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Abstract

We consider black hole formation due to the gravitational collapse produced by large density fluc-

tuations during an epoch of reheating with a stiff equation of state and calculate the induced

gravitational wave spectrum. By considering the existing bounds on the total energy density of

gravitational waves today, we find constraints on the parameter space of this scenario. We also cal-

culate the lepton asymmetry generated by metric perturbations via the chiral gravitational anomaly

present in the Standard Model and find that, once the electroweak sphaleron processes have taken

place, the large spectrum of scalar perturbations responsible for black hole formation induces a

peak in the baryon asymmetry fluctuations on small scales.
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Introduction

The baryon-to-photon ratio observed in CMB experiments [1] as well as in measurements of the

abundance of light elements produced during Big Bang nucleosynthesis (see e.g. [2]), leads to the

requirement of some mechanism, known as baryogenesis, to produce an asymmetry between matter

and antimatter in the early Universe. One possibility that has been extensively considered is that

of leptogenesis [3], which consists in generating a lepton asymmetry at early stages which is later

converted to a baryon asymmetry via sphaleron transitions, non-perturbative processes that take

place in the electroweak sector of the Standard Model. Typical models require extending the particle

content of the theory by adding, for instance, right-handed neutrinos [4]. An alternative possibility

is gravitational leptogenesis, which consists in exploiting the chiral gravitational anomaly [5, 6]

present in the Standard Model (that is, in the presence of only left-handed neutrinos1),

∇µJ
µ
L = − NL−R

24(4π)2
RR̃, (1)

where RR̃ = (1/2)ǫµνρσRµναβR
ρσαβ denotes the contraction between the Riemann tensor and its

dual, and the factor NL−R = 3 arises from the difference between the number of left- and right-

handed neutrinos in the theory.2 By expanding the right-hand side of the above equation to

quadratic order in perturbations, one obtains a term proportional to the product hijφ, as well as

terms quadratic in hij , where φ denotes the Newtonian potential and hij the transverse, traceless

tensor perturbation of the metric. From the structure of the resulting terms one can check that, in

order for the mechanism to work, a chiral gravitational wave background is required, as one would

expect from the Sakharov conditions [9]. Such a spectrum can be generated, for instance, during

inflation, in models in which the inflaton ϕ contains a CP-odd component and couples to gravity

through a term of the form f(ϕ)RR̃ [7].3

It was recently suggested in [11] that, due to the fact that inflation is a stochastic process, there

is actually no need to invoke the presence of these couplings to produce a lepton asymmetry via

the above mechanism. Indeed, due to the dependence of the anomaly on the stochastic variables φ

and hij , we expect a non-vanishing variance for the lepton number density 〈|nL|2〉 to be generated

in different patches as inflation progresses. The average of the root-mean-square variance over

some particular region therefore quantifies the expected asymmetry. Since these fluctuations are

generated during inflation (out of thermal equilibrium) and the anomaly violates C, CP, and L (with

the electroweak sphalerons providing the required B violation later on), the Sakharov conditions

are fulfilled. As shown in [11], however, when this average is computed over the entire observable

Universe today, the resulting asymmetry turns out to be extremely suppressed, rendering the

proposal incapable of producing baryogenesis. Although unable to explain the observed background

value of the baryon asymmetry, the presence of the chiral gravitational anomaly would nevertheless

1Even if right-handed neutrinos are added to the Standard Model, this anomaly is still present once they are
integrated out, at sufficiently low energies [7].

2In general, all chiral fermions in the theory contribute to NL−R, with the contribution of each particle weighted
by its corresponding B− L factor (see e.g. [8]), but since the Standard Model contains an equal amount of left- and
right-handed quarks, their contribution vanishes and B drops out. The same argument applies to charged leptons.

3See [10] and the references therein for a discussion about the caveats of this mechanism, in particular the presence
of ghost modes, and some proposed solutions.
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lead to unavoidable fluctuations in the baryon number density on sufficiently large scales,4 which

could potentially be used as an observable to probe different models of inflation. We anticipate,

however, that in the particular scenario discussed here the fluctuations are much smaller than the

observed background value, so measuring them would likely require some additional enhancement

mechanism.

The calculation presented in [11] makes use of the hijφ term that arises after expanding eq. (1)

in perturbations, so that the size of the fluctuations in the baryon asymmetry is proportional to the

amplitude of both the tensor and scalar power spectrum, and becomes negligible if the tensor-to-

scalar ratio r is sufficiently small. A natural question is therefore whether an enhancement in either

of these quantities could significantly increase the size of these fluctuations. Such an enhancement

can be obtained, for instance, in single-field models of inflation that aim to generate a significant

population of primordial black holes by introducing an inflection point in the potential (see e.g. [12–

14] for particular implementations of this mechanism). In this class of models, the presence of the

inflection point leads to a phase of ultra-slow-roll that enhances the curvature power spectrum,

producing large energy overdensities once the perturbations re-enter the horizon after the end of

inflation, which in turn induce gravitational collapse, generating the black holes. These black holes

could account for the entirety of the observed dark matter provided their masses lie in the range

10−16M⊙ .MPBH . 10−11M⊙, (2)

where the upper bound comes from microlensing observations [15] and the lower one from their

Hawking evaporation [16–19]. Such a large scalar power spectrum would also source gravitational

waves at second order in perturbations after the end of inflation [20–22], leading to a peaked

gravitational wave signal which would also contribute to the variance of the lepton number density

and which is completely independent of the primordial tensor spectrum arising from inflation. The

spectrum of gravitational waves induced by large scalar perturbations during a radiation era has

been extensively studied in the literature [21–24]. However, since the resulting signal depends on

the evolution of the scalar perturbations after they re-enter the horizon, we expect the result to

change if the background fluid has a different equation of state. The case in which the Universe

is dominated by non-relativistic matter before transitioning to the radiation era was studied in

[24–26], and the scenario with a general background was considered in [27], where an enhancement

of the spectrum for background fluids with stiff equations of state (that is, for w . 1, with p = wρ)

was reported.

This paper has two objectives. The first is to connect the enhancement of the induced gravita-

tional wave spectrum for stiff background equations of state to the abundance of primordial black

holes.5 We consider a scenario in which primordial black holes form during a reheating stage6

with an equation of state parameter 1/3 < w < 1 before the Universe transitions to the radiation

era at some temperature Tr. We find that, depending on the specific values of the equation of

4As explained in [11], the baryon asymmetry survives only on large scales due to the matter-antimatter annihilation
processes taking place on small patches. We discuss this in detail in Section 5.

5See also [28, 29] for recent work in similar directions.
6Throughout the paper we refer to this early stiff epoch as reheating, since we assume it takes place immediately

after inflation ends. However, we remark that our results do not depend on the origin of this epoch, which we remain
agnostic about. In particular, it does not necessarily have to come from the dynamics of the inflaton.
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state, the transition temperature, and the scale at which the peak in the scalar power spectrum is

located (therefore, on the mass and abundance of the black holes that form), the enhancement of

the signal can be large enough to violate the existing bounds on the total gravitational wave energy

density derived from CMB observations and the abundance of light elements produced during Big

Bang nucleosynthesis [30, 31], effectively reducing the parameter space of this scenario. We per-

form the calculation of the gravitational wave spectrum for two cases, one in which the transition

between epochs is instantaneous, and one in which the stiff fluid gradually decays into radiation,

and show that the resulting constraints on the parameter space for PBH formation depend only

mildly on the smoothness of the transition. We improve upon the results of [27] by implementing a

matching procedure for the transfer function of the scalar perturbations and the Green’s function

of the tensor modes in the sudden transition case akin to the one presented in [24] for the case of

matter-domination, effectively taking into account the full time evolution of both quantities. We

also perform a fully numerical calculation of the scalar transfer function and the tensor Green’s

functions in the gradual transition case, in contrast to [26]. The second objective is to calculate

the baryon asymmetry fluctuations induced by the chiral gravitational anomaly in eq. (1) for the

same scenario.7 We extend the results of [11] in two significant ways. The first is that we consider

a peaked scalar power spectrum responsible for PBH formation, as opposed to a scale-invariant

one, thereby enhancing the asymmetry reported there. The second one is that we also consider the

purely scalar contribution to the asymmetry due to induced gravitational waves, effectively remov-

ing one of the essential ingredients in [11], namely, the need to have a non-vanishing gravitational

wave background generated during inflation. We once again remark that the mechanism studied

here is unable to produced the observed baryon asymmetry of the Universe, but it does allow us to

predict a spectrum of fluctuations in this quantity which would be present in any model of PBH

formation from single-field inflation using an inflection point in the potential, assuming only the

matter content of the Standard Model. Moreover, the machinery presented here could be used to

compute these fluctuations in other models of gravitational leptogenesis, such as the one in [7].

The paper is structured as follows. In Section 1 we expand eq. (1) in perturbations and derive

the corresponding expressions for the lepton number density at each order. In Section 2 we derive

the expressions for the black hole mass and abundance assuming that they form during a reheating

stage with a stiff equation of state, and discuss the relevant constraints on the parameter space.

In Section 3 we derive the induced gravitational wave spectrum when the transition between the

reheating stage and the radiation era is instantaneous, and determine the constraint on the PBH

masses due to the aforementioned bounds on the gravitational wave energy density. In Section 4

we repeat the calculation by assuming that the stiff fluid gradually decays into radiation. Finally,

in Section 5 we determine the baryon asymmetry produced by the chiral gravitational anomaly in

this scenario.

