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Abstract

For QFTs in AdS the boundary correlation functions remain conformal even if the bulk the-
ory has a scale. This allows one to constrain RG flows with numerical conformal bootstrap
methods. We apply this idea to flows between two-dimensional CFTs, focusing on deforma-
tions of the tricritical and ordinary Ising models. We provide non-perturbative constraints
for the boundary correlation functions for these flows and compare them with conformal
perturbation theory in the vicinity of the fixed points. We also reproduce a completely

general constraint for the 7T deformation in two dimensions.



Contents
1 Introduction

2 Setting the stage
2.1 CFTs on the upper half-plane . . . . . ... .. ... ... ...
2.2 From BCFTs to AdS . . . . . . . . .

3 Perturbative results
3.1 TT deformed CFTs to first order . . . . . . . . ... ... ... ... .......
3.2 Deformations by a bulk Virasoro primary . . . . . . .. .. ... ... ... ... .
3.3 Ising model and its deformations . . . . . . . . ... ... L.

3.4 Tricritical Ising model and its deformations . . . . . . . ... ... ... ... ..

4 Numerical Results
4.1 Universal bounds from Displacement four-point function . . . ... ... ... ..
4.2 Bootstrapping the Tricritical to Critical Ising RG flow . . . . . ... ... ... ..
4.3 Bootstrapping perturbative RG flows . . . . . . .. ..o

4.4 Correlator maximization and the conformal staircase . . . . . . . . . . . . . ...
5 Outlook

A Conventions
A.1 OPEs and basic correlation functions . . . . . . . . . . . ...

A.2 Global conformal blocks on the upper half-plane . . . . . . . ... ... ... ...

B Correlation functions for generalized free theories
B.1 Generalized free fermion . . . . . . . . ...

B.2 Generalized free boson . . . . . . ...
C Parity-odd channel in correlators with the displacement

D Correlators in minimal model boundary conditions
D.1 Bulk two-point function of ¢y . . . . . . ..o
D.2 Bulk two-point function of ¢y . . . . . . ..o

D.3 Tricritical Ising model with Zs-preserving conformal b.e. . . . . . . . ... .. ..

E One-loop computations for the 7T deformation
E.1 Two-point functions . . . . . . . . . .. .

E.2 Three-point functions . . . . . . . . ..o

20
20
23
29
37

41

43
43
44

45
45
47

49

50
20
52
23



F One-loop computations for Virasoro deformations
F.1 Two-point functions . . . . . . . . . . . . . ...

F.2 Three-point functions . . . . . . . . . . ...

G ¢(1,2) deformations of minimal models
G.1 Correlator between two 1.,y and one ¢ 2y . . . . . . ..o

G.2 Anomalous dimensions . . . . . . . ...,

H Review of the Staircase model
H.1 Defining properties . . . . . . . . . . . .
H.2 A hint from the S-matrix Bootstrap . . . . . . . .. . .. ... ... ... ... ..
H.3 More on Minimal Model RG flows . . . . . . . . .. .. ... ... ... ......

61
62
63

65
65
67



1 Introduction

The aim of this work is to constrain the physics of quantum field theories that undergo an RG
flow between two non-trivial fixed points.

We largely focus on flows around the two lowest-lying diagonal minimal models in two space-
time dimensions: the tricritical Ising model with m = 4 and ¢ = 7/10 and the Ising model with
m = 3 and ¢ = 1/2. Of particular interest is the flow between these theories, which is triggered
by the relevant ¢(; 3y deformation of the tricritical Ising model [1, 2]. More generally, the ¢ 3)
deformation of the m’th minimal model triggers a flow to the m — 1’th minimal model. This is
(a limit of) the integrable ‘staircase’ flow of [3] which we will also briefly investigate.

Our method is to apply numerical conformal bootstrap techniques to the boundary correlation
functions of the QFT in a hyperbolic background. For an RG flow parametrized by a scale p in a
hyperbolic space with curvature radius R this setup leads to a one-parameter family of solutions
of the boundary conformal crossing equations where the OPE data depends on the dimensionless
combination pR. We will aim to numerically constrain these families of consistent OPE data. A
similar analysis was done earlier for deformations of the free massless scalar and the Sine-Gordon
RG flow in AdS [4].

