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Abstract

We consider black hole formation due to the gravitational collapse produced by large density fluc-
tuations during an epoch of reheating with a stiff equation of state and calculate the induced
gravitational wave spectrum. By considering the existing bounds on the total energy density of
gravitational waves today, we find constraints on the parameter space of this scenario. We also cal-
culate the lepton asymmetry generated by metric perturbations via the chiral gravitational anomaly
present in the Standard Model and find that, once the electroweak sphaleron processes have taken
place, the large spectrum of scalar perturbations responsible for black hole formation induces a

peak in the baryon asymmetry fluctuations on small scales.

Contents

Introduction . . . ... 1
1. Gravitational lepton anomaly . . ... .. ... 3
2. Black hole masses and abundance. . ... ....... . ... .. . . . 7
3. Induced gravitational Waves. . . .. ... 10
4. Gradual decay into radiation. . . ... ... ... .. 15
5. Smoothed lepton number density . ....... ... 19
CONCIUSIONS. .« . . v e 29
APPEndiCes . . . . 30
A. Evaluation of glﬁ\INLO ........................................................ 30

* altavista.1844243@studenti.uniromal.it
t julian.rey@desy.de



Introduction

The baryon-to-photon ratio observed in CMB experiments [1] as well as in measurements of the
abundance of light elements produced during Big Bang nucleosynthesis (see e.g.[2]), leads to the
requirement of some mechanism, known as baryogenesis, to produce an asymmetry between matter
and antimatter in the early Universe. One possibility that has been extensively considered is that
of leptogenesis [3], which consists in generating a lepton asymmetry at early stages which is later
converted to a baryon asymmetry via sphaleron transitions, non-perturbative processes that take
place in the electroweak sector of the Standard Model. Typical models require extending the particle
content of the theory by adding, for instance, right-handed neutrinos [4]. An alternative possibility
is gravitational leptogenesis, which consists in exploiting the chiral gravitational anomaly [5, 6]
present in the Standard Model (that is, in the presence of only left-handed neutrinos'),

VIl = —QZZSQRR, (1)
where RR = (1/2)é"” po RuyapRP7? denotes the contraction between the Riemann tensor and its
dual, and the factor Ny,_r = 3 arises from the difference between the number of left- and right-
handed neutrinos in the theory.? By expanding the right-hand side of the above equation to
quadratic order in perturbations, one obtains a term proportional to the product h;;¢, as well as
terms quadratic in h;;, where ¢ denotes the Newtonian potential and h;; the transverse, traceless
tensor perturbation of the metric. From the structure of the resulting terms one can check that, in
order for the mechanism to work, a chiral gravitational wave background is required, as one would
expect from the Sakharov conditions [9]. Such a spectrum can be generated, for instance, during
inflation, in models in which the inflaton ¢ contains a CP-odd component and couples to gravity
through a term of the form f()RR [7].3

It was recently suggested in [11] that, due to the fact that inflation is a stochastic process, there
is actually no need to invoke the presence of these couplings to produce a lepton asymmetry via
the above mechanism. Indeed, due to the dependence of the anomaly on the stochastic variables ¢
and h;;, we expect a non-vanishing variance for the lepton number density (|ng|?) to be generated
in different patches as inflation progresses. The average of the root-mean-square variance over
some particular region therefore quantifies the expected asymmetry. Since these fluctuations are
generated during inflation (out of thermal equilibrium) and the anomaly violates C, CP, and L (with
the electroweak sphalerons providing the required B violation later on), the Sakharov conditions
are fulfilled. As shown in [11], however, when this average is computed over the entire observable
Universe today, the resulting asymmetry turns out to be extremely suppressed, rendering the
proposal incapable of producing baryogenesis. Although unable to explain the observed background

value of the baryon asymmetry, the presence of the chiral gravitational anomaly would nevertheless

!Even if right-handed neutrinos are added to the Standard Model, this anomaly is still present once they are
integrated out, at sufficiently low energies [7].

2In general, all chiral fermions in the theory contribute to Ni,_r, with the contribution of each particle weighted
by its corresponding B — L factor (see e.g. [8]), but since the Standard Model contains an equal amount of left- and
right-handed quarks, their contribution vanishes and B drops out. The same argument applies to charged leptons.

3See [10] and the references therein for a discussion about the caveats of this mechanism, in particular the presence
of ghost modes, and some proposed solutions.



lead to unavoidable fluctuations in the baryon number density on sufficiently large scales,* which
could potentially be used as an observable to probe different models of inflation. We anticipate,
however, that in the particular scenario discussed here the fluctuations are much smaller than the
observed background value, so measuring them would likely require some additional enhancement
mechanism.

The calculation presented in [11] makes use of the h;j¢ term that arises after expanding eq. (1)
in perturbations, so that the size of the fluctuations in the baryon asymmetry is proportional to the
amplitude of both the tensor and scalar power spectrum, and becomes negligible if the tensor-to-
scalar ratio r is sufficiently small. A natural question is therefore whether an enhancement in either
of these quantities could significantly increase the size of these fluctuations. Such an enhancement
can be obtained, for instance, in single-field models of inflation that aim to generate a significant
population of primordial black holes by introducing an inflection point in the potential (see e.g. [12—
14] for particular implementations of this mechanism). In this class of models, the presence of the
inflection point leads to a phase of ultra-slow-roll that enhances the curvature power spectrum,
producing large energy overdensities once the perturbations re-enter the horizon after the end of
inflation, which in turn induce gravitational collapse, generating the black holes. These black holes

could account for the entirety of the observed dark matter provided their masses lie in the range
107°Me < Mppu < 1071 Mo, (2)

where the upper bound comes from microlensing observations [15] and the lower one from their
Hawking evaporation [16-19]. Such a large scalar power spectrum would also source gravitational
waves at second order in perturbations after the end of inflation [20-22], leading to a peaked
gravitational wave signal which would also contribute to the variance of the lepton number density
and which is completely independent of the primordial tensor spectrum arising from inflation. The
spectrum of gravitational waves induced by large scalar perturbations during a radiation era has
been extensively studied in the literature [21-24]. However, since the resulting signal depends on
the evolution of the scalar perturbations after they re-enter the horizon, we expect the result to
change if the background fluid has a different equation of state. The case in which the Universe
is dominated by non-relativistic matter before transitioning to the radiation era was studied in
[24-26], and the scenario with a general background was considered in [27], where an enhancement
of the spectrum for background fluids with stiff equations of state (that is, for w < 1, with p = wp)
was reported.

This paper has two objectives. The first is to connect the enhancement of the induced gravita-
tional wave spectrum for stiff background equations of state to the abundance of primordial black
holes.® We consider a scenario in which primordial black holes form during a reheating stage®
with an equation of state parameter 1/3 < w < 1 before the Universe transitions to the radiation

era at some temperature 7T,,. We find that, depending on the specific values of the equation of

4 As explained in [11], the baryon asymmetry survives only on large scales due to the matter-antimatter annihilation
processes taking place on small patches. We discuss this in detail in Section 5.

®See also [28, 29] for recent work in similar directions.

SThroughout the paper we refer to this early stiff epoch as reheating, since we assume it takes place immediately
after inflation ends. However, we remark that our results do not depend on the origin of this epoch, which we remain
agnostic about. In particular, it does not necessarily have to come from the dynamics of the inflaton.



state, the transition temperature, and the scale at which the peak in the scalar power spectrum is
located (therefore, on the mass and abundance of the black holes that form), the enhancement of
the signal can be large enough to violate the existing bounds on the total gravitational wave energy
density derived from CMB observations and the abundance of light elements produced during Big
Bang nucleosynthesis [30, 31], effectively reducing the parameter space of this scenario. We per-
form the calculation of the gravitational wave spectrum for two cases, one in which the transition
between epochs is instantaneous, and one in which the stiff fluid gradually decays into radiation,
and show that the resulting constraints on the parameter space for PBH formation depend only
mildly on the smoothness of the transition. We improve upon the results of [27] by implementing a
matching procedure for the transfer function of the scalar perturbations and the Green’s function
of the tensor modes in the sudden transition case akin to the one presented in [24] for the case of
matter-domination, effectively taking into account the full time evolution of both quantities. We
also perform a fully numerical calculation of the scalar transfer function and the tensor Green’s
functions in the gradual transition case, in contrast to [26]. The second objective is to calculate
the baryon asymmetry fluctuations induced by the chiral gravitational anomaly in eq. (1) for the
same scenario.” We extend the results of [11] in two significant ways. The first is that we consider
a peaked scalar power spectrum responsible for PBH formation, as opposed to a scale-invariant
one, thereby enhancing the asymmetry reported there. The second one is that we also consider the
purely scalar contribution to the asymmetry due to induced gravitational waves, effectively remov-
ing one of the essential ingredients in [11], namely, the need to have a non-vanishing gravitational
wave background generated during inflation. We once again remark that the mechanism studied
here is unable to produced the observed baryon asymmetry of the Universe, but it does allow us to
predict a spectrum of fluctuations in this quantity which would be present in any model of PBH
formation from single-field inflation using an inflection point in the potential, assuming only the
matter content of the Standard Model. Moreover, the machinery presented here could be used to
compute these fluctuations in other models of gravitational leptogenesis, such as the one in [7].
The paper is structured as follows. In Section 1 we expand eq. (1) in perturbations and derive
the corresponding expressions for the lepton number density at each order. In Section 2 we derive
the expressions for the black hole mass and abundance assuming that they form during a reheating
stage with a stiff equation of state, and discuss the relevant constraints on the parameter space.
In Section 3 we derive the induced gravitational wave spectrum when the transition between the
reheating stage and the radiation era is instantaneous, and determine the constraint on the PBH
masses due to the aforementioned bounds on the gravitational wave energy density. In Section 4
we repeat the calculation by assuming that the stiff fluid gradually decays into radiation. Finally,
in Section 5 we determine the baryon asymmetry produced by the chiral gravitational anomaly in

this scenario.