1. Gravitational lepton anomaly

In this section we expand eq. (1) to third order in perturbations and find expressions for the lepton

number density nL at each order. Throughout the paper we denote second-order perturbations of

7The mechanism studied here is different from leptogenesis via PBH evaporation, see e.g. [32].
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the metric with bold symbols. The perturbed FLRW metric is, in conformal time dη = dt/a,

ds2 = a2
{
− (1 + 2φ+Φ)dη2 +

[
(1− 2φ−Ψ)δij +

1

2
(∂iEj + ∂jEi) + hij +

1

2
hij

]
dxidxj

}
, (3)

where we have fixed the Newtonian gauge, so that E = B = E = B = 0, we have assumed

that the first-order vector perturbations vanish, Ei = Bi = 0, and we have used a second-order

vector gauge-transformation to set Bi = 0. The second-order vector perturbation Ei cannot be

set to zero, since it is sourced by terms quadratic in first-order scalar perturbations by virtue of

Einstein’s equations. We have additionally assumed that no anisotropic stress is present, so that

the two first-order Newtonian potentials are equal to each other, φ = ψ. The difference between

the two Newtonian potentials at second order Φ−Ψ does not vanish in the absence of anisotropic

stress, since it is sourced by terms quadratic in first-order scalars.

The quantity RR̃ which appears on the right-hand side of eq. (1) can be easily checked to vanish

at the background level. This quantity can be calculated at each order in perturbations by direct

expansion using the above metric. However, the result can also be obtained by noting that every

term in the expansion must contain four derivatives (with two coming from each factor of R) and

the indices can only be saturated in a limited number of ways. For instance, this quantity vanishes

at leading order8 (LO), since the only perturbations available are φ and hij , and every possible

contraction (for instance, ǫijk∂i∂j∂kφ) vanishes due to the antisymmetry of ǫijk. At the next-to-

leading order (NLO) we have only one possible term mixing scalar and tensor perturbations,

RR̃ ⊃ ǫijk∂ℓ∂iφ∂jh
′
kℓ, (4)

where primes denote derivatives with respect to conformal time (′ = d/dη), as well as several

possible terms mixing two tensor perturbations, such as

RR̃ ⊃ ǫijk∂mh
′
iℓ∂m∂khjℓ. (5)

We generically expect these terms to be suppressed with respect to the scalar-tensor ones (since

the stochastic gravitational wave background produced during inflation is much smaller than the

scalar power spectrum) and thus we do not consider them.

At NNLO, we focus on the situation in which the first-order tensor perturbation hij is negligible

and the only relevant contribution comes from the scalar-induced hij , which is the case in models

of PBH formation from single-field inflation. In this case, all terms containing only scalar modes

(such as ǫijk∂iφ∂jφ∂kφ
′ or ǫijk∂i∂jφ∂kΦ

′) can be easily seen to vanish due to the antisymmetry of

ǫijk. Similarly, the scalar-vector terms vanish due to the fact that terms such as ǫijk∂iφ
′∂jE

′
k are

always accompanied by ǫijk∂iφ
′∂kE

′
j , since only the symmetric combination ∂iEj + ∂jEi appears

in the metric. Thus, the only relevant term at this order is the scalar-tensor one

RR̃ ⊃ ǫijk∂ℓ∂iφ∂jh
′
kℓ, (6)

8We use the terminology LO, NLO, and NNLO for the expansion in powers of the metric perturbations. Note,
however, that this does not imply anything about the relative amplitude of each term. As we will see, the dominant
term changes depending on the scale considered.
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since terms quadratic in hij are of higher order, and we neglect terms mixing hij and hij , which

are subdominant with respect to the above contribution.

We conclude that, at NLO, the only relevant term is the one in eq. (4), assuming that the first-

order gravitational wave background produced during inflation is suppressed with respect to the

scalar one at the scales of interest. The numerical prefactor can be obtained by explicit calculation,

and the result is

RR̃ = − 8

a4
ǫijk∂ℓ∂iφ∂jh

′
kℓ. (7)

On the other hand, at NNLO only the term in eq. (6) contributes, assuming vanishing first-order

tensor modes. The prefactor can be obtained by simply substituting hij → 1
2hij in eq. (7),

RR̃ = − 4

a4
ǫijk∂ℓ∂iφ∂jh

′
kℓ. (8)

We remark that the NNLO terminology in no way implies that the term in eq. (8) is smaller than

the one in eq. (7). The reason is that, since hij is sourced by scalar perturbations, its amplitude

will depend on their initial conditions and time evolution, which can be very different from those

of the unsourced hij .

The left-hand side of eq. (1) can be expanded by writing Jµ = (a−1nL,0) and using the following

identity,

∇µJ
µ =

1√−g∂µ(
√−gJµ). (9)

We therefore obtain, for the NLO term,

a3nL =
1

16π2

∫
ǫijk∂j∂ℓφ∂kh

′
iℓdη. (10)

We can expand the perturbations in Fourier modes

hij(x) =

∫
d3k

(2π)3
eik·x(h+k e

+
ij + h×k e

×
ij), (11)

φ(x) =

∫
d3k

(2π)3
eik·xφk, (12)

where esij denotes the two transverse, traceless polarization tensors, defined via

e+ij =
1√
2
(vivj − v̄iv̄j), e×ij =

1√
2
(viv̄j + v̄ivj), (13)

where v and v̄ are two unit vectors satisfying k · v = k · v̄ = v · v̄ = 0. We can therefore regard esij
as a k-dependent quantity. We then find

a3nL =
1

16π2
ǫijk

∑

s

∫
dη

∫
d3p

(2π)3

∫
d3q

(2π)3
ei(p+q)·x(iqj)(iqℓ)φq(ipk)h

s′
p e

s
iℓ(p). (14)

The mean value of this quantity clearly vanishes, as can be easily checked by expanding φk and

hsk in terms of creation and annihilation operators. The variance, however, does not, and will be

computed in Section 5.
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To find the expression for the NNLO term in Fourier space it is necessary to solve the equation

of motion for the second-order tensor modes induced by scalar fluctuations, given, in momentum

space and in the absence of anisotropic stress, by (see e.g. [22–25])

hs′′
k + 2Hhs′

k + k2hs
k = Ss

k, (15)

where H = a′/a denotes the conformal Hubble factor and the source term is, in the Newtonian

gauge,

Ss
k =

∫
d3p

(2π)3

[
p · es(k) · p

][
8φpφ|k−p| +

16

3(1 + p/ρ)

(
φp +

φ′p
H

)(
φ|k−p| +

φ′|k−p|

H

)]
, (16)

where p and ρ are the background pressure and energy density, and we have used the boldface

es(k) to denote the matrix esij(k). Explicitly, we have p · es(k) · p ≡ pie
s
ij(k)pj . The solution to

eq. (15) is given by

hs
k(η) =

∫ η

0
Gk(η, η

′)Ss
k(η

′)dη′, (17)

where Gk(η, η
′) is the Green’s function of the differential equation, and we have assumed that

inflation ends at η = 0 and the gravitational waves induced up to that point are negligible. This

solution can be rewritten as

hs
k(η) =

1

k2

∫
d3p

(2π)3

[
p · es(k) · p

]
RpR|k−p|Ik(η, p, |k − p|), (18)

where

Ik(η, p, |k − p|) =
(
3 + 3w

5 + 3w

)2 ∫ η

0
kGk(η, η

′)Q(η′, p, |k − p|)kdη′, (19)

with

Q(η, p, |k − p|) = 8Tφ(pη)Tφ(|k − p|η)

+
16

3(1 + p/ρ)

(
Tφ(pη) +

T ′
φ(pη)

H

)(
Tφ(|k − p|η) +

T ′
φ(|k − p|η)

H

)
. (20)

Here we have used the definition of the scalar transfer function φk(η) ≡ Tφ(kη)φk(0), obtained by

solving the equation of motion for φk, as well as the fact that the initial value of the Newtonian

potential φk(0) is related to the frozen curvature perturbation Rk on superhorizon scales via [33]

φk(0) =
3 + 3w

5 + 3w
Rk, (21)

where w is the equation of state of the Universe at the time at which the initial conditions are

imposed (that is, shortly after the end of inflation). In Section 3 we will give explicit expressions

for the Green’s function Gk(η, η
′) and the transfer function.

At NNLO, the lepton number density is given by

a3nL =
1

32π2

∫
ǫijk∂j∂ℓφ∂kh

′
iℓdη, (22)
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where we reiterate that we have neglected all terms involving the first-order tensor modes hij .

Using eq. (18) we can write this quantity as

a3nL =
1

32π2

(
3 + 3w

5 + 3w

)
ǫijk

∑

s

∫
dη

∫
d3p

(2π)3

∫
d3q

(2π)3
ei(p+q)·x(iqj)(iqℓ)(ipk)e

s
iℓ(p)

Tφ(qη)
1

p2

∫
d3k

(2π)3

[
k · es(p) · k

]
I ′p(η, k, |p− k|)RqRkRp−k. (23)

As we will see in Section 5, the mean value of this quantity once again vanishes, but the variance

does not. In general, nL is given by the sum of both the NLO and NNLO contributions.

2. Black hole masses and abundance

Black holes form when sufficiently large perturbations re-enter the horizon after the end of inflation.

Their abundance can be described using the Press-Schechter formalism, which states that collapse

occurs only when the density contrast δ = δρ/ρ is above a critical value δc,

β =
1√
2πσ2

∫ ∞

δc

e−δ2/(2σ2)dδ, (24)

where β = ρPBH/(γρ) is the ratio of the energy density in a Hubble patch that ends up in the form

of PBHs to the total energy density at the time of collapse, with γ an O(1) factor encoding the

efficiency of the collapse.9 In the above expression we have assumed the probability distribution of

the fluctuations to be Gaussian and the smoothed variance of the density contrast σ can be related

to the dimensionless primordial spectrum of curvature perturbations PR by means of the gradient

expansion [35]

σ2 =
4(1 + w)2

(5 + 3w)2

∫
dq

q

(
q

k

)4

PR(q)W
2(q/k), (25)

where W (x) = e−x2/2
√

2/π is a window function, which we take as a Gaussian. The dependence

of the critical value δc in eq. (24) on the equation of state parameter w was analytically estimated

in [36] to be

δc =
3(1 + w)

5 + 3w
sin2

(
π
√
w

1 + 3w

)
. (26)

Note that this formula is not valid for w ≪ 1/3, since in this case the non-sphericity and angular

momentum of the collapsing cloud, neglected in [36], become relevant, see [37, 38].

