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Abstract  

The review highlights the role of amyloids in various diseases and the challenges 

associated with targeting human amyloids in therapeutic development. However, due to 

the better understanding of microbial amyloids' role as virulence factors, there is a 

growing interest in repurposing and designing anti-amyloid compounds for antivirulence 

therapy. The identification of amyloid inhibitors has not only significant clinical implications 

but also provides valuable insights into the structure and function of amyloids. The review 

showcases small molecules and peptides that specifically target amyloids in both humans 

and microbes, reducing cytotoxicity and biofilm formation, respectively. The review 

emphasizes the importance of further research on amyloid structures, mechanisms, and 

interactions across all life forms to yield new drug targets and improve the design of 

selective treatments. Overall, the review highlights the potential for amyloid inhibitors in 

therapeutic development for both human diseases and microbial infections. 
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terms of human infections [1,2]. In certain instances, amyloid proteins may carry out their 

normal functions in either their native or misfolded state, but accumulate in harmful ways, 

leading to disease. Additionally, amyloid fibrils can also serve as a storage site for various 

hormones or toxins [1,2,20–22]. Therefore, the mere occurrence of misfolding or 

aggregation does not provide a definitive way to distinguish between physiological and 

pathophysiological effects.  

Amyloid proteins have been targets for the development of inhibitors and 

modulators for decades [23,24]. This direction has been pursued mainly for the treatment 

of neurodegenerative and systemic aggregation diseases, which are increasingly 

prevalent in aging societies and are associated with pathological amyloids that form toxic 

oligomers and eventually protein plaques [23]. There are several pharmacological 

approaches aimed at the treatment of neurodegenerative diseases, including alleviation 

of symptoms by targeting the cholinergic system or other neurotransmitters, but anti-

amyloid compounds remain a major approach. Groups of amyloid modulators include 

natural compounds such as polyphenols, amino compounds, and vitamins, as well as 

peptides or peptidomimetics, polymeric compounds, antibodies, antibiotics, metal ions, 

RNA aptamers, proteoglycans and glycosaminoglycans, lipids, lipid rafts and 

gangliosides, chaperones and other means of inducing refolding, such as nanoparticles 

[24–29]. 

Alzforum's therapeutics database, accessed on April 2, 2023, reports that out of 

the 364 therapeutics listed, 162 are related to amyloid. Among these, only two 

medications, aducanumab and lecanemab-irmb, which are antibodies against amyloid-

l molecules have 

also been approved for Alzheimer's disease, as well as other conditions such as 

Parkinson's disease and dementia. These small molecules target the cholinergic system 

or other neurotransmitters. Clinical trials have been completed for 100 compounds, while 

164 compounds are currently in various stages of FDA clinical trials, ranging from phase 

0 to phase 4. Out of these, 32 are related to amyloid, and only seven are in phase 3, with 

none in phase 4. ClinicalTrials.gov [30], indicates that there are numerous clinical trials 

focusing on the diagnosis and treatment of amyloid-related diseases such as 
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neuropathies, angiopathy, amyloidosis, Alzheimer’s disease, mild cognitive impairment, 

Down syndrome, and Parkinson’s disease. These trials include not only therapeutic 

interventions but also various diagnostic tools, including measuring amyloid levels in 

different tissues. However, only a small number of these trials have progressed to phase 

4, with most being diagnostic in nature. Some trials are currently in phase 3, including 

trials testing the effectiveness of the antibodies donanemab and remternetug for treating 

Alzheimer's disease. Overall, devastatingly, despite a multitude of clinical trials with drugs 

against a variety of targets, there has been very limited and still controversial success in 

the treatment of Alzheimer’s and other neurodegenerative diseases [31]. This is probably 

due to the fact that the disease process starts many years before the onset of symptoms 

forcing a late start of treatment, inappropriate dosage and route of administration, as well 

as to the multifactorial and unclear mechanism of the neurodegenerative diseases [32]. 

Hopefully, ongoing and future research and clinical trials will address disease prevention, 

aversion and symptoms.   