1. Gravitational lepton anomaly

In this section we expand eq. (1) to third order in perturbations and find expressions for the lepton

number density ny, at each order. Throughout the paper we denote second-order perturbations of

"The mechanism studied here is different from leptogenesis via PBH evaporation, see e.g. [32].



the metric with bold symbols. The perturbed FLRW metric is, in conformal time dn = dt/a,
1 1 o
ds? = a2{ — (1420 + Q)dn* + [(1 = 20— 0)3;; + S (OE; + ;) + hi + ih,’j]dm’ldm]}, (3)

where we have fixed the Newtonian gauge, so that E = B = E = B = (0, we have assumed
that the first-order vector perturbations vanish, £; = B; = 0, and we have used a second-order
vector gauge-transformation to set B; = 0. The second-order vector perturbation E; cannot be
set to zero, since it is sourced by terms quadratic in first-order scalar perturbations by virtue of
Einstein’s equations. We have additionally assumed that no anisotropic stress is present, so that
the two first-order Newtonian potentials are equal to each other, ¢ = 1. The difference between
the two Newtonian potentials at second order ® — ¥ does not vanish in the absence of anisotropic
stress, since it is sourced by terms quadratic in first-order scalars.

The quantity RR which appears on the right-hand side of eq. (1) can be easily checked to vanish
at the background level. This quantity can be calculated at each order in perturbations by direct
expansion using the above metric. However, the result can also be obtained by noting that every
term in the expansion must contain four derivatives (with two coming from each factor of R) and
the indices can only be saturated in a limited number of ways. For instance, this quantity vanishes
at leading order® (LO), since the only perturbations available are ¢ and hij, and every possible
contraction (for instance, €;j,0;0;0,¢) vanishes due to the antisymmetry of €;;,. At the next-to-

leading order (NLO) we have only one possible term mixing scalar and tensor perturbations,
RR D €j,0,0;00; Wiy, (4)

where primes denote derivatives with respect to conformal time (/ = d/dn), as well as several

possible terms mixing two tensor perturbations, such as
RR D) Eijkﬁmhgeamakhjz. (5)

We generically expect these terms to be suppressed with respect to the scalar-tensor ones (since
the stochastic gravitational wave background produced during inflation is much smaller than the
scalar power spectrum) and thus we do not consider them.

At NNLO, we focus on the situation in which the first-order tensor perturbation h;; is negligible
and the only relevant contribution comes from the scalar-induced h;;, which is the case in models
of PBH formation from single-field inflation. In this case, all terms containing only scalar modes
(such as €;,0;00;¢p0k¢" or €;,0;0;00,P") can be easily seen to vanish due to the antisymmetry of
€iji- Similarly, the scalar-vector terms vanish due to the fact that terms such as €;;;0;¢'0; E; are
always accompanied by €;;,0;¢ 8kE§~, since only the symmetric combination 0; E; + 0;E; appears

in the metric. Thus, the only relevant term at this order is the scalar-tensor one

RR D) Eijkagai(;sajh;d, (6)

8We use the terminology LO, NLO, and NNLO for the expansion in powers of the metric perturbations. Note,
however, that this does not imply anything about the relative amplitude of each term. As we will see, the dominant
term changes depending on the scale considered.



since terms quadratic in h;; are of higher order, and we neglect terms mixing h;; and h;;, which
are subdominant with respect to the above contribution.

We conclude that, at NLO, the only relevant term is the one in eq. (4), assuming that the first-
order gravitational wave background produced during inflation is suppressed with respect to the
scalar one at the scales of interest. The numerical prefactor can be obtained by explicit calculation,
and the result is

RE— —%eijkagamajh;d. (7)

On the other hand, at NNLO only the term in eq. (6) contributes, assuming vanishing first-order
tensor modes. The prefactor can be obtained by simply substituting h;; — %hij in eq. (7),

~ 4
RR = —géijkagai¢8jh;d. (8)

We remark that the NNLO terminology in no way implies that the term in eq. (8) is smaller than
the one in eq. (7). The reason is that, since h;; is sourced by scalar perturbations, its amplitude
will depend on their initial conditions and time evolution, which can be very different from those
of the unsourced h;;.

The left-hand side of eq. (1) can be expanded by writing J* = (a~'ng,,0) and using the following
identity,

Vil = =0,/ 5 "). )

We therefore obtain, for the NLO term,

1
adng, = T6.2 /ijajamakh;zdn- (10)

We can expand the perturbations in Fourier modes

Bk

hij(:zz)—/(QW)Se’k'm(hZe;;—i—h,jefj), (11)
Bk

@) = [ e o, (12)

where efj denotes the two transverse, traceless polarization tensors, defined via

1 o 1 o
61—»; = ﬁ(vivj — ’Uﬂ)j), 6;;. = \ﬁ@ivj + ’Uﬂ)j), (13)
where v and v are two unit vectors satisfying k-v =k-v = v-v = 0. We can therefore regard e

as a k-dependent quantity. We then find

3 1 d3p d3q i(p+q)x(; ; . sl s
any = m?fijk Z dn (27_‘_)3 (271')36 (qu)(Zq£)¢q<Zpk)hp eM(p)' (14)

The mean value of this quantity clearly vanishes, as can be easily checked by expanding ¢ and
% in terms of creation and annihilation operators. The variance, however, does not, and will be

computed in Section 5.



To find the expression for the NNLO term in Fourier space it is necessary to solve the equation
of motion for the second-order tensor modes induced by scalar fluctuations, given, in momentum

space and in the absence of anisotropic stress, by (see e.g. [22-25])
hy" + 2Hhi + k*hi = S5, (15)

where H = a’/a denotes the conformal Hubble factor and the source term is, in the Newtonian

gauge,

= e oo sl o ) s B2)) 00

where p and p are the background pressure and energy density, and we have used the boldface

e (k) to denote the matrix ej;(k). Explicitly, we have p - €°(k) - p = p;e;;(k)p;. The solution to
q. (15) is given by

B (n / G, 1) S5 ) (17)
where Gp(n,n') is the Green’s function of the differential equation, and we have assumed that

inflation ends at n = 0 and the gravitational waves induced up to that point are negligible. This

solution can be rewritten as

5 1 d*p
hin) = 1 [ G Gy P €0 B[ RyRypi T, e = ) (18)
where )
3+ 3w K
I k— = k ! "', |k — p|)kdn 1
i = = (2220 [ kGun. Q0 . e~ pka (19)
with

Q(n,p, |k — pl) = 8T (pn)Ty(lk — pln)

16 T (pm) T;(|k — pln)
b oo (Toton + 250 ) (Tolle sl + =220 o)

Here we have used the definition of the scalar transfer function ¢y (n) = Ty4(kn)¢x(0), obtained by
solving the equation of motion for ¢, as well as the fact that the initial value of the Newtonian

potential ¢ (0) is related to the frozen curvature perturbation Ry on superhorizon scales via [33]

3+ 3w
5+ 3w

¢1(0) = (21)

where w is the equation of state of the Universe at the time at which the initial conditions are
imposed (that is, shortly after the end of inflation). In Section 3 we will give explicit expressions
for the Green’s function Gg(n,n') and the transfer function.

At NNLO, the lepton number density is given by

1
CLSTZL 391 PrY) /eljka 8@@58]9 Kd777 (22)



where we reiterate that we have neglected all terms involving the first-order tensor modes h;;.

Using eq. (18) we can write this quantity as

a*m= s (5 i 3w> ik ) Jan [ 55 )3e P42 (ig;) ige) (ipr) e (p)
1 d3k s ,

As we will see in Section 5, the mean value of this quantity once again vanishes, but the variance

does not. In general, ng, is given by the sum of both the NLO and NNLO contributions.

2. Black hole masses and abundance

Black holes form when sufficiently large perturbations re-enter the horizon after the end of inflation.
Their abundance can be described using the Press-Schechter formalism, which states that collapse

occurs only when the density contrast 6 = dp/p is above a critical value 4.,

8=

1 0.2)
ds, (24)
V2mo?
where 5 = pppn/(7yp) is the ratio of the energy density in a Hubble patch that ends up in the form
of PBHs to the total energy density at the time of collapse, with v an O(1) factor encoding the
efficiency of the collapse.? In the above expression we have assumed the probability distribution of
the fluctuations to be Gaussian and the smoothed variance of the density contrast ¢ can be related

to the dimensionless primordial spectrum of curvature perturbations Pz by means of the gradient

w 2 !
o’ = m / Cizq <Z) Pr(Q)W?(a/k), (25)

expansion [35]

where W (z) = 6_“"2/2\/2/71' is a window function, which we take as a Gaussian. The dependence

of the critical value J. in eq. (24) on the equation of state parameter w was analytically estimated

in [36] to be
31+w) . o m/w
R ) . 2
0 5+ 3w S <1+3w (26)

Note that this formula is not valid for w < 1/3, since in this case the non-sphericity and angular
momentum of the collapsing cloud, neglected in [36], become relevant, see [37, 38].