We get our most interesting results when the boundary correlation functions of the fixed
point saturate (extrapolated) numerical bounds. This is because first-order corrections to the
OPE data, which for specific deformations can be computed in conformal pertubation theory, can
sometimes point into the disallowed region. In such a case there is an inconsistency: the first-
order correction to the OPE data may look totally innocuous, but in actuality the deformation
cannot be consistently exponentiated in that direction.

Our most relevant example of this scenario is the TT deformation [5-7] of a general two-
dimensional CFT in AdS. From a first-order analysis we find that an irrelevant deformation of
the form

05 =\ / TT + (more irrelevant deformations) (1.1)
AdS»

can only be consistent if
A>0. (1.2)

We note that in flat space a similar condition was found in [8, 9], but the derivation from con-
formal bootstrap methods is new. Furthermore, our bound applies in an AdS space of arbitrary
radius and sheds some light on the 7T deformation in curved space which can be of interest by
itself [10, 11].

We stress that constraints of the form (1.2) are independent of subleading irrelevant defor-

mations in equation (1.1). Instead we merely need to compute the first-order correction to the



boundary OPE data to disallow certain signs. In that sense the constraint (1.2) is more general
than the (equivalent) sign constraint obtained from integrability for a pure T'T deformation |8, 9.

We finally note that sign constraints for irrelevant couplings are reminiscent of the older
causality constraints of [12]. The simplest of these, a bound on the (9¢)* coupling for a massless
shift-invariant scalar, was reproduced in two dimensions from QFT in AdS in [4|. These bounds
have also been vastly generalized with numerical methods [13, 14] and they were ‘uplifted’ to AdS
in [15] using the techniques of analytic functionals and conformal dispersion relations [16-18].
In those cases the IR theory however always consisted of a free massless field. Our QFT in AdS
approach, on the other hand, allows one to constrain the irrelevant couplings around a general
IR CFT.

The universality of our bootstrap bounds implies the following caveat. Consider a CFT
deformed by two operators O; and O, with dimensionful couplings A; and \,, so the dimensionless

boundary OPE data becomes a function of
g1 = MRT2 and gy = AR (1.3)

With our numerical methods we can hope to carve out the embedding of the (allowed region
in the) (g1, 92) plane in the space of all boundary OPE data. On this plane there are however
distinguished curves which correspond to the actual RG flows. For example, if both couplings are
relevant then the fixed point is approached along specific curves which are most easily described
by saying that they become straight lines in the plane spanned by (g%/ (del), gé/ (deQ)). Without
further assumptions these RG flow lines will however remain invisible in the bootstrap analysis.
As an example we will find below a bound that is saturated to first order by a straight line in
the (g1, g2) plane instead of an actual RG flow.

In the next section we discuss some general properties of QFTs in AdS. We will compute
some pertinent results to first order in conformal perturbation theory in section 3, and compare

these with the numerical results in section 4. Section 5 lists some possible future directions.

2 Setting the stage

In this section we discuss conformal boundary conditions (b.c.) for 2d CFTs on the upper
half-plane, or 2d BCFTs. Our goal is to recall the basic concepts that will be important for
our subsequent study, as well as setting up the conventions. A more detailed discussion and
references to the original literature can be found for example in the books [19-22|. Note that
what we discuss here also applies to BCFTs on AdS,, since the two backgrounds are related by
a Weyl rescaling.



2.1 CFTs on the upper half-plane

Consider placing a generic unitary 2d CFT with central charge ¢ on the upper half-plane
H"={2z€C|Im 2z >0} .

In Cartesian coordinates we write z = x 4 1y, so that the real axis is the boundary of the domain
and y > 0 is a transverse coordinate. The boundary geometry is preserved by local conformal
transformations that are real-analytic functions of the coordinates. The latter are generated by
a single copy of the Virasoro algebra, with central charge ¢

1—02n<n2 — Doimo, mneZ. (2.1)

The vacuum of any (euclidean) 2d BCFT is therefore invariant under SO(2,1) ~ SL(2,R).
As usual in CFTs with boundaries (or defects), we shall distinguish between ‘bulk’ and ‘bound-

ary’ (or ‘defect’) local operators, respectively denoted as:

Occasionally, we will use the complex notation and write ¢(z, z) for bulk local operators. Here
we are further allowed to distinguish between ‘Virasoro’ and ‘global’ primaries, the latter being

Virasoro descendants that are primaries with respect to the conformal group.