Applications of amyloid modulation have taken another important turn in recent 

years, to combat infectious diseases, by targeting amyloids that serve as virulence factors 

in microbes. These proteins exploit the inherent properties of the amyloid fold, including 

high stability and adhesive properties and regulation via self-assembly, to act as toxins, 

attack host cells or other microbes, support adhesion and biofilm scaffolding, and more 

[33]. Biofilms pose environmental and health risks by damaging equipment, also 

promoting metal corrosion on surfaces, and increasing resistance to infection [34]. For 

example, Staphylococcus aureus is a major cause of hospital-acquired infections [35], 

which forms biofilms on implanted medical devices and causes severe and persistent 

infections [36]. Overall, the development of effective anti-biofilm compounds is of 

paramount importance to public health, industry and the environment, and microbial 

amyloids represent a prominent target [26].  

The proposed structural and biophysical similarity between human and microbial 

amyloids suggested that they might be inhibited by the same compounds, providing a 

route to repurpose existing drugs for new therapies [37,38]. Here we list examples of 

designed peptide and small molecule inhibitors that have been tested for their ability to 
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affect fibrillation as well as to reduce the toxicity of pathogenic human amyloids (Table 1), 

or to prevent biofilm formation by microbial functional amyloids (Table 2). The chemical 

structures of several designed amyloid inhibitor compounds are shown in Figure 1. The 

sequences and net charge of the designed peptide amyloid inhibitors are shown in Table 

3. It is noteworthy that these peptides all have a neutral or positive net charge, which may 

indicate their mechanism of inhibition. Some of them contain D-amino acids, which may 

provide greater resistance to in-vivo degradation.  

Many of the potential amyloid inhibitors under investigation are based on natural 

compounds, such as polyphenols, which are effective in inhibiting both human and 

microbial amyloid fibrils [39–42]. For example, the green tea epigallocatechin-3-gallate 

-synuclein fibrils associated with 

-synuclein induced toxicity [43]. Recently, 

the cryoEM structures of brain-extracted tau fibrils on the kinetic pathway to EGCG-

induced disaggregation were reported, revealing EGCG molecules stacked in polar clefts 

between the paired helical protofilaments of tau [44]. In addition, a complex of EGCG with 

the transthyretin V30M mutant involved in amyloidosis was determined by a crystal 

structure, revealing binding sites distinct from the thyroxine binding site, suggesting a 

mode of action distinct from compounds that were shown to bind and stabilize the 

transthyretin tetrameric structure [45]. Similarly, EGCG acts as an anti-biofilm agent 

based on its anti-amyloidogenic properties [46]. For example, EGCG inhibits amyloid 

formation and disaggregates fibrils of the S. aureus 

[40]. In addition, EGCG inhibits the 

ability of the FapC amyloid secreted by Pseudomonas to form fibrils, while remodeling 

existing fibrils into non-amyloid aggregates. Accordingly, EGCG reduced the stiffness of 

Fap-containing biofilms [47]. Similarly, EGCG inhibits E. coli biofilm formation by 

interfering with curli amyloid fibrils [48]. EGCG also inhibits the amyloid-forming E. coli 

pleiotropic regulator Hfq, thereby acting as an antibacterial agent [49]. Another 

Alzheimer’s disease in a cell cu -induced synaptic toxicity 

[50]. Myricetin and other plant flavonoids also prevented the assembly of the curli CsgA 

subunits into biofilm-associated functional amyloid fibrils in enteric bacteria [51].  
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Unfortunately, many of the natural compounds have pitfalls that reduce their 

druggability. For example, polyphenolic compounds often have poor solubility and stability 

in water, leading to low absorption and bioavailability when administered orally, and many 

are not expected to cross the blood-brain barrier, limiting their site of action [52]. Another 

concern is the lack of selectivity against a variety of targets, which argues against their 

clinical application. Therefore, derivatives of the natural compounds have been 

extensively studied to overcome some of these pitfalls. An example is curcumin, a well-

known natural compound with many proposed beneficial properties, including activity 

-synuclein [53]. Novel curcumin 

derivatives have been developed to overcome its poor solubility and low bioavailability, 

and some have reduced the levels of toxic tau oligomers and decreased its cytotoxicity 