We remark that recent studies have focused on using the peak theory formalism instead of
Press-Schechter to calculate the PBH abundance, see e.g. [39]. Similarly, the fact that in models of
PBH formation the probability distribution deviates significantly from the Gaussian approximation
is well-understood [40]. However, as noted in [39, 40], the change in abundance induced by taking
into account these modifications can always be compensated by multiplying the power spectrum
by an O(1) factor, since eq.(24) depends exponentially on Pr. Since the induced gravitational

wave spectrum depends quadratically on Pr, these corrections will not heavily impact the results

9We set v = 0.2 throughout this work [34], but we remark that this number could depend on the equation of state
parameter w at the time at which the black holes form.
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Figure 1: Left panel: contours depicting the black hole masses as a function of the reheating temperature T,
and the scale ky at which the peak in the power spectrum is located for w = 1, together with the amplitude of
the power spectrum Ay necessary to obtain fepu = 1 (labeled solid lines). The horizontal and vertical shaded
regions represenl the constraints on the PBH masses in eq. (2). The region with botlom-right to top-left
shading represents the re-eniry constraint in eq. (32), and the region with bottom-left to top-right shading
represents the GW constraint in eq. (54). Right panel: same as left panel, but leaving w as a free parameter,
for ky =5 x 102 Mpe ™.

presented in this work. The same argument applies to the threshold d., which strictly speaking
should be calculated by finding the local maxima of the compaction function, a quantity that
measures how close the overdensity is to fulfilling the hoop conjecture, see e.g.[41]. The specific
value of §. will not be particularly important for our arguments, since the only issue relevant for us
is the value of Pr necessary to obtain Q(I]DBH = Q%M (that is, for PBHs to form all of the dark matter
today), which is always of order Pz ~ 10~2. We take eq. (26) simply as a convenient benchmark.
In what follows we consider a situation in which the Universe goes through a long phase of
reheating after inflation with an arbitrary equation of state w > 1/3 during which PBHs form, and
then transitions instantaneously into a radiation-dominated era at temperature 7,.. By following
a procedure analogous to the one presented in [42] for the case w = 0, we can write the present

fraction of dark matter in the form of PBHs fppy = Q%BH / Q%M as

149w 3w

i Gus (T} 1/3 T, 8w ( M2K? 90 T+3w
frBH 275907 [( . (T)> ?] ( ;4 2, (T > ; (27)
DM g*s( O) 0 r T g*( r)

where Tj is the temperature of the Universe today, {2, the energy density in radiation, g, denotes
the effective number of relativistic degrees of freedom, and g«s the effective number of degrees
of freedom in entropy.!’ In deriving the above equation we have assumed that collapse occurs
immediately after perturbations with wavenumber %k re-enter the horizon, at a time ¢;, defined by
k = a(ty)H(t;). We assume entropy is conserved only between the transition time ¢, and today,

but not necessarily between the time of collapse and #,. The mass of the PBHs is proportional to

YWe take gu(Th) = gus(T7) = 106.75, g«(Th) = 3.36, and g.s(Tp) = 3.94 throughout the paper [33].



the mass contained in a Hubble patch at the time of formation, Mppy = 47rfyM5 /H. By following

a similar procedure to the one we used for fppu, we can write

2 T4 Hﬁ 1 g.s(To )T3 1+3w
M Ary M} T.)—L 2220 ) 28
PBH = ST <9o ol )Mg> (k:?’g*s( )T3> )

As a cross-check, note that, for w = 1/3, eqs. (27) and (28) become independent of T, and, in
particular, we recover the well-known scaling relation Mppy o< k2 [13].

It is clear from egs. (24) and (25) that to produce a large PBH population one requires a spec-
trum of curvature perturbations Pr which is peaked at a particular scale k so as not to overproduce
black holes with masses outside of the unconstrained range in eq. (2). Such a power spectrum can
be obtained from single-field models of inflation in which the potential has an approximate in-
flection point leading to a short phase of ultra-slow-roll, see e.g.[13, 14]. In what follows we will
consider two possibilities, a flat scale-invariant spectrum with an amplitude 4, that matches the
value measured on CMB scales of O(107Y),

Pr(k) = A, (29)

and a sharp Dirac delta spectrum with an amplitude Ay of O(1072) in order to produce an O(1)

fraction of PBHs as dark matter,
Pr(k) = kyAyo(k — ky), (30)

where we have assumed that the peak occurs at a scale ky. This form of the power spectrum will
allow us to derive several results analytically later on. Putting everything together and considering
the sharp power spectrum, we find the following expression for 8 at the peak of the distribution,
which is located at k = ky/v/2 (as can be checked by setting do/dk = 0),

B = ;erfc[Ssm (17:/;0)\/;]. (31)

Note that the total PBH abundance is obtained by integrating fppy over k, but since we are

considering essentially monochromatic mass distributions, we can approximate the abundance by
the value of fppy at its peak, fppu(k = kﬁ/\/i)

The black hole mass and abundance are plotted in Fig. 1. As anticipated, the power spectrum
required to obtain fppg = 1 is of order Pr ~ 1072 over the entire parameter space, so the w-
dependent threshold . does not have a particularly strong effect. In the Figures we also show the
GW constraint derived in the next Section, in eq. (54), for a fixed value 43 = 0.05. Choosing the
value of Ay necessary to obtain fppu = 1 at each point in parameter space would only marginally
change this constraint. We have also included the constraint imposed by the requirement that
collapse occurs in the reheating stage. That is, the mode with comoving wavenumber ky that

induces collapse must re-enter the horizon at most at the time of the transition,

To g*s(TO) 1/3 7729*(T7“>T1f1 12
ky > apH, = =2 : p
8= T, ( s (1) 9012 (32)




We remark that this constraint does not impede the formation of black holes, but if it is not satisfied
then collapse occurs during the radiation era, and one should use the expressions for the mass and
abundance for w = 1/3 instead.

We conclude that a population of PBHs with unconstrained masses which is large enough to
explain the observed dark matter abundance can only form during an early stiff era (with w = 1)
in a narrow region of parameter space, for 103 GeV < T, < 10" GeV, depending on the location
of the peak in the power spectrum. We therefore find that the new GW constraint derived in this

work (see the following Section) significantly restricts the parameter space for this mechanism.

3. Induced gravitational waves

In this Section we solve the equation of motion (15) for the tensor modes induced by scalar per-
turbations at second order. The solution, shown in eq. (18) can be written in terms of the Green’s
function Gg(n,n') of the differential equation and the scalar transfer function Ty(kn), which we
now determine.

The Green’s function can be obtained by solving the homogeneous equation
hy" + 2Hh{ + k*hj = 0. (33)

Since we assume that the transition between the reheating stage with equation of state parameter

w and the radiation epoch occurs instantaneously at 7., the evolution of H is given by

2 fi <
——F——, for
(14 3w)n’ =

=< (34)

N —"Nw

; for n, <,

where we have chosen the integration constant 7,, = (1 — 3w)n, /2 to make the function continuous
at 1,.. We remark that throughout the paper w always denotes the equation of state parameter
during the stage of reheating after inflation. We never use w to denote the equation of state
parameter during the radiation era, and instead write explicitly p/p = 1/3 wherever necessary.

The general solution to eq. (33) is

(kn)me [AheJme(kﬁ) + Bher[(kJn)}, for n < n,,
r(n) = ) )
[E—— |:Ahr sin(kn — kny) + By cos(kn — kny) |, for n. <mn,

where the £ subscript denotes quantities in the reheating stage, and r refers to quantities in the

radiation era. We have also defined 3( 3
w —
= 7 36
M= S T Bw) (36)

The Green’s function is given by

(37)
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Figure 2:  Left panel: gravitational wave energy density as a function of k/ky for w = 0.5 varying the
dimensionless parameter kyn,.. The energy density grows as this parameter increases. Right panel: same as
left panel, for w =1.

where h; and hg are any two linearly independent solutions to eq. (33) and we have suppressed the
k and s indices in h for readability. Since this expression is independent of which pair of solutions
is chosen, we can simply fix the integration constants in one of the regions by hand, and obtain the
constants in the other epoch by imposing continuity of the solutions and their derivatives at n,.
We therefore set A}W =1 and B}W = 0 for the first solution, together with A}QW =0 and B,%r =1
for the second one.
For the calculation of the lepton number density we need the tensor transfer function, defined
by
Ri(n) = T (kn)hi (0). (38)

We remind the reader that initial conditions are imposed at the end of inflation, which we choose as
17 = 0. Assuming that tensor modes are initially frozen outside the horizon (so that we can impose
the initial conditions T3(0) = 0 and 7} (0) = 1 for superhorizon modes after inflation ends), we find

the following expression for the tensor transfer function

I'(1 —my)

2me

1
[y [Ahr sin(kn — knw) + Bpy cos(kn — knw)] , form. <.

(kn)™ J i, (km), for n < ny,

Th(kn) = (39)

We remark that the transfer function is unrelated to the Green’s function, and in this case the
constants during the reheating stage are fixed by the initial conditions mentioned above, whereas
the constants Ay, and Bp, must be determined by imposing continuity of the solutions and their

derivatives at 7.

11



The equation of motion for the Newtonian potential is
o + 3<1 + i)%% + %]{32¢k =0, (40)

where we have assumed that the background is dominated by a perfect fluid with dp = (p/p)dp. We
remind the reader that we are working in the Newtonian gauge and in the absence of anisotropic
stress. Assuming once again that the modes are initially frozen outside the horizon, we obtain the

following expression for the transfer function, valid for w # 0,

I'(ny+1)2™ n
e 2 oy (k). for 1 < .

