing as the long-range Ising model. It

should therefore be no surprise that the calculations in the previous subsection can be generalized

to the O(N) case. We will demonstrate this only for the mean-field end, although we expect the

same strategy to work for the short-range end.7

This time the defect modes of the free bulk scalar are in the fundamental of O(N) and read

ψ
(+,I)
0 = φ̂I , ψ

(−,I)
0 =

1√
2(N + 2)

(φ̂ · φ̂)φ̂I , (3.42)

whose overall coefficients are chosen such that they are unit-normalized. For such long-range

O(N) models one can recover a set of exact OPE relations that is completely analogous to

eq. (2.21) with the same gamma functions. We will exploit such OPE relations to compute

anomalous dimensions of (unit-normalized) operators

Σn =
1

2n
√
n!(N/2)n

(φ̂ · φ̂)n , WI
n =

1

2n
√
n!(N/2 + 1)n

(φ̂ · φ̂)nφ̂I . (3.43)

The set of perturbative OPE coefficients we need are generalizations of (3.37), which are com-

7To this end we would need extensive CFT data for the short-range O(N) models. These are in principle

available at large N . It would also be interesting to use the O(2) model data from [41] which was extracted using

the techniques of [42].
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puted in appendix B up to O(ε2) corrections. They read:8

λW0WnΣn
= λ

(0)
W0WnΣn

(
1− ε

3n

N + 8
Ap +O(ε2)

)
,

λW0WnΣn+1 = λ
(0)
W0WnΣn+1

(
1− ε

6n+N + 2

2(N + 8)
Ap +O(ε2)

)
,

λW1WnΣn
= λ

(0)
W1WnΣn

(
1− ε

54n+ 7N − 16

6(N + 8)
Ap +O(ε2)

)
,

λW1WnΣn+1 = λ
(0)
W1WnΣn+1

(
1− ε

n(54n+ 17N + 28) + 3(N + 2)

(N + 8)(6n+N + 2)
Ap +O(ε2)

)
, (3.44)

where the disconnected contributions are

λ
(0)
W0WnΣn

=

√(
N
2
+ 1
)
n√(

N
2

)
n

, λ
(0)
W1WnΣn

=
3n
√

2
(
N
2
+ 1
)
n√

(N + 2)
(
N
2

)
n

, (3.45)

λ
(0)
W0WnΣn+1

=

√
(n+ 1)

(
N
2
+ 1
)
n√(

N
2

)
n+1

, λ
(0)
W1WnΣn+1

=
(6n+N + 2)

√
2(n+ 1)

(
N
2

)
n+1

N
√

(N + 2)
(
N
2
+ 1
)
n

.

The calculation again starts with the minimal number of fields. Taking n = 1 and

T̂ = Σ1, the first two lines of eq. (2.21) give expressions for the ratios λW0W0Σ1/λW0W1Σ1 and

λW1W1Σ1/λW0W1Σ1 . Demanding that they agree with the appropriate cases of (3.45) yields

R(0) = 0 , R(1) =

√
N + 2 ,Γ

(
1− p

4

)
Γ
(
p
2

)
√
2(N + 8)Γ

(
p
4
+ 1
) , R(2) =

√
N + 2Γ

(
1− p

4

)
Γ
(
p
2

)

4
√
2(N + 8)3Γ

(
p
4
+ 1
) (3.46)

×
[
(N2 − 64N − 288)ψ(p

4
)− (N + 8)2ψ(−p

4
) + 8(5N + 22)ψ(p

2
) + 8(5N + 22)ψ(1)

]
.

at O(ε2), along with anomalous dimensions of Σ1 which agree with [28]. This results in the

following one-point function of φ2:

a
(2)

φ2 =
(N + 2)Γ

(
1− p

4

)
Γ
(
p
2

)3

2(N + 8)2Γ(p
4
+ 1)Γ(p)

, a
(3)

φ2 = − (N + 2)Γ(1− p
4
)Γ(p

2
)3

8(N + 8)4Γ(p
4
+ 1)Γ(p)

(3.47)

×
[
(N2 − 144N − 640)ψ(p

4
)− (N + 8)2ψ(−p

4
) + 16(5N + 22)ψ(p

2
) + 16(5N + 22)ψ(1)

]
.

To go further and compute anomalous dimensions of (3.43), we shall simply use the third

line of eq. (2.21), once with T̂ = Σn and ε = Wn, and once with T̂ = Σn+1 and ε = Wn. Using

the known R(1), we obtain the coupled equations

∆
(1)
Wn

= ∆
(1)
Σn

+
6n

N + 8
− 1

4
,

0 = 2(N + 8)(∆
(1)
Σn

−∆
(1)
Σn+1

) + 24n+N − 4 . (3.48)

8A three-point function with two WI
n-type operators is proportional to δIJ , so we can drop the I label in the

the corresponding OPE coefficient.
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at one loop. Their solution is:

∆
(1)
Σn

=
n(12n+N − 16)

2(N + 8)
, ∆

(1)
Wn

=
24n2 + 2n(N − 4)−N − 8

4(N + 8)
. (3.49)

Analogous equations can be found at two loops as R(2) is also known. They are solved by:

∆
(2)
Σn

=
n [36n2(N + 8) + 12n(N2 −N − 54)−N(19N + 58) + 320]

(N + 8)3
Ap ,

∆
(2)
Wn

=
6n(n− 1)[6n(N + 8) +N(2N + 13) + 12]

(N + 8)3
Ap . (3.50)

Once again, the virtue of the OPE relations is that they allow to gain one order in perturbation

theory, as shown in these examples.

A few comments are in order. First, our results for ∆
(1)
Σ1

and ∆
(2)
Σ1

agree with equations (5.6)

of [28] and (3.20) of [20]. The quantity ∆
(2)
Σ2

was also computed in [20], and we agree with their

result. Second, both ∆
(2)
W0

and ∆
(2)
W1

vanish as they should, since the corresponding operators are

protected defect modes. Finally, for N = 1 and any n we recover the results of subsection 3.3.

3.5 Taking stock

Of the new results we have computed so far, the ones which will be used most immediately are

(3.20) and (3.35). These express the one-point function aφ2 near the short-range and mean-field

end of the LRI respectively. Estimates of this quantity will prove to be an important guide for

the numerical bootstrap. However, the conceptual novelty of this section is that it is based on

new tools for streamlining perturbation theory in the long-range Ising and O(N) models, namely

the OPE relations in eq. (2.21). These were powerful enough to provide new two-loop anomalous

dimensions for Σn and WI
n defined in (3.43).

When the special case γ(2)Σ1
was first found in [28], more standard Feynman diagram calcula-

tions were used. It would have also been possible to find all γ(2)Σn
in this way because the required

number of diagrams stabilizes for sufficiently large n. If desired, one can now turn the process

around and predict the O(ε−1) parts of these new diagrams using our scaling dimensions (3.50).

One might hope for a further generalization by including derivatives in (3.43). The OPE rela-

tions explored here hold for operators with spin and they can certainly be used to compute their

anomalous dimensions. The main obstacle one faces is that the linear combinations of derivatives

which lead to a conformal primary are non-trivial. Finding a way around this was possible when

we computed (3.13) but only because the operator [φ̂φ̂]0,ℓ was limited to two fields. With arbi-

trarily many fields, the presence of derivatives introduces a book-keeping exercise which seems

hard to avoid with either the OPE relations or pre-bootstrap methods.
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On the other hand, one statement of this form that we can make is λ(1)
φ̂φ̂Ô = 0 when Ô is

an operator involving four fields φ̂ and potentially many derivatives. This result will become

important in the next section which discusses a method for extracting CFT data along a tra-

jectory of operators in a four-point function. When computing 〈φ̂(x1)φ̂(x2)Ô(x3)〉 to one loop,

each distribution of derivatives is handled using the diagrams

+ (3.51)

Following the steps used for (3.13), these are computed using either

∫
dpτ0τ

a1
03 . . . τ

al
03

|τ01|
1
2
(p−ε)|τ03|

3
2
(p−ε)+2l

=
Γ(p+ l − ε)

Γ(1
4
(p− ε))Γ(3

4
(p− ε) + l)

(3.52)

×
∫ 1

0

dx

∫
dpτ0

x
1
4
(p−ε)−1(1− x)

3
4
(p−ε)+l−1

[τ 20 + x(1− x)τ 213]
p+l−ε (τ0 + xτ13)

a1 . . . (τ0 + xτ13)
al ,

or its image under (1 ↔ 2). Without loss of generality, we have taken the factors of τa03 (if they

are contracted at all) to be contracted with the factors of τa23 outside the integral rather than

each other. While (3.52) clearly vanishes when l is odd, a simple calculation shows that all l/2

terms of it are O(ε) when l is even. This means that the three-point function, which includes

λ∗, is O(ε2).

4 Inversion formula

One of our perturbative results in the previous section applies to an infinite family of operators

labelled by spin — namely [φ̂φ̂]0,ℓ for ℓ > 0. This is the leading trajectory of double-twist oper-

ators built from the fundamental field. Many studies in recent years have computed analogous

families of anomalous dimensions using an efficient technique which sidesteps most of the need for

diagrammatic computations. This is the Lorentzian inversion formula [22] designed to yield CFT

data in a form which is analytic in spin down to a critical value determined by the growth of the

correlator in the Regge limit. Moreover, detailed knowledge of the correlator is optional for ap-

plying it as long as one has access to a simpler piece called the double discontinuity. Specializing

to identical external scalars Φ in p = 2, the Lorentzian inversion formula is

c(∆, ℓ) =
1 + (−1)ℓ

4

Γ(∆+ℓ
2
)4

2π2Γ(∆ + ℓ)Γ(∆ + ℓ− 1)

∫ 1

0

dz

z2

∫ 1

0

dz̄

z̄2
g∆−1,ℓ+1(z, z̄)dDisc[G(z, z̄)]

=
Γ(∆+ℓ

2
)4

2π2Γ(∆ + ℓ)Γ(∆ + ℓ− 1)

∫ 1

0

dz

z2

∫ 1

0

dz̄

z̄2
kℓ−∆+2(z)k∆+ℓ(z̄)dDisc[G(z, z̄)] , (4.1)
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where

dDisc[G(z, z̄)] = G(z, z̄)− 1

2
G�(z, z̄)− 1

2
G	(z, z̄) , (4.2)

is the double discontinuity and the spectral density is defined so that

c(∆, ℓ) = −
∑

O

λ2ΦΦO
∆−∆O

. (4.3)

Our main goal in this section is to improve upon the p = 2 case of our results for [φ̂φ̂]n,ℓ by

extending them to three loops and all n ≥ 0.

4.1 Overview

When applying the Lorentzian inversion formula, a useful fact is that double-twist operators

produce integer powers of 1−z̄ in the crossed channel which have a vanishing double discontinuity.

