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Abstract

The aim of this paper is to revisit the definition of differential operators on hypergraphs, which are a natural extension of

graphs in systems based on interactions beyond pairs. In particular, we focus on the definition of Laplacian and p-Laplace

operators for oriented and unoriented hypergraphs, their basic properties, variational structure, and their scale spaces. We

illustrate that diffusion equations on hypergraphs are possible models for different applications such as information flow on

social networks or image processing. Moreover, the spectral analysis and scale spaces induced by these operators provide a

potential method to further analyze complex data and their multiscale structure. The quest for spectral analysis and suitable

scale spaces on hypergraphs motivates in particular a definition of differential operators with trivial first eigenfunction and thus

more interpretable second eigenfunctions. This property is not automatically satisfied in existing definitions of hypergraph

p-Laplacians, and we hence provide a novel axiomatic approach that extends previous definitions and can be specialized to

satisfy such (or other) desired properties.

Keywords Hypergraphs · PDEs on (hyper)graphs · Diffusion models · Information flow · Hypergraph spectral clustering ·

Image processing · Denoising · Segmentation

1 Introduction

Methods for image processing, data analysis and simula-

tion of information propagation have strongly benefited from

using graph structures in the past, and the modeling with

PDEs on graphs including graph p-Laplacians and associated

flow became a standard tool for analyzing graph structures

and dynamics on such (cf. [6, 15, 16]). Those are carried

on in machine learning in the concept of graph neural net-
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works, again closely related to models for information flow

on networks (cf. [5]). Traditional graphs can, however, cap-

ture only pairwise interactions of individuals, objects, or

pixels in images and thus are unable to directly model group

relationships, which are relevant, e.g., in social networks or

image patches. In order to mitigate for this problem, we pro-

pose to apply a more general structure, namely a hypergraph

with which it is straightforward to encode group interac-

tions. Here, we adopt the definition of oriented hypergraphs,

whose hyperarcs (generalizing edges) can have more than

one ingoing and more than one outgoing vertex. For this

structure, there is a natural way to define gradients, and we

use a scaling which preserves the axiom that the gradient of

a constant function on the vertices vanishes. Via a definition

of adjoint, we can then obtain a divergence operator and a

Laplacian. Additionally, we investigate the case of unori-

ented hypergraphs, in which so-called hyperedges do not

have an orientation, i.e., no distinction between outgoing and

ingoing vertices. In contrast to traditional edges in graphs,

here the number of vertices per hyperedge is not limited by

two. For this type of hypergraph, we introduce two possible

Laplacian operators, one which is gradient-based and one via

an averaging operator.
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1.1 Motivation

The hypergraph structure gives additional flexibility in sev-

eral applications compared to the pair-based graph structure.

An example is the modeling of social phenomena of (fake)

news spread, e.g., by connecting one person to all their fol-

lowers directly and hence representing a community within

a social network. One field of study in analyzing information

flow in social networks is opinion formation, an interesting

phenomenon that can be observed for a group of individu-

als which interact and have complex relationships with each

other. Some individuals of the social network, so-called opin-

ion leaders or social media influencers, with a large group

of followers (up to half a billion people) have a strong influ-

ence on the opinion of many others and can even make profit

by leveraging their impact on large groups of social media

users (see, e.g., [17]). Modeling information flow in social

networks mathematically is typically performed by using tra-

ditional graphs. With such graphs, it is possible to link two

social media users with a pairwise connection, if they are

online friends or follow each other (see, e.g., [12]). The infor-

mation flow in the social network can then be modeled in

terms of diffusion processes on the graph, e.g., by solving a

partial differential equation (PDE) (see, e.g., [1, 4]). How-

ever, recent work suggests that interactions beyond pairs are

of particular relevance (cf. [18]). Structures reminiscent of a

Laplacian on hypergraphs can be found in the model of [14].

A similar question arises in the analysis of community

structures, where graph spectral clustering is a standard

technique. In order to understand networks including group

connections, a more general structure such as hypergraphs

seems to be more appropriate. The success of PDE-based

methods on graphs motivates a further study on hypergraphs

in order to explore the potential of PDEs on such objects.

For this sake, we need appropriate definitions of hypergraph

gradients and Laplacians, which we revisit in this paper.

Moreover, the study of scales on hypergraphs is a relevant

topic, which could naturally be defined by the evolution of

diffusion type processes we hence study here.

In image processing, the graph structure is potentially lim-

iting, since it merely confines to the comparison of pairs

of pixels and their gray (respectively color) values. It may,

however, be relevant to make comparison between one pixel

and its surrounding pixels without the restriction to all

pairs. Another example is nonlocal image processing based

on patches consisting of multiple images. Hypergraph p-

Laplacians and their associated scale spaces are a promising

approach for such.

1.2 RelatedWork

There already exists extensive literature about traditional

graph theory and its application to social networks. In [12], an

overview of social network modeling with traditional graphs

is given, including community clustering, similarity analy-

sis, and community-based event detection. It indicates how

the versatile structure of a graph can be applied to real-

world problems. Arnaboldi et al. [1] introduce the so-called

ego network, a graph focusing on one specific social media

user in the center and their surrounding concentric layers of

followers, sorted hierarchically depending on their contact

frequency.

The paper [6] introduces first-order differential operators

and a family of p-Laplacian operators for traditional oriented

graphs. The proposed partial difference, adjoint, divergence

and anisotropic p-Laplacian for traditional graphs are a spe-

cial case of our vertex gradient, adjoint, divergence, and

p-Laplacian operators for hypergraphs, which are introduced

in Sect. 3. The theoretical results of [6] are applied for math-

ematical image analysis, such as filtering, segmentation,

clustering, and inpainting, but not for social network model-

ing.

[9] generalizes the already known p-Laplacian operators

for normal graphs to the hypergraph setting and performs

spectral analysis with a specific focus on the 1-Laplacian. The

spectral properties are then applied to common (hyper)graph

problems, for instance vertex partitioning, cuts in graphs,

coloring of vertices and hyperarc partitioning, but the paper

does not include any numerical experiments or the model-

ing of social networks with hypergraphs. In comparison, our

gradient, adjoint, and p-Laplacian definitions are more gen-

eral and also have the property of the gradient null space

including constant vertex functions. Additionally, they are

also more flexible with respect to their adaptability for appli-

cation tasks.

The use of unoriented hypergraphs to model different

sociological phenomena of cliques, such as peer pressure,

with consensus models, has been proposed in [14]. Diffu-

sion processes in multi-way interactions with convergence

to one united group consensus are modeled with a simple

2-Laplacian inspired by the traditional graph setting. Due

to the lack of orientation in the hypergraphs, the described

consensus models are not able to capture the effects of a one-

sided connection through following someone (e.g., Twitter,

Instagram), but only mutual connection through being friends

(e.g., Facebook).

Furthermore, [20] uses unoriented hypergraphs in machine

learning and shows how hypergraph modeling of data rela-

tionships can outperform normal graphs in spectral clustering

tasks. Similarly, [11] compares two different algorithms for

submodular hypergraph clustering, for not oriented hyper-

graphs with positive vertex weights and a normalized pos-

itive hyperedge weight function, namely the inverse power

method (IPM) and the clique expansion method (CEM).

123



Journal of Mathematical Imaging and Vision (2024) 66:529–549 531

1.3 Main Contributions

The contributions of this paper are manifold. First, we recall

the generalized vertex p-Laplacian operators for oriented

hypergraphs, which were introduced in the preceding paper

[8] and [7]. They generalize the definitions in [9] by including

two different vertex weight functions and hyperarc weight

functions, respectively. With appropriate choice of these

weights, the vertex gradient definition leading to the vertex

p-Laplacian fulfills the expected properties of the continuum

setting (anti-symmetry and the gradient of a constant func-

tion being equal to zero), based on less strict assumptions

compared to the implicit gradient of [9].

In order to obtain a meaningful definition of a p-Laplace

operator on unoriented hypergraphs as well, we introduce

a gradient operator with respect to a single vertex, which

follows the idea of the respective operators in the oriented

hypergraph case. As an alternative, we also consider an

approach via an averaging operator on the unoriented hyper-

graph, which is, however, confined to the linear case (p = 2)

as of now. The two different Laplacian operators are subse-

quently compared in our numerical experiments.

Moreover, we include two possible applications of the

corresponding diffusion equations: for the oriented setting

we investigate the information flow on networks based on

the hypergraph Laplacian and for the unoriented setting we

discuss an application to image processing and derive novel

scale spaces based on pixel neighborhood comparison, for

which our definitions are naturally suited.

2 Mathematical Basics of Hypergraphs

The definition of hypergraphs is a generalization of finite

graphs, both in the case of unoriented and oriented hyper-

graphs, which are based on unoriented and oriented normal

graphs, respectively. For a given finite set of vertices V =

{v1, v2, . . . vN }, a hypergraph does not only capture pairwise

connections between two vertices, but higher-order relation-

ships within any subset of all vertices.

Remark 1 As proposed in [13], we differentiate between ori-

ented and unoriented hypergraphs instead of directed and

undirected hypergraphs, because for every oriented hyperarc

there is only one orientation but two possible directions: the

direction along the orientation and the direction against the

orientation.

Definition 1 (Unoriented hypergraph U H ) [19] An unori-

ented hypergraph U H = (V, EH ) consists of a finite set of

vertices V , and a set of so-called hyperedges EH , with each

hyperarc eq ∈ EH being in the power set of the vertices 2|V |

and satisfying ∅ ⊂ eq ⊂ V with 2 ≤
∣

∣eq

∣

∣ ≤ |V| − 1.

Example 1 (Unoriented hypergraph U H ) Given a set of

vertices

V = {v1, v2, v3, v4, v5, v6, v7, v8}

and a set of hyperedges

EH = {{v1, v2, v5} , {v2, v3, v7, v8} , {v6, v7}} ,

then the unoriented hypergraph U H = (V, EH ) can be visu-

alized in the following way:

v1 v2 v3 v4

v5 v6 v7 v8

e1

e2

e3

Remark 2 For clarity reasons, we assume that each hyper-

edge inEH is unique and hence occurs only once. This implies

that the cardinality of the hyperedge set is finite due to set

of vertices V being finite and the number of hyperedges in

U H = (V, EH ) being limited by |EH | ≤ 2N .