We remark that recent studies have focused on using the peak theory formalism instead of

Press-Schechter to calculate the PBH abundance, see e.g. [39]. Similarly, the fact that in models of

PBH formation the probability distribution deviates significantly from the Gaussian approximation

is well-understood [40]. However, as noted in [39, 40], the change in abundance induced by taking

into account these modifications can always be compensated by multiplying the power spectrum

by an O(1) factor, since eq. (24) depends exponentially on PR. Since the induced gravitational

wave spectrum depends quadratically on PR, these corrections will not heavily impact the results

9We set γ = 0.2 throughout this work [34], but we remark that this number could depend on the equation of state
parameter w at the time at which the black holes form.
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the mass contained in a Hubble patch at the time of formation, MPBH = 4πγM2
p /H. By following

a similar procedure to the one we used for fPBH, we can write

MPBH = 4πγM2
p

(
π2

90
g⋆(Tr)

T 4
r

M2
p

) 1

1+3w
(

1

k3
g⋆s(T0)T

3
0

g⋆s(Tr)T 3
r

) 1+w
1+3w

. (28)

As a cross-check, note that, for w = 1/3, eqs. (27) and (28) become independent of Tr and, in

particular, we recover the well-known scaling relation MPBH ∝ k−2 [13].

It is clear from eqs. (24) and (25) that to produce a large PBH population one requires a spec-

trum of curvature perturbations PR which is peaked at a particular scale k so as not to overproduce

black holes with masses outside of the unconstrained range in eq. (2). Such a power spectrum can

be obtained from single-field models of inflation in which the potential has an approximate in-

flection point leading to a short phase of ultra-slow-roll, see e.g. [13, 14]. In what follows we will

consider two possibilities, a flat scale-invariant spectrum with an amplitude A♭ that matches the

value measured on CMB scales of O(10−9),

PR(k) = A♭, (29)

and a sharp Dirac delta spectrum with an amplitude A♯ of O(10−2) in order to produce an O(1)

fraction of PBHs as dark matter,

PR(k) = k♯A♯δ(k − k♯), (30)

where we have assumed that the peak occurs at a scale k♯. This form of the power spectrum will

allow us to derive several results analytically later on. Putting everything together and considering

the sharp power spectrum, we find the following expression for β at the peak of the distribution,

which is located at k = k♯/
√
2 (as can be checked by setting dσ/dk = 0),

β =
1

2
erfc

[
3e

8
sin2

(
π
√
w

1 + 3w

)√
π

A♯

]
. (31)

Note that the total PBH abundance is obtained by integrating fPBH over k, but since we are

considering essentially monochromatic mass distributions, we can approximate the abundance by

the value of fPBH at its peak, fPBH(k = k♯/
√
2).

The black hole mass and abundance are plotted in Fig. 1. As anticipated, the power spectrum

required to obtain fPBH = 1 is of order PR ∼ 10−2 over the entire parameter space, so the w-

dependent threshold δc does not have a particularly strong effect. In the Figures we also show the

GW constraint derived in the next Section, in eq. (54), for a fixed value A♯ = 0.05. Choosing the

value of A♯ necessary to obtain fPBH = 1 at each point in parameter space would only marginally

change this constraint. We have also included the constraint imposed by the requirement that

collapse occurs in the reheating stage. That is, the mode with comoving wavenumber k♯ that

induces collapse must re-enter the horizon at most at the time of the transition,

k♯ > arHr =
T0
Tr

(
g⋆s(T0)

g⋆s(Tr)

)1/3(π2g⋆(Tr)T 4
r

90M2
p

)1/2

. (32)
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We remark that this constraint does not impede the formation of black holes, but if it is not satisfied

then collapse occurs during the radiation era, and one should use the expressions for the mass and

abundance for w = 1/3 instead.

We conclude that a population of PBHs with unconstrained masses which is large enough to

explain the observed dark matter abundance can only form during an early stiff era (with w = 1)

in a narrow region of parameter space, for 103GeV < Tr < 107GeV, depending on the location

of the peak in the power spectrum. We therefore find that the new GW constraint derived in this

work (see the following Section) significantly restricts the parameter space for this mechanism.

3. Induced gravitational waves

In this Section we solve the equation of motion (15) for the tensor modes induced by scalar per-

turbations at second order. The solution, shown in eq. (18) can be written in terms of the Green’s

function Gk(η, η
′) of the differential equation and the scalar transfer function Tφ(kη), which we

now determine.

The Green’s function can be obtained by solving the homogeneous equation

hs′′
k + 2Hhs′

k + k2hs
k = 0. (33)

Since we assume that the transition between the reheating stage with equation of state parameter

w and the radiation epoch occurs instantaneously at ηr, the evolution of H is given by

H =





2

(1 + 3w)η
, for η < ηr,

1

η − ηw
, for ηr < η,

(34)

where we have chosen the integration constant ηw ≡ (1− 3w)ηr/2 to make the function continuous

at ηr. We remark that throughout the paper w always denotes the equation of state parameter

during the stage of reheating after inflation. We never use w to denote the equation of state

parameter during the radiation era, and instead write explicitly p/ρ = 1/3 wherever necessary.

The general solution to eq. (33) is

hsk(η) =





(kη)mℓ

[
AhℓJmℓ

(kη) +BhℓYmℓ
(kη)

]
, for η < ηr,

1

kη − kηw

[
Ahr sin(kη − kηw) +Bhr cos(kη − kηw)

]
, for ηr < η,

(35)

where the ℓ subscript denotes quantities in the reheating stage, and r refers to quantities in the

radiation era. We have also defined

mℓ ≡
3(w − 1)

2(1 + 3w)
. (36)

The Green’s function is given by

Gk(η, η
′) =

h1(η)h2(η
′)− h1(η

′)h2(η)

h′1(η
′)h2(η′)− h1(η′)h′2(η

′)
, (37)
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Figure 2: Left panel: gravitational wave energy density as a function of k/k♯ for w = 0.5 varying the
dimensionless parameter k♯ηr. The energy density grows as this parameter increases. Right panel: same as
left panel, for w = 1.

where h1 and h2 are any two linearly independent solutions to eq. (33) and we have suppressed the

k and s indices in h for readability. Since this expression is independent of which pair of solutions

is chosen, we can simply fix the integration constants in one of the regions by hand, and obtain the

constants in the other epoch by imposing continuity of the solutions and their derivatives at ηr.

We therefore set A1
hr = 1 and B1

hr = 0 for the first solution, together with A2
hr = 0 and B2

hr = 1

for the second one.

For the calculation of the lepton number density we need the tensor transfer function, defined

by

hsk(η) = Th(kη)h
s
k(0). (38)

We remind the reader that initial conditions are imposed at the end of inflation, which we choose as

η = 0. Assuming that tensor modes are initially frozen outside the horizon (so that we can impose

the initial conditions Th(0) = 0 and T ′
h(0) = 1 for superhorizon modes after inflation ends), we find

the following expression for the tensor transfer function

Th(kη) =





Γ(1−mℓ)

2mℓ
(kη)mℓJ−mℓ

(kη), for η < ηr,

1

kη − kηw

[
Ahr sin(kη − kηw) +Bhr cos(kη − kηw)

]
, for ηr < η.

(39)

We remark that the transfer function is unrelated to the Green’s function, and in this case the

constants during the reheating stage are fixed by the initial conditions mentioned above, whereas

the constants Ahr and Bhr must be determined by imposing continuity of the solutions and their

derivatives at ηr.
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The equation of motion for the Newtonian potential is

φ′′k + 3

(
1 +

p

ρ

)
Hφ′k +

p

ρ
k2φk = 0, (40)

where we have assumed that the background is dominated by a perfect fluid with δp = (p/ρ)δρ. We

remind the reader that we are working in the Newtonian gauge and in the absence of anisotropic

stress. Assuming once again that the modes are initially frozen outside the horizon, we obtain the

following expression for the transfer function, valid for w 6= 0,

Tφ(kη) =





Γ(nℓ + 1)2nℓ

wnℓ/2
(kη)−nℓJnℓ

(
kη

√
w
)
, for η < ηr,

( √
3

kη − kηw

)2{
Aφr

[
sin

(
kη − kηw√

3

)
+

( √
3

kη − kηw

)
cos

(
kη − kηw√

3

)]
+

+Bφr

[
cos

(
kη − kηw√

3

)
−
( √

3

kη − kηw

)
sin

(
kη − kηw√

3

)]}
, for ηr < η,

(41)

where

nℓ =
5 + 3w

2(1 + 3w)
= 1−mℓ (42)

and the constants Aφr and Bφr can once again be found by matching the solutions and their

derivatives at ηr.

With these ingredients in hand we can calculate the Ik function in eq. (19). The GW energy

density is given by [43]

ΩGW(η, k) =
1

24

(
k

H

)2

〈Ph(η, k)〉, (43)

where the brackets 〈· · · 〉 denote a time average, which must be taken due to the stochasticity of

the signal, and Ph denotes the power spectrum of hij . Starting from eq. (18), we find the following

expression for the power spectrum (see e.g. [23, 24])

Ph(η, k) =

∫ ∞

0
dy

∫ 1+y

|1−y|
dz

[
4y2 − (1 + y2 − z2)2

8yz

]2
PR(ky)PR(kz)I

2
k(η, ky, kz). (44)

Since we are interested in measuring this quantity at late times, we can take η → ∞ in eq. (19).