2.1.1 Universal boundary operators and bulk one-point functions

An important feature of any local 2d BCFT is that its spectrum generically features a displace-
ment operator. The latter is a boundary global primary defined as the restriction of 7" = T'(2)

(the holomorpic component of the stress-energy tensor) to the boundary, i.e.
D(z) =T (x + iy)|y=o - (2.2)

The displacement belongs to the boundary identity module, and in particular it is a level-two
Virasoro descendant of the boundary identity 1. The restriction of the anti-holomorphic com-
ponent T'(2) of the stress-energy tensor to the boundary defines the same displacement, since by

the absence of momentum flow across the boundary
T(z)=T(2), Imz=0. (2.3)

This is known as Cardy’s condition [23-25]. It follows from these considerations that correlation

functions with the displacement can be obtained from correlation functions with the stress-energy



tensor T' on the upper half-plane, by restricting all T-insertions to the real axis, so for instance

we have
(D)D) = L2, (D()D()D () = ‘
1 2 Ht — lelQ 9 1 2 3 H+ — (1'12)2(3:23)2([['31)2 9
?/4 n \', 8 ((n—1n+1)
D(z1)D(z2)D(x3)D = __|1+n 2.4
< (xl) (xZ) ('TS) (554)>H+ (:IJ12)4(:L‘34)4 +n+ (77 _ 1) + c(n — 1)2 ) ( )
with the four-point cross-ratio given by
n= T12034 , 0< n < 1. (25)
T13T24

More examples are discussed in appendix A.3 of [26].

Beside the displacement, the boundary identity module [ﬂ] provides us with as many global
boundary primaries as there are in the bulk identity module, when restricted to the holomorphic
part. In particular, [ﬂ] contains only one boundary global primary at level four, as it follows

from considering the restriction of the 7' x T" OPE to the boundary, i.e.

mmmm:ﬁ?+2

4 2

mm+§ﬂm+%vmmmﬂm+mﬁ% (2.6)

where ’ indicates derivatives along the boundary and we omitted higher-order contributions. The
displacement D and its closest cousin D? will play a central role in our analysis.

One-point functions of bulk local operators provide an important set of observables in any
BCFT. By SL(2,R) symmetry these can be non-trivial only for scalar bulk (global) primaries [27—

29], so for an operator with scaling dimension A we have

. . B
(d(x + iy, © — i)+ = ﬁ . (y>0). (2.7)

2.1.2 Minimal model conformal boundary conditions

An important set of exactly solvable examples is provided by the minimal models. We will focus

on unitary and diagonal minimal models M, ;1 ,, with central charge

1o — 5% 345 (2.8)
m(m + 1)

Allowed bulk Virasoro primaries are labelled by a pair of positive integers (r, s) as follows
(r,s), 1<r<m-1, 1<s<m, (rs)@(m-r,m+1-—s). (2.9)
Their scaling dimensions and spins are

¢(T,8)<za 2) : Ar,s = hr,s + hr,s ) é’r,s = hr,s - hr,s =0, (210)



with holomorphic scaling dimensions

(m+1)r— m:s)2 -1
4m(m + 1)

By = (2.11)

The m’th diagonal minimal model enjoys a Zy symmetry under which the charge of a Virasoro

primary with labels (r, s) is [30-32]

EEZLS)) _ (_1)(m+1)r+ms+1 . (212)

We will sometimes refer to ‘holomorphic’ Virasoro primaries to indicate primaries with A, 3 =
(s = h,s, and therefore to ‘holomorphic’ fusion rules, correlators, etc. These turn out to be

useful gadgets, because boundary Virasoro primaries

Voo (@): Ao =hes (2.13)

where (r,s) satisfy eq. (2.9) behave as holomorphic Virasoro primaries, as far as the Ward
identities are concerned, see e.g. the discussion in [26].
The (holomorphic) fusion rules read