Assigning either an output or an input orientation to

each vertex of a hyperedge results in an oriented version

of hyperedges, so-called hyperarcs. Based on this, oriented

hypergraphs can be defined.

Definition 2 [Oriented hypergraph O H ] [9] An oriented

hypergraph O H = (V,AH ) consists of a finite set of ver-

tices V , and a set of so-called hyperarcs AH . Each hyperarc

aq ∈ AH contains two disjoint subsets of vertices

aq =
(

aout
q , ain

q

)

(1)

with ∅ ⊂ aout
q , ain

q ⊂ V , aout
q ∩ ain

q = ∅, aout
q being the set of

all output vertices and ain
q being the set of all input vertices

of the hyperarc aq .

Example 2 [Oriented hypergraph O H ] Given a set of ver-

tices

V = {v1, v2, v3, v4, v5, v6, v7, v8}

and a set of hyperarcs

AH = {({v1, v2} , {v5}) , ({v3, v7} , {v2, v8}) ,

({v6} , {v7})} ,

then the oriented hypergraph O H = (V,AH ) can be visu-

alized in the following way:
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v1 v2 v3 v4

v5 v6 v7 v8

out out

in

out
in

out
in

out in

a1

a2

a3

Alternatively, hyperarcs can also be visualized similarly

to arcs in normal graphs:

v1 v2 v3 v4

v5 v6 v7 v8

a1 a2

a3

In our numerical experiments, we will use the second visual-

ization option (without color-coding the different hyperarcs)

in order to simplify understanding of the links between ver-

tices. Since the underlying oriented hypergraph will have

a specific property (
∣

∣

∣
aout

q

∣

∣

∣
= 1), the examples will have a

one-to-one correspondence between the ”normal graph visu-

alization” and the hypergraph visualization, which would

generally not be given without color-coding each hyperarc.

Remark 3 Furthermore, for clarity reasons we assume that

each hyperarc in the set of hyperarcs AH is unique and thus

occurs only once. This automatically implies that the car-

dinality of the hyperarc set is finite due to set of vertices

V being finite. More precisely the number of hyperarcs in

O H = (V,AH ) is limited by |AH | ≤ N N .

We now define different functions on both unoriented and

oriented hypergraphs, which are used in Sect. 3 to introduce

differential operators inspired by the continuum setting. In

order to efficiently denote whether vertex is part of a hyper-

edge for an unoriented hypergraph and to check if a vertex is

part of a hyperarc as an output or an input vertex for an ori-

ented hypergraph, we use different kinds of vertex-hyperedge

and vertex-hyperarc characteristic functions.

Definition 3 [Vertex-hyperedge characteristic function δ]

For an unoriented hypergraph U H = (V, EH ), we define

the vertex-hyperedge characteristic function δ as:

δ : V × EH −→ {0, 1}
(

vi , eq

)

�−→ δ
(

vi , eq

)

=

{

1 vi ∈ eq

0 otherwise
. (2)

Definition 4 [Vertex-hyperarc characteristic functions δout,

δin] For an oriented hypergraph O H = (V,AH ), we define

the output vertex-hyperarc characteristic function δout as:

δout : V × AH −→ {0, 1}
(

vi , aq

)

�−→ δout

(

vi , aq

)

=

{

1 vi ∈ aout
q

0 otherwise
. (3)

Respectively, the input vertex-hyperarc characteristic func-

tion δin is given by:

δin : V × AH −→ {0, 1}
(

vi , aq

)

�−→ δin

(

vi , aq

)

=

{

1 vi ∈ ain
q

0 otherwise
. (4)

Instead of defining separate δout and δin characteristic func-

tions, it would also be possible to define one vertex-hyperarc

characteristic function δ∗ as:

δ∗ : V × AH −→ {−1, 0, 1}
(

vi , aq

)

�−→ δ∗

(

vi , aq

)

=







−1 vi ∈ ain
q

1 vi ∈ aout
q

0 otherwise

. (5)

however, this would lead to more complex definitions of the

vertex gradient, adjoint, and p-Laplacian operators later on,

because it complicates weighing output and input vertices of

a hyperarc differently.

Real-valued functions can be defined on the set of vertices

V , the set of hyperedges EH , and the set of hyperarcs AH in

order to link any kind of data to a hypergraph.

Definition 5 [Vertex functions f , and hyperedge or hyper-

arc functions F] For both an unoriented hypergraph U H =

(V, EH ) and an oriented hypergraph O H = (V,AH ), vertex

functions are defined on the set of vertices as

f : V −→ R vi �−→ f (vi ) (6)

with vertex weight functions being defined as

w : V −→ R>0 vi �−→ w (vi ) . (7)

For an unoriented hypergraph U H = (V, EH ), hyperedge

functions are defined on the domain of the set of hyperedges

as

F : EH −→ R eq �−→ F
(

eq

)

(8)

with hyperedge weight functions being defined as

W : EH −→ R>0 eq �−→ W
(

eq

)

. (9)
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Similarly, for an oriented hypergraph O H = (V,AH ), hyper-

arc functions are defined on the domain of the set of hyperarcs

as

F : AH −→ R aq �−→ F
(

aq

)

(10)

with hyperarc weight functions being defined as

W : AH −→ R>0 aq �−→ W
(

aq

)

. (11)

The space of all vertex functions, all hyperedge and all

hyperarc functions defined on a given hypergraph can be

identified with an N - or an at most N N -dimensional Hilbert

space, respectively.

Definition 6 [Space of vertex functions H (V), space of

hyperedge functions H (EH ), and space of hyperarc

functions H (AH )] For an unoriented hypergraph U H =

(V, EH ) and an oriented hypergraph O H = (V,AH ), the

space of all vertex functions f is given by

H (V) = { f | f : V −→ R} (12)

where H (V) with the inner product 〈 f , g〉H(V) =
∑

vi ∈V wI

(vi )
α f (vi ) g (vi ) for any two vertex functions f , g ∈

H (V), vertex weight function wI , and parameter α ∈ R

is a Hilbert space.

For an unoriented hypergraph U H = (V, EH ), the space

of all hyperedge functions F is defined as

H (EH ) = {F | F : EH −→ R} (13)

where H (EH ) with the inner product 〈F, G〉H(EH )

=
∑

eq∈EH
WI

(

eq

)β
F

(

eq

)

G
(

eq

)

for any two hyperedge

functions F, G ∈ H (EH ), hyperedge weight function WI ,

and parameter β ∈ R constitutes a Hilbert space. In the same

manner, the space of all hyperarc functions F for an oriented

hypergraph O H = (V,AH ) is defined as

H (AH ) = {F | F : AH −→ R} (14)

where H (AH ) with the product 〈F, G〉H(AH )

=
∑

aq∈AH
WI

(

aq

)β
F

(

aq

)

G
(

aq

)

for any two hyperarc

functions F, G ∈ H (AH ), hyperarc weight function WI ,

and parameter β ∈ R defines a Hilbert space.

3 Differential Operators on Hypergraphs

This section introduces first- and higher-order differential

operators both for unoriented and for oriented hypergraphs.

3.1 First-order Differential Operators for Oriented
Hypergraphs

Utilizing the introduced definitions for hypergraphs, we can

now generalize the definitions of the vertex gradient, the ver-

tex adjoint, and the vertex p-Laplacian for normal graphs,

which have already been discussed in a simplified form with

less weight functions and parameters in [6].

Definition 7 [Vertex gradient operator ∇v] For an oriented

hypergraph O H = (V,AH ) with vertex weight functions

wI and wG , and hyperarc weight function WG , we define the

vertex gradient operator ∇v with parameters α, γ, ǫ, η ∈ R

as:

∇v : H (V) −→ H (AH ) f �−→ ∇v f

∇v f : AH −→ R aq �−→ ∇v f
(

aq

)

= WG

(

aq

)γ
∑

vi ∈V



δin

(

vi , aq

) wI (vi )
α wG (vi )

ǫ

∣

∣

∣
ain

q

∣

∣

∣

−δout

(

vi , aq

) wI (vi )
α wG (vi )

η

∣

∣

∣
aout

q

∣

∣

∣



 f (vi ) . (15)

The weight wI denotes the vertex weight function from

the inner product of H (V) and wG denotes the vertex weight

function, which is introduced with the gradient operator.

Using different values for the parameters ǫ and η corresponds

to putting different weights on the input and output vertices

in the gradient of hyperarc aq .

The introduced vertex gradient fulfills two expected prop-

erties from the continuum setting, namely anti-symmetry and

the gradient of a constant function being equal to zero.

Theorem 1 [Vertex gradient operator properties] The ver-

tex gradient ∇v defined on an oriented hypergraphs O H =

(V,AH ) with vertex weight functions wI and wG , and hyper-

arc weight function WG , satisfies the following properties:

(1) Vanishing gradient of a constant vertex function: If

the condition

wI (vk)
α wG (vk)

ǫ

= wI

(

v j

)α
wG

(

v j

)η

holds for all vertex combinations v j , vk ∈ V with v j ∈

aout
q and vk ∈ ain

q for a hyperarc aq ∈ AH , then for every

constant function f , i.e., f (vi ) ≡ f for all vertices vi ∈

V , we have ∇v f
(

aq

)

= 0 for all hyperarcs aq ∈ AH .
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(2) Antisymmetry: Let ǫ = η. Then the identity ∇v f
(

aout
q ,

ain
q

)

= −∇v f
(

ain
q , aout

q

)

holds for all hyperarcs aq ∈

AH .

Proof See [7] Theorem 9.2 (Vertex gradient operator prop-

erties). ⊓⊔

Let us mention one additional complication compared to

the traditional graph case: while it is trivial to see that for a

connected graph constant functions are the only elements in

the nullspace of the gradient, this is not apparent for hyper-

graphs.

By computing the adjoint ∇∗
v of the vertex gradient, we

can introduce a consistent definition of a divergence operator

on hypergraphs in analogy to traditional calculus. Detailed

computation based on the relation

〈G,∇v f 〉H(AH ) = 〈 f ,∇∗
v G〉H(V) (16)

for all vertex functions f ∈ H (V) and all hyperarc functions

G ∈ H (AH ) can be found in Theorem 9.9 of [7] (Connection

vertex gradient ∇v and vertex adjoint ∇∗
v ).