After pulling the solutions h1(η) and h2(η) in the Green’s function out of the integral and splitting

the limits of integration into the two contributions (0, ηr) and (ηr,∞), we obtain the following

expression, valid late into the RD era,

Ik(η > ηr) =
sin(kη − kηw)

kη − kηw
(Js

ℓ + Js
r )−

cos(kη − kηw)

kη − kηw
(Jc

ℓ + Jc
r ), (45)

where

Js
ℓ =

(
3 + 3w

5 + 3w

)2( π/2

A2
ℓhB

1
ℓh −A1

ℓhB
2
ℓh

)∫ ηr

0
(kη′)−2mℓ+1hℓ2(η

′)Qℓ(η
′, ky, kz)kdη′, (46)

Jc
ℓ =

(
3 + 3w

5 + 3w

)2( π/2

A2
ℓhB

1
ℓh −A1

ℓhB
2
ℓh

)∫ ηr

0
(kη′)−2mℓ+1hℓ1(η

′)Qℓ(η
′, ky, kz)kdη′, (47)
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The transition time is, in terms of temperature,

ηr =
1

Tr

(
2

1 + 3w

)√
90

π2g⋆(Tr)

(
g⋆s(Tr)

g⋆s(T0)

)1/3Mp

T0
. (52)

In Fig. 2 we show the GW energy density from eq. (51) for different choices of the two parameters

w and k♯ηr. We find that the GW abundance grows for stiff equations of state, as reported in [27],

due to the fact that the tensor modes redshift more slowly than the background. We also find that

the energy density grows as k♯ηr increases. The reason for this is that the largest contribution to

the momentum integral in eq. (44) comes from scales around the narrow peak in the scalar power

spectrum, and therefore we should only expect the signal to be affected if the relevant modes re-

enter the horizon before the transition to radiation has taken place, so that k♯ > Hr ∝ η−1
r . For

k♯ηr ≪ 1, the relevant modes enter during the radiation era and the effect of the stiff epoch on the

signal is washed out, as can be clearly seen in the Figure.

The total energy density can be found by integrating

ΩGW =

∫
d log k ΩGW(k). (53)

As we anticipated earlier, there is a bound on this quantity arising from CMB observations and

the abundance of light elements produced during Big Bang nucleosynthesis [30, 31],

ΩGWh
2 < 1.8× 10−6. (54)

Since the signal grows as both w and k♯ηr increase, this bound is eventually violated. In Fig. 3

we perform a numerical scan over the parameter space, showing the forbidden region.11 By using

eq. (52), this bound can be written in terms of the transition temperature, and translated to a

constraint on the PBH mass and abundance, shown in Fig. 1 for w = 1 (left panel) and for k♯ =

5 × 1012Mpc−1 (right panel). These constraints are one of the main results of this paper. As

anticipated at the end of the previous Section, this bound significantly limits the available parameter

space for PBH formation during a stiff epoch. The constraint disappears completely for the standard

radiation scenario with w = 1/3, where the bound is satisfied. In these Figures we have taken

A♯ = 5 × 10−2 (thereby assuming that fPBH ≃ 1) and neglected the mild dependence of this

number on w depicted in Fig. 1.

Before moving on, we remark that, although we have restricted our attention to stiff epochs due

to the fact that PBH formation during a matter-dominated era is not particularly well understood

at the time of writing (since the effect of angular momentum and non-sphericity of the collapsing

cloud becomes important [37, 38]), the calculation of the GW spectrum presented in this Section

is also valid for the case w = 0, with the only modification being the scalar transfer function in

eq. (41), which takes the simpler form Tφ(kη) = 1 for η < ηr.

11The small kink towards the center of the plot is a numerical artifact due to the precision of our scan and has no
physical significance.
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4. Gradual decay into radiation

For the calculation in the previous Section, we assumed that the transition between the reheating

stage and the radiation era occurred instantaneously. We now study the case in which the initial

fluid decays gradually, thereby making the transition between epochs smooth. This scenario was

studied in [26] for the particular case w = 0 and for a scale-invariant scalar spectrum. Here we

extend these results for a generic fluid with constant equation of state parameter w and using

a peaked scalar spectrum relevant for PBH formation. It was reported in [26] that, for a scale-

invariant scalar spectrum, the induced gravitational wave spectrum in the smooth transition case

is suppressed with respect to its sudden counterpart. As we will see, although the same conclusion

remains true for a peaked spectrum, the suppression is very mild and therefore does not strongly

affect the bounds derived in the previous Section.

In what follows we denote quantities related to the radiation fluid by a subscript γ, and quan-

tities related to the decaying fluid by a subscript w. We model the transition by considering a rate

of energy transfer of the form Γρw between the two fluids, with Γ constant, such that the total

stress-energy tensor Tµν = T
(γ)

µν + T
(w)

µν is conserved, but the separate components are not, so

∇νT
µν(γ) = Qµ = −∇νT

µν(w) (55)

for some vector Qµ [44]. The background equations then become, using the number of e-folds

dN ≡ Hdη as the time variable,

3M2
pH

2 = ργ + ρw, (56)

dρw
dN

+ 3(1 + w)ρw = − Γ

H
ρw, (57)

dργ
dN

+ 4ργ =
Γ

H
ρw. (58)

At the perturbative level, we work in Newtonian gauge and assuming no anisotropic stress. We

use the following dimensionless set of variables

δγ ≡ δργ
ργ

, δw ≡ δρw
ρw

, θγ ≡ H
δqγ
ργ

, θw ≡ H
δqw
ρw

, (59)

where δqb = a(ρb + pb)δvb, and δvb denotes the velocity perturbation for each fluid component.12

The Einstein equation that determines the evolution of the Newtonian potential φ is

dφ

dN
+

(
1 +

1

3

k2

H2

)
φ+

1

2

(
ρw
ρ
δw +

ργ
ρ
δγ

)
= 0. (60)

12Note that θ is sometimes used instead to denote the divergence of the velocity perturbation (e.g. in [26]), so one
must be careful when comparing different references.
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Figure 4: Left panel: evolution of the background energy density of each fluid, as well as the total energy
density ρ and the equation of state p/ρ, for the case w = 1. By normalizing all quantities with respect to
their value at the time Neq defined by ργ = ρw, the plot becomes independent of Γ. Right panel: calculation
of the GW energy density for the sudden transition case (solid) and the gradual case (dashed) for w = 1 with
k♯ηr = 1 (blue) and k♯ηr = 100 (red). The time ηr in the gradual transition scenario is defined through keq
in eq. (69). The integrated energy density is very similar for both cases, leaving the bounds of the previous
Section essentially unaltered.

The continuity and Euler equations for the fluid are [44]

dδw
dN

+
Γ

H
φ− 3(1 + w)

dφ

dN
− k2

H2
θw = 0, (61)

dδγ
dN

+
Γ

H

ρm
ργ

(δγ − δw − φ)− 4
dφ

dN
− k2

H2
θγ = 0, (62)

dθw
dN

+

(
3

2

ρ+ p

ρ
− w

1 + w

Γ

H
− 3w

)
θw + (1 + w)φ+ wδw = 0, (63)

dθγ
dN

+

(
Γ

H

ρw
ργ

+
3p+ ρ

2ρ

)
θγ +

4

3
φ+

1

3
δγ −

Γ

H

ρw
ργ

1

1 + w
θw = 0, (64)

where we have introduced the additional assumption that δpw = wδρw, and similarly for the

radiation component. Together, these five equations form a complete system that can be solved

numerically.

To solve the above system of equations, we choose adiabatic initial conditions [33]. On super-

horizon scales k ≪ H and at sufficiently early times so that Γ ≪ H and ργ ≪ ρw, the equation for

the Newtonian potential φ becomes

dφ

dN
+ φ+

1

2
δw = 0. (65)

Since there is essentially only one fluid present at this time, and we have assumed δpw = wδρw,
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the Newtonian potential can be shown to satisfy eq. (40) and is therefore frozen on superhorizon

scales. Thus, on these scales, we have from the above equation the relation

δw = −2φ. (66)

The adiabatic initial conditions for the energy density perturbations are [33]

δγ
4/3

=
δw

1 + w
. (67)

Finally, if we assume that θγ and θw are also frozen on superhorizon scales, we obtain, from the

last two equations,

θγ = − 8φ

9(1 + w)
, θw = −2

3
φ. (68)

By using the relation (21), we can therefore fix all initial conditions in terms of R.

The evolution of the background energy density of each fluid is shown in Fig. 4 for w = 1.

Note that, as explained in [26], the evolution of the background quantities (and in fact, that of

the perturbations) is completely independent of the choice of Γ once they are normalized by their

values at the time Neq defined by ργ(Neq) = ρw(Neq) ≡ ρeq, as can be checked from eqs. (56-58).

The left panel of Fig. 5 shows the time evolution of the perturbations for particular values of the

parameters. We define the transition time ηr in this case via

ηr ≡
2

(1 + 3w)keq
, (69)

where keq is the mode that re-enters the horizon at Neq. This is the relation between keq and ηr

in the sudden transition case of the previous Section, so this definition allows us to make a fair

comparison between both scenarios.