Tmax Smax

Py X by = D Y. bpren s (2.14)

r'=lr—r'|+1 §’=|s—s'|+1
r+r'4+r" odd s+s'+s" odd

where 7y = min(r + 7" — 1, 2m —r —r’ — 1) and Spax = min(s + s — 1, 2m — s — s’ + 1).
The space of possible conformal boundary conditions for M,, 1 ,, is highly constrained by
modular invariance. Allowed ‘elementary’ conformal boundary conditions (which have a unique
identity operator) are in one-to-one correspondence with the Cardy states [24], which in turn are
in one-to-one correspondence with the scalar Virasoro primaries of the bulk CFT [23-25|. So,
yet again, we label the elementary conformal boundary conditions with a pair of positive integers

ay, as that satisfy
a=(a1,a2)m, 1<a;<m-1, 1<a<m, (a,a2)=(m—a;,m+1—ay). (2.15)
We recall two useful properties that such elementary conformal boundary conditions enjoy:

(i) In a given b.c. a, the allowed boundary Virasoro primaries are those that can appear in

the ‘holomorphic’ fusion ¢, X ¢,. The annulus partition function with b.c. a reads:

=3 NEXa(e ™) (2.16)

(r,s)

where () is the (holomorpic) Virasoro character of the (r,s) primary, J is the width of
the annulus, and N is the fusion coeflicient of ¢a X ¢ into @5 — see eq. (2.14). A list
of elementary conformal b.c. for diagonal minimal models with m < 5 can be found in
Table 12 on page 43.



(ii) In a given b.c. a, the allowed boundary Virasoro primaries in the bulk-boundary fusion

of a bulk Virasoro primary ¢, are those that can appear in the ‘holomorphic’ fusion
¢(r,s) X ¢(r,s)-

(iii) The one-point function coefficients in eq. (2.7) are completely determined by the Cardy
state [33, 34]. The explicit formula is:

(r,s) (1,1)
Ba - S(al,ag) (1,1)
(rs) = ’
(1,1) (r,s)
Saran V S11)
r,5 8 . .
S( ,8) (_1)1+a1s+a2r sin (WT‘HﬂalT) Sin (miﬂwags) . (217)

(a1,02) — m(m + 1)

In this paper we shall mostly focus on elementary conformal boundary conditions a for the
unitary and diagonal minimal models. However we should keep in mind that the most generic
conformal boundary condition is a superposition of the elementary conformal boundary condi-

tions defined above.

2.2 From BCFTs to AdS

Correlation functions in BCF'T are related to correlation functions in AdS by a simple Weyl

rescaling. We will work in Poincaré coordinates of AdS, with radius R
2 R, 2 2
ds® = g datdx” = ?(dy +dxz*), (z,y) €R°|y>0 (2.18)
For bulk (global) primary operators with scaling dimension A the Weyl rescaling rule is

(p(x 4+ iy, 2 —1y) .. Yaas = (y/R)>(d(x + iy, x —iy) .. )BcrT - (2.19)
Boundary operators remain untouched. Notice that under such Weyl rescaling from the upper
half-plane the anomalous contribution to the stress-energy tensor 71" vanishes, hence Tpcpr =
Taas, see e.g. the discussion in section 5.1 of ref. [35].

3 Perturbative results

Suppose we switch on a deformation of a 2d BCFT in AdS, by a local operator ¢(z). The

correlation functions in the deformed theory can be computed perturbatively by expanding

(...exp (—g¢RA¢_2 / d*z /g d(z) + counterterms)> , (3.1)

8



in the dimensionless coupling gs. This deformation generically induces both UV and IR di-
vergences. The UV divergences are essentially the same as in flat space, even though new
counterterms involving the AdS curvature may be needed. The IR divergences can be cured by
including bulk counterterms evaluated at a cut-off surface near the boundary. As discussed for
example in [26], as long as there are no marginal operators in the bulk-boundary OPE of ¢, these
counterterms preserve boundary conformal invariance and the ‘boundary follows the bulk’. This
is generically not the case for generic BCFTs in flat space, see for instance refs. [36-38|.

In sections 3.1 and 3.2 we take the undeformed theory to be a generic local 2d BCFTs with
bulk central charge c. In sections 3.4 and 3.3 we will specifically focus on the first two diagonal

minimal models.