Definition 8 [Vertex adjoint operator ∇∗
v ] For an oriented

hypergraph O H = (V,AH ) with vertex weight function

wG , and hyperarc weight functions WI and WG , the vertex

adjoint operator ∇∗
v with parameters β, γ, ǫ, η ∈ R is given

by:

∇∗
v : H (AH ) −→ H (V) F �−→ ∇∗

v F

∇∗
v F : V −→ R vi �−→ ∇∗

v F (vi )

=
∑

aq∈AH



δin

(

vi , aq

) wG (vi )
ǫ

∣

∣

∣
ain

q

∣

∣

∣

−δout

(

vi , aq

) wG (vi )
η

∣

∣

∣
aout

q

∣

∣

∣





WI

(

aq

)β
WG

(

aq

)γ
F

(

aq

)

. (17)

Definition 9 [Vertex divergence operator divv] For an ori-

ented hypergraph O H = (V,AH ) with vertex weight

function wG , and hyperarc weight functions WI and WG , the

vertex divergence operator divv with parameters β, γ, ǫ, η ∈

R is given by:

divv : H (AH ) −→ H (V) F �−→ divv F

divv F : V −→ R vi �−→ divv F (vi ) = −∇∗
v F (vi )

=
∑

aq∈AH



δout

(

vi , aq

) wG (vi )
η

∣

∣

∣
aout

q

∣

∣

∣

−δin

(

vi , aq

) wG (vi )
ǫ

∣

∣

∣
ain

q

∣

∣

∣





WI

(

aq

)β
WG

(

aq

)γ
F

(

aq

)

. (18)

3.2 p-Laplacian Operators for Oriented Hypergraphs

Based on the previous definitions, we introduce a generalized

vertex p-Laplacian inspired by the continuum setting, which

implies that for all p ∈ (1,∞) and all vertex functions f ∈

H (V) it holds true that:

�p
v f = divv

(

|∇v f |p−2 ∇v f
)

,

where |·| denotes the pointwise absolute value.

Note that from the definition of the divergence as a neg-

ative adjoint of the gradient, it becomes clear the oriented

hypergraph p-Laplacian is the negative variation of the p-

norm of the gradient, which allows to apply the full theory

of eigenvalues of p-homogeneous functionals (see [2]). In

particular, the oriented hypergraph Laplacian is a negative

semidefinite linear operator and has a spectrum on the nega-

tive real line.

Definition 10 [Vertex p-Laplacian operator �
p
v ] For an ori-

ented hypergraph O H = (V,AH ) with vertex weight

functions wI and wG , and with hyperarc weight functions WI

and WG , the vertex p-Laplacian operator �
p
v with parameters

α, β, γ, ǫ, η ∈ R is given by:

�p
v : H (V) −→ H (V) f �−→ �p

v

f �p
v f : V −→ R vi �−→ �p

v f (vi )

=
∑

aq∈AH



δout

(

vi , aq

) wG (vi )
η

∣

∣

∣
aout

q

∣

∣

∣

−δin

(

vi , aq

) wG (vi )
ǫ

∣

∣

∣
ain

q

∣

∣

∣



 WI

(

aq

)β
WG

(

aq

)pγ

×

∣

∣

∣

∣

∣

∣

∑

v j ∈V



δin

(

v j , aq

) wI

(

v j

)α
wG

(

v j

)ǫ

∣

∣

∣
ain

q

∣

∣

∣

−δout

(

v j , aq

) wI

(

v j

)α
wG

(

v j

)η

∣

∣

∣
aout

q

∣

∣

∣



 f
(

v j

)

∣

∣

∣

∣

∣

∣

p−2

×
∑

vk∈V



δin

(

vk, aq

) wI (vk)
α wG (vk)

ǫ

∣

∣

∣
ain

q

∣

∣

∣

−δout

(

vk, aq

) wI (vk)
α wG (vk)

η

∣

∣

∣
aout

q

∣

∣

∣



 f (vk) . (19)
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The following theorem states that the vertex p-Laplacian

is well-defined.

Theorem 2 [Connection vertex gradient ∇v , vertex diver-

gence divv , and vertex p-Laplacian �
p
v ] For an oriented

hypergraph O H = (V,AH ) with vertex weight functions

wI and wG , and hyperarc weight functions WI and WG , the

vertex p-Laplacian �
p
v fulfills the equality

�p
v f = divv

(

|∇v f |p−2 ∇v f
)

(20)

for all vertex functions f ∈ H (V).

Proof See Theorem 10.13 in [7] (Connection vertex diver-

gence divv , vertex gradient ∇v , and vertex p-Laplacian �
p
v ).

⊓⊔

Moreover, our vertex p-Laplacian definition is a valid gen-

eralization of the definition introduced in [9].

Remark 4 [Parameter choice for the vertex p-Laplacian oper-

ator] The simplified definition of the vertex p-Laplacian

introduced in [9] for any vertex function f ∈ H (V) and

for any vertex vi ∈ V can be written in our notation as:

�p f (vi ) =
1

deg (vi )

∑

aq∈AH : δout(vi ,aq)=1

or δin(vi ,aq)=1

×

∣

∣

∣

∣

∣

∣

∣

∑

v j ∈ain
q

f
(

v j

)

−
∑

v j ∈aout
q

f
(

v j

)

∣

∣

∣

∣

∣

∣

∣

p−2

×





∑

vk∈V

(

δout

(

vi , aq

)

δout

(

vk, aq

)

+δin

(

vi , aq

)

δin

(

vk, aq

))

f (vk)

−
∑

vk∈V

(

δout

(

vi , aq

)

δin

(

vk, aq

)

+δin

(

vi , aq

)

δout

(

vk, aq

))

f (vk)



 . (21)

The factor
(

δout

(

vi , aq

)

δout

(

vk, aq

)

+ δin

(

vi , aq

)

δin

(

vk, aq

))

is always equal to zero, unless vi , vk ∈ aout
q or

vi , vk ∈ ain
q , which means that the vertices vi and vk are

co-oriented. Similarly, the factor
(

δout

(

vi , aq

)

δin

(

vk, aq

)

+δin

(

vi , aq

)

δout

(

vk, aq

))

ensures to only consider vertices

vk ∈ V which are anti-oriented compared to vertex vi and

hence either vi ∈ aout
q , vk ∈ ain

q or vi ∈ ain
q , vk ∈ aout

q .

Thus, choosing the parameters of the vertex p-Laplacian

�
p
v as α = 0, β = 0, γ = 0, ǫ = 0 and η = 0 together with

excluding the 1
∣

∣

∣
aout

q

∣

∣

∣

and 1
∣

∣

∣
ain

q

∣

∣

∣

multiplicative factors and includ-

ing a new − 1
deg(vi )

factor in the vertex adjoint and the vertex

divergence, results in the simplified vertex p-Laplacian intro-

duced in [9].

Moreover, applying these parameter choices to the vertex

gradient, the vertex adjoint, and the vertex divergence leads to

the following definitions for all vertex functions f ∈ H (V),

all hyperarc functions F ∈ H (AH ), for all hyperarcs aq ∈

AH and all vertices vi ∈ V:

∇v f
(

aq

)

=
∑

vi ∈V

(

δin

(

vi , aq

)

− δout

(

vi , aq

))

f (vi )

∇∗
v F (vi ) = −

1

deg (vi )

∑

aq∈AH

(

δin

(

vi , aq

)

−δout

(

vi , aq

))

F
(

aq

)

divv (F) (vi ) = −
1

deg (vi )

∑

aq∈AH

(

δout

(

vi , aq

)

−δin

(

vi , aq

))

F
(

aq

)

Proof See Theorem 10.12 in [7] (Parameter choice for the

vertex p-Laplacian operator). ⊓⊔

Based on our axiomatic definition of the p−Laplacian

via a gradient and adjoint divergence, it is straightforward to

verify its variational structure:

Theorem 3 [p-Laplacian energy and derivatives] For an

oriented hypergraph O H = (V,AH ), the negative hyper-

graph p-Laplacian for p ∈ (1,∞) is the first variation of

the associated p-Dirichlet energy

E p[ f ] :=
∑

vi ∈V

|∇ p
v f (vi ) |, (22)

i.e., for every vertex function f ∈ H (V) we have

− �p
v f = E ′

p[ f ]. (23)

3.3 First-order Differential Operators for Unoriented
Hypergraphs

In order to retrieve a meaningful definition of a gradient also

in the case of an unoriented hypergraph, where vertices in a

hyperedge cannot be separated into output and input vertices,

we appoint for each hyperedge eq ∈ EH a specific vertex

vq̃ := vi ∈ eq , which all other vertices in the hyperedge

v j ∈ eq\
{

vq̃

}

are compared to.

Remark 5 If it is not clear how to choose a suitable special

vertex vq̃ for each hyperedge eq ∈ EH based on the appli-

cation, then it is also possible to include each hyperedge eq

exactly
∣

∣eq

∣

∣ times in the set of hyperedges EH , where each

version of the hyperedge has a different special vertex vi ∈ eq

(however, note that this requires paying particular attention to
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notation as mentioned in Remark 2). This means that we are

able to generate an oriented hypergraph out of an unoriented

one as follows: for each hyperedge eq ∈ EH in the unoriented

hypergraph, we create |eq | hyperarcs for the oriented hyper-

graph with the same vertices as eq . Each hyperarc has one

output and |eq | − 1 input vertices and each vertex vi ∈ eq is

an output vertex in exactly one newly created hyperarc. The

associated vertex gradient, adjoint, and p-Laplacian opera-

tors for the oriented hypergraph then follow the respective

definitions of the unoriented hypergraph case.

Before defining new differential operators for unoriented

hypergraphs, it is necessary to introduce a new vertex-

hyperedge characteristic function.

Definition 11 [Vertex-hyperedge characteristic function δ̃]

For an unoriented hypergraph U H = (V, EH ), we define

the vertex-hyperedge characteristic function δ̃ as

δ̃ : V × EH −→ {0, 1}

(

vi , eq

)

�−→ δ̃
(

vi , eq

)

=

{

1 vi = vq̃

0 otherwise
(24)

which indicates if vertex vi ∈ V is the special vertex vq̃ of

hyperedge eq ∈ EH . Furthermore, the following connection

to the vertex-hyperedge function δ holds true for all vertices

vi ∈ V and all hyperedges eq ∈ EH :

δ̃
(

vi , eq

)

= 1 �⇒ δ
(

vi , eq

)

= 1. (25)

The vertex gradient operator for unoriented hypergraphs

is defined with the same weight functions and parameters as

the definition in the oriented case.