This means that if Φ is a generalized free field, all contributions to (4.1) come from (1− z̄)−∆Φ

associated with the identity operator. As we turn on deformations however, other non-trivial

terms (referred to as Casimir singular in [29]) start to appear. These include other fractional

powers of 1− z̄ and logarithms appearing quadratically or higher. These satisfy

dDisc[(1− z̄)ξ] = (1− z̄)ξ2 sin2(πξ) ,

dDisc[log(1− z̄)2] = 4π2 ,

dDisc[log(1− z̄)3] = 12π2 log(1− z̄) . (4.4)

We will take Φ = φ̂ which allows the deformation to be parameterized by ε. CFT data will then

be expanded as

aO = a
(0)
O + εa

(1)
O + ε2a

(2)
O + ε3a

(3)
O +O(ε4) ,

∆O = ∆
(0)
O + εγ

(1)
O + ε2γ

(2)
O + ε3γ

(3)
O +O(ε4) , (4.5)

where aO = λ2ΦΦO and we remind the reader that ∆
(0)
O and a

(0)
O in this expansion depend on ε.

Plugging (4.5) into (4.3),

−c(∆, ℓ) ∼ 〈a(0)O 〉
∆−∆

(0)
O

+ ε

[
〈a(1)O 〉

∆−∆
(0)
O

+
〈a(0)O γ

(1)
O 〉

(∆−∆
(0)
O )2

]
(4.6)

+ε2

[
〈a(2)O 〉

∆−∆
(0)
O

+
〈a(0)O γ

(2)
O + a

(1)
O γ

(1)
O 〉

(∆−∆
(0)
O )2

+
〈a(0)O γ

(1)2
O 〉

(∆−∆
(0)
O )3

]

+ε3

[
〈a(3)O 〉

∆−∆
(0)
O

+
〈a(0)O γ

(3)
O + a

(1)
O γ

(2)
O + a

(2)
O γ

(1)
O 〉

(∆−∆
(0)
O )2

+
〈2a(0)O γ

(1)
O γ

(2)
O + a

(1)
O γ

(1)2
O 〉

(∆−∆
(0)
O )3

+
〈a(0)O γ

(1)3
O 〉

(∆−∆
(0)
O )4

]
,
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is the behaviour of the spectral density as ∆ → ∆
(0)
O . Since there will generically be many

operators with dimension ∆
(0)
O + O(ε), we have used the 〈. . . 〉 notation to refer to a sum over

this degenerate eigenspace. One can now go through the same procedure and find

G(z, z̄) =
∑

∆
(0)
O
,ℓO

[
〈a(0)O 〉+ ε〈a(1)O + a

(0)
O γ

(1)
O ∂∆〉+ ε2〈a(2)O +

(
a
(1)
O γ

(1)
O + a

(0)
O γ

(2)
O

)
∂∆ +

1

2
a
(0)
O γ

(1)2
O ∂2∆〉

+ ε3〈a(3)O +
(
a
(2)
O γ

(1)
O + a

(1)
O γ

(2)
O + a

(0)
O γ

(3)
O

)
∂∆ +

(
1

2
a
(1)
O γ

(1)2
O + a

(0)
O γ

(1)
O γ

(2)
O

)
∂2∆ +

1

6
a
(0)
O γ

(1)3
O ∂3∆〉

+O(ε4)
] ∣∣∣∣

z

1− z

∣∣∣∣
2∆φ

gO(1− z, 1− z̄) , (4.7)

for the crossed channel conformal block expansion. If we temporarily focus on double-twist

operators, all contributions to the double discontinuity come from terms with two or more ∂∆
derivatives. Their coefficients at O(εn) only involve CFT data up to O(εn−1). A naive reading

of (4.7) therefore suggests an iterative procedure wherein the results of the inversion formula at

one order are fed back into it at the next. At high enough orders, this logic breaks down for

three reasons:

1. multi-twist operators will eventually be exchanged which can produce a double-

discontinuity without two derivatives;

2. even for double-twist operators, those of low spin are not captured by the inversion formula

and need to be put in by hand;

3. averages like 〈a(0)O γ
(1)2
O 〉 are only known in terms of 〈a(0)O 〉 and 〈a(0)O γ

(1)
O 〉 if one works with a

large system of correlators to resolve the degeneracy.

For us, new types of operators will appear in a controlled way and degeneracy will not be an

obstacle until after three loops. This differs from the situation in holographic theories which are

more severely affected by degeneracy because they involve infinitely many generalized free fields

[43–46].

4.2 Results at two loops

We will now make the above statements more precise. To start, the ε = 0 OPE (apart from the

identity) contains only double-twist operators [φ̂φ̂]n,ℓ labelled by n ≥ 0 and ℓ ≥ 0. These have

∆
(0)
n,ℓ = 2∆φ + 2n+ ℓ and

a
(0)
n,ℓ =

1 + (−1)ℓ

n!(n+ ℓ)!

Γ(∆φ + n)2Γ(∆φ + n+ ℓ)2

Γ(∆φ)4
Γ(2∆φ + n− 1)Γ(2∆φ + n+ ℓ− 1)

Γ(2∆φ + 2n− 1)Γ(2∆φ + 2n+ 2ℓ− 1)
. (4.8)
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We can derive (4.8) by inverting the identity or by using the original brute force methods of

[47]. It is now possible to say that a(0)O and a(1)O are only non-zero for double-twist operators but

we can actually make a stronger statement. After inserting λφ̂4 once, the naive expectation is

that a quadruple-twist operator O will be seen to have λφ̂φ̂O = O(ε). In fact, our calculation

in the last section showed that λφ̂φ̂O = O(ε2) which means that also a(2)O and a
(3)
O are only non-

zero for double-twist operators. The second major simplification is that γ(1)n,ℓ is only non-zero

for n = ℓ = 0. The necessity of ℓ = 0 is already clear from the fact that there is no double

discontinuity at O(ε). To prove the more general claim, consider

〈[φ̂φ̂]n,ℓ(τ1)[φ̂φ̂]n,ℓ(τ2)φ4(τ3)〉 =
∑

i,j

〈D(i)
A φD

(i)
B φ(τ1)D

(j)
A φD

(j)
B φ(τ2)φ

4(τ3)〉 , (4.9)

where the DA and DB are differential operators. They ultimately act on |τ13|−2∆φ and |τ23|−2∆φ

after we apply Wick’s theorem to the right hand side of (4.9). This 3pt function is therefore

regular as τ1 → τ2. This property is only consistent with the Polyakov form

〈[φ̂φ̂]n,ℓ(τ1)[φ̂φ̂]n,ℓ(τ2)φ4(τ3)〉 =
λ[φ̂φ̂]n,ℓ[φ̂φ̂]n,ℓφ4

|τ12|4n+2ℓ|τ13|4∆φ |τ23|4∆φ
, (4.10)

if λ[φ̂φ̂]n,ℓ[φ̂φ̂]n,ℓφ4
vanishes whenever n and ℓ are not both zero. First order perturbation theory

then implies that the same holds for γ(1)n,ℓ . An alternative way to prove that γ(1)n,ℓ ∝ δn,0δℓ,0 is

discussed in appendix C.

Returning to (4.7), we now only need to input two quantities to solve for the double discon-

tinuity at O(ε2). These are

a
(0)

φ̂2
= 2, γ

(1)

φ̂2
=

1

3
. (4.11)

If we now let ∂2∆ act on the overall power law in
∣∣ z
1−z

∣∣2∆φ g∆,0(1− z, 1− z̄)
∣∣
∆=2∆φ

(as opposed to

the hypergeometric functions), it follows that the desired term in the spectral density is

c(2)(∆, ℓ) =
Γ(∆+ℓ

2
)4

18Γ(∆ + ℓ)Γ(∆ + ℓ− 1)

∫ 1

0

dz

z2

∫ 1

0

dz̄

z̄2
kℓ−∆+2(z)k∆+ℓ(z̄)

∣∣∣∣
z

1− z

∣∣∣∣
1− ε

2

|k1− ε
2
(1− z)|2 .

(4.12)

If we are content with extracting CFT data to an accuracy of O(ε2), it is consistent to set ε = 0

in the integrand and evaluate

ε2c(2)(∆, ℓ) =
ε2

9

Γ(∆+ℓ
2
)4

2Γ(∆ + ℓ)Γ(∆ + ℓ− 1)

∫ 1

0

dz̄

z̄2
z̄

∆+ℓ
2 2F1(

∆+ℓ
2
, ∆+ℓ

2
; ∆ + ℓ; z̄)z̄

1
2 2F1(

1
2
, 1
2
; 1; 1− z̄)

∫ 1

0

dz

z2
z

ℓ−∆+2
2 2F1(

ℓ−∆+2
2

, ℓ−∆+2
2

; ℓ−∆+ 2; z)z
1
2 2F1(

1
2
, 1
2
; 1; 1− z) . (4.13)

The factored integrals can be done in at least three ways.
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1. By Taylor expanding the hypergeometric functions and integrating termwise, it is possible

to resum and find Γ(∆+ℓ)

Γ
(
1
2
(∆+ℓ)+1

)2

(
∆+ℓ

∆+ℓ−1

)2
for the first integral. The second is simply the

shadow with ∆ 7→ 2−∆.

2. One can get the same result by exploiting the inner product which makes the quadratic

Casimir D of sl(2) self-adjoint [48]. Since each integral is an inner product of two eigenfunc-

tions, one with eigenvalue −1
4

and the other with eigenvalue h(h−1) for h ∈ {∆+ℓ
2
, ℓ−∆+2

2
},

we can use 〈f, g〉 = 1

h(h−1)+
1
4

[〈Df, g〉 − 〈f,Dg〉] which localizes to a boundary term.

3. Finally, (4.12) is nothing but
Γ

(
∆+ℓ
2

)4

18Γ(∆+ℓ)Γ(∆+ℓ−1)
I(ℓ−∆+2, 2−ε

2
, 2−ε

4
)I(∆+ ℓ, 2−ε

2
, 2−ε

4
) where

I(∆s,∆t,∆φ) is the crossing kernel in one dimension [48–50].

It is worth reviewing the crossing kernel since this is the approach which worked for evaluat-

ing (4.12) even with ε 6= 0. This will be crucial for the three-loop considerations in the next

subsection.

Conformal blocks for sl(2) are simply k∆s
(z) for the s-channel and

(
z

1−z
)∆φ k∆t

(1 − z) for

the t-channel. The crossing kernel projects one onto the other. Using the techniques of [50], it

becomes

I(∆s,∆t,∆φ) =

∫ 1

0

dz

z2
k∆s

(z)

(
z

1− z

)∆φ

k∆t
(1− z) (4.14)

=
Γ(∆s)Γ(∆t)

Γ(∆s

2
)2Γ(∆t

2
)2

∫ i∞

−i∞

dsdt

2πi
K(s, t)δ(∆φ +

∆s−∆t

2
− 1 + s− t) ,

where

K(s, t) ≡ Γ(−s)Γ(−t)Γ(
∆s

2
+ s)2

Γ(∆s + s)

Γ(∆t

2
+ t)2

Γ(∆t + t)
, (4.15)

which leaves a single Mellin-Barnes integral. The formula

7F6

[
a 1 + 1

2
a b c d e f

1
2
a 1 + a− b 1 + a− c 1 + a− d 1 + a− e 1 + a− f ; 1

]
(4.16)

=
Γ(1 + a− b)Γ(1 + a− c)Γ(1 + a− d)Γ(1 + a− e)Γ(1 + a− f)

Γ(1 + a)Γ(b)Γ(c)Γ(d)Γ(1 + a− c− d)Γ(1 + a− b− d)Γ(1 + a− b− c)Γ(1 + a− e− f)

×
∫ i∞

−i∞

du

2πi

Γ(−u)Γ(1 + a− b− c− d− u)Γ(b+ u)Γ(c+ u)Γ(d+ u)Γ(1 + a− e− f + u)

Γ(1 + a− e+ u)Γ(1 + a− f + u)
,

is then available for turning (4.14) into a single very well poised hypergeometric function evalu-

ated at 1. This can be done in four different ways. One can choose 1+ a− e− f + u to be either
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∆s

2
+ s or ∆t

2
+ t and also eliminate either s or t in (4.14). We will make ∆s

2
+ s privileged and

eliminate t since this is the only choice whose hypergeometric function approaches 1 as ε → 0.