3.1 7T deformed CFTs to first order

We switch on the 7T deformation of a CFT in AdS,. In Poincaré coordinates:
6S = g R? / d2$\/§ TT(x + iy, — iy) + counterterms . (3.2)

In this expression, x runs along the conformal boundary of AdSy and y is the transverse direction.
At the level of correlation functions, the T'T insertion on AdS, is a Weyl rescaling away from the
TT insertion on the upper half-plane, where the latter is obtained from an insertion of 7'(2)7T'(z")

on the complex plane, with 2’ = z*, i.e.!

(..TT(2))u+ = Zl/lil’lﬂ( LT (2))mr

=lm (... T()TE g = (.. TE)TE)a - (3.3)

2=z
As we turn on the interaction operators will generically pick up anomalous dimensions. Start-
ing from correlation functions with T'T insertions computed in ref. [26], in appendix E we compute
the anomalous dimensions of D and D? under the deformation of eq. (3.2), at the first order in

the coupling. We show that
Ap(grr) =2+ grp 6Ap + O(977) SAp =7,

The spectrum of our undeformed BCF'T5y might feature a boundary Virasoro primary ) with tree-
level dimension A. The T'T deformation of such BCFT then results in the following anomalous

dimension for 1, as shown in appendix E

o o o o T A
Ay(grr) = A+ grr 60y + O(grg) , 00y = §A(A -1). (3.5)

'Note that the T x T OPE is regular, as dictated by holomorphy.

9



We note that 6Aw — A? at large A, generalizing the expectation from AdS effective field theory

[39, 40]. In appendix E we also compute the following boundary correlation functions
(D(1)D()D(0)) o Appp(grr) - (L)Y (x)D(0)) < Ayyn(grr) ,
<D(1)D(-75)D2(0)> X 5‘DDD2 (9r7) <¢(1)¢(f’5)D2(0)> X 5‘wwDQ(QTT) ) (3.6)

at one-loop in the 77T deformation. As we show in the appendix, these correlators remain

conformal along the full RG, and for unit-normalized boundary operators we find:

% 2v/2 m(c—24
Appp (977) = Y (1 - %QTT + O(Q%T)) )
V2A e .
)\wwD(gTT) (1 -7 (1 + ﬂ — 2A> g + O(g%T)> ’

\[A 5A +1 i
Ny 1 — —(5¢ — 240A + 262 + 0 ,
YD (9r7) (5c + 22) ( 60( 91T ( ))

/\DDD2 gr7) \/7\/ (5¢ +22) (1 + gTT + O(gTT)) : (3.7)

3.2 Deformations by a bulk Virasoro primary

Consider a 2d CFT in AdS, with a generic conformal boundary condition and central charge c.
If this theory supports a scalar bulk Virasoro primary with scaling dimension A,, we can turn
on the following deformation in the bulk of AdS

08 = gyR2e? / d*z+\/g ¢(z + iy, x — iy) + counterterms . (3.8)

We assume that ¢ does not contain any marginal boundary global primary in its bulk-boundary
OPE.? The undeformed theory features again both D and D?. The anomalous dimensions of

these operators under the deformation of eq. (3.8) at the first order in the coupling read

Ap(gs) = 2+ g4 6Ap + O(g2) |
Ap2(gs) = 4 + gy 0Ape + O(g3) . (3.9)

with [26] (see also appendix F for a derivation)

A By 4m
SAp = QA — (8= 2)A,
5AD2 _ B¢ 27TA¢(A¢ — 2)(200 —+ 25(A¢ — 2)A¢ + 64) (31())
28¢ c(5¢ +22)

2If it does, then the bulk RG will induce a boundary RG flow and potentially destabilize the boundary

condition, see e.g. the discussion in [26, 35].