= (5 o () (o ()
o () () () e

" 5+3w
£ o1+ 3w)

where
1—my (42)

and the constants Ay and By, can once again be found by matching the solutions and their
derivatives at 7.

With these ingredients in hand we can calculate the Ij function in eq.(19). The GW energy
density is given by [43]

2
(k) = 57 (37) (Paln ) (43

where the brackets (---) denote a time average, which must be taken due to the stochasticity of
the signal, and P, denotes the power spectrum of h;;. Starting from eq. (18), we find the following

expression for the power spectrum (see e.g.[23, 24])

00 14y 42_1+ 2_2222

Pty = [y [ e O I o Pt k). ()
0 1-y] 8yz

Since we are interested in measuring this quantity at late times, we can take n — oo in eq. (19).

After pulling the solutions hj(n) and ha(n) in the Green’s function out of the integral and splitting

the limits of integration into the two contributions (0,7,) and (7,,00), we obtain the following

expression, valid late into the RD era,

sin(kn — kny,) cos(kn — knw)

In(n > ) = J§+ T8 — Ji +J9), 45
k(n > 1) —— (J7 ) —— (J¢ ) (45)
where
343w\’ /2 )/77’“ N 9mmstl s
J§ = ke )72t pg (of ' ky, kz)kdn 46
¢ <5+3w> <A§hB§hAéhBﬁh ; (k') 2(n)Qe(', ky, kz)kdn (46)
343w\’ /2 oo
i=\svsw) \azr —ar s ) ), 1) i )
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Figure 3:  Constraint in eq. (54) as a function of the two parameters w and kyn,. The top-right region is

forbidden due to the fact that the redshift of the tensor modes during an epoch with a stiff equation of state
makes the energy densily grow, as illustrated in Fig. 2.

and
o [3+3w\? [™
J, = <5+3w> / (knf — kny) cos(kn’ — knw)Qr (1, ky, kz)kdy (48)
Mr
. 34 3w e
;= —kw k/—kwrlkk‘k‘d/. 4
i <5+3w> /m ko Thw) sin(kn M) Qr (1, Ky, kz)kd (49)

Analytical expressions can be found for the last two integrals, whereas the first two must in general
be performed numerically.

Squaring [Ij and taking the average as required by eq. (43), we find

k2

@Ub = J2(y, z, kn,), (50)

N | —

1 . .

S|+ I U+ ) =
where we have used (sin?(kn)) = (cos?(kn)) = 1/2 and (sin(kn) cos(kn)) = 0 and highlighted the
dependence of J on the dimensionless parameter kn,.. We can evaluate the integrals over y and
z in eq. (44) by using the sharp power spectrum in eq. (30) necessary to obtain a significant PBH

population. The result is

Qawlh/ky) = A 3535)5553(’212(33)4/3’23 (42—2‘1>2J2<2 b Jon(2 1) e

where ©11 denotes the Heaviside function, and we have used the fact that these gravitational waves
behave as radiation at late times to evolve the result from some late time deep into the radiation

era until today. This expression only depends on the two dimensionless quantities ky/k and kyn,.
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The transition time is, in terms of temperature,

= 1( 2 > 90 <g*s(Tr>>1/3]Wp (52)
" T\ 143w )\ 729.(T) \ g4s(T0) Ty

In Fig. 2 we show the GW energy density from eq. (51) for different choices of the two parameters

w and kyn,. We find that the GW abundance grows for stiff equations of state, as reported in [27],
due to the fact that the tensor modes redshift more slowly than the background. We also find that
the energy density grows as kyn, increases. The reason for this is that the largest contribution to
the momentum integral in eq. (44) comes from scales around the narrow peak in the scalar power
spectrum, and therefore we should only expect the signal to be affected if the relevant modes re-
enter the horizon before the transition to radiation has taken place, so that ky > H, o< n,~!. For
kyn, < 1, the relevant modes enter during the radiation era and the effect of the stiff epoch on the
signal is washed out, as can be clearly seen in the Figure.

The total energy density can be found by integrating

Qaw = / dlog k Qaw (k). (53)

As we anticipated earlier, there is a bound on this quantity arising from CMB observations and

the abundance of light elements produced during Big Bang nucleosynthesis [30, 31],
Qawh? < 1.8 x 107°. (54)

Since the signal grows as both w and kyn, increase, this bound is eventually violated. In Fig.3
we perform a numerical scan over the parameter space, showing the forbidden region.'’ By using
eq. (52), this bound can be written in terms of the transition temperature, and translated to a
constraint on the PBH mass and abundance, shown in Fig.1 for w = 1 (left panel) and for ky =
5 x 102 Mpc~! (right panel). These constraints are one of the main results of this paper. As
anticipated at the end of the previous Section, this bound significantly limits the available parameter
space for PBH formation during a stiff epoch. The constraint disappears completely for the standard
radiation scenario with w = 1/3, where the bound is satisfied. In these Figures we have taken
Ay = 5 x 1072 (thereby assuming that fppm ~ 1) and neglected the mild dependence of this
number on w depicted in Fig. 1.

Before moving on, we remark that, although we have restricted our attention to stiff epochs due
to the fact that PBH formation during a matter-dominated era is not particularly well understood
at the time of writing (since the effect of angular momentum and non-sphericity of the collapsing
cloud becomes important [37, 38]), the calculation of the GW spectrum presented in this Section
is also valid for the case w = 0, with the only modification being the scalar transfer function in
eq. (41), which takes the simpler form Ty(kn) = 1 for n < n,.

1The small kink towards the center of the plot is a numerical artifact due to the precision of our scan and has no
physical significance.
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4. Gradual decay into radiation

For the calculation in the previous Section, we assumed that the transition between the reheating
stage and the radiation era occurred instantaneously. We now study the case in which the initial
fluid decays gradually, thereby making the transition between epochs smooth. This scenario was
studied in [26] for the particular case w = 0 and for a scale-invariant scalar spectrum. Here we
extend these results for a generic fluid with constant equation of state parameter w and using
a peaked scalar spectrum relevant for PBH formation. It was reported in [26] that, for a scale-
invariant scalar spectrum, the induced gravitational wave spectrum in the smooth transition case
is suppressed with respect to its sudden counterpart. As we will see, although the same conclusion
remains true for a peaked spectrum, the suppression is very mild and therefore does not strongly
affect the bounds derived in the previous Section.

In what follows we denote quantities related to the radiation fluid by a subscript =, and quan-
tities related to the decaying fluid by a subscript w. We model the transition by considering a rate
of energy transfer of the form I'p,, between the two fluids, with I' constant, such that the total

stress-energy tensor T),, = Tw,m + TW(w)

is conserved, but the separate components are not, so
VVT}M/(’Y) — QM = _VVTHV(W) (55)

for some vector Q" [44]. The background equations then become, using the number of e-folds
dN = Hdn as the time variable,

BMPH? = py + pu, (56)
dpy Tr
Zrw 1 -
dp~ T
aN T 4py = 7P (58)

At the perturbative level, we work in Newtonian gauge and assuming no anisotropic stress. We

use the following dimensionless set of variables

0y 5, = 00w QVEH%, 6, = 1% (59)

5’7’
P Pw Pry Puw

where 6q, = a(py + pp)dvp, and dv, denotes the velocity perturbation for each fluid component.'?

The Einstein equation that determines the evolution of the Newtonian potential ¢ is

do 1 k2 1/ pw P~ B
d]\f+<1+37'[2>¢+2(,06w+,057 =0. (60)

12Note that 6 is sometimes used instead to denote the divergence of the velocity perturbation (e.g.in [26]), so one
must be careful when comparing different references.
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Figure 4:  Left panel: evolution of the background energy density of each fluid, as well as the total energy
density p and the equation of state p/p, for the case w = 1. By normalizing all quantities with respect to
their value at the time Ny defined by p, = py, the plot becomes independent of I'. Right panel: calculation
of the GW energy density for the sudden transition case (solid) and the gradual case (dashed) for w =1 with
kgnr =1 (blue) and kyn, = 100 (red). The time n, in the gradual transition scenario is defined through keq
in eq. (69). The integrated energy density is very similar for both cases, leaving the bounds of the previous
Section essentially unaltered.

The continuity and Euler equations for the fluid are [44]

%%+%¥@wy—%—¢) iﬁ—;; =0, (62)

§$ <gp;p 1$w274m>9+%r+m¢+w5 (63)
(e b b

where we have introduced the additional assumption that dp, = wdpy,, and similarly for the

radiation component. Together, these five equations form a complete system that can be solved
numerically.

To solve the above system of equations, we choose adiabatic initial conditions [33]. On super-
horizon scales k < H and at sufficiently early times so that I' < H and p, < py, the equation for

the Newtonian potential ¢ becomes

d¢

bt L5, =o. (65)

Since there is essentially only one fluid present at this time, and we have assumed dp,, = wdpy,
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the Newtonian potential can be shown to satisfy eq. (40) and is therefore frozen on superhorizon

scales. Thus, on these scales, we have from the above equation the relation
O = —20. (66)
The adiabatic initial conditions for the energy density perturbations are [33]

O . (67)

Finally, if we assume that 6, and 6, are also frozen on superhorizon scales, we obtain, from the
last two equations,
8¢ 2

m, O = —§¢ (68)

0, = —
By using the relation (21), we can therefore fix all initial conditions in terms of R.