The others would significantly disguise the simplicity of the final result. Accordingly, we will

write

I(∆s,∆t,∆φ) =
Γ(∆t)Γ(

∆s

2
+∆φ − 1)2Γ(∆t

2
−∆φ + 1)Γ(∆s +

∆t

2
+∆φ − 1)

Γ(∆s+∆t

2
)2Γ(∆s+∆t

2
+∆φ − 1)2

(4.17)

7F6

[
2∆s+∆t+2∆φ−4

2

2∆s+∆t+2∆φ

4

∆s+2∆φ−2

2

∆s+2∆φ−2

2
∆s

2
∆s

2

∆t+2∆φ−2

2
2∆s+∆t+2∆φ−4

4
∆s

∆s+∆t

2
∆s+∆t

2

∆s+∆t+2∆φ−2

2

∆s+∆t+2∆φ−2

2
; 1

]
.

Mixed correlators have more than a four-fold ambiguity and sometimes it is even best to forgo

(4.16) altogether and instead simplify the crossing kernel by manipulating the Mellin-Barnes

integral directly [51].

The purely two-loop result

ε2c(2)(∆, ℓ) =
ε2

9

Γ(∆+ℓ
2
)4

2Γ(∆ + ℓ]Γ(∆ + ℓ− 1)
I(ℓ−∆+ 2, 1, 1

2
)I(∆ + ℓ, 1, 1

2
) (4.18)

=
ε2

9

Γ(∆+ℓ
2
)4

2Γ(∆ + ℓ]Γ(∆ + ℓ− 1)

Γ(∆ + ℓ)Γ(ℓ−∆+ 2)

Γ(∆+ℓ
2

+ 1)2Γ( ℓ−∆+2
2

+ 1)2
(∆ + ℓ)2(ℓ−∆+ 2)2

(∆ + ℓ− 1)2(ℓ−∆+ 1)2
,

has a double pole as ∆ → ℓ+ 1. Expanding around it and comparing to (4.6) gives

a
(2)
0,ℓ = −2

9

Γ(ℓ+ 1
2
)2

πℓ2Γ(2ℓ)

[
ψ(2ℓ)− ψ(ℓ)− 4 log 2− ℓ−1

]
, γ

(2)
0,ℓ = − 1

9ℓ
. (4.19)

The anomalous dimension (which required us to divide by (4.8)) agrees with the diagrammatic

result. Interestingly, (4.18) only has single poles at ℓ+2n+1 for n > 0. We therefore see that the

subleading double twists [φ̂φ̂]n,ℓ, despite being independent operators not subject to any equation

of motion, have vanishing anomalous dimensions to two loops. On the other hand, their OPE

coefficients receive the correction

a
(2)
n,ℓ = − 1

18

n−2(n+ ℓ)−2Γ(n+ ℓ+ 1
2
)2

Γ(2n)Γ(2n+ 2ℓ)Γ(1
2
− n)2

, (4.20)

which can be seen from the coefficient of the single pole.

4.3 Results at three loops

Since the anomalous dimension of φ̂2 is known at O(ε3) and we always have the option of

applying more derivatives to the crossing kernel, it might seem that a four-loop spectral density

is within reach. The main conceptual hurdle here is that the double discontinuity will involve

an infinite sum of double-twist conformal blocks in the crossed channel which are weighted by
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a
(0)
0,ℓγ

(2)2
0,ℓ . For the local Wilson-Fisher CFTs studied in [21], a formula for this weighted sum over

ℓ was conjectured by appealing to a transcendentality principle. More recently, an algorithm was

developed in [52] which can extract CFT data from this sum without any extra assumptions.

4.4 Further comments

The analytic bootstrap is most powerful when applied to theories that have a weakly broken

degeneracy in their spectrum of twists [53]. Generalized free theories provide the simplest ex-

amples. In this section, we have applied the Lorentzian inversion formula to the 4pt function of

φ̂ which is the fundamental field of the LRI near the mean-field end. What about going to the

short-range end and considering the 4pt function of χ̂?

The main difference in this case is that no double-twist operator has an anomalous dimension

at O(δ). It is easy to compute a few renormalized integrals like
∫
dpτ2d

pτ3
〈
χ̂2(0)σχ̂(τ2)σχ̂(τ3)χ̂

2(∞)
〉
, (4.21)

and see why — the integrand completely vanishes after power-law divergences are subtracted.

This is a straightforward repetition of the argument in [14] for why χ̂ itself does not renormalize.

This can be physically understood from the fact that, at O(δ), the Ising model coupled to a

generalized free field by σχ̂ is indistinguishable from two generalized free fields coupled by σχ̂.

The statements made in [54], about certain operators having no anomalous dimension in this

theory, can be extended to all operators because quadratic actions cannot produce loop diagrams

which are logarithmically divergent. The O(δ) correction to the 4pt function as a whole (which

indeed has no logarithmic terms) can be computed as

〈χ̂(τ1)χ̂(τ2)χ̂(τ3)χ̂(τ4)〉 =
[
(|τ12||τ34|)−2∆χ + (|τ13||τ24|)−2∆χ + (|τ14||τ23|)−2∆χ

]
(4.22)

×
[
1 + 2g2∗π

pΓ(
p
2
−∆σ)

Γ(∆σ)

Γ(p
2
−∆χ)

Γ(∆χ)
+O(g4∗)

]
,

using only the chain integral. This shows that all OPE coefficients for [χ̂χ̂]n,ℓ undergo the same

shadow symmetric rescaling.

5 Numerical results

Up until this point, we have been focused on perturbative results. Although these are only

strictly valid close to s = p
2

or s = p− 2∆∗
σ, they improve our expectations for where non-trivial

long-range Ising models should be found in the space of scaling dimensions. When this space is

cut down to a managable size, it can be searched with the numerical bootstrap [3]. In the most
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favourable cases, one can force the theory of interest to live in an “island” by rigorously excluding

the possibility that a consistent CFT lives at any of the surrounding points [55–60, 42, 61, 62].

More commonly, a precursor to this type of result called a “kink” is what provides evidence that

a theory has been found. The goal of this section is to produce kinks for general s which agree

with perturbation theory near the two endpoints and therefore give non-perturbative predictions

for LRI critical exponents in between.

It is worth explaining how our approach differs from that of [15] which ignored all of the OPE

relations except:

λ11Oλ22O =
Γ( ℓ+∆

2
)2Γ( ℓ+p+q−2−∆

2
)Γ( ℓ+p−q+2−∆

2
)

Γ( ℓ+p−∆
2

)2Γ( ℓ+2−q+∆
2

)Γ( ℓ−2+q+∆
2

)
λ212O , (∆ ≡ ∆O) , (5.1)

which is the same relation whether we take 1 ≡ ψ
(+)
0 and 2 ≡ ψ

(−)
0 or vice versa. This was done

to remove dependence on R(aφ2) = R(aχ2)−1 but the studies [18, 19] later showed that it is better

to keep this ratio in the problem and vary it manually, within the unitarity region depicted in

figure 1. Besides allowing us to impose more OPE relations, scanning over a parameter other

than a scaling dimension is necessary for making progress on the two-dimensional LRI. Indeed,

it is known that single-correlator exclusion plots for the dimensions of relevant operators (which

have no LRI kink) are not improved by extra correlators unless one imposes model-dependent

gaps [63]. Fortunately, we will see that this new type of scan is also sufficient for finding the LRI

in p = 2. As such, we will spend most of our time on this case and be more terse for p = 3. For a

different bootstrap study which benefited from scanning over more than just scaling dimensions,

see [64].

EL: Comments:

1. PvV: Add pert results as dots in plot? CB: Sure.

5.1 Warm-up

For a given external dimension ∆φ, we can bound the scaling dimensions of exchanged operators.

As discussed above, we will bound them as functions of the unknown ratio R(aφ2), We will use

aφ2 as a proxy for this ratio and label our bounds by ∆φ. If one prefers aχ2 , which vanishes at

s = p − 2∆∗
σ instead of s = p

2
, it is easy to convert between them using eq. (2.18) The crossing

equations used throughout, given explicitly in appendix A, are the ones appropriate for a three-

correlator system involving φ̂ ≡ ψ
(+)
0 and its shadow ψ

(−)
0 . Imposing the OPE relations (2.21) on

odd-spin operators forces them to have scaling dimensions in the discrete set p+ℓ+2n for n ≥ 0.

We will treat ℓ = 1 as an exception and demand that there is no spin-1 operator of dimension
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Figure 2: Bounds on the dimension of the leading spin-2 operator for ∆φ = 0.425. The lightest

region shows a nearly universal bound with only a spin-0 gap of 0.01 imposed for stability.

The darker regions impose more restrictive spin-0 gaps and are needed to see evidence of the

long-range Ising model for this value of ∆φ.
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Figure 3: Bounds on the spin-2 gap for larger values of the imposed spin-0 gap which would be

hard to see on the scale of figure 2. Yellow regions correspond to more stringent gaps and the

smallest one, which fixes aφ2 to 0.1%, is a good candidate for where the ∆φ = 0.425 long-range

Ising model should live.

p + 1. A primary with these quantum numbers cannot exist in the LRI near either endpoint.

At the mean-field end the only candidate is a descendant of φ̂4 while at the short-range end the

only candidate is a descendant of Tµν , see e.g. the discussion in ref. [14].9 Finally, we will impose

(2.21) for all operators with ℓ = 0, 2. This is a slight simplification compared to the BCFT setup

in [18, 19] which required there to be a discrete set of even-spin operators (like the displacement)

which evade the OPE relations.

The type of plot made in [18, 19], which maximizes the gap ∆̂2 for spin-2 operators, will be a

useful starting point. Whenever a non-trivial upper bound on ∆̂2 exists, a theory saturating it is

guaranteed to be nonlocal. The plot is shown in figure 2 for an external dimension of ∆φ = 0.425.