For the calculation of the gravitational wave spectrum we need both the scalar transfer function

Tφ, obtained by solving the system in eqs. (60-64) with initial condition Tφ = 1 (the condition
d
dN Tφ = 0 is guaranteed by the choice of adiabatic initial conditions for the other perturbations),

and the Green’s function for the tensor modes, which we now turn our attention to. The integral

in eq. (19) can be rewritten in terms of the number of e-folds as

Ik =

(
3 + 3w

5 + 3w

)2 ∫ ∞

−∞

k2

H2

h1(N)h2(N
′)− h2(N)h1(N

′)

h2(N ′) d
dN h1(N

′)− h1(N ′) d
dN h2(N

′)
Q(N ′, p, |k − p|)dN ′. (70)

The equation of motion for the tensor modes is, in terms of the number of e-folds,

d2hsk
dN2

+
3

2

(
1− p

ρ

)
dhsk
dN

+
k2

H2
hsk = 0. (71)

To calculate the GW spectrum today, we must evaluate eq. (70) at late times, deep into the radiation

era. At this stage the background pressure is p = ρ/3, and the Hubble scales as H = Hc(ac/a),

where the c subscript denotes some late time Nc ≫ Neq. The product acHc approaches a constant

value, which can be found numerically, after the transition. Using this scaling in the above equation,
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Figure 5: Left panel: evolution of the perturbations with adiabatic initial conditions for w = 0.5 and
k♯ηr = 10, with ηr defined via eq. (69). The vertical dashed line denotes the horizon crossing time for this
mode. Right panel: evolution of the two independent solutions to the homogeneous equation for the tensor
modes used to construct the Green’s function (solid lines) for w = 1, k♯ηr = 1, and k/k♯ = 1. At late times
the two solutions approach the asymptotic values in eq. (72) (dashed lines).

we find the following two independent solutions at late times

hlate1 =
ac
a

Hc

k
sin

(
a

ac

k

Hc

)
, hlate2 =

ac
a

Hc

k
cos

(
a

ac

k

Hc

)
. (72)

By using these two solutions we can take the time-average of I2k as we did in the previous Section,

and we obtain, after performing the momentum integral over the Dirac delta power spectrum,

k2

H2
〈I2k〉 =

1

2
(J2

s + J2
c ) =

1

2
J2

(
k

keq
,
k♯
keq

)
, (73)

where

Js =

(
3 + 3w

5 + 3w

)2 ∫ ∞

−∞

(k/keq)
2

(H/keq)2
G2(N

′, k/keq)Q(N ′, k♯/keq)dN
′, (74)

Jc =

(
3 + 3w

5 + 3w

)2 ∫ ∞

−∞

(k/keq)
2

(H/keq)2
G1(N

′, k/keq)Q(N ′, k♯/keq)dN
′, (75)

with

G1(N
′, k/keq) ≡

h1(N
′)

h2(N ′) d
dN h1(N

′)− h1(N ′) d
dN h2(N

′)
, (76)

G2(N
′, k/keq) ≡

h2(N
′)

h2(N ′) d
dN h1(N

′)− h1(N ′) d
dN h2(N

′)
. (77)
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Once again we see that the GW energy depends only on k/keq = (k/k♯)(k♯/keq), as well as the two

parameters k♯/keq and w. The dependence on the parameter keq therefore replaces ηr from the

previous section, with the relation between both given by eq. (69).

We remark that, although the Green’s function does not depend on which two linearly indepen-

dent solutions are chosen to construct it, the fact that we perform the time average over I2k by using

〈sin2(kη)〉 = 〈cos2(kη)〉 = 1/2 means we need to project the two solutions that behave as eq. (72) at

late times. This can be accomplished by imposing the boundary conditions h1,2(Nlate) = hlate1,2 (Nlate)

at some late time Nlate ≫ Neq, sufficiently deep into the radiation era (numerically, we find that a

few e-folds after the transition suffice). The corresponding solutions are shown in the right panel

of Fig. 5 together with their late time limits for w = 1, k♯ηr = 1 and k/k♯ = 1.

We show the resulting GW energy density for w = 1 in the right panel of Fig. 4, for two

illustrative examples with k♯ηr = 1 and k♯ηr = 100. We find that, although the signal is very

mildly suppressed with respect to the sudden transition case of the previous Section, the difference

between both is essentially negligible for the purpose of estimating the curve in Fig. 3, so we conclude

that the results from the previous Section are robust. We nevertheless remark that this conclusion

might change if the transition is modelled differently.

Having established that the gradual transition scenario is not significantly different from the

sudden case, we go back to using the analytical formulas of the latter in the following Section.

5. Smoothed lepton number density

In this Section we estimate the size of the baryon asymmetry fluctuations induced by the gravita-

tional chiral anomaly. The quantity of interest is the variance of the lepton number density13 nL

computed in eqs. (14) and (23), averaged over a region of size rσ,

〈
|nL|2

〉
rσ

≡
〈∣∣∣∣

∫
d3rWrσ(r)nL(x+ r)

∣∣∣∣
2〉
, (78)

where Wrσ(r) is a Window function that decays smoothly on scales r ≫ rσ, which we take to be a

Gaussian for concreteness,

Wrσ(r) =

(
1

rσ
√
π

)3

e−r2/r2σ . (79)

Let us clarify why we focus on the variance of this quantity. We would naively expect the

baryon asymmetry to be determined by the mean value of nL. However, in the absence of a chiral

gravitational wave background (generated for instance, via some inflationary coupling of the form

f(ϕ)RR̃ such as the one considered in [7], where ϕ is the inflaton field), which would make the terms

quadratic in hij of the form shown in eq. (5) nonzero, the mean value 〈nL〉 vanishes. This can be

easily seen at NLO, since, schematically, taking the mean value of eq. (14) yields 〈φh〉 ∼ 〈φ〉〈h〉 = 0.

The fact that the mean value also vanishes at NNLO is less obvious. The dimensionless bispectrum

13Throughout this Section we often abuse language and refer to this quantity simply as the baryon asymmetry.
In the leptogenesis scenario, the relation between the baryon and lepton number densities is, assuming the Standard
Model matter content, nL = (79/28)nB [45]. The measured value for this quantity is nL/s ≃ 2× 10−10 [1, 2].
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BR of curvature perturbations is defined by

〈
RqRkRp−k

〉
≡ (2π)3δ3p+q

(2π2)2

q2k2|p− k|2BR(q, k, |p− k|), (80)

where we have introduced the shorthand δ3p ≡ δ3(p) for later convenience. This quantity vanishes

if the fluctuations are Gaussian and is therefore slow-roll suppressed in conventional inflationary

scenarios, but this could change depending on the dynamics of the inflaton (particularly in mod-

els of PBH production featuring a potential with a near-inflection point, in which the slow-roll

approximation breaks down [40]). After some manipulation, we obtain, from eq. (23),

a3
〈
|nL|

〉
rσ

=
π2

8

(
3 + 3w

5 + 3w

)∑

s

∫
dη

∫
d3p

(2π)3
ǫijk(pjpℓpk)e

s
iℓ(p)Tφ(pη)

∫
d3k

(2π)3

[
k · es(p) · k

]
I ′p(η, k, |p− k|)BR(p, k, |p− k|)

p4k2|p− k|2 , (81)

where we have used the Dirac delta function in the definition of the bispectrum to perform one of

the momentum integrals, as well as the normalization of the window function

∫
d3rWrσ(r) = 1. (82)

The right-hand side of eq. (81) clearly vanishes, since pjpk is symmetric, but ǫijk is not. In what

follows we assume that the curvature perturbation R follows a Gaussian distribution.

Instead of focusing on the mean value of this quantity, we assume that the baryon asymmetry of

the Universe is generated via some other mechanism which we remain agnostic about, and shift our

attention to the variance of nL.
14 As noted in [11], since inflation is a stochastic process, we expect

the lepton number density to deviate from its mean value in different patches. This deviation will

generically have a magnitude of order ∼
√

〈|nL|2〉rσ in a region of size rσ, leading to fluctuations

in the baryon asymmetry. Before moving on with the calculation however, let us note that, as

discussed in [11], this asymmetry does not survive at late times on arbitrarily small patches, due

to annihilation processes. Let us consider two neighboring patches, one with a matter excess, and

another one with an antimatter excess. If particles are able to freely travel from one patch to the

other, annihilation will take place, leading to a smaller asymmetry overall. On sufficiently large

patches, however, the asymmetry always survives at late times. To see why, note that the maximum

distance a particle in the radiation bath can travel between collisions is λ/a, where λ is its mean free

path. In a time ∆t, the particle undergoes N = ∆t/λ collisions. The average displacement in a time

∆t for a random walk is therefore ∆r = (λ/a)
√
N = (λ/a)

√
∆t/λ. Integrating this displacement

yields the Silk length [46], which sets the limit below which annihilation can take place.15 On

the other hand, at late times, after the electroweak sphaleron processes have taken place, the

asymmetry is carried by quarks, which are relativistic. Once the temperature is low enough,

quarks are confined into non-relativistic baryons and their mean free path drops significantly. The

14It is conceivable that the mechanism responsible for generating the baryon asymmetry will also lead to a spectrum
of fluctuations which could be potentially larger than the contributions discussed here. The relative importance of
each term is of course model-dependent and can only be assessed once a particular mechanism is fixed.

15This is analogous to photon diffusion in the CMB [33].
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scalar spectrum (30), but with a flat tensor spectrum given by the same relation as in the first

case, and 3. the NNLO term in eq. (23) for a peaked scalar spectrum, and with the tensor modes

induced by scalar perturbations. As we will see, each term dominates at different scales, and the

total asymmetry fluctuations will in general be given by the sum of the three contributions, plus

the subdominant mixed terms that we have neglected as per the arguments of Section 1. We also

neglect the term involving the flat part of the scalar spectrum together with the induced GW piece,

since we expect it to be suppressed with respect to the NNLO term mentioned above. Before moving

on with the technical details of the calculation, let us anticipate that, since the variance of nL is

proportional to both the tensor and scalar power spectrum, from dimensional analysis we can guess

the result in all three cases to be
〈
|nL|2

〉1/2
rσ

∼
√
PRPh/(arσ)

3, since rσ is the only dimensionful

parameter. Dividing by the entropy density s ∼ g⋆s(T )T
3 and using entropy conservation, we find

nL
s

∼
√
PRPh

g⋆s(T0)(rσT0)3
, (85)

up to an overall numerical factor. The NNLO term will be highly peaked around rσ ∼ k−1
♯ , whereas

the NLO term due to the flat part of the power spectrum will instead grow simply as r−3
σ and reach

its highest value at the Silk scale rS, as per the previous discussion.