The evolution of the background energy density of each fluid is shown in Fig.4 for w = 1.
Note that, as explained in [26], the evolution of the background quantities (and in fact, that of
the perturbations) is completely independent of the choice of I' once they are normalized by their
values at the time N¢q defined by py(Neq) = puw(Neq) = peq, as can be checked from egs. (56-58).
The left panel of Fig.5 shows the time evolution of the perturbations for particular values of the

parameters. We define the transition time 7, in this case via

2
(1 + 3w)keq’

nr (69)
where ke is the mode that re-enters the horizon at Neq. This is the relation between keq and 7,
in the sudden transition case of the previous Section, so this definition allows us to make a fair
comparison between both scenarios.

For the calculation of the gravitational wave spectrum we need both the scalar transfer function
Ty, obtained by solving the system in eqgs. (60-64) with initial condition Ty, = 1 (the condition
ﬁT(ﬁ = 0 is guaranteed by the choice of adiabatic initial conditions for the other perturbations),
and the Green’s function for the tensor modes, which we now turn our attention to. The integral

in eq. (19) can be rewritten in terms of the number of e-folds as

Q(N/,p,“{:—deN/ (70)

I <3+3w>2 *© k hi(N)ha(N') = ha(N)hi(N')
T\ 43w o M ha(N) Ly (NY) =l (N7) 2 o (N)

The equation of motion for the tensor modes is, in terms of the number of e-folds,

&2hs dhi k2
k 3(1—7;> kD ops =, (71)

aN2 T3 aN Tz

To calculate the GW spectrum today, we must evaluate eq. (70) at late times, deep into the radiation
era. At this stage the background pressure is p = p/3, and the Hubble scales as H = Hc(a./a),
where the ¢ subscript denotes some late time N, > Nyy. The product a.H. approaches a constant

value, which can be found numerically, after the transition. Using this scaling in the above equation,
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Figure 5: Left panel: evolution of the perturbations with adiabatic initial conditions for w = 0.5 and
kgn, = 10, with 0, defined via eq. (69). The vertical dashed line denotes the horizon crossing time for this
mode. Right panel: evolution of the two independent solutions to the homogeneous equation for the tensor
modes used to construct the Green’s function (solid lines) for w =1, kyn, =1, and k/ky = 1. At late times
the two solutions approach the asymptotic values in eq. (72) (dashed lines).

we find the following two independent solutions at late times

ate aCHc . a k ate acHC a k
hllt :E?SID (aH)’ h12t :;?COS <a7—t> (72)

By using these two solutions we can take the time-average of I ,3 as we did in the previous Section,

and we obtain, after performing the momentum integral over the Dirac delta power spectrum,

e R R ] (73)
where
J, = <§ : 211””)2 /_ Z WGQ(M, b/ ko) QN ks g AN, (74)
Jo = (g’ i 23)2 / O; malw’, ko) QN Ky e )AN', (75)
with
R T R i) i
Go(N', k/keq) = d ha(N') (77)

ho(N")&-h1 (N7) — ha(N') % ha(N)
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Once again we see that the GW energy depends only on k/keq = (k/ky)(ks/keq), as well as the two
parameters ky/keq and w. The dependence on the parameter keq therefore replaces 7, from the
previous section, with the relation between both given by eq. (69).

We remark that, although the Green’s function does not depend on which two linearly indepen-
dent solutions are chosen to construct it, the fact that we perform the time average over I? by using
(sin?(kn)) = (cos?(kn)) = 1/2 means we need to project the two solutions that behave as eq. (72) at
late times. This can be accomplished by imposing the boundary conditions A1 2(Niate) = hlffge(Nlate)
at some late time Niye > Neg, sufficiently deep into the radiation era (numerically, we find that a
few e-folds after the transition suffice). The corresponding solutions are shown in the right panel
of Fig. 5 together with their late time limits for w =1, kyn, =1 and k/ky = 1.

We show the resulting GW energy density for w = 1 in the right panel of Fig.4, for two
illustrative examples with kyn, = 1 and kyn, = 100. We find that, although the signal is very
mildly suppressed with respect to the sudden transition case of the previous Section, the difference
between both is essentially negligible for the purpose of estimating the curve in Fig. 3, so we conclude
that the results from the previous Section are robust. We nevertheless remark that this conclusion
might change if the transition is modelled differently.

Having established that the gradual transition scenario is not significantly different from the

sudden case, we go back to using the analytical formulas of the latter in the following Section.

5. Smoothed lepton number density

In this Section we estimate the size of the baryon asymmetry fluctuations induced by the gravita-

tional chiral anomaly. The quantity of interest is the variance of the lepton number density'? n,

> (79)

where W,_(r) is a Window function that decays smoothly on scales r > r,, which we take to be a

computed in egs. (14) and (23), averaged over a region of size r,

(), = <’ / BrW,, (rn(z + )

Gaussian for concreteness,

W, (r) = (T:/;)Se_TQ/Tg' (79)

Let us clarify why we focus on the variance of this quantity. We would naively expect the
baryon asymmetry to be determined by the mean value of n;,. However, in the absence of a chiral
gravitational wave background (generated for instance, via some inflationary coupling of the form
f(p)RR such as the one considered in [7], where ¢ is the inflaton field), which would make the terms
quadratic in h;; of the form shown in eq. (5) nonzero, the mean value (ny,) vanishes. This can be
easily seen at NLO, since, schematically, taking the mean value of eq. (14) yields (¢ph) ~ (¢)(h) = 0.

The fact that the mean value also vanishes at NNLO is less obvious. The dimensionless bispectrum

13 Throughout this Section we often abuse language and refer to this quantity simply as the baryon asymmetry.
In the leptogenesis scenario, the relation between the baryon and lepton number densities is, assuming the Standard
Model matter content, ni, = (79/28)ng [45]. The measured value for this quantity is nr,/s ~ 2 x 1070 [1, 2].
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Br of curvature perturbations is defined by

27
(RyRaRy 1) = (205 o Bl bl — k) 0

where we have introduced the shorthand 513, = §3(p) for later convenience. This quantity vanishes
if the fluctuations are Gaussian and is therefore slow-roll suppressed in conventional inflationary
scenarios, but this could change depending on the dynamics of the inflaton (particularly in mod-
els of PBH production featuring a potential with a near-inflection point, in which the slow-roll

approximation breaks down [40]). After some manipulation, we obtain, from eq. (23),

]y, = (2121)2 /a / <t (ps0ep )5 (0) T ()

3 —
[ Gl ) ]yt |p—k>87;§§;’“1;’f = (81)

where we have used the Dirac delta function in the definition of the bispectrum to perform one of

the momentum integrals, as well as the normalization of the window function

/ Brw,, (r) = 1. (82)

The right-hand side of eq. (81) clearly vanishes, since p;py is symmetric, but €;;;, is not. In what
follows we assume that the curvature perturbation R follows a Gaussian distribution.

Instead of focusing on the mean value of this quantity, we assume that the baryon asymmetry of
the Universe is generated via some other mechanism which we remain agnostic about, and shift our
attention to the variance of ny,.'* As noted in [11], since inflation is a stochastic process, we expect
the lepton number density to deviate from its mean value in different patches. This deviation will
generically have a magnitude of order ~ \/m in a region of size r,, leading to fluctuations
in the baryon asymmetry. Before moving on with the calculation however, let us note that, as
discussed in [11], this asymmetry does not survive at late times on arbitrarily small patches, due
to annihilation processes. Let us consider two neighboring patches, one with a matter excess, and
another one with an antimatter excess. If particles are able to freely travel from one patch to the
other, annihilation will take place, leading to a smaller asymmetry overall. On sufficiently large
patches, however, the asymmetry always survives at late times. To see why, note that the maximum
distance a particle in the radiation bath can travel between collisions is A/a, where X is its mean free
path. In a time At, the particle undergoes N = At/\ collisions. The average displacement in a time
At for a random walk is therefore Ar = (A\/a)V'N = (\/a)\/At/). Integrating this displacement
yields the Silk length [46], which sets the limit below which annihilation can take place.!® On
the other hand, at late times, after the electroweak sphaleron processes have taken place, the
asymmetry is carried by quarks, which are relativistic. Once the temperature is low enough,

quarks are confined into non-relativistic baryons and their mean free path drops significantly. The

1471t is conceivable that the mechanism responsible for generating the baryon asymmetry will also lead to a spectrum
of fluctuations which could be potentially larger than the contributions discussed here. The relative importance of
each term is of course model-dependent and can only be assessed once a particular mechanism is fixed.

'5This is analogous to photon diffusion in the CMB [33].
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Matter excess

Figure 6:  Schematic depiction of the late-time behaviour of the baryon asymmetry fluctuations. Small
neighbouring patches with matter and antimatier excesses annihilate, homogenizing the distribution on small
scales. Larger regions remain unaffected, since quarks cannot travel from one patch to the other if the distance
separating them is larger than the Silk length (see text). This length scale setls the range of validity for the
calculations in this Section.

Silk length is therefore approximately given by

tqQco by
ra o~ / dt 22 (83)
0

where Aq = 1/T'q denotes the mean free path of quarks in the plasma, and I'q is the interaction
rate, which can be estimated as I'q ~ T' [47]. For simplicity, let us neglect the effect of the equation
of state on the evolution of @ and assume that the Universe is always radiation-dominated. We also
neglect the change in the relativistic degrees of freedom in entropy g,s between the end of inflation
and the QCD scale. We then have T ~ Ty/a and H = Hga 2, which leads to

agep ot 1 2
2 Q —17
ré ~ da ~ ~ <10 M c> . 84
S /0 @H ~ HoTqep P (84)

We remark that this is only an order of magnitude estimate,'® and an accurate description of the
damping dynamics requires solving the Boltzmann equation. We conclude that the asymmetry
is preserved on scales larger than the Silk length of quarks at the confinement scale, r, 2 rg ~
10~ "Mpec. This is the domain of validity of the calculations in this Section. Below this scale,
annihilation dynamics become important and we expect the amplitude of the baryon asymmetry
fluctuations to drop significantly.