The most permissive region in this plot has a kink at around aφ2 = −0.15. This is an order of

magnitude off from where it should be if we estimate aφ2 in the ∆φ = 0.425 LRI by plugging

ε = 0.3 into the perturbative results of eq. (3.35). As noted in [19] however, plots of this type

9In the case of unitary and local BCFTs, [18] proved that a vector of dimension d is absent from the spectrum

of boundary primaries. One can find counter-examples when unitarity is given up [65]. Via the same reasoning

one can prove that for unitary and local p-dimensional conformal defects a vector of dimension p + 1 should be

absent from the spectrum of defect primaries.
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Figure 4: Bounds on the dimension of the leading exchanged scalar for ∆φ = 0.425 (narrowest),

∆φ = 0.35 and ∆φ = 0.275 (widest). For cosmetic reasons, these bounds were made subject to

the constraints ∆̂2 ≥ 2.4, ∆̂2 ≥ 2.3 and ∆̂2 ≥ 2.2 respectively. The rightmost kinks, indicated

on the plot, are stable with respect to the spin-2 gap and serve as candidates for the LRI.

can show more interesting features once we restrict our search to CFTs obeying a certain gap ∆̂0

on internal operators of spin-0. As we raise this gap in figure 2, the vertical wall moves rapidly

at first but then slows down. By ∆̂0 = 0.6, which is well below the mean-field value of ∆̂0 = 1,

it has already stabilized at a position close to the right hand side. As we continue to raise ∆̂0,

something even more interesting happens. A second vertical wall starts moving to the left. The

zoomed in plot figure 3 shows the spike which is obtained in this way. The leftward motion

stops as well at around ∆̂0 = 0.8 making the spike temporarily stable. At about ∆̂ = 0.95, the

leftward motion starts again resulting in complete disappearance once we get to ∆̂0 = 0.97. This

is strikingly close to the scalar gap for the LRI with ∆φ = 0.425 as predicted by perturbation

theory.

5.2 Kinks in two dimensions

As the spin-0 gap is varied, the bounds above sometimes change quickly and sometimes change

slowly. Plots bounding ∆̂0 should therefore be just as interesting as those bounding ∆̂2. Our

main conjecture regarding numerics is that this exercise allows one to find a kink corresponding
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Figure 5: Allowed regions in (aφ2 , ∆̂0) space for ∆φ = 0.35. These include the region from figure

4 with ∆̂2 ≥ 2.3 but also three other versions of it with different spin-2 gaps. The prevailing

trend is that the left edge moves while the right edge (which contains the LRI kink) does not.

This happens for all external dimensions so we have chosen ∆φ = 0.35 as a “generic” example

not close to p
4 .

to the long-range Ising model for arbitrary ∆φ without any assumption on the spin-2 gap. Figure

4 shows almost this result except with a modest spin-2 gap for readability. Specifically, we have

imposed

∆̂2 ≥
4

3
∆φ −

1

6
, (5.2)

to prevent the allowed regions from overlapping heavily. This arbitrary gap is easily obeyed by

the long-range Ising model and the features we will now discuss would still be visible without it.

Two of the allowed regions in Figure 4 show one kink on the left and another on the right. The

third region would as well if the horizontal axis were extended. It turns out that the solution to

crossing at the leftmost kink has a spin-2 operator saturating (5.2) whereas the leading spin-2

operator dimension at the rightmost kink is much higher. This can be seen in figure 5 which

compares four different allowed regions for ∆φ = 0.35 with each one having a different constraint

on ∆̂2. Evidently, there is some critical spin-2 gap which makes the allowed region have only

one kink. For ∆φ = 0.425, this is about ∆̂2 = 2.84 in agreement with figure 3. As the spin-2

constraint is relaxed, making the region wider, the single kink splits into two with one staying still

and the other moving to the left. Based on this pattern, the stationary kink on the right should
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Figure 6: Kinks attributed to the long-range Ising model for five more values of ∆φ. For

∆φ = 0.2, the full allowed region subject to ∆̂2 ≥ 2.1 is shown as well. The error bars close to

this kink denote the findings for the ν exponent from the Monte Carlo studies [66, 67]. Closer

to the left, dots are given so that the kinks at ∆φ = 0.15, ∆φ = 0.14166 and ∆φ = 0.13333 may

be compared to the results of O(δ) perturbation theory.

be the one associated with the long-range Ising model. Figure 4 shows that it is about 0.2%

below the perturbative prediction around the mean-field end despite having much less noticeable

error in the horizontal position. Reasons for this will be discussed in the next subsection which

deals with resummations. The moving kink bears some resemblance to the one in [19] which was

associated with minimal models. To check whether the same might be true here, we can follow

the kink to the leftmost most edge of aφ2 = −7
8

where the theory becomes local. Interestingly,

this gives it an approximate spin-0 gap of

∆̂0 =
8

3
∆φ +

2

3
. (5.3)

This is precisely the relation between ∆(1,2) and ∆(1,3) for the m’th Virasoro minimal model if

we eliminate m to express one scaling dimension in terms of the other. As remarked in [14], there

is no reason why these other models cannot be coupled to a generalized free field in the same

vein as the Ising model to generate many nonlocal CFTs. The match with (5.3) can then be

taken as evidence that these “long-range minimal models” are being singled out by the numerical

bootstrap. To put it another way, the kink for ∆φ which saturates the imposed spin-2 gap might
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be constructed by taking the m’th minimal model for some m and coupling its φ(1,2) operator to

a generalized free field of dimension 2−∆φ. The precise value of m will be difficult to determine

in general but we believe that many checks of this proposal can be done in perturbation theory.

As usual, it will be important to consider non-integer values of m and construct these RG flows

using generalized minimal models. Generalized minimal models are non-unitary but it is known

that their low-lying correlators manifest this in a very limited way [68].

As shown in eq. (2.17), bulk-defect crossing symmetry and unitarity implies that −7
8
≤ aφ2 ≤

0. Our conclusions so far have been based on values of aφ2 in the upper half of this range. We

have also computed a bound on ∆̂0 for ∆φ = 0.2 and still found a kink in the upper half of

this range. The basic structure of perturbation theory makes it clear that four evenly spaced

values of ∆φ in the range 1
8
≤ ∆φ ≤ 1

2
will be far from evenly spaced with respect to aφ2 . After

all, the expansion of the latter starts at O(1) around the short-range end but O(ε2) around the

mean-field end. We have therefore picked another four values of ∆φ between 1
8

and 0.2 for testing

how well the putative LRI kinks agree with the δ expansion. The kinks themselves are shown in

figure 6. Their positions were computed from the second derivative of a bound on ∆̂0 but the

rest of the bound has been omitted to avoid clutter. The perturbative line (which always has

∆̂ = 1 since ∆ǫ̂ = 1+O(δ2)) shows the desired convergence between the numerical and analytic

values of aφ2 on the left hand side. The right hand side of figure 6 shows partially overlapping

error bars obtained by Monte Carlo simulations which both considered s = 1.6 or ∆φ = 0.2.

After using the standard relation

∆φ̂2 = p− ν−1 , (5.4)

it becomes clear that our kink is compatible with ν−1 = 0.996(33) found by [67] but not ν =

0.96(2) found by [66].

5.3 Checks of the critical exponents

The most important next step is to verify that the numerical bootstrap, beyond simply “knowing”

about the long-range Ising model, can actually be used to derive its critical exponents to high

precision. To do this, we should address the fact that the data in figures 4 and 6 only agree

with the ε and δ expansions respectively within a narrow window. It is also clear that the

kinks demonstrating the best agreement still lie noticably below the perturbative line. These

discrepancies can be diminished with simple improvements to both the numerics and perturbation

theory.

On the numerical side, we should refine the discrete grid of points discussed in appendix A.

In all previous plots, the OPE relations have been imposed for 3000 closely spaced values of ∆.

Increasing this number appears to make all of the kinks move monotonically upwards. This is
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Figure 7: Comparison between perturbative and non-perturbative estimates of the leading inter-

nal scalar dimension in the long-range Ising model. The blue line is a Padé approximant based

on all known perturbative data while the red one omits O(ε3). The dots on them correspond

to the eight external dimensions considered throughout this section ranging from ∆φ = 0.13333

on the left to ∆φ = 0.425 on the right. The x’s denote kinks from the numerical runs which

are sensitive to the number of grid points. We show results for 3000, 6000 and 12000 points in

black, red and blue respectively.
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expected in the numerical bootstrap since constraints at the new points make it harder to find

functionals for ruling out CFTs. We have gone to 12000 which appears to be large enough that

further errors are dominated by the resolution in aφ2 . On the perturbative side, we will use the

approximants Pade[m,n] which are rational functions with m+n+1 coefficients designed to resum

an asymptotic series. While this can be done for either the ε or δ expansions individually, it is

much better to use a two-sided approximant. Picking the same one for both axes, we will write

∆̂0(s) =

∑m
j=0 ajs

j

1 +
∑n

j=1 bjs
j
, aφ2(s) =

∑m
j=0 a

′
js
j

1 +
∑n

j=1 b
′
js
j
, (5.5)

and fix the coefficients by demanding that s = 1 + ε
2

and s = 2(1 − ∆∗
σ − δ) reproduce the

expected behaviour around the mean-field and short-range ends respectively. Solutions for the

coefficients (if they exist) are admissible if they lead to real valued functions that have no poles

between ε = 0 and δ = 0. If we perturb up to O(δ) and O(εm−1), the Pade[m,1] approximant has

admissible solutions for m = 3 and m = 4. As shown in figure 7, the latter gets us significantly

closer to where the kinks are.

While Padé approximants indicate that the kinks are trustworthy, it is also important to see

how well the bootstrap agrees with other non-perturbative methods. The Monte Carlo estimates

of ν from [66, 67], mentioned briefly in the last subsection, are ideal for this purpose. Figure

6 shows that our kink for ∆φ = 0.2 lies slightly outside the error bars predicted for this LRI

in [66]. This becomes even more true after increasing the number of sample points to 12000.

Conversely, [67] found a larger value of ν and explained the discrepancy by noting that the LRI

has significant finite size effects which can be mitigated by simulating a different Hamiltonian in

the same universality class. An intriguing possibility is using the numerical bootstrap to derive,

not just upper bounds on ∆̂0, but lower boudns as well since these could conceivably exclude the

earlier Monte Carlo result. We have not been able to find lower bounds that are strong enough

but it is instructive to see how close they come.

The key is that the LRI (and the SRI as well) has one relevant operator that is Z2-even.