Definition 12 [Vertex gradient operator ∇v] For an unori-

ented hypergraph U H = (V, EH ) with vertex weight

functions wI and wG , and hyperedge weight function WG ,

the vertex gradient operator ∇v with parameters α, γ, ǫ, η ∈

R is given as:

∇v : H (V) −→ H (EH )

f �−→ ∇v f

∇v f : EH −→ R eq �−→ ∇v f
(

eq

)

with

∇v f
(

eq

)

= WG

(

eq

)γ

(

∑

vi ∈V

δ
(

vi , eq

)

(

wI (vi )
α

× wG (vi )
ǫ f (vi ) − wI

(

vq̃

)α
wG

(

vq̃

)η
f
(

vq̃

)

)

)

.

The above gradient can be rewritten as:

∇v f
(

eq

)

= WG

(

eq

)γ

((

∑

vi ∈V

δ
(

vi , eq

)

wI (vi )
α wG (vi )

ǫ f (vi )

)

−
∣

∣eq

∣

∣ wI

(

vq̃

)α
wG

(

vq̃

)η
f
(

vq̃

)

)

. (26)

The vertex gradient for unoriented hypergraphs also ful-

fills the expected property of a constant vertex function

f ∈ H (V) resulting in a vanishing gradient.

Theorem 4 [Vertex gradient operator properties] The ver-

tex gradient ∇v of an unoriented hypergraph U H = (V, EH )

with vertex weight functions wI and wG , and hyperedge

weight function WG , satisfies the following property: if the

vertex weights suffice the condition

wI (vi )
α wG (vi )

ǫ = wI

(

vq̃

)α
wG

(

vq̃

)η

for all vertex-hyperedge combinations vi ∈ eq and eq ∈ EH ,

then for every constant function f ∈ H (V), i.e., f (vi ) ≡

f for all vertices vi ∈ V , we get ∇v f
(

eq

)

= 0 for all

hyperedges eq ∈ AH .

Proof Given a constant vertex function f ∈ H (V) on an

unoriented hypergraph U H = (V, EH ) with vertex weight

functions wI and wG , and hyperedge weight function WG ,

then it holds true that: the property wI (vi )
α wG (vi )

ǫ =

wI

(

vq̃

)α
wG

(

vq̃

)η
for all vertex-hyperedge combinations

vi ∈ eq and eq ∈ EH implies that for each hyperedge eq

there exists a constant weq ∈ R>0 such that

wI (vi )
α wG (vi )

ǫ = wI

(

vq̃

)α
wG

(

vq̃

)η
=: weq

for all vertices vi ∈ eq . Thus, together with the property

f (vi ) ≡ f ∈ R for all vertices vi ∈ V , this yields for every

hyperedge eq ∈ EH :

∇v f
(

eq

)

= WG

(

eq

)γ

(

∑

vi ∈V

δ
(

vi , eq

)

(

wI (vi )
α wG (vi )

ǫ f

− wI

(

vq̃

)α
wG

(

vq̃

)η
f
)

)

= WG

(

eq

)γ

(

∑

vi ∈V

δ
(

vi , eq

)

(

wI (vi )
α wG (vi )

ǫ

− wI

(

vq̃

)α
wG

(

vq̃

)η
)

f

)

= WG

(

eq

)γ





∑

vi ∈V

δ
(

vi , eq

) (

weq − weq

)

f




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= WG

(

eq

)γ ∣

∣eq

∣

∣

(

weq − weq

)

f

= WG

(

eq

)γ ∣

∣eq

∣

∣ · 0 · f = 0

Where the last equality is feasible due to the hyperedge

weight function WG and the vertex function f being real

functions and the number of vertices in every hyperedge
∣

∣eq

∣

∣

being finite. ⊓⊔

Based on the connections in the continuum setting

〈G,∇v f 〉H(EH ) = 〈 f ,∇∗
v G〉H(V)

divv F = −∇∗
v F

for all vertex functions f ∈ H (V) and all hyperedge func-

tions F, G ∈ H (EH ), we define the vertex adjoint and vertex

gradient operators for unoriented hypergraphs.

Definition 13 [Vertex adjoint operator ∇∗
v ] For an unoriented

hypergraph U H = (V, EH ) with vertex weight function

wG , and hyperedge weight functions WI and WG , the vertex

adjoint operator ∇∗
v with parameters β, γ, ǫ, η ∈ R is given

by:

∇∗
v : H (EH ) −→ H (V) F �−→ ∇∗

v F

∇∗
v F : V −→ R vi �−→ ∇∗

v F (vi ) =
∑

eq∈EH

(

δ
(

vi , eq

)

wG (vi )
ǫ

−δ̃
(

vi , eq

)
∣

∣eq

∣

∣

wG (vi )
η
)

WI

(

eq

)β
WG

(

eq

)γ
F

(

eq

)

. (27)

Theorem 5 [Connection vertex gradient ∇v and vertex

adjoint ∇∗
v ] For an unoriented hypergraph U H = (V, EH )

with vertex weight functions wI and wG , and hyperedge

weight functions WI and WG , the vertex gradient ∇v and

the vertex adjoint ∇∗
v fulfill the equality

〈G,∇v f 〉H(EH ) = 〈 f ,∇∗
v G〉H(V) (28)

for all vertex functions f ∈ H (V) and all hyperedge func-

tions G ∈ H (EH ).

Proof For the sake of clarity, the proof is given in the

appendix. ⊓⊔

As in the case of the oriented hypergraph, we define the

vertex divergence operator based on the vertex adjoint oper-

ator.

Definition 14 [Vertex divergence operator divv] For an unori-

ented hypergraph U H = (V, EH ) with vertex weight func-

tion wG , and hyperedge weight functions WI and WG , the

vertex divergence operator divv with parameters β, γ, ǫ, η ∈

R is given by:

divv : H (EH ) −→ H (V) F �−→ divv F

divv F : V −→ R vi �−→

divv F (vi )

= −∇∗
v F (vi ) =

∑

eq∈EH

(

δ̃
(

vi , eq

)
∣

∣eq

∣

∣wG (vi )
η

−δ
(

vi , eq

)

wG (vi )
ǫ

)

WI

(

eq

)β
WG

(

eq

)γ
F

(

eq

)

.

(29)

3.4 p-Laplacian Operators for Unoriented
Hypergraphs

Analogously to the case of the oriented hypergraph, in this

subsection we present a definition for the vertex p-Laplacian

based on the vertex gradient and vertex divergence. The ver-

tex Laplacian we obtain from a perspective of averaging can

be found in the next subsection.

Definition 15 [Vertex p-Laplacian operator �
p
v ] For an

unoriented hypergraph U H = (V, EH ) with vertex weight
functions wI and wG , and hyperedge weight functions WI

and WG , the vertex p-Laplacian operator �
p
v with parameters

α, β, γ, ǫ, η ∈ R is given by:

�p
v : H (V) −→ H (V) f �−→ �v f �p

v f : V −→ R

vi �−→ �p
v f (vi )

=
∑

eq∈EH

(

δ̃
(

vi , eq

)
∣

∣eq

∣

∣wG (vi )
η

−δ
(

vi , eq

)

wG (vi )
ǫ
)

WI

(

eq

)β
WG

(

eq

)pγ

×

∣

∣

∣

∣

∣

∣





∑

v j ∈V

δ
(

v j , eq

)

wI

(

v j

)α

wG

(

v j

)ǫ
f
(

v j

))

−
∣

∣eq

∣

∣ wI

(

vq̃

)α
wG

(

vq̃

)η
f
(

vq̃

)

∣

∣

∣

∣

∣

∣

p−2

×









∑

vk∈V

δ
(

vk, eq

)

wI (vk)
α wG (vk)

ǫ f (vk)





−
∣

∣eq

∣

∣ wI

(

vq̃

)α
wG

(

vq̃

)η
f
(

vq̃

)



 . (30)

Theorem 6 [Connection vertex gradient ∇v , vertex diver-

gence divv , and vertex p-Laplacian �
p
v ] For an unoriented

hypergraph U H = (V, EH ) with vertex weight functions wI

and wG , and hyperedge weight functions WI and WG , the

presented vertex p-Laplacian �
p
v fulfills the equality

�p
v f = divv

(

|∇v f |p−2 ∇v f
)

(31)

for all vertex functions f ∈ H (V).
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Proof Given an unoriented hypergraph U H = (V, EH ) with

vertex weight functions wI and wG , and hyperedge weight

functions WI and WG , and a vertex function f ∈ H (V),

then the definitions of the vertex divergence operator divv

and the vertex gradient operator ∇v lead to the following for

all vertices vi ∈ V:

divv

(

|∇v f |p−2 ∇v f
)

(vi )

=
∑

eq∈EH

(

δ̃
(

vi , eq

)
∣

∣eq

∣

∣wG (vi )
η

− δ
(

vi , eq

)

wG (vi )
ǫ

)

WI

(

eq

)β
WG

(

eq

)γ

∣

∣∇v f
(

eq

)
∣

∣

p−2
∇v f

(

eq

)

=
∑

eq∈EH

(

δ̃
(

vi , eq

)
∣

∣eq

∣

∣wG (vi )
η

− δ
(

vi , eq

)

wG (vi )
ǫ

)

WI

(

eq

)β
WG

(

eq

)γ

∣

∣

∣

∣

∣

∣

WG

(

eq

)γ

(





∑

v j ∈V

δ
(

v j , eq

)

wI

(

v j

)α
wG

(

v j

)ǫ
f
(

v j

)





−
∣

∣eq

∣

∣wI

(

vq̃

)α
wG

(

vq̃

)η
f
(

vq̃

)

)
∣

∣

∣

∣

p−2

WG

(

eq

)γ

(





∑

vk∈V

δ
(

vk, eq

)

wI (vk)
α wG (vk)

ǫ f (vk)





−
∣

∣eq

∣

∣wI

(

vq̃

)α
wG

(

vq̃

)η
f
(

vq̃

)

)

Since the hyperedge weight function WG maps to positive

values, the following equality holds true and leads to the

vertex p-Laplacian definition for unoriented hypergraphs:

=
∑

eq∈EH

(

δ̃
(

vi , eq

)
∣

∣eq

∣

∣wG (vi )
η

− δ
(

vi , eq

)

wG (vi )
ǫ

)