In what follows we will compute the fluctuations in three different cases, 1.for the NLO term
in eq.(14) with a flat scalar spectrum (29) and with the tensor spectrum given by the relation
P, = rA,, where r < 1072 [48, 49] is the tensor-to-scalar ratio, 2. the same NLO term with a sharp

18 A gimilar value of rg ~ 10~ 1°Mpc was assumed in [11]. However, the specific number is not particularly important
for our purposes since, as we will see, the peak in the spectrum of fluctuations generated by PBHs lies far above this
scale.
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scalar spectrum (30), but with a flat tensor spectrum given by the same relation as in the first
case, and 3.the NNLO term in eq. (23) for a peaked scalar spectrum, and with the tensor modes
induced by scalar perturbations. As we will see, each term dominates at different scales, and the
total asymmetry fluctuations will in general be given by the sum of the three contributions, plus
the subdominant mixed terms that we have neglected as per the arguments of Section 1. We also
neglect the term involving the flat part of the scalar spectrum together with the induced GW piece,
since we expect it to be suppressed with respect to the NNLO term mentioned above. Before moving
on with the technical details of the calculation, let us anticipate that, since the variance of np, is
proportional to both the tensor and scalar power spectrum, from dimensional analysis we can guess
2y1/2 ~ VPrPr/(ar, )3, since r, is the only dimensionful
parameter. Dividing by the entropy dens1ty 5 ~ g4s(T)T? and using entropy conservation, we find

L, YPRPh (85)

S Oxs <T0>(T0T0)3’

the result in all three cases to be (|n,|? >

up to an overall numerical factor. The NNLO term will be highly peaked around r, ~ ku_ ! whereas
the NLO term due to the flat part of the power spectrum will instead grow simply as 7,2 and reach

its highest value at the Silk scale rg, as per the previous discussion.

Case 1: NLO, flat scalar spectrum (NLObD)
Putting together egs. (14) and (78), we find, after some manipulation,

) = (k) S fof o 0] 85 o f

(;’ I §Z> Ty (an) T (G0 T7,(om) Th () (RqR L) (hiy (0) i (0))

Wrg (T)WTO- (f)ei(p—ﬁ-q}(x—&—r) e—i(ﬁ-‘rﬁ)'(:l?-‘r'f) {eijkeabcqqupkefé (p)(jbddﬁceZd(ﬁ)] . (86)

Straightforward evaluation of the correlation functions yields
(RARY) = 2o PRk p(2m)" (87)
(hi,(0)RET (0 >_ =5 Pulk)oi_,(2m)?6%, (88)

where we have introduced the shorthand 63(k) = §3 and assumed that hz = h; = hy. Using the

Dirac delta functions to perform two of the momentum integrals, we find

1 /3+3w d3p d*q Pr(q )Ph
6 2 _
(a®lnil?), = 64<5+3w> / /dn/ / RS ‘W’"" pra)f

T (qn) T (qf)T7,(pn) T, (p) [Z €ijk€abed;qePkese(P)dbqapeeia(p) |, (89)

s

where we have introduced the Fourier transform of the window function,
W, (k) = / B Wi, (r)e (90)
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By expanding the Levi-Civita symbols in terms of Kronecker deltas, we find the following

expression for the term in brackets

2
> €ijheabed; qerkese(P)angapecs(p) = [quz— (q-p)ﬂ [q-es(p) -e°(p) -q} -p? [q-es(p) -q} - (91)
S

If we choose the coordinate system in such a way that the z axis is aligned with p, then the vectors

in the definition of the polarization tensors in eq. (13) are simply v = @ and v = y. Using 6 to

denote the angle between g and the z axis, and ¢ for the corresponding azimuthal angle, we obtain,
after some straightforward algebra,

s S 1 2 4 - 4
> €ijkeabed; 1epese(P)abgapecsy(p) = 5P7¢ sin” 0. (92)

s

The window function is obtained by Fourier-transforming eq. (79),

r
4

2
o

W, (Ip + ql) = exp {— »* +¢* +2pqcos@)] (93)

After switching to spherical coordinates, all of the angular integrals can be performed explicitly,

and we arrive at the expression

2

1 3+ 3w\?
6 2 _ 3 /
(a®lnl?), = 61 <5+3w) /dp/dq Pq PR(Q)Ph(p)‘ /dn Ty (qn) Ty, (pm)
2 sinh(pqrg)}
(parz)® |

cosh(pqrg)

par2)? 64

(* + qz)} [ -3 + (3 +p*g*rd)

oo -

As explained earlier, the observable quantity of interest is the root mean square of the lepton
number density. In order to compare with the baryon asymmetry after the electroweak sphaleron
processes have taken place, we need to divide by the entropy density

272

5= Eg*S(T)T3. (95)

The main contribution to the time integrals in eq. (94) occurs during the reheating stage, since
the transfer functions for both tensors and scalars decay quickly during the radiation era. Let us
suppose that the integrals freeze at some time t; shortly after reheating ends. Then, all of the time
dependence of the lepton number density is in the a® factor, and we can relate the value of ny,/s

to its value today by using entropy conservation,
9us(T1)aj T} = gus(To)apTs - (96)

Moreover, the upper limit in the time integrals can then be taken as n — oo.

So far, we have not made any explicit choice for the power spectra. Let us set

Pr(k) = Ay, Pu(k) =1A, (97)
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Figure 7:  Numerical calculation of the coefficient QI{ILO in eq. (99) as a function of the parameter n,/rs
for the different equations of state w = 0 (black, dashed), w = 0.5 (black, dot-dashed), and w =1 (black,
dotted), together with the analytical estimate in eq. (104) (red, solid).

We then obtain

n| 45 (3 + 3w> rAlGRo )
5 |nnop 1674\ 5+ 3w ) gus(To)(Tors)3
with
b * o > qdo ne\ d M 2
= d d dr Ty — — | =T -
9NLo /0 pa/o qo /0 €L ¢<paxv%rg) dr h<$,PaTU>
1, 9 cosh(psqs) 9 9. sinh(psqs)
- = —3———>+(3 —_— 99
P [ 5 Po t q”)] [ Pido T3+ pod) pzaz ] (99)
where we have introduced the dimensionless variables
T =pn, Do = ToDs do =154, (100)
as well as the following notation for the transfer functions

which simply makes explicit the dependence on 7,.. There is, of course, also an implicit dependence
on the equation of state w during the reheating stage. In fact, ggmo is a dimensionless numerical

factor that depends only on the parameters w and 7, /r,, which can be found from eq. (52),

o 1 rot 107GeV (102)
re \14+3w 1014Mpc_1 T, '
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The dependence on both of these quantities is quite mild, as illustrated by the numerical results
presented in Fig. 7.

It is instructive to obtain an analytical result for glb%o by introducing some approximations,
following the procedure in [11]. The first is that since the time integrals freeze around the end of
reheating, we can take the upper limit as 7, instead of oo, which allows us to use the expressions
for the transfer functions valid during the reheating stage. Moreover, since the dependence on the
equation of state w is quite mild, we can simply set w = 0, so that T4(kn) = 1. The time integral

can then be performed immediately, yielding

P d
9o Nr
de Tyl —x | —1T, =Ty po— | — 1, 103
f (G gyt =) (109

where we have suppressed the second arguments in the transfer functions, since we are using the
expressions during the reheating stage, and no matching of coefficients is involved. We can finally
make the assumption that 7, > r,, so that T}, (psnr/rs) — 0. The remaining integrals over p, and

go can then be performed analytically, and we find

2
o = 3 (104)

This result is very close to those obtained by numerically calculating the integral in eq. (99), as
<r, and w # 0.

~

shown in Fig. 7, even for n,

Our result differs from the one in [11] in two ways. The first is that we obtain a different
expression for the integral in eq. (99). The momentum integrals in [11] diverge in both the IR and
UV, so the authors have calculated it by imposing cutoffs on both limits. Our integral, in contrast,
converges without the need for cutoffs, so we obtain a finite result for all parameter choices. The
second difference is that the evolution of the transfer functions during the radiation era was not
considered in [11], and instead an analytical estimate similar to the one performed above was
presented. We have taken the effect of this evolution into account in our calculation, and computed
the integrals in eq. (99) numerically by varying the two parameters 71, /r, and w, confirming that
the dependence of the result on these quantities is very mild.

We conclude that, apart from the mild dependence of QKLO on 74, the resulting ny,/s scales as
r-3. As discussed earlier, this result is only valid up to the Silk scale rg, where the annihilation
damping becomes relevant. The maximum value it reaches is therefore, taking r = 0.01 [48, 49]

and ggmo = 2/3 for simplicity,

ny,
S

45 (343w VAP
( >g*s( S~ 1079, (105)

5 + 3w To)(Tors)

NLop 167
The asymmetry over the entire Hubble patch today is much smaller,

45 <3 + 3w> \/m <Ho>3 ~ 10100 (106)

NLor 16 \5+3w)  gu(To) \To

ny,

S

so we confirm, as claimed in [11], that these fluctuations alone cannot explain the observed value
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Figure 8:  Left panel: approzximate expression for QI{ILO in eq. (110) (solid black), together with the asymptotic
limits in (111) (dashed and dotted red). Right panel: numerical calculation of the full integral in eq. (109)
for kyre =3 (blue) and kyr, = 10 (orange) for w = 0 (dashed), w = 0.5 (dot-dashed), and w =1 (dotted),
together with the approzimate expression depicted in the left panel for each case (solid red and dashed red).

of ny,/s ~ 1071°. The same conclusion holds for the two following cases, but, as we will see
momentarily, the resulting spectrum of fluctuations has a rich structure that could, in principle,

allow us to probe different inflationary models if it were observable on small scales.