This is of coruse φ̂2 in one description and ǫ in the other. A bound on the spin-0 gap ∆̂0 says

nothing about how many scalars there are with ∆̂0 < ∆ < 2. A better strategy is to demand

that all scalars exchanged in our crossing equations have ∆ > 2 except for one whith dimension

∆̂0. Tuning this value and testing for feasibility of the crossing equations every time is what

produces upper and lower bounds. The lower bound we find with no extra assumption is well

below the bottom of the blue error bar in figure 6 but more interesting things happen when we

raise the spin-2 gap ∆̂2. When doing simple gap maximization, it has already been seen in figure

5 that the upper bound in the vicinity of the kink is insensitive to ∆̂2. When we take ∆̂0 to be

isolated, this continues to hold for the upper bound but not the lower bound. The lower bound
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Figure 8: The vicinity of the ∆φ = 0.2 kink in (aφ2 , ∆̂0) space when we scan over the dimension

of a single exchanged relevant scalar instead of maximizing the scalar gap. The lightest region

is essentially the one seen in figure 6 while the darker islands start to form after a significant

spin-2 gap ∆̂2 is imposed. The blue and red error bars follow from the Monte Carlo results of

[66] and [67] respectively.
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Figure 9: Allowed regions in (aφ2 , ∆̂0) space for three dimensions and four equally spaced

external dimensions between ∆φ = 3
4 and ∆φ = ∆∗

σ. Again, we conjecture that each kink is a

long-range Ising model.

becomes increasingly restrictive and turns the allowed region into an island. Figure 8 shows three

of these islands starting with ∆̂2 = 2.245 which is almost large enough to rule out the kink. By

the time we reach ∆̂2 = 2.255, the kink has become disallowed but the island is still large enough

to be compatible with the error bars of both [66] and [67]. Unfortunately, the lower bounds do

not improve significantly when we add the Z2-even scalar as a third external operator using the

larger system of crossing equations in (A.3).

5.4 Kinks in three dimensions

It remains to be seen that finding the long-range Ising model numerically works equally well in

three dimensions. This time, it is harder to get a point of comparison perturbatively. In figure 7,

the red and blue curves had similar values of aφ2 because the ε and δ expansions approximated

each other fairly well. For example, δ = 0 corresponds to ε = 3
2

in two dimensions and this

underestimates aφ2 by about a factor of 2. In three dimensions, this is instead a factor of 7

leading to predictions which fluctuate wildly upon using different Padé approximants. Improving

this with higher-loop perturbation theory around the short-range end will lead to integrals with

more than four insertions of σ in the 3d Ising model. Approximating one of these correlators will
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require higher-point CFT data and techniques for extracting them are currently in their infancy

[69].

Although the checks we can do are limited, it is plausible that the kinks plotted in figure

9 describe the long-range Ising model once again. For one thing, their vertical co-ordinates

interpolate between ∆̂0 =
3
2

and ∆̂0 = ∆∗
ǫ as expected. Their horizontal co-ordinates all appear

to be an order of magnitude smaller than the short-range value aφ2 = −0.575408 but we know

that the O(δ) deformation changes this rapidly. Numerical runs for ∆φ very close to ∆∗
σ indeed

show that the motion of the kink becomes almost completely horizontal so that the right limiting

behavior is recovered.

A final point is that the regions in figure 9 do not change after imposing a spin-2 gap. The

moving kinks in figures 4 and 6, which depend on this gap, are therefore unique to two dimensions.

This supports the interpretation that they arise as a deformation of Virasoro minimal models

which almost all have an upper critical dimension below p = 3.

6 Conclusions and outlook

In this work we have investigated the long-range Ising model, a particular and well-known ex-

ample of a nonlocal CFT, which plays an important role in condensed matter physics. We have

used different techniques, both perturbative and non-perturbative, to determine various CFT

data. A central role is played by the use of exact relations between OPE coefficients, which can

be implemented in the numerical bootstrap as well as employed in perturbative computations to

gain an extra loop order in the results. These OPE relations emerge from the setup chosen in this

paper, where we consider the p-dimensional LRI as a defect in a free bulk CFT. The relations

were derived for both the mean-field and SRI ends of the LRI perturbative regime, although we

mostly focused on new results on the mean-field end.

Besides combining the OPE relations with standard Feynman diagram techniques to obtain

anomalous dimensions and OPE coefficients, as computed in section 3, one can also use techniques

such as the Lorentzian inversion formula to obtain CFT data perturbatively. This was done in

section 4 and resulted in an infinite amount of CFT data at three loops from the mean-field

end. In section 5 the LRI was studied nonperturbatively using the numerical bootstrap. The

numerics showed a number of kinks corresponding to both perturbative and non-perturbative

(Monte Carlo) predictions for the LRI in two and three dimensions. This shows that the LRI,

and possibly other long-range models, are within reach of the numerical bootstrap in both two

and three dimensions.

Interestingly, as shown in figure 6, the Monte-Carlo results of [67] are consistent with the

position of our kink, while [66] are not. In our preliminary attempt to isolate LRI by making
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significant spin-2 gap assumptions we have obtained figure 8, which shows an island that starts

to form to the right of the kink. This island is still compatible with the error bars of both [66]

and [67], so in order to make progress we should either make less conservative gap assumptions or

include more correlators. These numerical bootstrap studies will involve many parameters and

are generally expected to be very time-consuming, so a good strategy would be to implement

them within the newest frameworks of [70, 71] or [72]. Secondly, we have not tried to extract the

extremal spectrum for LRI, although that can be done with the EFM [73]. The obtained spectrum

can then be used as input for the inversion formula away from the perturbative regime, as was

explored before in [29, 41]. Besides Monte Carlo and the numerical bootstrap, nonperturbative

predictions can also be obtained through fuzzy sphere methods CITE. It would be interesting to

compare this method to the results of this work.

Currently the results in two dimensions in section 5 also show hints of a different family

of long-range models: the long-range minimal models. It would be interesting to investigate

these models further, through perturbative computations and comparing those to the numerical

spectrum which can be extracted using EFM [73]. Another possible extension would be to

consider long-range O(N) models. In this work we have already presented some perturbative

results for these models, which could then readily be compared to the numerics.

For the study of the LRI we have focused on integer-dimensional defects in a free bulk, with

possible fractional codimension. Instead we can also consider defects with fixed codimension,

such as monodromy defects. A future direction would be to explore those defects using the same

techniques and strategies that have been employed here for the LRI, see e.g. [16, 74].

Lastly, in [75] level repulsion was shown numerically for CFTs of the Wilson-Fisher fixed point.

A similar feature can be expected to appear when studying the LRI. Varying the parameter

s between p/2 and p − 2∆σSRI , exploring the region between the two perturbative ends, and

extracting the spectrum using EFM, one could find hints of level repulsion, shedding more light

on how the σχ-type operators of the SRI end map onto the φ4 operators at the mean-field end

beyond the known lowest-lying cases.
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A Details on the numerics

A.1 Crossing equations

We want to bootstrap the system of four-point functions involving two scalars operators. In p

spatial dimensions, the external scaling dimensions should sum to p so we can write them as p±s

2

with s > 0. In the crossing equations written below, operators 1 and 2 are on equal footing so it

does not yet matter which has dimension p−s

2
and which has dimension p+s

2
. The 5 inequivalent

crossing equations are

0 =
∑

O
λ211OF

11,11
−,∆,l(u, v) ,

0 =
∑

O
λ222OF

22,22
−,∆,l(u, v) ,

0 =
∑

O
λ212OF

12,12
−,∆,l(u, v) ,

0 =
∑

O
(−1)ℓλ212OF

12,21
∓,∆,l(u, v)± λ11Oλ22OF

11,22
∓,∆,l(u, v) .

(A.1)

The operators must also obey the OPE relations (2.21) and this makes it important to specify

them more precisely. Operator 1 will be the one with dimension p−s

2
called φ̂ or σ in the LRI.

Operator 2 will be the one with dimension p+s

2
called φ̂3 or χ̂ in the LRI. There is now one choice

to make.

1. If we wish to express results as functions of aφ2 , we must take q = 2 − s and use OPE

relations with ψ(+)
0 as operator 1 and ψ(−)

0 as operator 2.

2. If we wish to express results as functions of aχ2 , we must take q = 2 + s and use OPE

relations with ψ(−)
0 as operator 1 and ψ(+)

0 as operator 2.

This work makes the former choice.

When the OPE relations are imposed for all spins, the crossing equations can be rewritten

as follows

0 = ~V1 +
∑

ℓ=even

λ212O
~V+,∆,ℓ +

∑

ℓ=odd

∞∑

n=0

λ212O
~V−,p+2n+ℓ,ℓ . (A.2)
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One can also add a third external scalar to the setup and find

0 = ~V1 +
∑

ℓ=even

(
λ12O λ13O

)
~V+,∆,ℓ

(
λ12O

λ13O

)

+
∑

ℓ=odd

λ213O
~V0,∆,ℓ +

∑

ℓ=odd

∞∑

n=0

λ212O
~V−,p+2n+ℓ,ℓ .

(A.3)

In practice, we keep all spins in the range 0 ≤ ℓ ≤ ℓmax = 30 but only impose the relations for

ℓ = 0, ℓ = 2 and the odd spins. To transform (A.1) into a finite problem, we have replaced each

functional equation with 45 component equations obtained by evaluating its derivatives at the

crossing symmetric point u = v = 1
4
. In the conventions of [73], these derivatives are the ones

selected by nmax = 8.

A.2 Differences compared to integer codimension

We use the semidefinite program solver SDPB [56, 77] which is designed for crossing equations

that depend on ∆ through rational functions. The algorithm in [55] can produce rational ap-

proximations of conformal blocks to any desired order but the OPE relations pose more of a

challenge. The prefactors in (2.21) contain ratios of the form

Γ(∆ + δ1)/Γ(∆ + δ2) . (A.4)

When δ1 − δ2 is an integer, (A.4) is manifestly rational. When δ1 − δ2 is a half-integer, (A.4) is

not a rational function but its square is to a high degree of precision [18]. These are the only

two cases which arise for integer codimension q. By contrast, this work considers continuously

varrying q with each one corresponding to a different long-range Ising model between the non-

trivial endpoints.

Without a rational function at our disposal, we have opted to approximate crossing equations

by a large number of constant functions. As such, we do not demand that the OPE relations

hold for all ∆̂0 < ∆ < ∞ and ∆̂2 < ∆ < ∞ when imposing the spin-0 gap ∆̂0 and the spin-

2 gap ∆̂2. Instead, we demand that they hold for many closely spaced scaling dimensions in

(∆̂0, d + 18) for spin-0 operators and (∆̂2, d + 20) for spin-2 operators. Most results in section

5 were obtained with 3000 points but for the high precision results of subsection (5.3) we have

sampled 12000. As the gaps are varied, the number of points stays constant rather than the grid

spacing. This allows us to take advantage of the checkpoint feature of SDPB. We also recommend

passing --writeSolution=y since files from old runs can take a non-trivial amount of time to

delete without this.
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B Perturbative computations

B.1 Master integrals

The massless integrals we will use can all be derived from Symanzik’s formula for an integral

with exponents αi summing to p [78]. This reads

π−p/2
∫
dpτ0

n∏

i=1

Γ(αi)

|τi0|2αi
=
∏

i<j

∫ i∞

−i∞

dδij
2πi

Γ(δij)|τij|−2δij , (B.1)

where the variables on the right hand side obey the constraint
∑

i 6=j δij = αi. For n = 3 and

n = 4, eq. (B.1) gives

∫
dpτ0

|τ01|2α1 |τ02|2α2 |τ03|2α3
=

3∏

i=1

Γ(p
2
− αi)

Γ(αi)

πp/2

|τ12|p−2α3 |τ13|p−2α2 |τ23|p−2α1
, (B.2)