Case 1: NLO, flat scalar spectrum (NLO♭)

Putting together eqs. (14) and (78), we find, after some manipulation,

〈
a6|nL|2

〉
rσ

=

(
1

16π2

)2∑

st

∫
dη

∫
dη̂

∫
d3p

(2π)3

∫
d3q

(2π)3

∫
d3p̂

(2π)3

∫
d3q̂

(2π)3

∫
d3r

∫
d3r̂

(
3 + 3w

5 + 3w

)2

Tφ(qη)Tφ(q̂η̂)T
′
h(pη)T

′
h(p̂η̂)

〈
RqR†

q̂

〉〈
hsp(0)h

t†
p̂
(0)

〉

Wrσ(r)Wrσ(r̂)e
i(p+q)·(x+r)e−i(p̂+q̂)·(x+r̂)

[
ǫijkǫabcqjqℓpke

s
iℓ(p)q̂bq̂dp̂ce

t
ad(p̂)

]
. (86)

Straightforward evaluation of the correlation functions yields

〈
RkR†

p

〉
=

2π2

k3
PR(k)δ

3
k−p(2π)

3, (87)

〈
hsk(0)h

t†
p (0)

〉
=

2π2

k3
Ph(k)δ

3
k−p(2π)

3δst, (88)

where we have introduced the shorthand δ3(k) ≡ δ3k and assumed that h+k = h×k = hk. Using the

Dirac delta functions to perform two of the momentum integrals, we find

〈
a6|nL|2

〉
rσ

=
1

64

(
3 + 3w

5 + 3w

)2 ∫
dη

∫
dη̂

∫
d3p

(2π)3

∫
d3q

(2π)3
PR(q)

q3
Ph(p)

p3
∣∣Ŵrσ(|p+ q|)

∣∣2

Tφ(qη)Tφ(qη̂)T
′
h(pη)T

′
h(pη̂)

[∑

s

ǫijkǫabcqjqℓpke
s
iℓ(p)qbqdpce

s
ad(p)

]
, (89)

where we have introduced the Fourier transform of the window function,

Ŵrσ(k) ≡
∫
d3r Wrσ(r)e

−ik·r. (90)
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By expanding the Levi-Civita symbols in terms of Kronecker deltas, we find the following

expression for the term in brackets

∑

s

ǫijkǫabcqjqℓpke
s
iℓ(p)qbqdpce

s
ad(p) =

[
q2p2− (q ·p)2

][
q ·es(p) ·es(p) ·q

]
− p2

[
q ·es(p) ·q

]2
. (91)

If we choose the coordinate system in such a way that the z axis is aligned with p, then the vectors

in the definition of the polarization tensors in eq. (13) are simply v = x and v̄ = y. Using θ to

denote the angle between q and the z axis, and ϕ for the corresponding azimuthal angle, we obtain,

after some straightforward algebra,

∑

s

ǫijkǫabcqjqℓpke
s
iℓ(p)qbqdpce

s
ad(p) =

1

2
p2q4 sin4 θ. (92)

The window function is obtained by Fourier-transforming eq. (79),

Ŵrσ(|p+ q|) = exp

[
− r2σ

4
(p2 + q2 + 2pq cos θ)

]
. (93)

After switching to spherical coordinates, all of the angular integrals can be performed explicitly,

and we arrive at the expression

〈
a6|nL|2

〉
rσ

=
1

64π4

(
3 + 3w

5 + 3w

)2 ∫
dp

∫
dq pq3PR(q)Ph(p)

∣∣∣∣
∫
dη Tφ(qη)T

′
h(pη)

∣∣∣∣
2

exp

[
− r2σ

2
(p2 + q2)

][
− 3

cosh(pqr2σ)

(pqr2σ)
4

+ (3 + p2q2r4σ)
sinh(pqr2σ)

(pqr2σ)
5

]
. (94)

As explained earlier, the observable quantity of interest is the root mean square of the lepton

number density. In order to compare with the baryon asymmetry after the electroweak sphaleron

processes have taken place, we need to divide by the entropy density

s =
2π2

45
g⋆s(T )T

3. (95)

The main contribution to the time integrals in eq. (94) occurs during the reheating stage, since

the transfer functions for both tensors and scalars decay quickly during the radiation era. Let us

suppose that the integrals freeze at some time tf shortly after reheating ends. Then, all of the time

dependence of the lepton number density is in the a3 factor, and we can relate the value of nL/s

to its value today by using entropy conservation,

g⋆s(Tf )a
3
fT

3
f = g⋆s(T0)a

3
0T

3
0 . (96)

Moreover, the upper limit in the time integrals can then be taken as η → ∞.

So far, we have not made any explicit choice for the power spectra. Let us set

PR(k) = A♭, Ph(k) = rA♭. (97)
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Figure 7: Numerical calculation of the coefficient G♭
NLO in eq. (99) as a function of the parameter ηr/rσ

for the different equations of state w = 0 (black, dashed), w = 0.5 (black, dot-dashed), and w = 1 (black,
dotted), together with the analytical estimate in eq. (104) (red, solid).

We then obtain

nL
s

∣∣∣∣
NLO♭

=
45

16π4

(
3 + 3w

5 + 3w

) √
rA2

♭G♭
NLO

g⋆s(T0)(T0rσ)3
, (98)

with

G♭
NLO =

∫ ∞

0
dpσ

∫ ∞

0
dqσ

∣∣∣∣
∫ ∞

0
dx Tφ

(
qσ
pσ
x, qσ

ηr
rσ

)
d

dx
Th

(
x, pσ

ηr
rσ

)∣∣∣∣
2

exp

[
− 1

2
(p2σ + q2σ)

][
− 3

cosh(pσqσ)

p3σqσ
+ (3 + p2σq

2
σ)

sinh(pσqσ)

p4σq
2
σ

]
, (99)

where we have introduced the dimensionless variables

x = pη, pσ = rσp, qσ = rσq, (100)

as well as the following notation for the transfer functions

Tφ(kη) ≡ Tφ(kη, kηr), Th(kη) ≡ Th(kη, kηr), (101)

which simply makes explicit the dependence on ηr. There is, of course, also an implicit dependence

on the equation of state w during the reheating stage. In fact, G♭
NLO is a dimensionless numerical

factor that depends only on the parameters w and ηr/rσ, which can be found from eq. (52),

ηr
rσ

≃
(

1

1 + 3w

)(
r−1
σ

1014Mpc−1

)(
107GeV

Tr

)
. (102)
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The dependence on both of these quantities is quite mild, as illustrated by the numerical results

presented in Fig. 7.

It is instructive to obtain an analytical result for G♭
NLO by introducing some approximations,

following the procedure in [11]. The first is that since the time integrals freeze around the end of

reheating, we can take the upper limit as ηr instead of ∞, which allows us to use the expressions

for the transfer functions valid during the reheating stage. Moreover, since the dependence on the

equation of state w is quite mild, we can simply set w = 0, so that Tφ(kη) = 1. The time integral

can then be performed immediately, yielding

∫ pηr

0
dx Tφ

(
qσ
pσ
x

)
d

dx
Th(x) = Th

(
pσ
ηr
rσ

)
− 1, (103)

where we have suppressed the second arguments in the transfer functions, since we are using the

expressions during the reheating stage, and no matching of coefficients is involved. We can finally

make the assumption that ηr ≫ rσ, so that Th(pσηr/rσ) → 0. The remaining integrals over pσ and

qσ can then be performed analytically, and we find

G♭
NLO =

2

3
. (104)

This result is very close to those obtained by numerically calculating the integral in eq. (99), as

shown in Fig. 7, even for ηr . rσ and w 6= 0.

Our result differs from the one in [11] in two ways. The first is that we obtain a different

expression for the integral in eq. (99). The momentum integrals in [11] diverge in both the IR and

UV, so the authors have calculated it by imposing cutoffs on both limits. Our integral, in contrast,

converges without the need for cutoffs, so we obtain a finite result for all parameter choices. The

second difference is that the evolution of the transfer functions during the radiation era was not

considered in [11], and instead an analytical estimate similar to the one performed above was

presented. We have taken the effect of this evolution into account in our calculation, and computed

the integrals in eq. (99) numerically by varying the two parameters ηr/rσ and w, confirming that

the dependence of the result on these quantities is very mild.

We conclude that, apart from the mild dependence of G♭
NLO on rσ, the resulting nL/s scales as

r−3
σ . As discussed earlier, this result is only valid up to the Silk scale rS, where the annihilation

damping becomes relevant. The maximum value it reaches is therefore, taking r = 0.01 [48, 49]

and G♭
NLO = 2/3 for simplicity,

nL
s

∣∣∣∣
NLO♭

≃ 45

16π4

(
3 + 3w

5 + 3w

) √
rA2

♭ (2/3)

g⋆s(T0)(T0rS)3
≃ 10−38. (105)

The asymmetry over the entire Hubble patch today is much smaller,

nL
s

∣∣∣∣
NLO♭

≃ 45

16π4

(
3 + 3w

5 + 3w

)√
rA2

♭ (2/3)

g⋆s(T0)

(
H0

T0

)3

≃ 10−100, (106)

so we confirm, as claimed in [11], that these fluctuations alone cannot explain the observed value
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Figure 8: Left panel: approximate expression for G♯
NLO in eq. (110) (solid black), together with the asymptotic

limits in (111) (dashed and dotted red). Right panel: numerical calculation of the full integral in eq. (109)
for k♯rσ = 3 (blue) and k♯rσ = 10 (orange) for w = 0 (dashed), w = 0.5 (dot-dashed), and w = 1 (dotted),
together with the approximate expression depicted in the left panel for each case (solid red and dashed red).

of nL/s ≃ 10−10. The same conclusion holds for the two following cases, but, as we will see

momentarily, the resulting spectrum of fluctuations has a rich structure that could, in principle,

allow us to probe different inflationary models if it were observable on small scales.