Case 2: NLO, sharp scalar spectrum (NLO¥)

We now turn our attention to the cases in which the power spectrum is sharply peaked at some
particular scale (not considered in [11]), and compute the corresponding enhancement to the baryon
asymmetry fluctuations. The calculation in this case is exactly the same as the previous one up to

the choice of the power spectra in eq. (97). We now set

Pr(k) = Apkyo(k — k), Pr(k) =r1A,, (107)
and obtain
s IxLog 1674\ 5 + 3w ) gus(To) (Toro)?’
with
gt _/md /OodT CLCaMyN A N AT
NLO — 0 Do o T Ly Dy x, ﬁrara s x,para
Lo 1202 cosh(pokyry) 2,2 9\ S0h(Pokyro)
exp |:— i(pa + kﬁrg)] |:— 3T + (3 —i—pgkﬁra)w . (109)

Now the dimensionless factor gﬁILO depends not only on w and 7, /r,, but also on the parameter
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Figure 9:  Numerical calculation of the function QIEINLO for w =1 (black) and w = 0.5 (red) for kyn, =1,
10, and 100 (solid, dashed, and dotted lines, respectively).

kyry. It is once again instructive to obtain an analytical result using the approximations of the

previous case. Setting w = 0 and following the same procedure, we obtain

1 T kyr 2,.2 1
# _ T orf tro _ *kﬂa/2 1 +1.2,.2 11
9nLo 71%7“0 5 oF ( \/§> e ( + 3kﬁ re . (110)

This function is highly peaked around k;r, ~ 3, for which we find QﬁILO ~ (.38. This quantity has

the asymptotic limits
1
15

3 f()I kﬂq o 1.
kﬁ’) o \/g >>

The function and its asymptotic limits are shown in the left panel of Fig. 8. The numerical results

(kyro)t,  for kyr, < 1,
(111)

for the full integral in eq. (109) are shown in the right panel of the same Figure for ks = 3 and
kyrs = 10 as a function of 7, /7o and w. We once again find that the dependence of the result on
these two parameters is very mild, so only the scaling with kyr, is relevant for our purposes. The
dependence of the result on r, is shown in Fig. 10 for values of ky of interest for PBH dark matter,
together with the NLOb and NNLO} contributions, see the discussion below.

Case 3: NNLO, sharp scalar spectrum (NNLOfY)

We now turn our attention to the NNLO contribution to the baryon asymmetry fluctuations. The
amplitude of this term is entirely determined by the initial conditions and evolution of the scalar
perturbations, and is therefore present even if the tensor-to-scalar ratio r is vanishingly small. The

calculation in this case is more involved than the previous ones, so we perform it in Appendix A.
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Figure 10:  Left panel: sum of the NLOb (solid, blue), NLOY (solid, orange), and NNLOY (solid, red)
contributions to the baryon asymmetry fluctuations, represented by the dashed black line and scaled by the
factor (kyrs ). The plot is cut at the Silk scale rs, where the calculation stops being valid. We have taken
ky = 10"Mpc ™! as a representative value for PBH dark matter (see Fig. 1), together with Ay =5 x 1077,
r =001, A, =2 x107° and w = 1. Right panel: sum of the three contributions to the baryon asymmetry
for the same parameters as in the left panel, but varying ky.

The resulting expression is

nr,
s

45 <3—|—3w>\/“4§)glﬁ\lNLO (ﬂ)f” 112)

NNLO# S 16mt\5+3w)  gus(To) To

where gﬁINLO is computed in eq. (121). The coefficient gf\INLO is, in this case, a function of w and
kynr, as well as kyro. The numerical calculation of this quantity is shown in Fig.9 for different
values of the parameters. We once again find that only the dependence on kyr, is relevant, and for
w =1 and kyn, = 1 the function can be approximated by QIEINLO ~ 10728 exp ( — k:gr?,) We adopt
this expression for the following discussion.

The sum of the contributions in all three cases is shown on the left panel of Fig.10 for the

1 and on the right panel of the same Figure as a function of

representative value ky = 10"“Mpc™
kg. We have rescaled ny,/s by the factor (kyr,) to make the peaked structure of the spectrum
more clear. This is the main result of this Section. We find that the NLO} contribution dominates
for r;' < k4, and the NLOb contribution becomes relevant only for ryt > ky. For ryt ~ ky,
the distribution is heavily peaked due to the NNLO} term, which yields an enhancement over the
NLOb result of O(10°). As the right panel shows, the amplitude of the fluctuations at the peak of
the distribution increases with ky. We note, however, that for ky ~ rg ! where the enhancement
is largest, the PBH masses obtained are far too small, as can be checked from eq. (28), yielding
a distribution of black holes that would have evaporated today [50] (though having a peak in the
scalar spectrum at this scale is still possible, provided its amplitude is small enough so that PBHs

are not overproduced). It is also clear from the Figure that the NLOf and NNLO} contributions

28



do not change the distribution significantly on large scales, so the estimate in eq.(106) of the

asymmetry on a Hubble-sized patch today holds in the presence of the new terms.

Conclusions

We have calculated the expressions for the mass and abundance of PBHs produced during an early
epoch of reheating with a stiff equation of state. We find that the parameters that determine the
black hole distribution are the scale at which the peak in the power spectrum is located kj, the
temperature at which the transition to radiation occurs 7, and the equation of state w. There
are three relevant constraints in this scenario. The first is that, in order to reproduce the observed
dark matter abundance, the black hole masses must be in the range (2). The second is that for
collapse to occur before the radiation era, the scale at which the peak in the spectrum is located
must re-enter the horizon before the transition occurs, see eq. (32). Finally, since tensor modes are
enhanced in the presence of a stiff epoch, we must also ask that GWs are not overproduced so that
the bound on their energy density today, which arises from BBN and CMB observations, is not
violated, see eq. (54). The allowed region of parameter space is shown in Fig. 1.

In order to calculate the induced GW signal we have implemented a matching procedure for
both the Green’s function of the tensor modes and the transfer function of the scalar perturbations,
thereby extending the results of [27] by taking into account the full time evolution of these quantities.
We confirm that, in the presence of a stiff epoch, the induced GW signal is enhanced. We have
explicitly checked that the smoothness of the transition does not significantly change our results,
and provided a procedure to compute the signal in these gradual decay scenarios exactly, without
resorting to approximate analytical expressions of the Green’s and transfer functions, extending
the results of [25] to decaying fluids with stiff equations of state. As mentioned above, we have
used these results to translate the bound on the GW abundance to a constraint on the PBH masses
formed in this scenario. The results are shown in Figs. 1 and 3.

Finally, we have computed the chiral gravitational anomaly to third order in perturbations, and
we find that the large scalar spectrum responsible for PBH formation induces a peak in the baryon
asymmetry fluctuations on small scales. These results are shown in Fig.10. We have shown that
this spectrum is essentially independent of the cosmological history (i.e.the reheating scale and
equation of state) and is therefore a generic prediction present in every model of PBH formation
from collapse induced by large density perturbations, even in the standard scenario where the black
holes form during radiation domination, assuming only the matter content of the Standard Model.
These fluctuations could, in principle, be used as an observable to probe not only the existence of
PBHs, but also different models of inflation. Assessing whether these fluctuations can be measured
by any future experiments is beyond the scope of this paper, but we point out that the main obstacle
to this end is the fact that they are much smaller than the observed background value, and therefore
some sort of enhancement mechanism would likely be required in the particular scenario studied
here. We remark, however, that the machinery we have developed could also be applied to other
models of gravitational leptogenesis, such as the one in [7], in which the fluctuations might be less

suppressed.
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Appendices

A. Evaluation of gﬁjNLo

In this Appendix we compute the quantity QﬁINLO relevant for the calculation of the lepton number

density variance in the third case of Section 5. By putting together eqs. (23) and (78) we obtain

(), = (32#) Z / dn / diy / = / = / (;ij:; / (Czljri/ (;ljr()j3/ (;ljr?:%
<3+3w

9+ 3w
/d?’r/de‘ W, (r)W, (f)ei(p+q)-(w+7“)e*i(ﬁ+é)-(w+7ﬁ)

1 - - R .
o[ (P) K] B €(0) - B cucascaaumiels(phivdapecta(P)| (113)
We can evaluate the six-point function by using Wick’s theorem

-1
202m)°] (ReReRp kRERIRY 1) = [Rol*[Ripit PR 03140, 5505,

3
+’R | ‘Rk’ ‘R ‘ 6 q+p— k(sk k5q+p k

+|R | |Rk’| |R |252 i k: p+k5q —p+k

+ | RqPIR - *IR4*5)_ 50k-a0, . (114)

where we have used the symmetry of the integrand under k — p — k and k—p—kto simplify

tl?

the result.”” We can use the Dirac delta functions to perform the momentum integrals over k, k

and q. After using the symmetry of I, under the exchange of the two momenta in the argument,

'"We have also ignored unphysical contact terms containing factors of the form 3, and one term with §5_ ;63

a—¢%p—p>
which is not proportional to an overall momentum-conserving delta function 61, ta—p—g"
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we obtain

SRV fonf o 5 5

Ty(qn)Ty(|p + q — k|n) [Eijk:Qj(Mpkez‘z(p)} [Eabc(pb +qp — k) (pa + Qd)kcefld(k)}

Pr(q) Pr(lp+q — k) [ Pr(lp+q|) . t
7;3 7|ZP—|-q—k|3 {Tp+q|3 { e(P)‘QH(erq)-e(k).(erq)}

L(n.qlp+da) (7, lp+q—kl,Ip+4q|)

P g b)) (0 )] g+ ') -]

I p+q— Kl lg — kDI 0 rq—k:|>}, (115)

where we have also renamed the remaining dummy variable p — k. By choosing the sharp power
spectrum in eq. (30) and following the same procedure as for the two NLO cases in Section 5, we
find eq. (112), with

gt 270 / d*p / dq / d*k 0(q— k) 6(lp+q| — ki) 0(lp+q — k| —ky) 1
NNLO = k:é3 (2m)3 ) (2m)3 ) (27)3 k:? k:? kt? p2k?