∫
dpτ0

|τ01|2α1 |τ02|2α2 |τ03|2α3 |τ04|2α4
=

∣∣∣∣
τ24
τ14

∣∣∣∣
α12
∣∣∣∣
τ14
τ13

∣∣∣∣
α34 πp/2

|τ12|α1+α2 |τ34|α3+α4

∫ i∞

−i∞

dsdt

(2πi)2
U sV t−1

2
(α2+α3)

×Γ(α1+α2−2s
2

)Γ(α3+α4−2s
2

)Γ(α2+α3−2t
2

)Γ(α1+α4−2t
2

)Γ(α1+α3−2u
2

)Γ(α2+α4−2u
2

) ,

where s + t + u = p. We will refer to the first line as the star-triangle relation. If we multiply

these expressions by |τn|2αn and take τn → ∞, we find related lower-point integrals where the

exponents no longer sum to p.
∫

dpτ0
|τ01|2α1 |τ02|2α2

=
Γ(α1 + α2 − p

2
)

Γ(p− α1 − α2)

2∏

i=1

Γ(p
2
− αi)

Γ(αi)

πp/2

|τ12|2α1+2α2−p
, (B.3)

∫
dpτ0

|τ01|2α1 |τ02|2α2 |τ03|2α3
= πp/2|τ13|p−2α1−2α2−2α3

∫ i∞

−i∞

dsdt

(2πi)2

∣∣∣∣
τ12
τ13

∣∣∣∣
2s−α1−α2

∣∣∣∣
τ23
τ13

∣∣∣∣
2t−α2−α3

×Γ(α1+α2−2s
2

)Γ(α3+α4−2s
2

)Γ(α2+α3−2t
2

)Γ(α1+α4−2t
2

)Γ(α1+α3−2u
2

)Γ(α2+α4−2u
2

) .

We will refer to the first line as the chain integral. Note that the second lines of (B.2) and (B.3)

can be expressed in terms of the so-called D̄ functions [79].

When looking at bulk correlators at the end of this appendix, we will encounter “massive”

integrals with transverse distances playing the role of mass. For these, it is helpful to use the

identity

(τ 2 + y2)−α = |y|−2α

∫ i∞

−i∞

du

2πi

Γ(u)Γ(α− u)

Γ(α)

∣∣∣y
τ

∣∣∣
2u

. (B.4)

B.2 Conventions

We recall here our conventions. We denote bulk coordinates with xµ = (τa, xi), where a labels the

parallel directions with respect to the flat p-dimensional defect. The bulk dimension is d = p+ q.
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Perturbation theory is based on two nonlocal actions which involve the constant

Ns =
2−sΓ(p−s

2
)

π
p
2Γ( s

2
)

. (B.5)

For the mean-field end description we use

S = NsN−s

∫
dpτ1d

pτ2
φ̂(τ1) · φ̂(τ2)

|τ12|p+s
+

∫
dpτ

λ

4
(φ̂ · φ̂)2 (B.6)

with φI transforming as a vector of O(N). The small parameter is ε ≡ 2s− p, and the IR fixed

point is

λ∗ =
Γ(p

2
)

2πp/2
ε

(N + 8)
+O(ε2) . (B.7)

For the short-range end description we use

S = SSRI +NsN−s

∫
dpτ1d

pτ2
χ̂(τ1)χ̂(τ2)

|τ12|p−s
+

∫
dpτgσχ̂ . (B.8)

The small parameter is δ = p−s

2
−∆∗

σ and the IR fixed point is

g2∗ =




0.788392δ +O(δ2), p = 2

0.8155(3)δ +O(δ2), p = 3
. (B.9)

To realize these actions on a p-dimensional defect, we will take the codimension to be q = 2−s

so that the bulk propagator is given by

〈φI(x1)φJ(x2)〉 =
δIJ

(x212)
∆φ

, ∆φ =
d

2
− 1 ≡ p− s

2
. (B.10)

When ε≪ 1, making the long-range O(N) model a perturbation of the trivial defect, φ̂I will be

the ‘+’ mode of the bulk field i.e. φ̂I(τ) = φI(τ, xi = 0). This allows the defect propagator to

easily be written down. When δ ≪ 1 (and N = 1), we will keep the codimension the same rather

than changing the sign of s which would make the starting defect trivial again. In this case, σ

becomes the ‘+’ mode of φ.

It is worth emphasizing that kinetic terms with NsN−s have been chosen to give φ̂ and χ̂ unit-

normalized two-point functions in position space. As we will see in examples, a nice property

of our convention is that operator norms stay the same at next-to-leading order for arbitrary

powers of both φ̂ and χ̂. This can be seen by using the chain integral from (B.3) once and twice

respectively. In the case of φ̂, we can observe that all O(λ∗) corrections to 〈φ̂mφ̂m〉 involve the

subdiagram

=

∫
dpτ0

|τ01|p−ε|τ02|p−ε
=

πp/2

|τ12|p−2ε

Γ( ε
2
)2Γ(p

2
− ε)

Γ(ε)Γ(p−ε
2
)2

=
πp/2

|τ12|p−2ε
Γ
(p
2

)−1
[
4

ε
+O(ε)

]
. (B.11)
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This has an O(ε−1) term, which is compatible with the anomalous dimensions of these operators,

but there is no O(1) term which would lead to a correction of the normalization. This also applies

to powers of χ̂, for which the universal subdiagram at O(g2∗) is given by:

=

∫
dpτ2d

pτ3
|τ12|2∆χ |τ23|2∆∗

σ |τ34|2∆χ
=

Γ(p
2
+ δ)Γ(p

2
− δ)Γ(p

2
−∆∗

σ)Γ(
p
2
−∆∗

σ − 2δ)Γ(∆∗
σ − p

2
+ δ)2

|τ14|2∆χ−2δπ−pΓ(δ)Γ(−δ)Γ(∆∗
σ)Γ(∆

∗
σ + δ)Γ(p−∆∗

σ − δ)2
.

(B.12)

This lacks not only an O(1) term, but an O(δ−1) pole as well. This reflects the very simple

behaviour of χ̂ correlators under O(δ) perturbations seen in (4.22).

B.3 Defect correlators

In this section we compute the following defect correlation functions:

〈Sn(τ1)Sn(τ2)〉 , 〈Wn(τ1)Wn(τ2)〉 ,
〈W0(τ1)Wn(τ2)Sn(τ3)〉 , 〈W0(τ1)Wn(τ2)Sn+1(τ3)〉 ,
〈W1(τ1)Wn(τ2)Sn(τ3)〉 , 〈W1(τ1)Wn(τ2)Sn+1(τ3)〉 . (B.13)

where

Sn ≡ (φ̂ · φ̂)n , Wn ≡ (φ̂ · φ̂)nφ̂I , (B.14)

and we suppressed O(N) indices for simplicity. We will often abbreviate integrals in this section

with Gij ≡ |τij|−2∆φ .

B.3.1 Two-point functions

We start from the two-point function of Sn. At tree-level we have

〈Sn(τ1)Sn(τ2)〉(0) = 22nn! (N/2)nG
2n
12 (B.15)

The first correction appears at O(λ) and it is given by

〈Sn(τ1)Sn(τ2)〉 = Z2
Sn
〈Sn(τ1)Sn(τ2)〉(0)

− λ

4
n!4n+1n(6n+N − 4) (N/2)nG

2n−2
12

∫
dpτ3 G

2
13G

2
23 +O(λ2) . (B.16)

The 1/ε divergent piece from the integral

∫
dpτ3 G

2
13G

2
23 =

πp/2

εΓ
(
p
2

)G2
12

(
4

ε
+ 4 log τ12 +O(ε)

)
, (B.17)
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is cancelled by the wave-function counterterm

ZSn
≡ 1 + δZSn

= 1 +
2nπp/2(6n+N − 4)

Γ
(
p
2

) λ

ε
+O(λ2) , (B.18)

and at the IR fixed point we find

〈Sn(τ1)Sn(τ2)〉 ≡
CSn

(τ 212)
∆̂Sn

=
4nn! (N/2)n (1 +O(ε2))

(τ 212)
2n∆φ+

n(6n+N−4)
N+8

ε
. (B.19)

In particular we obtain that ∆̂Sn
= np

2
+ n(12n+N−16)

2(N+8)
ε+O(ε2).

For the two-point function ofWn we have that, at tree-level (we suppress indices for simplicity)

〈Wn(τ1)Wn(τ2)〉(0) = 22nn! (N/2 + 1)nG
2n+1
12 . (B.20)

At one loop we find

〈Wn(τ1)Wn(τ2)〉 = Z2
Wn

〈Wn(τ1)Wn(τ2)〉0

− λ

2

n(2π)n+1n!(6n+N + 2) (N/2)n+1

N
G2n−1

12

∫
dpτ3 G

2
13G

2
23 +O(λ2) , (B.21)

hence we choose

ZWn
≡ 1 + δZWn

= 1 +
2nπp/2(6n+N + 2)

Γ
(
p
2

) λ

ε
+O(λ2) , (B.22)

and at the IR fixed point we find

〈Wn(τ1)Wn(τ2)〉 ≡
CWn

(τ 212)
∆̂Wn

=
4nn! (N/2 + 1)n (1 +O(ε2))

(τ 212)
(2n+1)∆φ+

n(6n+N+2)
N+8

ε
. (B.23)

In particular we obtain that ∆̂Wn
= p

4
(2n+ 1)− ε(−24n2−2n(N−4)+N+8)

4(N+8)
+O(ε2) .

B.3.2 Three-point functions

Let us start with the three-point function with W0 and Sn, which at tree level reads

〈W0(τ1)Wn(τ2)Sn(τ3)〉(0) = 22nn! (N/2 + 1)nG12G
2n
23 . (B.24)

The one-loop correction reads

〈W0(τ1)Wn(τ2)Sn(τ3)〉(1) = (δZWn
+ δZSn

)〈W0(τ1)Wn(τ2)Sn(τ3)〉(0) −
λ

4
I0,n,n , (B.25)
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where the integral I0,n,n has the following form

I0,n,n =

∫
dpτ4

(
a(1)n G14G

2n−1
23 G2

24G34 + a(2)n G13G
3
24G34G

2n−2
23 + a(3)n G12G

2
24G

2
34G

2n−2
23

)
, (B.26)

for some combinatorial coefficients which we will fix shortly. Using the master formulae given in

section B.1 it is not difficult to verify that

∫
dpτ4 G14G

2
24G34 =

πp/2G12G23

Γ
(
p
2

)
(
2

ε
+Ap − 2 log

(
τ13
τ12τ23

)
+O(ε)

)
, (B.27)

with Ap ≡ ψ
(
p
2

)
− 2ψ

(
p
4

)
+ ψ(1). The second addend in the integrand above is O(ε), and is

therefore subleading at the IR fixed point. The last addend was computed in eq. (B.17). We

also have that

a(1)n = 3× 22n+3n!n (N/2 + 1)n , a(3)n = 4n+1n!n(6n+N − 4) (N/2 + 1)n . (B.28)

When plugging these results into eq. (B.25) and using (B.22), (B.18) we find that the 1/ε poles

cancel out, as they should. At the IR fixed point the renormalized result becomes a conformal

three-point correlation function with overall coefficient given by

CW0WnSn
= 4nn! (N/2 + 1)n

(
1− ε

3n

N + 8
Ap +O(ε2)

)
. (B.29)

Dividing this by the normalizations of the operators we find the first line of (3.44).