[54]. In addition, through the development of high-throughput screening assays that 

measure chemical kinetics, both natural and synthetic amyloid modulators have been 

discovered. These assays use fluorescence dyes such as thioflavins to measure the 

kinetics of amyloid fibrillation and have identified many compounds that affect this 

process. The assays can distinguish between different types of inhibitors, such as those 

that reduce fibrillation kinetics, those that reduce the final amount of fibrils without 

affecting kinetics, disaggregators, fibril or monomer stabilizers, and oligomer binders [55–

60]. A different method for high-throughput screening involves ion mobility spectrometry-

mass spectrometry. This technique quickly identifies small molecules that can bind to 

amyloid precursors, determining the protein species involved in the interaction and 

characterizing the inhibitory mechanism [61].  

Much of the effort in inhibitor design is based on high-resolution structures of 

amyloids, which have accumulated enormously in recent years due to various 

technological applications and advances, especially in micro-electron diffraction 

(microED) and cryogenic electron microscopy (cryo-EM) [62]. Structures of amyloids in 

complex with inhibitors, can be particularly useful in screening for further compounds. For 

example, the cryoEM structure of brain-extracted tau fibrils complexed with EGCG was 

used to computationally screen drug-like compounds for pharmacophore compatibility, 

and several were discovered that experimentally disaggregated brain-derived tau fibrils 

in vitro [44]. In addition, based on available structural and biophysical information, 
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together with computational simulation and medicinal chemistry approaches, a number 

of synthetic small molecules have been designed to inhibit amyloids. Many are based on 

modification of natural compounds to improve selectivity, chemical stability and solubility, 

bioavailability, and overall druggability. In addition, rational design of anti-amyloid drugs 

is also often based on peptide-based inhibitors, derived from amyloid protein sequences 

and structures, and is aimed at targeting different stages of polymerization and 

polymorphs of the fibrils. The designed peptides are often enhanced with additional 

chemical scaffolds to increase potency, selectivity, and stability such as resistance to 

degradation [23,63–70].   

Amyloid inhibitor design attempts to modulate amyloid fibril formation and activity 

by different mechanisms, targeting different binding sites and different amyloid species 

on the monomer to fibril pathway. Many of the designs have focused on targeting the 

region that serves as the backbone of the fibril, with various modifications to disrupt the 

-sheet formation. For example, the KLVFF motif w

enhanced with modification to D-amino acids and conjugation to D-tryptophan coupled to 

a C-

monomer addition to the fibril [71]. This conjugated peptide showed inhibition of 

[72] (Table 1&3). In addition, two designed 

pentapeptides, named P4 and P5, restricted the elongation process, disaggregated the 

preformed mature fibrils, and reduced the haemolytic effect of insulin fibrils, presumably 

-sheet formation and interactions with tyrosine residues critical for self-

assembly [73] (Tables 1&3). The high-

cryo-EM were used to design macrocyclic peptide sequences that are based on core 

regions in the fibril [23] 

which lacks two residues at the C-terminus, was achieved by partial mimicry of the C-

terminus. In addition, specificity was achieved with no detect -

synuclein and the K19 variant of tau [23].  Other structure-based designed peptides 

-synuclein [74] (Tables 1&3).  
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In the small molecule field, one approach has been to develop tryptophan-

galactosylamine hybrid molecules, such as the compound named WGalNAc (Table 1), 

which targets the aromatic residues in the hydrophobic core of the amyloid, and has 

[75]. 

Another compound was based on the conjugation, via a click or PEG linker, of mannitol 

and naphthoquinone-tryp -synuclein 

aggregation, while one of the conjugated molecules, termed M3N, was found to be more 

potent than the mixture of the two [76] (Table 1). Importantly, the conjugates showed low 

-synuclein toxicity to neuroblastoma cells [76]. In contrast 

to the focus on inhibitors targeting a single protein, broad-spectrum inhibition of the 

fibrillation process without interfering with the normal function of the amyloids has been 

employed with compounds known as molecular tweezers. These compounds, such as 

CLR01, target lysines that often play a role in the fibrillation of different amyloids, and 

indeed inhibited a wide range of pathogenic amyloids, including the ability to disassemble 

fibrils and reduce amyloid toxicity [77] -

synucle -synuclein-induced apoptosis, and improved 

-

synuclein inhibition of the ubiquitin-proteasome system  [78].  In addition to human 

S. aureus biofilm 

formation [79], and displayed a potent and broad-spectrum antiviral activity against 

enveloped viruses [80,81]. 