[ Ttk 1y ks k) [ T R )

> [q -e*(p) - q} [(p +q)-€'(k) (p+ Q)}

st

|:Fst(p7 q, k)’Wrgﬂp + (I|)|2 + Fts(_ka q, _p)’WTJUq - k|)}2}’ (116)

where

Fu(p,q.k) = [EiijjQZpkeff(p)} [Eabc(pb +ap — kp) (pa + Qd)kcetad(k)] - (117)

To obtain this expression from eq.(115) we have renamed the dummy variables k — —p and
p — —k, as well as s <+ t, in the second term inside the brackets.

Let us orient our coordinate system in such a way that k coincides with the z axis, and denote
the angle between p and g by ©, and the angle between p + q and k by ®. We can then use the
following property of the Dirac delta function,

Z |$_x3 (118)

where z; are the roots of f(z), to find

1
lp+aq|l—Fk) = P d(p + 2ky cos ©), (119)

0s O

o(p+aq—kl—k) = 8(k — 2k; cos ®). (120)

| cos |

We now switch to spherical coordinates in all of the momentum integrals in eq. (116). We denote

the polar and azimuthal angles of p by 0, and ¢, respectively, and similarly for g and k. Since k
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coincides with the z axis, we can immediately perform the integrals over 6 and ¢. We can also
perform the integrals over the moduli by using the Dirac delta functions and including a Heaviside

function for each to take into account the fact that the moduli must be positive. We find
1
Q&NLO = 6.2 /dﬁp/dgbp/dﬁq/dqﬁq sin 6, sin 6,01 (— cos ©) O (cos P)

d x d T
T, —1_ — r Ty(2)—1: —
/dw ¢(~’E)dw Qkucos®<kﬁakﬁakﬁ> /diE ¢($)d§c Qkucos@<kﬁvkﬂakﬁ>
> |a-e®)- | |(~2c0s0p+q) - e'(k) - (~2cos0p + q)]

st

AN |2 s PN NN
[Fst (B, 4, k) |[Whyr, (Ig — 2cos ©p))|* + Ers(—k, ¢, —p)

(1d —2cos ®R|)[*],  (121)

where x = kyn, the hatted vectors are normalized to unity (and bear no relation to the hatted

dummy variables in eq. (113)), and

Fu(p, g, k) = [ﬁijkdjdﬂakefé(ﬁ)} [%bc <ﬁb — 2cos ©p, — 2 cos Cﬂ%) ((id — 2cos @ﬁd) Ecezd(’%)} ,

Fis(—k,q,—p) = [Ez’jk@j@ekkeﬁg(’%)} [%m( — 2cos ©py — 2cos ‘Pkb> 4a — 2 cos qﬂ%d)ﬁcﬁid(ﬁ)} :

(122)
The window functions can be explicitly written as
- N R 2 2.2
Wiy, (16 — 2 cos Op|)|* = e Fa7/2,
‘Wk”g(](j — 2cos @l%\)f = ¢ kira/? exp iji?rg(cos 0y — cos ) cos D|. (123)
We can also write the © and ® angles explicitly as follows,
cos © = sin 0, cos ¢, sin 8, cos ¢4 + sin 0, sin ¢, sin 0, sin ¢, + cos 6, cos 0, (124)
cos ® = cosfl; — 2 cos © cos 0. (125)

We can write the expressions in eq. (122) explicitly by expanding the Levi-Civita symbols. After

some straightforward algebra, we find

Fu(p.d.k) =~ |4+ (4~ 2c0s0p —2cos k)| k- *(8) - g [p- &' (k) - (4 — 2cos0p)]
+[p- (4 —2c050p — 2c0s0k)| [k *(p) - ] [¢- €' (k) - (4 — 2 cos ©p)]
- :15-1%_ (G — 2 cos Bk) - €*(p) - } [q-ew%)-(ums@ﬁ)}
+[a-k|[(@—2cos0k) - () -4 [p- €' (k) - (d — 2005 0p)|
- qk: 'ﬁ (g —2cos@p—2cosq>k)H -eS(p)-et(k).(q—Qcos@p)}
+ [k :q (d—2c0s ©p — 2cos®k)| [ €*(p) - €'(k) - (4 — 2c0s0p) |, (126)
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and, similarly,

Fio(—k,q,—p) = — :q (G — 2 cos Op — zcos@i%)} [ cet(k) - q} [k e (p) - (4 — zcos@k)}
n k; (G — 2cos Op — 2cos¢>ic)} [ﬁ (k) - q} [q e (p) - (G — 2cos¢>ic)}
— |pk)[(@—2c0s0p) - '(k) - 4] |4+ €*(P) - (@ — 2cos Vk)|
+[a-p||(@—2c050p) - €'(k) - ] [ - e*(D) - (q — 2cos D)
~ @] [k (@ 2c0s0p — 2c0s0k)| |- €' (k) - €*(5) - (q — 205 ¥)|
+[pk|[d- (@ —2c0s0p — 2cos 0k)| [ €' (k) - €*(B) - (4 — 2cos k)] (127)

The e® matrices are in general given by

. 1 1
eij(k) = —=0" (eiej — €iej) + —=0"" (eiej + eiej), (128)

V2 V2

where e; and €; are orthonormal vectors orthogonal to k. Since k coincides with the z axis, we can

choose e¢; = z; and €; = y; for e'(k). For e*(p) we can instead choose e; = v; and &; = w;, where

v; = cos 8 cos ppx; + cos Oy sin ppy; — sin 0,25, (129)

w; = —sin gp; + cos Ppy;. (130)
These vectors can be easily checked to be orthogonal to p by using
p; = psin b, cos ¢p,; + psin b, sin ¢py; + p cos 0,z;. (131)

With these matrices in hand, the dot products in eqgs. (126, 127) can be written in terms of 6, 6,

op, and ¢y.
Let us turn our attention to the time integrals in eq. (121),

d T
= | dzT, — I, — ks, ks ). 132
[ o Tote) 1o (b (12
The I, function is given by eq. (19), so that
d T 3+ 3w\? [k g Ty Yy
— I —, ke, ky | = —qGy —, = Zoky, ky ) d 133
dx q(kﬁ’ : u) <5+3w) /0 da? q<ku’q>Q(Q’ : u) v (133)

with y = ¢/, together with

Q(yk 1<;>—8T<’“ti k >2+16[T<kjj k >+da<kjj k >r (134)

and
z oy q q q qa q q
I o (Lo, L ) Gol v, Lhyn, ) — ho| Lo, Ly, L n ). 13
qu(’fﬁ’Q) 1<kﬁx’ ky w) 2<y ky W) Q(kﬁx ky w>G1<y ky W) (135)

33



2.0 <‘—1' ——— 4.65 5
rgxm =
i

Ll 1 - 3.41 'L af
W\ 279 E‘

“.. 217 — 3t
5 | ] Il

= 10 '.b 155 3 N

- 10.93 Tf 2
0.5} R 03 &

~ 1
-0.31 &
=
. g : -0.93

Ol . . .
0 2 4 6 8 10 0.0 0.5 1.0 1.5 2.0
T Q/kﬂ

Figure 11:  Left panel: integrand of T (Iin) for the specific parameters shown in the label. The integral
converges quickly for x 2 4. Right panel: integral T as a function of q/ky for w =1 (black) and w = 0.5
(red) for kyn, =1, 10, and 100 (solid, dashed, and dotted lines, respectively).

In these equations we have highlighted the dependence of the transfer function Tj, on the parameter
kyn,.. Similarly, the factor ¢/H in eq. (134) is a function of y and gn, = (¢/ks)kyn,. For the Green’s
function, we think of the independent solutions hj o and the functions G 2 defined in eqgs. (76, 77)
as functions of (¢n, ¢n,). We therefore find that I, is a function of (x, q/ky, ksnr, w).

Computing the 8-dimensional integral in eq.(121) numerically is difficult, even with Monte
Carlo methods. The strategy we adopt is to first calculate the integral 7 for different choices of
the parameters w and kg, as a function of ¢/ky. The results are shown on the right panel of
Fig.11. Since g/k lies between 0 and 2 in eq. (121), we restrict our calculation to this range. The
integrand of 7 is shown on the left panel of the same Figure. With these integrals in hand, we can
then calculate the remaining four integrals over the angles in eq. (121) numerically by varying the

remaining parameter, kyr,. The results are shown in Fig. 9.
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