Case 2: NLO, sharp scalar spectrum (NLO♯)

We now turn our attention to the cases in which the power spectrum is sharply peaked at some

particular scale (not considered in [11]), and compute the corresponding enhancement to the baryon

asymmetry fluctuations. The calculation in this case is exactly the same as the previous one up to

the choice of the power spectra in eq. (97). We now set

PR(k) = A♯k♯δ(k − k♯), Ph(k) = rA♭, (107)

and obtain

nL
s

∣∣∣∣
NLO♯

=
45

16π4

(
3 + 3w

5 + 3w

)√
rA♭A♯G♯

NLO

g⋆s(T0)(T0rσ)3
, (108)

with

G♯
NLO =

∫ ∞

0
dpσ

∣∣∣∣
∫ ∞

0
dx Tφ

(
k♯rσ
pσ

x, k♯rσ
ηr
rσ

)
d

dx
Th

(
x, pσ

ηr
rσ

)∣∣∣∣
2

exp

[
− 1

2
(p2σ + k2♯ r

2
σ)

][
− 3

cosh(pσk♯rσ)

p3σ
+ (3 + p2σk

2
♯ r

2
σ)

sinh(pσk♯rσ)

p4σk♯rσ

]
. (109)

Now the dimensionless factor G♯
NLO depends not only on w and ηr/rσ, but also on the parameter
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Figure 9: Numerical calculation of the function G♯
NNLO for w = 1 (black) and w = 0.5 (red) for k♯ηr = 1,

10, and 100 (solid, dashed, and dotted lines, respectively).

k♯rσ. It is once again instructive to obtain an analytical result using the approximations of the

previous case. Setting w = 0 and following the same procedure, we obtain

G♯
NLO =

1

k♯rσ

√
π

2
erf

(
k♯rσ√

2

)
− e−k2♯ r

2
σ/2

(
1 +

1

3
k2♯ r

2
σ

)
. (110)

This function is highly peaked around k♯rσ ≃ 3, for which we find G♯
NLO ≃ 0.38. This quantity has

the asymptotic limits

G♯
NLO ≃





1

15
(k♯rσ)

4, for k♯rσ ≪ 1,

1

k♯rσ

√
π

2
, for k♯rσ ≫ 1.

(111)

The function and its asymptotic limits are shown in the left panel of Fig. 8. The numerical results

for the full integral in eq. (109) are shown in the right panel of the same Figure for k♯rσ = 3 and

k♯rσ = 10 as a function of ηr/rσ and w. We once again find that the dependence of the result on

these two parameters is very mild, so only the scaling with k♯rσ is relevant for our purposes. The

dependence of the result on rσ is shown in Fig. 10 for values of k♯ of interest for PBH dark matter,

together with the NLO♭ and NNLO♯ contributions, see the discussion below.

Case 3: NNLO, sharp scalar spectrum (NNLO♯)

We now turn our attention to the NNLO contribution to the baryon asymmetry fluctuations. The

amplitude of this term is entirely determined by the initial conditions and evolution of the scalar

perturbations, and is therefore present even if the tensor-to-scalar ratio r is vanishingly small. The

calculation in this case is more involved than the previous ones, so we perform it in Appendix A.
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do not change the distribution significantly on large scales, so the estimate in eq. (106) of the

asymmetry on a Hubble-sized patch today holds in the presence of the new terms.

Conclusions

We have calculated the expressions for the mass and abundance of PBHs produced during an early

epoch of reheating with a stiff equation of state. We find that the parameters that determine the

black hole distribution are the scale at which the peak in the power spectrum is located k♯, the

temperature at which the transition to radiation occurs Tr, and the equation of state w. There

are three relevant constraints in this scenario. The first is that, in order to reproduce the observed

dark matter abundance, the black hole masses must be in the range (2). The second is that for

collapse to occur before the radiation era, the scale at which the peak in the spectrum is located

must re-enter the horizon before the transition occurs, see eq. (32). Finally, since tensor modes are

enhanced in the presence of a stiff epoch, we must also ask that GWs are not overproduced so that

the bound on their energy density today, which arises from BBN and CMB observations, is not

violated, see eq. (54). The allowed region of parameter space is shown in Fig. 1.

In order to calculate the induced GW signal we have implemented a matching procedure for

both the Green’s function of the tensor modes and the transfer function of the scalar perturbations,

thereby extending the results of [27] by taking into account the full time evolution of these quantities.

We confirm that, in the presence of a stiff epoch, the induced GW signal is enhanced. We have

explicitly checked that the smoothness of the transition does not significantly change our results,

and provided a procedure to compute the signal in these gradual decay scenarios exactly, without

resorting to approximate analytical expressions of the Green’s and transfer functions, extending

the results of [25] to decaying fluids with stiff equations of state. As mentioned above, we have

used these results to translate the bound on the GW abundance to a constraint on the PBH masses

formed in this scenario. The results are shown in Figs. 1 and 3.

Finally, we have computed the chiral gravitational anomaly to third order in perturbations, and

we find that the large scalar spectrum responsible for PBH formation induces a peak in the baryon

asymmetry fluctuations on small scales. These results are shown in Fig. 10. We have shown that

this spectrum is essentially independent of the cosmological history (i.e. the reheating scale and

equation of state) and is therefore a generic prediction present in every model of PBH formation

from collapse induced by large density perturbations, even in the standard scenario where the black

holes form during radiation domination, assuming only the matter content of the Standard Model.

These fluctuations could, in principle, be used as an observable to probe not only the existence of

PBHs, but also different models of inflation. Assessing whether these fluctuations can be measured

by any future experiments is beyond the scope of this paper, but we point out that the main obstacle

to this end is the fact that they are much smaller than the observed background value, and therefore

some sort of enhancement mechanism would likely be required in the particular scenario studied

here. We remark, however, that the machinery we have developed could also be applied to other

models of gravitational leptogenesis, such as the one in [7], in which the fluctuations might be less

suppressed.
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Appendices

A. Evaluation of G♯
NNLO

In this Appendix we compute the quantity G♯
NNLO relevant for the calculation of the lepton number

density variance in the third case of Section 5. By putting together eqs. (23) and (78) we obtain

〈
a6|nL|2

〉
rσ

=

(
1

32π2

)2∑

st

∫
dη

∫
dη̂

∫
d3p

(2π)3

∫
d3q

(2π)3

∫
d3k

(2π)3

∫
d3p̂

(2π)3

∫
d3q̂

(2π)3

∫
d3k̂

(2π)3

(
3 + 3w

5 + 3w

)2

Tφ(qη)Tφ(q̂η̂)I
′
p(η, k, |p− k|)I ′p̂(η̂, k̂, |p̂− k̂|)

〈
RqRkRp−kR†

q̂
R†

k̂
R†

p̂−k̂

〉

∫
d3r

∫
d3r̂ Wrσ(r)Wrσ(r̂)e

i(p+q)·(x+r)e−i(p̂+q̂)·(x+r̂)

1

p2p̂2

[
k · es(p) · k

][
k̂ · et(p̂) · k̂

][
ǫijkǫabcqjqℓpke

s
iℓ(p)q̂bq̂dp̂ce

t
ad(p̂)

]
. (113)

We can evaluate the six-point function by using Wick’s theorem

[
2(2π)9

]−1〈RqRkRp−kR†
q̂
R†

k̂
R†

p̂−k̂

〉
= |Rq|2|R|p−k||2|Rq̂|2δ3q+kδ

3
p−k−p̂+k̂

δ3
q̂+k̂

+ |Rq|2|Rk|2|Rq̂|2δ3q+p−kδ
3
k−k̂

δ3
q̂+p̂−k̂

+ |Rq|2|Rk|2|Rq̂|2δ3q−k̂
δ3
k−p̂+k̂

δ3q̂−p+k

+ |Rq|2|R|p−k||2|Rq̂|2δ3q−p̂+k̂
δ3k−q̂δ

3
p−k−k̂

, (114)

where we have used the symmetry of the integrand under k → p − k and k̂ → p̂ − k̂ to simplify

the result.17 We can use the Dirac delta functions to perform the momentum integrals over k, k̂

and q̂. After using the symmetry of Ik under the exchange of the two momenta in the argument,

17We have also ignored unphysical contact terms containing factors of the form δ3k, and one term with δ3q−q̂δ
3
p−p̂,

which is not proportional to an overall momentum-conserving delta function δ3p+q−p̂−q̂.
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we obtain

〈
a6|nL|2

〉
rσ

=
π2

32

(
3 + 3w

5 + 3w

)2∑

st

∫
dη

∫
dη̂

∫
d3p

(2π)3

∫
d3q

(2π)3

∫
d3k

(2π)3
1

p2k2
∣∣Ŵrσ(|p+ q|)

∣∣2

Tφ(qη)Tφ(|p+ q − k|η̂)
[
ǫijkqjqℓpke

s
iℓ(p)

][
ǫabc(pb + qb − kb)(pd + qd)kce

t
ad(k)

]

PR(q)

q3
PR(|p+ q − k|)
|p+ q − k|3

{PR(|p+ q|)
|p+ q|3

[
q · es(p) · q

][
(p+ q) · et(k) · (p+ q)

]

I ′p(η, q, |p+ q|)I ′k(η̂, |p+ q − k|, |p+ q|)

+
PR(|q − k|)
|q − k|3

[
(q − k) · es(p) · (q − k)

][
q · et(k) · q

]

I ′p(η, |p+ q − k|, |q − k|)I ′k(η̂, q, |q − k|)
}
, (115)

where we have also renamed the remaining dummy variable p̂ → k. By choosing the sharp power

spectrum in eq. (30) and following the same procedure as for the two NLO cases in Section 5, we

find eq. (112), with

G♯
NNLO ≡ 2π6

k3♯

∫
d3p

(2π)3

∫
d3q

(2π)3

∫
d3k

(2π)3
δ(q − k♯)

k3♯

δ(|p+ q| − k♯)

k3♯

δ(|p+ q − k| − k♯)

k3♯

1

p2k2
∫
dη Tφ(k♯η)I

′
p(η, k♯, k♯)

∫
dη̂ Tφ(k♯η̂)I

′
k(η̂, k♯, k♯)

∑

st

[
q · es(p) · q

][
(p+ q) · et(k) · (p+ q)

]

[
Fst(p, q,k)

∣∣Ŵrσ(|p+ q|)
∣∣2 + Fts(−k, q,−p)

∣∣Ŵrσ(|q − k|)
∣∣2
]
, (116)

where

Fst(p, q,k) ≡
[
ǫijkqjqℓpke

s
iℓ(p)

][
ǫabc(pb + qb − kb)(pd + qd)kce

t
ad(k)

]
. (117)

To obtain this expression from eq. (115) we have renamed the dummy variables k → −p and

p → −k, as well as s↔ t, in the second term inside the brackets.