Recent studies suggest that transient oligomeric species are more toxic than 

mature fibrils [82,83]. Therefore, inhibitors that target fibrils and aim to degrade them may 

potentially increase toxicity. Instead, amyloid modulators can reduce cellular toxicity by 

targeting monomers or oligomers, stabilizing fibrils, or promoting a benign aggregation 

pathway to convert toxic species into less harmful ones [27,64,84].  However, designing 

drugs specific to the dynamic and transient nature of oligomers has been challenging due 

to their elusive structures. Researchers have employed chemical kinetic studies to identify 

monomer stabilizers and oligomer binders [55–58,77]. In addition, hits from high-

throughput screening can be further optimized using a "structure-kinetic-activity 

relationship" approach. For example, a rhodanine compound was developed using this 
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[85]. An alternative method was to 

use in silico studies, for example, one that proposed that a helical portion of monomeric 

this 

-helical peptide inhibitor was designed with mutations and 

modifications [86] (Tables 1&3). The resulting inhibitor, termed cHASI-1, showed 

micromolar affinity for t

its cytotoxicity. A series of investigations, beginning with a mirror image phage display to 

select all-

development of several promising D-peptides designed to bind to monomers, eliminate 

-

induced cytotoxicity  [87–89][90,91] . Among these D-peptides, DB3DB3 and ANK6 

(Tables 1&3) also demonstrated the ability to inhibit the formation of curli CsgA amyloid, 

which is involved in biofilm stabilization in enterobacteria, and reduce the biofilm biomass 

of Salmonella typhimurium [92]. Another D-peptide resulting from the same optimization 

efforts, known as RD2 or PRI-002, is among the few compounds that have advanced to 

clinical trials for the treatment of Alzheimer's disease [93]. More recently, to improve the 

oral absorption of RD2, it was linked to folic acid  [94].  

In the context of targeting the oligomeric state, Daggett and co-workers proposed, 

based on molecular dynamics simulations, that toxic oligomeric intermediates of several 

-pleated sheet structures [95], and designed peptide inhibitors 

accordingly [96] -sheet structures correspond to the ‘polar pleated sheet’ 

predictions of Pauling and Corey in 1951 [97] -sheets, the strand spacing is 

-sheets, but each strand is composed of an extended chain with alternating 

main chain dihedral angles between the right-handed and left-handed helical regions of 

the Ramachandran space [95] -sheets as energetically 

- -

sheets have been observed in crystal structures of designed synthetic peptides (e.g. [98]), 

and have been suggested to exist in a truncated mutant transthyretin [99]. Notably, the 

-pleated sheets are fundamentally different from the cross-

-helices, rather than extended chains. However, it is possible that the unstable 

-sheet configuration represents an intermediate species towards the formation of the 
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- - -sheet based peptides, such 

as AP90, inhibited the fibrillation of  the virulent S. aureus 

-sheet structures in i -

sheet rich fibrils [100] -sheet peptides AP5 and AP421 

ion of fibrillization and reduction of 

toxicity, including in-vivo, as demonstrated in mouse and Caenorhabditis elegans models 

[101] (Tables 1&3). Other designed -sheet peptides inhibit Streptococcus mutans biofilm 

formation, but the exact biofilm-associated component targeted by these inhibitors is not 

yet known [102].    

The increasing number of naturally occurring and artificially designed compounds 

that inhibit amyloid formation in both humans and microbes provide additional evidence 

of shared structural features. These molecular similarities among amyloids from various 

species may contribute to the development of prion-like agents via molecular mimicry. 

This is particularly noteworthy given the diverse array of microbial species in the human 

microbiome that can produce substantial amounts of secreted amyloids. There are 

several potential pathways that could explain the hypothesized link between microbes 

and human neurodegenerative diseases and amyloidosis [103,104]. One pathway 

involves the ability of seeds of amyloid fibrils from one species to nucleate monomers 

from another species  [105–107]. Another pathway involves the activation of immune 

receptors, which can lead to neuroinflammation and neurodegeneration [108,109]. 