WI

(

eq

)β
WG

(

eq

)γ+γ (p−2)+γ

∣

∣

∣

∣

∣

∣





∑

v j ∈V

δ
(

v j , eq

)

wI

(

v j

)α
wG

(

v j

)ǫ
f
(

v j

)





−
∣

∣eq

∣

∣wI

(

vq̃

)α
wG

(

vq̃

)η
f
(

vq̃

)

∣

∣

∣

∣

∣

∣

p−2

(





∑

vk∈V

δ
(

vk, eq

)

wI (vk)
α wG (vk)

ǫ f (vk)





−
∣

∣eq

∣

∣ wI

(

vq̃

)α
wG

(

vq̃

)η
f
(

vq̃

)

)

=
∑

eq∈EH

(

δ̃
(

vi , eq

) ∣

∣eq

∣

∣ wG (vi )
η

− δ
(

vi , eq

)

wG (vi )
ǫ

)

WI

(

eq

)β
WG

(

eq

)pγ

∣

∣

∣

∣

∣

∣





∑

v j ∈V

δ
(

v j , eq

)

wI

(

v j

)α
wG

(

v j

)ǫ
f
(

v j

)





−
∣

∣eq

∣

∣wI

(

vq̃

)α
wG

(

vq̃

)η
f
(

vq̃

)

∣

∣

∣

∣

∣

∣

p−2

(





∑

vk∈V

δ
(

vk, eq

)

wI (vk)
α wG (vk)

ǫ f (vk)





−
∣

∣eq

∣

∣wI

(

vq̃

)α
wG

(

vq̃

)η
f
(

vq̃

)

)

= �p
v f (vi )

Thus, the previously introduced definitions for the ver-

tex gradient ∇v , the vertex divergence divv , and the vertex

p-Laplacian �
p
v suffice the equality �

p
v f (vi ) = divv

(

|∇v f |p−2 ∇v f
)

(vi ) for all vertices vi ∈ V and for all vertex

functions f ∈ H (V). ⊓⊔

3.5 Averaging Operators on Unoriented
Hypergraphs

Instead of starting with a gradient definition in order to

retrieve a feasible Laplacian operator for unoriented hyper-

graphs, we now want to define a Laplacian operator based

on intuitive averaging. For this definition, a special vertex

vq̃ for every hyperedge eq ∈ EH is not necessary anymore.

Before introducing the vertex averaging operator, we need

the definition of the number of incident hyperedges.

Definition 16 [Number of incident hyperedges] For an unori-

ented hypergraph U H = (V, EH ), the number of incident

hyperedges of a given vertex vi ∈ V is defined as:

#EH (vi ) =
∣

∣

{

eq ∈ EH

∣

∣ vi ∈ eq

}
∣

∣ . (32)

Note: We call vertices vi ∈ V with #EH (vi ) = 0 isolated,

since they are not connected to any other vertex v j ∈ V .

The averaging operator below aims at defining for a given

vertex vi the average value of a vertex function f ∈ H (V)

by considering all hyperedges eq ∈ EH , which vi is a part

of, and then averaging the vertex function over all vertices

v j ∈ eq .

Definition 17 [Vertex averaging operator �v] For an unori-

ented hypergraph U H = (V, EH ) without any isolated

vertices vi ∈ V , i.e., #EH (vi ) > 0 for all vertices vi ∈ V , we

define the vertex averaging operator as:

�v : H (V) −→ H (V) f �−→ �v f
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�v f : V −→ R vi �−→ �v f (vi ) =

1

#EH (vi )

∑

eq∈EH

δ
(

vi , eq

)

1
∣

∣eq

∣

∣

∑

v j ∈V

δ
(

v j , eq

)

f
(

v j

)

. (33)

By using a simplified version of the inner product on the

space of all vertex functions H (V) with wI ≡ 1, we obtain

an energy-conserving adjoint vertex averaging operator �v
∗
.

Definition 18 [Adjoint vertex averaging operator �v
∗
] For

an unoriented hypergraph U H = (V, EH ) without any iso-

lated vertices and with the previously defined averaging

operator �v , the adjoint vertex averaging operator is given

by:

�v
∗

: H (V) −→ H (V) f �−→ �v
∗

f

�v
∗

f : V −→ R vi �−→ �v
∗

f (vi ) =
∑

eq∈EH

δ
(

vi , eq

) 1
∣

∣eq

∣

∣

∑

v j ∈V

δ
(

v j , eq

) 1

#EH

(

v j

) f
(

v j

)

. (34)

Theorem 7 [Connection between vertex averaging opera-

tor �v and adjoint vertex averaging operator �v
∗
] For

an unoriented hypergraph U H = (V, EH ) without isolated

vertices and with any two vertex functions f , g ∈ H (V), the

vertex averaging operator �v and the adjoint vertex operator

�∗
v suffice the following equality

〈g,�v f 〉H(V)

:=
∑

vi ∈V

g (vi )�v f (vi )

=
∑

v j ∈V

f
(

v j

)

�v
∗
g

(

v j

)

=: 〈 f ,�v
∗
g〉H(V), (35)

where the inner product on the space of all vertex functions

H (V) has the weight wI ≡ 1.

Proof Given an unoriented hypergraph U H = (V, EH ) with-
out any isolated vertices and two vertex functions f , g ∈
H (V), then the definitions of the vertex averaging operator

�v and the adjoint vertex averaging operator �v
∗

yield the
following:

〈g,�v f 〉H(V)

=
∑

vi ∈V

g (vi ) �v f (vi )

=
∑

vi ∈V

g (vi )
1

#EH (vi )

∑

eq ∈EH

δ
(

vi , eq

) 1
∣

∣eq

∣

∣

∑

v j ∈V

δ
(

v j , eq

)

f
(

v j

)

=
∑

vi ∈V

∑

eq ∈EH

∑

v j ∈V

g (vi )
1

#EH (vi )
δ
(

vi , eq

)

1
∣

∣eq

∣

∣

δ
(

v j , eq

)

f
(

v j

)

=
∑

v j ∈V

∑

eq ∈EH

∑

vi ∈V

g (vi )
1

#EH (vi )
δ
(

vi , eq

)

1
∣

∣eq

∣

∣

δ
(

v j , eq

)

f
(

v j

)

=
∑

v j ∈V

f
(

v j

)

∑

eq ∈EH

δ
(

v j , eq

) 1
∣

∣eq

∣

∣

∑

vi ∈V

δ
(

vi , eq

) 1

#EH (vi )
g (vi ) =

∑

v j ∈V

f
(

v j

)

�v
∗
g

(

v j

)

= 〈 f ,�v
∗
g〉H(V)

Therefore, with the definitions of the vertex averaging

operator �v and the adjoint vertex averaging operator �v
∗
,

the equality 〈g,�v f 〉H(V) = 〈 f ,�v
∗
g〉H(V) holds true for

all vertex functions f , g ∈ H (V). ⊓⊔

Example 3 [Vertex averaging operator does not conserve

mean values] Given a set of vertices V = {v1, v2, v3, v4} and

a set of hyperedges EH = {{v1, v2, v3} , {v2, v4}}, then the

vertex averaging operator �v on the unoriented hypergraph

U H = (V, EH ) does not conserve the mean value for general

vertex functions f ∈ H (V):

v1 v2

v3 v4

∆vf (v1) = 1

1

1

3
(f (v1) + f (v2) + f (v3))

)

∆vf (v2) = 1

2

1

3
(f (v1) + f (v2) + f (v3)) + 1

2
(f (v2) + f (v4))

)

∆vf (v3) = 1

1

1

3
(f (v1) + f (v2) + f (v3))

)

∆vf (v4) = 1

1

1

2
(f (v2) + f (v4))

)
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�v f (v1) =
1

1

(

1

3
( f (v1) + f (v2) + f (v3))

)

�v f (v2) =
1

2

(

1

3
( f (v1) + f (v2) + f (v3))

+
1

2
( f (v2) + f (v4))

)

�v f (v3) =
1

1

(

1

3
( f (v1) + f (v2) + f (v3))

)

�v f (v4) =
1

1

(

1

2
( f (v2) + f (v4))

)

�v f (v1) + �v f (v2) + �v f (v3) �v f (v4) +

=
5

6
f (v1) +

19

12
f (v2)

5

6
f (v3) +

3

4
f (v4)

�= f (v1) + f (v2) + f (v3) + f (v4)

In contrast to this, the adjoint vertex averaging operator

conserves the overall energy for all vertex functions f ∈

H (V).

Theorem 8 [Adjoint vertex averaging operator �v
∗

con-

serves mean values] For an unoriented hypergraph U H =

(V, EH ) without isolated vertices and with any vertex func-

tion f ∈ H (V), the adjoint vertex averaging operator �v
∗

conserves the mean value of f , and hence, the following

equality holds:

∑

vi ∈V

�v
∗

f (vi ) =
∑

vi ∈V

f (vi ) . (36)

Proof Given an unoriented hypergraph U H = (V, EH ) with-

out any isolated vertices and a vertex function f ∈ H (V),

then the following reformulations hold true:

∑

vi ∈V

�v
∗

f (vi )

=
∑

vi ∈V

∑

eq∈EH

δ
(

vi , eq

) 1
∣

∣eq

∣

∣

∑

v j ∈V

δ
(

v j , eq

) 1

#EH

(

v j

) f
(

v j

)

=
∑

vi ∈V

∑

eq∈EH

∑

v j ∈V

δ
(

vi , eq

)

1
∣

∣eq

∣

∣

δ
(

v j , eq

) 1

#EH

(

v j

) f
(

v j

)

=
∑

v j ∈V

∑

eq∈EH

∑

vi ∈V

δ
(

vi , eq

)

1
∣

∣eq

∣

∣

δ
(

v j , eq

) 1

#EH

(

v j

) f
(

v j

)

=
∑

v j ∈V

f
(

v j

) 1

#EH

(

v j

)

∑

eq∈EH

δ
(

v j , eq

)

1
∣

∣eq

∣

∣

∑

vi ∈V

δ
(

vi , eq

)

=
∑

v j ∈V

f
(

v j

) 1

#EH

(

v j

)

∑

eq∈EH

δ
(

v j , eq

)

=
∑

v j ∈V

f
(

v j

) 1

#EH

(

v j

) #EH

(

v j

)

=
∑

v j ∈V

f
(

v j

)

Hence, the presented adjoint vertex averaging operator

�v
∗

conserves the overall energy on any given unoriented

hypergraph U H for all vertex functions f ∈ H (V). ⊓⊔

Let us put together the knowledge gained from the above

analysis. Since we used the simple Euclidean scalar prod-

uct and showed that the adjoint operator conserves the mean

value, we can look at �v − I as a suitable operator for a scale

space analysis, somehow introducing a non-self-adjoint ver-

sion of the Laplacian. The energy conservation of the adjoint

shows that indeed �v has eigenvalue one with constant eigen-

function. Thus, the evolution equation with operator �v − I

is expected to converge to a constant state and yield a suitable

scale space, which we will investigate further below.