For the three-point function with Sn+1, at tree-level we have

〈W0(τ1)Wn(τ2)Sn+1(τ3)〉(0) = 22n+1(n+ 1)! (N/2 + 1)nG13G
2n+1
23 . (B.30)

The one-loop correction reads

〈W0(τ1)Wn(τ2)Sn+1(τ3)〉(1) = (δZWn
+ δZSn+1)〈W0(τ1)Wn(τ2)Sn+1(τ3)〉(0) −

λ

4
I0,n,n+1 , (B.31)

where the integral I0,n,n+1 has the following form

I0,n,n+1 =

∫
dpτ4

(
a(1)n G14G

2n
23G24G

2
34 + a(2)n G13G

2
24G

2
34G

2n−1
23 + a(3)n G12G24G

3
34G

2n−1
23

)
. (B.32)

The integrals are the same that we have computed in (B.27), in particular the third addend

above is again O(ε). The combinatorial coefficients are found to be

a(1)n = 22n+3(n+ 1)!(6n+N + 2) (N/2 + 1)n ,

a(2)n = 22n+3(n+ 1)!n(6n+N + 2) (N/2 + 1)n . (B.33)
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When plugging these results into eq. (B.31) and using (B.22), (B.18) we find that the 1/ε poles

cancel out, as they should. At the IR fixed point the renormalized result becomes a conformal

three-point correlation function with overall coefficient given by

CW0WnSn+1 = 22n+1(n+ 1)! (N/2 + 1)n

(
1− ε

2 + 6n+N

2(N + 8)
Ap +O(ε2)

)
. (B.34)

Dividing this by the normalizations of the operators we find the second line of (3.44).

Next, we compute the three-point function with W1 and Sn. At tree level we have

〈W1(τ1)Wn(τ2)Sn(τ3)〉(0) = 3× 22n+1n!n (N/2 + 1)nG
2
12G12G

2n−1
23 , (B.35)

while the one-loop correction reads

〈W1(τ1)Wn(τ2)Sn(τ3)〉(1) = (δZW1 + δZWn
+ δZSn

)〈W1(τ1)Wn(τ2)Sn(τ3)〉(0) −
λ

4
I1,n,n . (B.36)

The quantity I1,n,n is (we disregarded a tadpole diagram which vanishes in dimreg)

I1,n,n =

∫
dpτ4

(
a(1)n G12G

2
14G

2n−1
23 G24G34 + a(2)n G12G13G14G

2
24G

2n−2
23 G34 + a(3)n G12G

2
13G

2n−3
23 G3

24G34

+a(4)n G2
12G14G

2n−4
23 G24G

2
34 + a(5)n G2

12G13G
2n−3
23 G2

24G
2
34 + a(6)n G3

12G
2n−3
23 G24G

3
34

+a(7)n G13G
2n−1
23 G2

14G
2
24 + a(8)n G2

13G
2n−2
23 G14G

3
24 + a(9)n G24G

2n
23G

3
14

)
, (B.37)

for some combinatorial coefficients a(k)n . As it turns out upon using the master formulae of section

B.1, in the expression above the terms proportional to a(3)n , a(6)n , a(8)n and a
(9)
n are all O(ε). The

relevant integrals were computed earlier, and for the combinatorial coefficients we find

a(1)n = 42+nn!n(8 +N) (N/2 + 1)n ,

a(2)n = 4n+2n!n(18n+N − 10) (N/2 + 1)n ,

a(4)n = 3× 22n+3n!n(6n+N − 4) (N/2 + 1)n

a(5)n = 3× 22n+3n!(n− 1)n(6n+N − 4) (N/2 + 1)n ,

a(7)n = 22n+3n!n(N + 8) (N/2 + 1)n . (B.38)

When plugging these results into eq. (B.36) and using (B.22), (B.18) the 1/ε poles cancel. At

the IR fixed point the renormalized result becomes a conformal three-point correlation function

with coefficient

CW1WnSn+1 =
3× 22n+1nΓ(n+ 1)Γ

(
n+ 1 + N

2

)

Γ
(
N
2
+ 1
)

(
1− ε

54n+ 7N − 16

6(N + 8)
Ap +O(ε2)

)
. (B.39)

Dividing this by the normalizations of the operators we find the third line of (3.44).
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With no extra complications we can also compute the one-loop correction to the three-point

function with Sn+1. The final result reads

CW1WnSn+1 =
1

N
41+n(6n+N + 2)Γ(n+ 2)

(
N

2

)

n+1

×
(
1− ε

n(54n+ 17N + 28) + 3(N + 2)

(N + 8)(6n+N + 2)
Ap +O(ε2)

)
. (B.40)

Dividing this by the normalizations of the operators we find the fourth line of (3.44).

B.4 Bulk two-point functions

Finally, we will verify that (3.35) and (3.20) can be found with traditional perturbation theory

for the two-point function of the bulk field. This will require us to perturb around a trivial defect

at the mean-field end and a non-trivial defect at the short-range end. Had we taken Φ = χ, the

roles of the trivial and non-trivial defects would have been exchanged. It will be convenient to

work with the connected two-point function

〈φ(x1)φ(x2)〉c = 〈φ(x1)φ(x2)〉 − |x12|−2∆φ (B.41)

which has a well defined limit as x1 → x2. The subtracted term |x12|−2∆φ = (τ 2 + y2)−∆φ is the

only piece whose decomposition into defect channel blocks has non-zero transverse spin.

B.4.1 Around the mean-field end

The tree-level contribution is just the correlator in the presence of a trivial defect of co-dimension

q = 2 − s, which has bφ,+0 = 1 and bφ,−0 = 0. The first non-trivial correction to the connected

correlator comes at O(λ2), and reads

〈φI(x1)φJ(x2)〉(2)c = 2(N + 2)δIJλ2
∫

dpτ3d
pτ4

|x13|2∆φ |τ34|6∆φ |x24|2∆φ
(B.42)

= 2(N + 2)δIJλ2
πpΓ

(
p
2
− 3∆φ

)

|y1|2∆φ |y2|2∆φ |τ12|6∆φ−2pΓ (∆φ)
2 Γ (3∆φ)

×
∫ +i∞

−i∞

dtdu

(2πi)2
Γ
(
p
2
− t
)
Γ
(
p
2
− u
)
Γ(∆φ − t)Γ(∆φ − u)Γ(−p+ t+ u+ 3∆φ)

Γ
(
−3∆φ +

3p
2
− t− u

)
|τ12|2(t+u)|y1|−2t|y2|−2u

.

In the second line, we have used (B.4). To compute this integral, we can deform the contours

such that poles for positive t, u and negative t, u are separated, and then close to the left, picking

up the poles with negative t, u. This yields a result which can be decomposed into only the s = 0

blocks of eq. (2.4) because there is no dependence on the transverse angle as expected. Adding
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back the tree-level contribution, this function is

〈φI(x1)φJ(x2)〉 =
δIJ

(|y1||y2|)p/2
(
(bφ,+0 )2ĝ

(+)
0 (r̂, η̂) + (bφ,−0 )2ĝ

(−)
0 (r̂, η̂)

)
+O(ε3) , (B.43)

where

(bφ,+0 )2 = 1 +
(N + 2)Γ

(
−p

4

)
Γ
(
p
2

)2

2(N + 8)2Γ
(
3p
4

) ε2, (bφ,−0 )2 =
(N + 2)Γ

(
1− p

4

)2
Γ
(
p
2

)2

2(N + 8)2Γ(p
4
+ 1)2

ε2 . (B.44)

The ratio

(bφ,−0 )2/(bφ,+0 )2 =
(N + 2)Γ

(
1− p

4

)2
Γ
(
p
2

)2

2(N + 8)2Γ
(
p
4
+ 1
)2 ε2 +O(ε3) , (B.45)

can then be used to see that we get precisely (3.35) to O(ε2). Another way to extract aφ2 quickly

is to use the fact that it is the coefficient of |y|−2∆φ in the connected correlator when we set

y1 = y2 = y and take τ12 → 0. In this limit, only the residues with t+ u = p− 3∆φ contribute.

B.4.2 Around the short-range end

The other extreme for a defect with q = 2− s is to take bφ,+0 = 0. This choice, which is required

to reach the short-range end, implies (bφ,−0 )2 =
Γ(

2−s
2

)Γ(
p+s

2
)

Γ(
2+s
2

)Γ(
p−s

2
)
. When these two coefficients are

specified, we know the defect channel decomposition of the connected two-point function. We

can therefore take x1 → x2 (meaning r̂ → 1) to get

|y|2∆φ〈φ(τ, y)φ(τ, y)〉(0)c = (bφ,−0 )22F1(p−∆φ, p/2; 1−∆φ + p/2; 1)− 2F1(∆φ, p/2; 1 + ∆φ − p/2; 1)

=




−7

8
+ δ, p = 2

−0.575 + 0.749δ, p = 2
, (B.46)

matching (2.16). This is the one-point function without any interactions. Accounting for two σχ̂

insertions is very similar to what we did before except now the defect will have one χ̂ propagator

instead of three φ̂ propagators. Going through the same steps

〈φ(x1)φ(x2)〉(2)c =
g2(bφ,−0 )2

2

∫
dpτ3d

pτ4
|x13|2∆∗

σ |τ34|2∆χ |x24|2∆∗
σ

(B.47)

=
g2(bφ,−0 )2

2

πpΓ
(
p
2
−∆∗

σ

)

|y1|∆∗
σ+∆χ |y2|∆∗

σ+∆χ |τ12|2∆∗
σ−2pΓ (∆χ)

2 Γ (∆∗
σ)

×
∫ +i∞

−i∞

dtdu

(2πi)2
Γ
(
p
2
− t
)
Γ
(
p
2
− u
)
Γ(∆χ − t)Γ(∆χ − u)Γ(−p+ t+ u+∆∗

σ)

Γ
(
−∆∗

σ +
3p
2
− t− u

)
|τ12|2(t+u)|y1|−2t|y2|−2u

.
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We can now take the residue at u = p−∆∗
σ − t and use the first Barnes lemma to conclude

|y|2∆φ〈φ(τ, y)φ(τ, y)〉(2)c =
g2(bφ,−0 )2

2

Γ(p
2
−∆∗

σ)Γ(∆
∗
σ + 2∆χ − p)Γ(∆∗

σ +∆χ − p
2
)2

Γ(p
2
)Γ(2∆∗

σ + 2∆χ − p)Γ(∆χ)2
. (B.48)

It is now a simple matter to plug in the fixed point and the numerical ∆∗
σ. Doing so and adding

(B.46) recovers the result (3.20) originally obtained from the OPE relations.

C More bulk two-point function at one loop

In this section we consider composite bulk operators Sn = (φ · φ)n and compute their two-

point function at one-loop in perturbation theory around the mean-field end of long-range O(N)

models. As we discuss this correlator exchanges infinitely-many defect primaries, whose scaling

dimensions receive corrections at O(ε). Hence we have access to further perturbative data for

LRI composite operators.