Molecular mimicry and structural similarity can be exploited to manipulate the host 

immune system and inhibitory immune checkpoints [110], representing another possible 

pathway.  Additionally, an aberrant and increasingly dysbiotic innate immune response, 

as well as the deposition of amyloids with antimicrobial properties, could contribute to the 

amyloid-antimicrobial link [111–119]. Studies have shown that some antimicrobial 

peptides secreted by different organisms assemble into amyloid-like fibrils, further 

supporting this link [5,6,11,38,120–124] -defensins 

that form amyloids [122] 

calcitonin while maintaining their antibacterial activity and reducing amyloid-induced cell 

toxicity [38]. In addition, some antibiotics have been shown to inhibit human amyloids, 
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overall suggesting potential bi-directional repurposing of anti-amyloids and antimicrobials 

[37]. 

In summary, while past clinical trials for Alzheimer's and other neurodegenerative 

diseases have failed, the development of new anti-amyloid drugs offers hope for the 

future. With the rise of antibiotic resistance, novel approaches to treating infectious 

diseases are necessary, and targeting microbial amyloids presents a promising option 

due to their involvement in highly virulent pathways. Inhibiting virulent amyloids can 

decrease the aggressiveness of resistant infections. For example, curlicides have been 

shown to attenuate virulence in mouse models of urinary tract infections by inhibiting the 

curli biofilm associated amyloid system [125,126]. Antivirulence compounds have the 

potential to induce less resistance compared to antibiotics that directly kill microbes. 

[127], but the lack of selectivity may 

have both positive and negative consequences. Recent developments in techniques for 

determining molecular structures, particularly in the field of cryo-EM, have opened up 

fresh possibilities for designing amyloid modulators that are both highly targeted and 

efficacious. These advances have also brought into focus antimicrobial peptides that form 

amyloids, which could potentially serve as therapeutic agents that offer improved stability 

and controlled activity through self-assembly and specific morphologies [5,11]. Artificial 

intelligence (AI) methods can help identify new microbial and antimicrobial amyloids, 

design new drugs, and optimize existing candidates. The discovery of inhibitors not only 

has potential clinical implications but also provides valuable insights into amyloids' 

structure and function. As researchers uncover new amyloids and further our 

understanding of their properties and interactions, amyloids are expected to play a 

significant role in biomedical and technological applications in the coming years. 
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Table 1 – Selected designed inhibitors of pathological amyloids that reduce their 
cytotoxicity 

Type of 
inhibitor Inhibitorsa Targeted 

amyloid 

Modulation 
of 

aggregatio
n 

Disaggreg
ation of 
amyloid 
fibrils 

Reduction 
of amyloid 
cytotoxicity 

Inherent 
toxicity 

Citatio
n 

Small 
molecules 

WGalNAc hIAPP V V V X [75] 

NQTrp, 1,4-
naphthoquin

on-2-yl-L-
tryptophan 

PAP248–
286 (PAP 

f39) 
V ND V X [129] 

 V ND V X [130] 

-
synuclein V ND V X [76] 

Tau, Tau-
derived 
PHF6 

V V V X [128] 

Mannitol-
3G-NQTrp, 

M3N 

-
synuclein V ND V X [76] 

Curlicides FN075  V ND   [127] 

Molecular 
tweezers CLR01 

 V V V 

X 

[77] 

Tau V ND ND 

insulin, 

TTR, CT 
V ND V 

IAPP V V V 

-
synuclein V V V [77,78] 

SEM1(45
-107), 

SEVI and 
PAP(85-

120) 

V V V (antiviral 
effect) X [131] 

Peptides 
Peptide 

named P4 
and P5 

Insulin V V V X [73] 
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-sheet 
peptides 

designated 
AP5 and 
AP421 

 V 

ND V X [101,13
2] 

AP5 IAPP V 

Macrocyclic 
peptides: 
mcK6A1, 
mcG6A1 

and 
mcG6A2 

 V ND V V (Low 
toxicity) [23] 