Indeed, the averaging operator is self-adjoint if #EH (vi )

is constant on the set of vertices V , and in this case �v − I

has the structure of a normal graph Laplacian.

Lemma 1 Given an unoriented hypergraph U H = (V, EH )

with #EH (vi ) = #EH

(

v j

)

for all vertices vi , v j ∈ V . Then

for all vertex functions f ∈ H (V), the operator �v f − f

is equivalent to the graph Laplacian on a weighted oriented

graph for an arc
(

vi , v j

)

from vertex vi to vertex v j with the

particular weight function

w(vi , v j ) :=

1

#EH (vi )

∑

eq∈EH

1
∣

∣eq

∣

∣

δ
(

vi , eq

)

δ
(

v j , eq

)

.

Proof For an unoriented hypergraph U H = (V, EH ) with

#EH (vi ) = #EH

(

v j

)

for all vertices vi , v j ∈ V , the equiva-

lence becomes apparent from a simple change of summation:

(�v f − f ) (vi )

=





1

#EH (vi )

∑

eq∈EH

δ
(

vi , eq

) 1
∣

∣eq

∣

∣

∑

v j∈V

δ
(

v j , eq

)

f (v j )





− f (vi )
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=





1

#EH (vi )

∑

eq∈EH

δ
(

vi , eq

) 1
∣

∣eq

∣

∣

∑

v j ∈V

δ
(

v j , eq

)

f (v j )





−
1

#EH (vi )
#EH (vi )

1
∣

∣eq

∣

∣

∣

∣eq

∣

∣ f (vi )

=





1

#EH (vi )

∑

eq∈EH

δ
(

vi , eq

) 1
∣

∣eq

∣

∣

∑

v j ∈V

δ
(

v j , eq

)

f (v j )





−





1

#EH (vi )

∑

eq∈EH

δ
(

vi , eq

) 1
∣

∣eq

∣

∣

∑

v j ∈V

δ
(

v j , eq

)



 f (vi )

=
1

#EH (vi )

∑

eq∈EH

δ
(

vi , eq

) 1
∣

∣eq

∣

∣

∑

v j ∈V

δ
(

v j , eq

) (

f (v j ) − f (vi )
)

=
∑

eq∈EH

∑

v j ∈V

(

1

#EH (vi )
δ
(

vi , eq

) 1
∣

∣eq

∣

∣

δ
(

v j , eq

) (

f (v j ) − f (vi )
)

)

=
∑

v j ∈V

∑

eq∈EH

(

1

#EH (vi )
δ
(

vi , eq

) 1
∣

∣eq

∣

∣

δ
(

v j , eq

) (

f (v j ) − f (vi )
)

)

=
∑

v j ∈V

(

1

#EH (vi )

∑

eq∈EH

1
∣

∣eq

∣

∣

δ
(

vi , eq

)

δ
(

v j , eq

)

)

( f (v j ) − f (vi ))

=
∑

v j ∈V

w
(

vi , v j

)

( f (v j ) − f (vi ))

The term in the last row is exactly the traditional graph

Laplace operator of vertex vi for an oriented normal graph

with a vertex function f (see [7] Remark 7.12 (Parameter

choice for the vertex p-Laplacian operator)), where for the

arc weight w it holds true that w
(

vi , v j

)

= 0 if the arc
(

vi , v j

)

does not exist in the oriented normal graph. ⊓⊔

Let us mention that the weighted oriented normal graph

we obtain above could be considered the easiest map from an

unoriented hypergraph to a weighted graph, since the weights

essentially count the number of hyperedges eq ∈ H (V) two

vertices vi , v j ∈ V have in common.

4 Scale Spaces Based on Hypergraph
p-Laplacians

In the following, we discuss PDEs based on the family of

p-Laplace and averaging operators on hypergraphs intro-

duced in Sect. 3, which can be used for modeling information

flow in social networks with oriented hypergraphs as well

as performing image processing based on both oriented and

unoriented hypergraphs.

4.1 Modeling Information Flow Using Oriented
Hypergraphs

For analyzing information flow on social networks with ori-

ented hypergraphs, we consider two different PDE systems

modeling diffusion processes. We start with investigating the

scale space for the p-Laplacian operator, i.e., the gradient

flow of the p-Laplacian energy:

∂ f

∂t
(vi , t) = �p

v f (vi , t), vi ∈ V, t ∈ (0,∞)

f (vi , 0) = f0(vi ), vi ∈ V.

(37)

Solving (37) for every time step t ∈ (0,∞) amounts to com-

puting the information flow between vertices of the oriented

hypergraph along the respective hyperarcs.

Note that although there are no explicit boundaries in ori-

ented hypergraphs, we can interpret the above problem as

the homogeneous Neumann boundary problem. Due to the

properties of the proposed family of hypergraph p-Laplace

operators, it is easy to see that the mean-value of f is con-

served in time and we can naturally interpret the evolution

as a scale space toward coarser and coarser scales on the

graph. Moreover, the general asymptotic of gradient flows

for p-homogeneous energies (cf. [2]) yields that f → f as

t → ∞, with f being the mean value of f0. Moreover, the

rescaled quantity g =
f − f

‖ f − f ‖
converges to a multiple of a

second eigenfunction for generic initial values.

Similar to the Neumann boundary problem, we can also

introduce a Dirichlet-type problem, where the Dirichlet

boundary ∂V ⊂ V denotes a subset of the vertex set V of

the oriented hypergraph, for which we introduce boundary

values and keep them fixed over time. The corresponding

stationary solution is not necessarily constant

�p
v f (vi ) = 0, vi ∈ V̊,

f (v j ) = F j , v j ∈ ∂V.
(38)

Then, we aim at solving the p-Laplace equation on the

complementary vertex set V̊ := V\∂V of the oriented

hypergraph. Instead of solving (38) directly, we solve the

hyperbolic PDE model (37) on the vertex set V̊ , while keep-

ing the vertex function f ∈ H(V) fixed on the boundary

set ∂V . The reason for this approach is that any stationary

solution of (37) on V̊ with fixed boundary values is also a

solution to the p-Laplace equation in (38). To solve the two

proposed PDE models discussed above, we numerically have

to solve the initial value problem in (37). For this sake, we
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employ a forward-Euler time discretization with fixed time

step size τ > 0 and use the renormalized variable g to observe

convergence to a nontrivial eigenfunction. This leads to the

following explicit iteration scheme:

fn+1(vi ) = fn(vi ) + τ · �p
v fn(vi ). (39)

4.2 Image Processing Using Unoriented
Hypergraphs

To perform image processing for grayscale images defined
on regular grids, we consider a PDE system that can be inter-
preted as an initial value problem for the vertex averaging
operator introduced in Definition 17. In particular, we are
interested in solving the following initial value problem

∂ f
∂t

(vi , t) − λ · ( f0 (vi ) − f (vi , t))

= �v f (vi , t) − f (vi , t) , vi ∈ V, t ∈ (0,∞)

f (vi , 0) = f0 (vi ) , vi ∈ V. (40)

Note that in contrast to the initial value problem modeling

opinion formation in social networks in (37), here we intro-

duce an additional data fidelity term that penalizes strong

deviations from the noisy image, represented by the initial

vertex function f0 ∈ H(V). The influence of this data fidelity

term can be controlled by a fixed parameter λ > 0 that

allows to realize a trade-off between smoothing the perturbed

image pixels via the hypergraph vertex averaging operator

and staying close to the initial image. In classical variational

regularization, this would correspond to the gradient flow

of the least-squares fidelity augmented with a regulariza-

tion energy scaled with regularization parameter 1
λ

. However,

since the averaging operator is not self-adjoint, the corre-

sponding term in (40) cannot arise in the gradient flow of

an associated energy functional. Nonetheless, the diffusive

nature of �v f − f induces an interpretation as regularization

albeit in nonvariational setting, similar, e.g., to the inpainting

model in [3].

Once again we use a forward-Euler time discretization

with fixed time step size τ > 0, which is chosen small

enough to fulfill the CFL stability conditions. Following this

approach, we derive the following iterative scheme for image

processing using the hypergraph vertex averaging operator:

fn+1 (vi ) = fn (vi ) + τ ·
(

�v fn(vi ) − fn (vi )

+λ · ( f0 (vi ) − fn (vi ))) . (41)

5 Numerical Experiments

In this section, we present the results of our numerical exper-

iments when using the hypergraph operators introduced in

Sect. 3 for two different applications. In particular, we first

discuss how the oriented hypergraph p-Laplacian operator

can be used to model opinion formation in social networks.

Furthermore, we apply the vertex averaging operator of

unoriented hypergraphs for the task of image processing, and

we provide results that can be used both for image denoising

and for segmentation tasks.

5.1 Opinion Formation in Social Networks

In the following, we present the results of our numerical

experiments in which we solve the two PDEs (37) and (38)

by using the explicit forward-Euler discretization scheme

until the relative change between two iterations is smaller

than ǫ := 10−6. We choose τ in (39) small enough to ful-

fill the CFL condition for numerical stability. This leads to

very small time steps for the iteration scheme in the cases

1 ≤ p < 2.

For our numerical experiments, we use the Twitter data

set provided by Stanford University [10]. It consists of

41, 652, 230 vertices (users) and 1, 468, 364, 884 arcs (ori-

ented pairwise connections indicating that one person follows

another). Due to the size of the data set, we restrict our

numerical experiments to a comparatively small sub-network

within the first 1, 000, 000 lines of the Twitter input data. We

chose a sub-network of individuals such that all users are

directly or indirectly linked to each other to avoid cliques

of individuals, which are not connected to the rest of the

sub-network and thus also not influenced by users outside

their small circle. Moreover, we ensure that each sub-network

includes an opinion leader with a large number of followers

in the sub-network. Therefore, we can observe how one influ-

ential user impacts the opinion of the rest. In order to generate

hyperarcs from the given arcs, we put one Twitter user as a

singleton output vertex set and summarize all followers of

this user as the set of input vertices. This especially allows

highlighting the effect of opinion leaders, for instance famous

people with a large group of followers on Twitter.