Preliminaries: decomposition of the GFF-trivial defect

Consider the bulk-two point function for a bulk scalar operator with scaling dimension ∆O in

the presence of a trivial defect. With the defect blocks of (2.4) we find

〈O(x1)O(x2)〉triv =
1

(x212)
∆O

=
1

(|y1||y2|)∆O

∑

s,m∈N
(bOs,m)

2ĝ∆O+s+2m,s(r̂, η̂) , (C.1)

where [80]

(bOs,m)
2 =

2sΓ
(
q
2
+ s
)
Γ
(
−d

2
+m+∆O + 1

)
Γ(2m+ s+∆O)Γ

(
m+ s+∆O − p

2

)

Γ(∆O)Γ(m+ 1)Γ(s+ 1)Γ
(
−d

2
+∆O + 1

)
Γ
(
m+ q

2
+ s
)
Γ
(
2m+ s+∆O − p

2

) .

(C.2)

These coefficients are seen to be positive for ∆O above the unitarity bound and integer s, as

they should. As a check, when ∆O = ∆φ = d/2 − 1 all but (bφs,0)
2 vanish, and we recover (2.9).

Note that for ∆O 6= d/2− 1 there are infinitely-many s = 0 defect blocks that contribute.

Computation

Using the conventions of appendix B we have that, at tree-level

〈Sn(x1)Sn(x2)〉(0) = 22nn! (N/2)nG
2n
12 . (C.3)

The conformal block expansion of this bulk two-point function can be obtained from the result

of eq. (C.1). We therefore find a family of defect primaries of the following form

ψs,k ∼ Sn(∂
2
⊥)

k
∂i1⊥ . . . ∂

is
⊥Sn − traces, (C.4)
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with spin s and with tree-level scaling dimensions

∆̂s,k = 2n∆φ + 2k + s . (C.5)

The first correction appears at O(λ) and it is given by

〈Sn(x1)Sn(x2)〉 = 〈Sn(x1)Sn(x2)〉(0)

−λ
4
n!4n+1n(6n+N − 4) (N/2)n︸ ︷︷ ︸

≡CS

G2n−2
12

∫
ddτ3 G

2
13G

2
23 +O(λ2) . (C.6)

Note that there is no wave-function renormalization for Sn. From the integral alone we get

1

(x212)
−2∆φ(n−1)

∞∑

i,j=0

[
Aij(∆φ)

(τ 212)
2∆φ+i+j

(|y1|2j|y2|−4∆φ+2i+p + (1 ↔ 2)) +
Bij(∆φ)

(τ 212)
(4∆φ+i+j−p/2)

|y2|2i|y1|2j
]
,

(C.7)

with

Aij(∆φ) =
πp/2(−1)i+jΓ(i+ j + 2∆φ)Γ

(
−i+ 2∆φ − p

2

)
Γ
(
−j + p

2
− 2∆φ

)

i!j!Γ(2∆φ)2Γ
(
−i− j + p

2
− 2∆φ

) ,

Bij(∆φ) =
πp/2(−1)i+jΓ

(
−i+ p

2
− 2∆φ

)
Γ
(
−j + p

2
− 2∆φ

)
Γ
(
i+ j + 4∆φ − p

2

)

i!j!Γ(2∆φ)2Γ(−i− j + p− 4∆φ)
. (C.8)

Upon including all the prefactors, evaluating at the IR fixed point and expanding in ε we get

δ〈Sn(x1)Sn(x2)〉(1) =
2πp/2CS
Γ
(
p
2

)
log(ζ) ζ−

p

2 2F1

(
1
2
, p
2
; 1;−4

ζ

)

|y1|np(2− 2η̂ + ζ)
1
2
(n−1)p

− CS
∞∑

k=0

(−1)k22k+1π
p−1
2 Γ

(
k + 1

2

)
Γ
(
k + p

2

)

Γ(k + 1)2Γ
(
p
2

)2
(
−2Hk +Hk− 1

2
+ ψ

(
k +

p

2

)
+ γ + log 4

)

× |y1|−npζ−k−
p

2 (2− 2η̂ + ζ)−
1
2
(n−1)p +O(ε2) , (C.9)

where we have set |y2| = |y1| for simplicity, η̂ is defined in (2.5) and ζ = |τ12|2/|y1|2 = χ̂ − 2 (χ̂

is defined in (2.6)).

From the coefficient of the logarithmic piece in the first line above we obtain the O(ε) cor-

rection to the scaling dimensions in eq. (C.5), i.e.

∆̂1-loop

s,k = ∆̂s,k + εγ̂s,k +O(ε2) . (C.10)

Indeed

d

d log r̂
ĝ∆̂+gγ,s(r̂, η̂)

∣∣∣
g=0

= −γ ĝ∆̂,s(r̂, η̂) , (C.11)
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and so

d

d log ζ
δ〈Sn(x1)Sn(x2)〉 = −

∑

s,k∈N
(bSn

s,k)
2γ̂s,kĝ∆̂s,k,s

(ζ, η̂)
∣∣∣
ε=0

, (C.12)

being (bSn

s,k)
2 the coefficients of (C.2). We find:

γ̂s,k =

(
fs,k

(n− 1)(6n+N − 4)Γ
(
1
4
(2n− 1)p

)
Γ
(
np
2
+ 1
)
Γ
(
k + np+s

2
− p

2

)

24kk!(N + 8)Γ
(
k + 1

4
(2n− 1)p

)
Γ
(
np−p

2
+ 1
)
Γ
(
2k + np

2
+ s
)
)

, (C.13)

where fs,k are complicated polynomials of (n, p, s), which for k ≤ 3 are found to be

fs,0 = 1 ,

fs,1 = 4n2p2 + np(8s+ 8− 6p) + p2(4s+ 8− p)− 12p(s+ 1) ,

fs,2 = 32n4p4 + 32n3p3(4s+ 12− 3p)

− 8n2p2
[
2p3 − p2(8s+ 33) + 12p(4s+ 11)− 16(s2 + 7s+ 11)

]

+ 8np(3p− 4s− 12)
[
p3 − 4p2(s+ 3) + 6p(2s+ 5)− 8(s+ 2)

]

+ p(p− 4)
[
16(p2 − 4p+ 6)s2 − 8(p(p2 − 12p+ 44)− 60)s+ (p− 6)2(p− 4)2

]
,

fs,3 = 384n6p6 − 576n5p5(3p− 4(s+ 5))

− 96n4p4
(
3p3 − 3p2(4s+ 25) + 36p(3s+ 14)− 16(3s(s+ 11) + 85)

)

+ 48n3p3(3p− 4(s+ 5))
(
6p3 − 3p2(8s+ 35) + 24p(4s+ 17)− 16(s(s+ 16) + 45)

)

+ 12n2p2
[
3p6 − 6p5(4s+ 25) + 12p4

(
4s2 + 70s+ 231

)
− 24p3(s(44s+ 423) + 994)

+ 96p2(s(s(4s+ 89) + 553) + 1035)− 1152p(s(s(s+ 18) + 97) + 162) + 512(3s(s(s+ 14) + 63) + 274)
]

− 6np(3p− 4(s+ 5))
[
3p6 − 24p5(s+ 4) + 12p4(2s+ 9)(2s+ 11)

− 48p3(2s+ 9)(4s+ 17) + 96p2(s(15s+ 122) + 245)− 768p(s(3s+ 23) + 43) + 1024(s+ 3)(s+ 4)
]

− (p− 4)p
[
p7 − 4p6(3s+ 11) + 4p5(3s(4s+ 33) + 220)− 16p4(2s(s(2s+ 33) + 181) + 641)

+ 16p3
(
s
(
44s2 + 630s+ 2941

)
+ 4483

)
− 128p2(s(s(31s+ 390) + 1625) + 2248)

+ 128p(s+ 4)(s+ 5)(71s+ 237)− 9216(s+ 3)(s+ 4)(s+ 5)] ,

fs,4 = . . . (C.14)

For s = k = 0 we reproduced the O(ε) correction predicted by (B.19).

From the last two lines of (C.9) we obtain O(ε) corrections to the (squared) tree-level bulk-

defect OPE coefficients, i.e.

(bSn,1−loop

s,k )2 = (bSn

s,k)
2 + ε(δbSn

s,k)
2 +O(ε2) , (C.15)

We find (here and below we are taking the external operators, as well as ψs,k to be unit-
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normalized)

(δbSn

s,0)
2 =

2sn(6n+N − 4)
(
1
2
(n− 1)p

)
s

(N + 8)s!
(ψ2 + γ) ,

(δbSn

s,1)
2 =

2s−1n(6n+N − 4)
(
1
2
(n− 1)p

)
s+1

(ψ2 + γ)

(N + 8)s!(4s+ 4− p)(np− p+ 2s+ 2)

[
fs,1 +

gs,1
(np− p+ 2s+ 2)(ψ2 + γ)

]
,

(δbSn

s,2)
2 =

2s−4n(6n+N − 4)
(
1
2
(n− 1)p

)
s+2

(ψ2 + γ)

(N + 8)s!(p− 4(s+ 1))(p− 4(s+ 2))((n− 1)p+ 2(s+ 2))((n− 1)p+ 2(s+ 3))

×
[
fs,2 +

gs,2
2(np− p+ 2s+ 4)(np− p+ 2s+ 6)(ψ2 + γ)

]
,

(δbSn

s,k)
2 =

(
1

2
(n− 1)p

)

s+k

(. . . ) (C.16)

with fs,k given in (C.14), ψk ≡ ψ(p/k), and

gs,1 = (p− 2)p(p− 4s− 4)(np− p+ 2s+ 4) ,

gs,2 = (p− 2)p(p− 4s− 8)(np− p+ 2s+ 8)
[
3(n− 1)p4

+2p3(−n(8n(2n− 5) + 6s+ 41) + 9s+ 24)

−4p2
(
16n2(2s+ 5)− 2n(27s+ 64) + 6s2 + 45s+ 69

)

−16p
(
n
(
8s2 + 42s+ 58

)
− s(7s+ 33)− 42

)
− 64(s+ 3)2

]
. (C.17)

The special case of n = 1

The O(ε) correction to the bulk two-point function of S1 has a particularly simple defect

block expansion. Eq. (C.9) does not depend on the transverse angle when n = 1, which means

that it can be expanded into scalar defect blocks only. The anomalous dimensions of the defect

operators, as well as their OPE coefficients, turn out to be simply (see (C.13) and (C.16))

γ̂0,0 =
N + 2

N + 8
δs,0δk,0 , (δbSn

s,k)
2 = γ̂0,0 (ψ2 + γ) δs,0δk,0 . (C.18)

The bulk channel expansion is even simpler. It only features the bulk identity, as well as the

operator S2 with coefficient

aS2CSSS2 = −εγ̂0,0
2

Γ
(
p
2

)2

Γ(p)
+O(ε2) , (C.19)

where CSSS2 =
√

2(2+N)
N

(for unit-normalized bulk operators).
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