Designated 
-strand 

peptide 2 
(D-isoform) 

 V X V X [72] 

DB3DB3  V V V X [90] 

ANK6  V ND V X [91] 

RD2b  V V V X [133] 

Peptides 
designated 
D1b and 

D1d 
tauc V X V X [74] 

cHASI-1  V ND V X [86] 

-H  V ND V ND 
[65] 

-F -
synuclein V ND V ND 

 

Symbols used in the Table: V indicates an observed effect; X indicates no effect, and ND 

indicates that the effect was not determined to the best of our knowledge. a The inhibitors 

listed are the most effective compounds among those tested in the referenced 

manuscript. b This compound, also called PRI-002, has been tested in Phase 1 clinical 
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trials  [93]. c The referenced manuscript provides more information about the specificity of 

 
         

 
Table 2- Designed inhibitors of virulent microbial amyloids. 

Type of 
inhibitor Inhibitorsa Targeted 

amyloid 
Modulation 

of 
aggregation 

Disaggregati
on of amyloid 

fibrils 

Inhibition of 
biofilm 

formation 
Citation 

Curlicides 
 

FN075 and 
BibC6 

Escherichia 
coli curli 
csgA and  

V ND V [125,12
6] 

Molecular 
tweezers 

CLR01 and 
CLR05 

S. aureus 
 V V V [79] 

-sheet 
based 

peptides 

AP90 S. aureus 
 V ND V 

[100] 
AP407 S. aureus 

amyloid V ND V 

Peptides 
DB3DB3 CsgA V ND V 

[92] 
ANK6 CsgA V ND V 

 

Symbols used in the Table: V indicates an effect; X indicates no effect, and ND indicates 

that the effect was not determined to the best of our knowledge. a The listed inhibitors are 

the most effective compounds amongst those tested in the referred manuscript. 
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 Table 3 – Sequences and biophysical properties of selected designed peptide 
amyloid inhibitors 

  Inhibitors Sequence Net 
Charge Citation 

Inhibitors of human 
amyloids 

 

P4 VIFYT 0 
[73] 

P5 VVVVV 0 

AP5 Ac-RGNwNeSkMNEYSGWmLmLtMGR-NH2 1 
[101] 

AP421 Ac-RGEcNlSwMNEYSGWtMnLkCGR-NH2 1 

mcK6A1 TLWYKKY 2 

[23] mcG6A1 HYFKYKW 2 

mcG6A2 HYYIKKH 2 

Peptide 2 klvfw-Aiba - [72] 

DB3DB3 rpitrlrthqnrrpitrlrthqnr-NH2 9 [90] 

ANK6 rkrirlvtkkkr-NH2 9 [91] 

RD2 ptlhthnrrrrr-NH2 6 [133] 

D1b lyiwiwrt 1 
[74] 

D1d lyiwiqkt 1 

cHASI-1 cyclo(isoD-F-R-Dap)-DVRAERAEb 0 [86] 

-H PKRVTYTLNNRVHVQITHTDQKIVYVESSTG
DKDAAMTAVKIADELAKK 2 

[65] 
-F PVYHYRYKGRAAAEAAKEAAKIAQKLGGAL

VVRVDGDTIRITIAV 4 

Inhibitors of 
microbial amyloids AP90 Ac-RGEmNlSwMNEYSGWtMnLkMGR-NH2 1 [100] 
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The peptide sequences indicate the isomeric form of the amino acid, with upper case 

letters indicating L-amino acids and lower-case letters indicating D-amino acids. The 

capping of the termini is indicated by Ac- for N-acetylation and -NH2 for C-amidation. Net 

charge has been calculated taking into account the full charges of side chains and termini 

(unless capped) at physiological pH=7.4. a -breaker moiety, which stands for 

achiral geminal disubstituted aminobutyric acid.  b The HASI-1 peptide was mutated in the 

first and second residue to iso-D (L-isoaspartic acid) and a Dap (2,3-diaminopropionic 

acid), respectively. The two unnatural amino acids were then cross-linked, yielding a 

cyclic variant (cHASI-1). 
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