We simulate the opinion of all individuals in the social

network toward an imaginary hypothesis by a vertex func-

tion f : V × [0,∞) → [−1, 1], which can be interpreted

as the following. If an individual believes the hypothesis the

corresponding value of the vertex function is positive (with

1 being the strongest level of trust), while for an individual

that opposes the hypothesis the corresponding value of the

vertex function is negative (with −1 being the strongest level

of distrust).

For the boundary value problem (38), we initialize the

opinion of all individuals in a social network by setting the

vertex function f to zero, which can be interpreted as having

no opinion toward an imaginary hypothesis. We now simulate

information flow in the social network by giving two opin-

ion leaders (i.e., vertices with many followers) two opposing

opinions toward this hypothesis and setting the respective

123



Journal of Mathematical Imaging and Vision (2024) 66:529–549 543

Fig. 1 Solution of the boundary value problem of graph (top) and hypergraph (bottom) p-Laplace operator for p = 2

Fig. 2 Second eigenfunction of graph (top) and hypergraph (bottom) p-Laplace operator for p = 1 with thresholding at 0 after 16, 000 iterations

values of the vertex function to −1 and 1. We keep these

values fixed as a form of Dirichlet boundary conditions.

By using the explicit forward-Euler discretization scheme

to solve the boundary value problem for p = 2, the opinion

of the two dedicated individuals is propagated in the social

network as can be seen in Fig. 1. We initialize the vertex func-

tion equally for the oriented normal graph (top row) and the

oriented hypergraph (bottom row) and calculate the diffu-

sion process until convergence. As can be seen, in both cases

the opinion is propagated in the social network based on the

underlying network topology and the final state is equivalent

for both the normal graph and the hypergraph experiment.

However, as can be observed, information within the hyper-

graph is distributed at a higher rate compared to the normal

graph and thus converging faster. This is due to the fact that

opinion leaders in a normal graph have a less direct impact

on their followers compared to the hypergraph case, where

the follower’s believe f (vi ) is scaled with 1
|ain

q |
, where |ain

q |

is the number of followers of the individual user. This can

be seen in (19) since in our modeling for this application the

parameter aout
q is set to 1.
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For the initial value problem (37), we choose p = 1 and

a sufficiently small time step size τ > 0 to guarantee stability

of the corresponding iteration scheme (39). We initialize each

individual’s opinion f0 (vi ) randomly with a uniform distri-

bution in the interval [−1, 1]. Additionally, we make sure that

the vertex function f is initialized with average 0 and nor-

malized. As can be observed in Fig. 2, the information flow

in the social network converges to a second eigenfunction

of both the graph p-Laplacian (top row) and the hypergraph

p-Laplacian (bottom row). For both cases, we thresholded

at 0 after 16, 000 iterations to induce a spectral clustering of

the opposing opinions and hence separating the social net-

work into smaller communities based on the topology of the

network (i.e., the relationship of following an individual).

The resulting second eigenfunctions differ significantly with

respect to the underlying topology of the oriented normal

graph and the oriented hypergraph. This yields potential for

further analysis and experiments in other applications, e.g.,

segmentation of images via spectral clustering.

5.2 Local and Nonlocal Image Processing

In the following, we discuss how the proposed hypergraph

differential operators can be applied to image processing

tasks. By modeling pixels of an image with the help of normal

graphs or hypergraphs instead of a regular grid, it is possible

to not only represent local relationships of adjacent pixels,

but also nonlocal relationships based on the image’s content.

For example, one could link image pixels that are relatively

far from each other in the image, but share a similar image

texture in their respective neighborhood.

Given an image Ĩ ∈ R
n×m of height n ∈ N and width

m ∈ N perturbed by a normal distributed noise signal ν ∼

N (0, σ 2), a typical task in image processing is to recover a

noise-free image I ∈ R
n×m from

Ĩ = I + ν. (42)

This task can be interpreted as an inverse problem known as

image denoising. In our numerical experiments we restrict

ourselves to grayscale images for the sake of simplicity.

To perform image denoising, we first model the relation-

ship between the image pixels with an unoriented hyper-

graph. In particular, we represent each image pixel as a

vertex vi ∈ V of the oriented hypergraph and interpret the

pixel grayscale intensities as the values of the vertex func-

tion f ∈ H(V) with f : V → [0, 255]. Here, 0 represents

the lowest signal intensity (i.e., black pixels) and 255 rep-

resents the highest signal intensity (i.e., white pixels). We

construct the hyperedges of the hypergraph as described in

detail below.

For our numerical experiments, we chose a grayscale

image I of size 225×400 pixels of a flower field that contains

image features at different scales. We added random Gaus-

sian noise ν with mean µ = 0 and variance σ 2 = 150 to

every image pixel to generate an artificially perturbed image

Ĩ . Both the unperturbed image I and the noisy variant Ĩ are

illustrated in Fig. 3

We construct an initial vertex function f0 ∈ H(V) from

the noisy image Ĩ .

We performed two different experiments for image denois-

ing using the introduced unoriented hypergraph vertex aver-

age operator �v from definition 17. In the first experiment,

we perform local image processing by constructing a hyper-

edge of the unoriented hypergraph from the vertices that

model the direct four pixel neighbors of any image pixel.

This corresponds to traditional image processing methods on

regular grids as performed, e.g., in [3]. For boundary pixels

of the image, we use an analogue of Neumann zero boundary

conditions, i.e., we assume the image is extended constantly.

This results in a total of 225·400 = 90000 hyperedges for the

unoriented hypergraph, where each hyperedge eq ∈ EH can

be directly associated with the corresponding image pixel.

In the first case, we compare the results of using the iter-

ative scheme (41) with and without data fidelity term, for

which we each performed 100 iterations in our numerical

experiments. To investigate the influence of the data fidelity

term, we first fixed the time step size as τ := 0.1 and varied

the regularization parameter λ > 0. The left column of Fig. 4

shows that with decreasing value of λ > 0, the smoothing

effect of the vertex averaging operator increases, leading to

less noisy images. On the other hand, the edges of image

features get more and more blurry as can be expected in this

case. In another setting, we remove the data fidelity term by

setting λ := 0 and hence we investigate the corresponding

evolution equation of the vertex averaging operator. Here, we

varied the time step size parameter τ > 0 to compare differ-

ent results for a fixed number of iterations. As can be seen

in the right column of Fig. 4, we recover the scale spaces of

the operator �v . With increasing time step size τ > 0, we

observe more and more coarse image features induced by the

local averaging effect of the operator.

In the second numerical experiment, we perform nonlo-

cal image processing by constructing the hyperedges of the

unoriented hypergraph not from the local neighborhood of

an image pixel, but by regarding the pixel intensities of the

image. By this we are able to assemble vertices in hyperedges

that correspond to image pixels which can be anywhere in

the image and hence we gain a nonlocal vertex averaging

operator. In particular, we construct for each vertex vi ∈ V a

hyperedge containing all vertices for which the value of the

vertex function f is similar. For this, we choose a threshold

ǫ > 0 and add all vertices v j ∈ V to the hyperedge induced

by the vertex vi ∈ V for which the distance is small enough,
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Fig. 3 Illustration of the

original grayscale image I (left)

and the artificially perturbed

image Ĩ (right) used for image

denoising

Fig. 4 Solution of the initial

value problem (40) for the

average hypergraph operator on

a local hypergraph with data

fidelity term (left) and without

data fidelity term (right)
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i.e.,

| f (vi ) − f (v j )| < ǫ. (43)

We chose ǫ := 40 for the experiments presented in this set-

ting. With this approach, we nonlocally group image pixels

with similar grayscale intensities. Since pixels with equal

grayscale intensity lead to similar or even equal hyperedges,

we treat hyperedges uniquely, i.e., without any duplicates in

H(E).

As in the case of local image processing described above,

we compared the results of using the iterative scheme (41)

with and without data fidelity term, for which we performed

100 iterations in our numerical experiments. We started our

experiments by fixing the time step size as τ := 1 and vary-

ing the regularization parameter λ > 0 in order to investigate

the influence of the data fidelity term. The left column in

Fig. 5 shows that with decreasing value of λ > 0, the results

deviate more and more from the initial image. Furthermore,

one can observe that the amount of different pixel intensities

decreases more and more until the resulting image shows

only one grayscale intensity in the last row. At the same

time, edges of image features stay sharp as there is no aver-

aging operation across the boundaries of image regions with

strongly varying grayscale intensities. Secondly, we again

removed the influence of the data fidelity term entirely by set-

ting λ := 0. By varying the time step size parameter τ > 0,

we can compare different scales of the resulting scale space

for a fixed number of iterations of the nonlocal hypergraph

vertex averaging operator �v . As in the experiment with data

fidelity, we observe that the amount of different pixel inten-

sities decreases rapidly with increasing time step size τ > 0,

leading to a grouping of image pixels into image regions with

similar grayscale intensities, until eventually all image pixels

have the same grayscale value in the last row. This expected

behavior can be leveraged for other image processing tasks

in which grouping of image pixels is needed, e.g., in image

compression or segmentation.

6 Conclusions

In this paper, we derived various variants of differential oper-

ators and a family of p-Laplacian operators on hypergraphs,

which generalize known graph and hypergraph operators

from literature. In particular, we considered gradient, adjoint

and p-Laplacian definitions both in the case of oriented and

unoriented hypergraphs.

The resulting operators on oriented hypergraphs and the

associated scale space flows can be employed for model-

ing information flows or performing spectral analysis in

social networks, where we can directly incorporate group

relationships via hyperarcs. Moreover, the proposed averag-

ing operators and p-Laplacians for unoriented hypergraphs

enable performing local and nonlocal image processing with

results that can be used for segmentation tasks. Preliminary

results indicate a great potential for future research. Interest-

ing further questions, in addition to a more detailed study of

spectral clustering, are, e.g., the relation between hypergraph

gradients and higher-order methods for partial differential

equations or the definition of distance functions on hyper-

graphs via eigenfunctions of the infinity-Laplacian.