Let us orient our coordinate system in such a way that k coincides with the z axis, and denote

the angle between p and q by Θ, and the angle between p + q and k by Φ. We can then use the

following property of the Dirac delta function,

δ[f(x)] =
∑

j

δ(x− xj)

|f ′(xj)|
, (118)

where xj are the roots of f(x), to find

δ(|p+ q| − k♯) =
1

| cosΘ|δ(p+ 2k♯ cosΘ), (119)

δ(|p+ q − k| − k♯) =
1

| cosΦ|δ(k − 2k♯ cosΦ). (120)

We now switch to spherical coordinates in all of the momentum integrals in eq. (116). We denote

the polar and azimuthal angles of p by θp and φp, respectively, and similarly for q and k. Since k
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coincides with the z axis, we can immediately perform the integrals over θk and φk. We can also

perform the integrals over the moduli by using the Dirac delta functions and including a Heaviside

function for each to take into account the fact that the moduli must be positive. We find

G♯
NNLO =

1

16π2

∫
dθp

∫
dφp

∫
dθq

∫
dφq sin θp sin θqΘH(− cosΘ)ΘH(cosΦ)

∫
dx Tφ(x)

d

dx
I−2k♯ cosΘ

(
x

k♯
, k♯, k♯

)∫
dx̂ Tφ(x̂)

d

dx̂
I2k♯ cosΦ

(
x̂

k♯
, k♯, k♯

)

∑

st

[
q̂ · es(p̂) · q̂

][
(−2 cosΘp̂+ q̂) · et(k̂) · (−2 cosΘp̂+ q̂)

]

[
F̂st(p̂, q̂, k̂)

∣∣Ŵk♯rσ(|q̂ − 2 cosΘp̂|)
∣∣2 + F̂ts(−k̂, q̂,−p̂)

∣∣Ŵk♯rσ(|q̂ − 2 cosΦk̂|)
∣∣2
]
, (121)

where x ≡ k♯η, the hatted vectors are normalized to unity (and bear no relation to the hatted

dummy variables in eq. (113)), and

F̂st(p̂, q̂, k̂) ≡
[
ǫijkq̂j q̂ℓp̂ke

s
iℓ(p̂)

][
ǫabc

(
q̂b − 2 cosΘp̂b − 2 cosΦk̂b

)(
q̂d − 2 cosΘp̂d

)
k̂ce

t
ad(k̂)

]
,

F̂ts(−k̂, q̂,−p̂) ≡
[
ǫijkq̂j q̂ℓk̂ke

t
iℓ(k̂)

][
ǫabc

(
q̂b − 2 cosΘp̂b − 2 cosΦk̂b

)(
q̂d − 2 cosΦk̂d

)
p̂ce

s
ad(p̂)

]
.

(122)

The window functions can be explicitly written as

∣∣Ŵk♯rσ(|q̂ − 2 cosΘp̂|)
∣∣2 = e−k2♯ r

2
σ/2,

∣∣Ŵk♯rσ(|q̂ − 2 cosΦk̂|)
∣∣2 = e−k2♯ r

2
σ/2 exp

[
2k2♯ r

2
σ(cos θq − cosΦ) cosΦ

]
. (123)

We can also write the Θ and Φ angles explicitly as follows,

cosΘ = sin θp cosφp sin θq cosφq + sin θp sinφp sin θq sinφq + cos θp cos θq, (124)

cosΦ = cos θq − 2 cosΘ cos θp. (125)

We can write the expressions in eq. (122) explicitly by expanding the Levi-Civita symbols. After

some straightforward algebra, we find

F̂st(p̂, q̂, k̂) =−
[
q̂ · (q̂ − 2 cosΘp̂− 2 cosΦk̂)

][
k̂ · es(p̂) · q̂

][
p̂ · et(k̂) · (q̂ − 2 cosΘp̂)

]

+
[
p̂ · (q̂ − 2 cosΘp̂− 2 cosΦk̂)

][
k̂ · es(p̂) · q̂

][
q̂ · et(k̂) · (q̂ − 2 cosΘp̂)

]

−
[
p̂ · k̂

][
(q̂ − 2 cosΦk̂) · es(p̂) · q̂

][
q̂ · et(k̂) · (q̂ − 2 cosΘp̂)

]

+
[
q̂ · k̂

][
(q̂ − 2 cosΦk̂) · es(p̂) · q̂

][
p̂ · et(k̂) · (q̂ − 2 cosΘp̂)

]

−
[
q̂ · k̂

][
p̂ · (q̂ − 2 cosΘp̂− 2 cosΦk̂)

][
q̂ · es(p̂) · et(k̂) · (q̂ − 2 cosΘp̂)

]

+
[
p̂ · k̂

][
q̂ · (q̂ − 2 cosΘp̂− 2 cosΦk̂)

][
q̂ · es(p̂) · et(k̂) · (q̂ − 2 cosΘp̂)

]
, (126)
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and, similarly,

F̂ts(−k̂, q̂,−p̂) =−
[
q̂ · (q̂ − 2 cosΘp̂− 2 cosΦk̂)

][
p̂ · et(k̂) · q̂

][
k̂ · es(p̂) · (q̂ − 2 cosΦk̂)

]

+
[
k̂ · (q̂ − 2 cosΘp̂− 2 cosΦk̂)

][
p̂ · et(k̂) · q̂

][
q̂ · es(p̂) · (q̂ − 2 cosΦk̂)

]

−
[
p̂ · k̂

][
(q̂ − 2 cosΘp̂) · et(k̂) · q̂

][
q̂ · es(p̂) · (q̂ − 2 cosΦk̂)

]

+
[
q̂ · p̂

][
(q̂ − 2 cosΘp̂) · et(k̂) · q̂

][
k̂ · es(p̂) · (q̂ − 2 cosΦk̂)

]

−
[
q̂ · p̂

][
k̂ · (q̂ − 2 cosΘp̂− 2 cosΦk̂)

][
q̂ · et(k̂) · es(p̂) · (q̂ − 2 cosΦk̂)

]

+
[
p̂ · k̂

][
q̂ · (q̂ − 2 cosΘp̂− 2 cosΦk̂)

][
q̂ · et(k̂) · es(p̂) · (q̂ − 2 cosΦk̂)

]
. (127)

The es matrices are in general given by

etij(k̂) =
1√
2
δt+(eiej − ēiēj) +

1√
2
δt×(eiēj + ēiej), (128)

where ei and ēi are orthonormal vectors orthogonal to k̂. Since k coincides with the z axis, we can

choose ei = xi and ēi = yi for e
t(k̂). For es(p̂) we can instead choose ei = vi and ēi = wi, where

vi = cos θp cosφpxi + cos θp sinφpyi − sin θpzi, (129)

wi = − sinφpxi + cosφpyi. (130)

These vectors can be easily checked to be orthogonal to p by using

pi = p sin θp cosφpxi + p sin θp sinφpyi + p cos θpzi. (131)

With these matrices in hand, the dot products in eqs. (126, 127) can be written in terms of θp, θq,

φp, and φq.

Let us turn our attention to the time integrals in eq. (121),

I ≡
∫
dx Tφ(x)

d

dx
Iq

(
x

k♯
, k♯, k♯

)
. (132)

The Iq function is given by eq. (19), so that

d

dx
Iq

(
x

k♯
, k♯, k♯

)
=

(
3 + 3w

5 + 3w

)2 ∫ x(q/k♯)

0

d

dx
qGq

(
x

k♯
,
y

q

)
Q

(
y

q
, k♯, k♯

)
dy, (133)

with y = qη′, together with

Q

(
y

q
, k♯, k♯

)
= 8Tφ

(
k♯
q
y, k♯ηr

)2

+
16

3(1 + p/ρ)

[
Tφ

(
k♯
q
y, k♯ηr

)
+
q

H
d

dy
Tφ

(
k♯
q
y, k♯ηr

)]2
, (134)

and

qGq

(
x

k♯
,
y

q

)
= h1

(
q

k♯
x,

q

k♯
k♯ηr

)
G2

(
y,
q

k♯
k♯ηr

)
− h2

(
q

k♯
x,

q

k♯
k♯ηr

)
G1

(
y,
q

k♯
k♯ηr

)
. (135)
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[18] Ranjan Laha, Julian B. Muñoz, and Tracy R. Slatyer. INTEGRAL constraints on pri-

mordial black holes and particle dark matter. Phys. Rev. D 101.12 (2020). arXiv:

2004.00627 [astro-ph.CO].

[19] J. Berteaud, F. Calore, J. Iguaz, P. D. Serpico, and T. Siegert. Strong constraints on pri-

mordial black hole dark matter from 16 years of INTEGRAL/SPI observations.

Phys. Rev. D 106.2 (2022). arXiv: 2202.07483 [astro-ph.HE].

35



[20] Kenji Tomita. Non-Linear Theory of Gravitational Instability in the Expanding

Universe. Progress of Theoretical Physics 37.5 (May 1967).

[21] Kishore N. Ananda, Chris Clarkson, and David Wands. The Cosmological gravitational

wave background from primordial density perturbations. Phys. Rev. D 75 (2007).

arXiv: gr-qc/0612013.

[22] Daniel Baumann, Paul J. Steinhardt, Keitaro Takahashi, and Kiyotomo Ichiki. Gravita-

tional Wave Spectrum Induced by Primordial Scalar Perturbations. Phys. Rev. D

76 (2007). arXiv: hep-th/0703290.
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