Another promising direction is to investigate the influence

of non-constant weight functions of the hypergraphs used

in our numerical experiments. In particular, we propose to

define the weights of hyperedges based on the variance of

the vertex function values for the vertices included in the

respective hyperedge. This should further improve the results

of both local and nonlocal image processing.

Due to the overarching success of learning-based methods

in many areas of image processing and data analysis, it seems

obvious that further developments in this directions are in

place for hypergraph structures. We believe that our work

can provide a foundation for hypergraph neural networks

generalizing the recently celebrated graph neural network

structures with unforeseen opportunities.

A Proof of Theorem 5

Proof Given an unoriented hypergraph U H = (V, EH ) with

vertex weight functions wI and wG , and hyperedge weight

functions WI and WG , a vertex function f ∈ H (V), and a

hyperedge function F ∈ H (EH ) then using the definitions

of the inner product on H (EH ) and of the vertex gradient ∇v

results in:

〈G,∇v f 〉H(EH )

=
∑

eq∈EH

WI

(

eq

)β
G

(

eq

)

∇v f
(

eq

)

=
∑

eq∈EH

WI

(

eq

)β
G

(

eq

)

WG

(

eq

)γ









∑

vi ∈V

δ
(

vi , eq

)

wI (vi )
α wG (vi )

ǫ f (vi )





−
∣

∣eq

∣

∣wI

(

vq̃

)α
wG

(

vq̃

)η
f
(

vq̃

)





=
∑

eq∈EH

WI

(

eq

)β
G

(

eq

)

WG

(

eq

)γ





∑

vi ∈V

δ
(

vi , eq

)

wI (vi )
α wG (vi )

ǫ f (vi )





− WI

(

eq

)β
G

(

eq

)

WG

(

eq

)γ
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Fig. 5 Solution of the initial

value problem (40) for the

average hypergraph operator on

a nonlocal hypergraph with

data fidelity term (left) and

without data fidelity term (right)

∣

∣eq

∣

∣ wI

(

vq̃

)α
wG

(

vq̃

)η
f
(

vq̃

)

=
∑

eq∈EH

∑

vi ∈V

WI

(

eq

)β
G

(

eq

)

WG

(

eq

)γ

δ
(

vi , eq

)

wI (vi )
α wG (vi )

ǫ f (vi )

−
∑

er ∈EH

WI (er )
β G (er ) WG (er )

γ

|er | wI (vr̃ )
α wG (vr̃ )

η f (vr̃ )

=
∑

eq∈EH

∑

vi ∈V

WI

(

eq

)β
G

(

eq

)

WG

(

eq

)γ

δ
(

vi , eq

)

wI (vi )
α wG (vi )

ǫ f (vi )

−
∑

er ∈EH

∑

v j ∈V

δ̃
(

v j , er

)

WI (er )
β G (er ) WG (er )

γ

|er | wI (vr̃ )
α wG (vr̃ )

η f (vr̃ )

The last reformulation holds true, because for each hyper-

edge er ∈ EH there exists exactly one special vertex v j ∈ V

with v j = vq̃ and thus the additional sum in combination

with the characteristic function has no effect.
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=
∑

eq∈EH

∑

vi ∈V

(

WI

(

eq
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G

(
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)

WG

(
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δ
(
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α wG (vi )

ǫ f (vi )

− δ̃
(
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)
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)
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∑
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(

WI

(
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(
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(
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δ
(
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wI (vi )
α wG (vi )
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(
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(
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∣

∣eq

∣
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(
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(
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∑
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∑

eq∈EH

WI

(
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(

eq

)γ
G

(
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)

(

δ
(
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∣
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η
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wI (vi )
α f (vi )

The last equality is based on the following argument: For

a vertex vi ∈ V and a hyperedge eq ∈ EH , there are four

cases:

(1) δ
(

vi , eq

)

= δ̃
(

vi , eq

)

= 0 �⇒

δ
(

vi , eq

)

wI (vi )
α wG (vi )

ǫ f (vi )

− δ̃
(

vi , eq

)
∣

∣eq

∣

∣wI

(

vq̃

)α
wG

(

vq̃

)η
f
(

vq̃

)

= 0

(2) δ
(

vi , eq

)

= δ̃
(

vi , eq

)

= 1 �⇒ vi = vq̃ and

δ
(

vi , eq

)

wI (vi )
α wG (vi )

ǫ f (vi )

− δ̃
(

vi , eq

)
∣

∣eq

∣

∣wI

(

vq̃

)α
wG

(

vq̃

)η
f
(
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)

=

wI (vi )
α wG (vi )

ǫ f (vi )

−
∣

∣eq

∣

∣ wI (vi )
α wG (vi )

η f (vi ) =
(

wG (vi )
ǫ −

∣

∣eq

∣
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η
)

wI (vi )
α f (vi )

(3) δ
(
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= 1 and δ̃
(
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δ
(
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(
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∣
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∣
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(
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f
(
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)
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δ
(
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)

wI (vi )
α wG (vi )

ǫ f (vi )

(4) δ
(

vi , eq

)

= 0 and δ̃
(

vi , eq

)

= 1 impossible by defi-

nition

Hence the following equality holds true in all four cases,

which verifies the feasibility of the reformulation above:

δ
(

vi , eq

)

wI (vi )
α wG (vi )

ǫ f (vi )− δ̃
(

vi , eq

)
∣

∣eq

∣

∣wI

(

vq̃

)α

wG

(

vq̃

)η
f
(
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)

=
(

δ
(

vi , eq
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wG (vi )
ǫ − δ̃

(
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)
∣
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∣

∣wG (vi )
η
)

wI (vi )
α f (vi )

With this equality, we obtain the desired result:
∑

vi ∈V

∑

eq∈EH

WI

(

eq

)β
WG

(

eq

)γ
G

(

eq

)

(

δ
(

vi , eq

)

wG (vi )
ǫ − δ̃

(

vi , eq

)
∣

∣eq

∣

∣wG (vi )
η
)

=
∑

vi ∈V

wI (vi )
α f (vi )

∑

eq∈EH

(

δ
(

vi , eq

)

wG (vi )
ǫ − δ̃

(

vi , eq

)
∣

∣eq

∣

∣ wG (vi )
η
)

WI

(

eq

)β
WG

(

eq

)γ
G

(

eq

)

=
∑

vi ∈V

wI (vi )
α f (vi )∇∗

v G (vi ) = 〈 f ,∇∗
v G〉H(V)

Therefore, the equality 〈G,∇v f 〉H(EH ) = 〈 f ,∇∗
v G〉H(V)

holds true for all vertex functions f ∈ H (V) and all hyper-

edge functions G ∈ H (EH ). ⊓⊔

Funding Open Access funding enabled and organized by Projekt

DEAL.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing, adap-

tation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indi-

cate if changes were made. The images or other third party material

in this article are included in the article’s Creative Commons licence,

unless indicated otherwise in a credit line to the material. If material

is not included in the article’s Creative Commons licence and your

intended use is not permitted by statutory regulation or exceeds the

permitted use, you will need to obtain permission directly from the copy-

right holder. To view a copy of this licence, visit http://creativecomm

ons.org/licenses/by/4.0/.

References

1. Arnaboldi, V., Conti, M., Passarella, A., Dunbar, R.: Online social

networks and information diffusion: The role of ego networks.

Online Social Networks and Media 1, 44–55 (2017)

2. Bungert, L., Burger, M.: Asymptotic profiles of nonlinear homo-

geneous evolution equations of gradient flow type. Journal of

Evolution Equations 20, 1061–1092 (2020)

3. Burger, M., He, L., Schönlieb, C.B.: Cahn-Hilliard inpainting and

a generalization for grayvalue images. SIAM Journal on Imaging

Sciences 2(4), 1129–1167 (2009)

4. Chamley, C., Scaglione, A., Li, L.: Models for the diffusion of

beliefs in social networks: An overview. IEEE Signal Processing

Magazine 30(3), 16–29 (2013)

5. Di Giovanni, F., Rowbottom, J., Chamberlain, B. P., Markovich, T.,

Bronstein, M. M.: Graph neural networks as gradient flows. arXiv

preprint arXiv:2206.10991 (2022)

6. Elmoataz, A., Toutain, M., Tenbrinck, D.: On the p-Laplacian and

infinity-Laplacian on graphs with applications in image and data

123



Journal of Mathematical Imaging and Vision (2024) 66:529–549 549

processing. SIAM Journal on Imaging Sciences 8(4), 2412–2451

(2015)

7. Fazeny, A.: p-Laplacian Operators on Hypergraphs. Master thesis

at FAU Erlangen-Nürnberg, https://gitlab.com/arianefazeny/

hypergraph_p-laplace/-/raw/main/p-Laplacian_Hypergraphs_

Fazeny_Ariane.pdf (2023)

8. Fazeny, A., Tenbrinck, D., Burger, M.: Hypergraph p-Laplacians,

Scale Spaces, and Information Flow in Networks. Proceedings on

9th International Conference on Scale Space and Variational Meth-

ods in Computer Vision, 677–690 (2023)

9. Jost, J., Mulas, R., Zhang, D.: p-Laplace Operators for Oriented

Hypergraphs. Vietnam Journal of Mathematics Oct (2021)

10. Leskovec J., Krevl A.: SNAP Datasets: Stanford Large Net-

work Dataset Collection, https://snap.stanford.edu/data/twitter-

2010.html. Last accessed 5 Oct 2022

11. Li, P., Milenkovic, O.: Submodular hypergraphs: p-laplacians,

cheeger inequalities and spectral clustering. International Confer-

ence on Machine Learning, 3014–3023 (2018)

12. Majeed, A., Rauf, I.: Graph theory: A comprehensive survey about

graph theory applications in computer science and social networks.

Inventions 5(1), 10 (2020)

13. Mulas, R., Kuehn, C., Böhle, T., Jost, J.: Random walks and Lapla-

cians on hypergraphs. Discrete Applied Mathematics 317, 26–41

(2022)

14. Neuhäuser, L., Lambiotte, R., Schaub, M.: Consensus dynamics

and opinion formation on hypergraphs. Springer International Pub-

lishing, 347–376 (2022)

15. Solomon, J. PDE approaches to graph analysis. arXiv preprint

arXiv:1505.00185 (2015)
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