10



In the equations above, By is the tree-level one-point function coefficient for the operator ¢
with a generic conformal boundary condition, see eq. (2.7). In appendix F we also compute the

following boundary correlation functions
(D(1)D(2)D(0)) < Appp(gs) - (D(1)D(2)D*(0)) o< Appp2(gs) (3.11)

at one-loop in the Virasoro deformation above. As we show in the appendix, these correlators

remain conformal along the full RG, and for unit-normalized boundary operators we find

2v/2 B, 3w
(1 + 2A¢ —(Ap —2)A% gy + O(gj))> :

By m(Ay — 2)Ap(5A, + 2)(25A, + 336
/\DDD2 g¢ \/7\/ 5c + 22 (1 + ¢ ¢ ) ;(()C(;; - 2)2<) ¢ )g¢ + O(g;)) ‘
(3.12)

Appp(gs) =

3.3 Ising model and its deformations

Bulk theory. The Ising model is the m = 3 diagonal minimal model. It has ¢ = 1/2 and it is

characterized by the following set of scalar Virasoro primaries

A | Symbol (r,s)
0 1 [ (11 or(23
1/8 o (1,2) or (2,2)
1 € (1,3) or (2,1
The non-trivial fusion rules are
exe=1, oxe=0, oxo=1+c¢€. (3.13)

The bulk theory is invariant under a Z, global symmetry. Such Z, flips the sign of o, and

leaves invariant 1 and e, see e.g. [30, 31].

The Zs-invariant conformal boundary conditions. There are three elementary conformal
boundary conditions. The ones labelled by (1,1); and (1,3)3 are Zs-breaking while the one
labelled by (1,2)3 is Zy-preserving.> We will focus on the latter, for which the spectrum of allowed
boundary Virasoro primaries, as well as non-vanishing bulk one-point functions are reported in
Table 1.

3A conformal boundary condition is Zs-invariant when the corresponding Cardy state is. Equivalently, all

bulk one-point functions of Zs-odd operators vanish.

11



(a1, as)m | Boundary spectrum | Zs

(1,2)s i +1
Y3y = Ve —-1]1/2

o | b

Bulk primary || A | (1,2)3 b.c.
(1,1) 0 1
(1,3)or (21)]| 1| -1

Table 1: Zs-preserving conformal boundary conditions for the Ising model. In the first ta-
ble: spectrum of boundary Virasoro primaries. In the second table, non-vanishing one-point

functions Bf (see eq. (2.7)) of bulk Virasoro primaries.

Let us now discuss the Zy charges in Table 1. In a given Z,-preserving conformal boundary
condition, a boundary global primary that appears in the bulk-boundary OPE of a Zy-even (odd)
operator, is Zg-even (odd). For example, in any Zs-invariant boundary condition, the boundary
identity 1 must appear in the bulk-boundary OPE of the bulk identity. Since the displacement
operator D is a level-two Virasoro descendant of 1, it must be Zs-even. For ‘less universal’
boundary primaries, understanding their Z, charges requires in general to study correlation
function with both bulk and boundary operators insertions.

For instance, in order to determine the Z, charge for the v, 3) boundary operator in the
(1,2)3 conformal boundary condition, the relevant bulk-boundary OPE is
s

B?(173)

A

1+ -
(2y)~e (2y)Ae—A1a

oz +iy,x —iy) = V1,3 (x) + desc. (3.14)

After deriving the bulk two-point function of ¢ one finds that [34, 41, 29]

1
a2 — — 3.15
(B2O9Y = — (3.15)
(see also our appendix D.1 for an independent derivation of this result). Hence, 1 3) is Zs-odd,

and so the following boundary fusion rule must hold

P X Yag =1 . (3.16)

We have reconstructed the holomorphic counterpart of the fusion rules in eq. (3.13). This is not
surprising: as already emphasized earlier, boundary Virasoro primaries behave as holomorphic

Virasoro primaries as far as Ward identities are concerned.

12



Bulk perturbations. We will consider both relevant and (leading) irrelevant, Zs-preserving,
bulk perturbations of the Ising model in AdS with (1,2)3; boundary conditions,

0Srel = 9(1,3)RA1’3_2 / d*r\/q d(1,3)(x + 1y, v — iy) + counterterms ,
Sl = grp R / dQﬂ?\/ﬁ TT(x + iy, z — iy) + counterterms . (3.17)

For each allowed global boundary primary with tree-level dimension A we will compute, at the

leading order in the deformation
Apga) = A+ " gwdAY +.. g0 = {90s). grr} - (3.18)

For the contributions of the ¢(; 3) deformation to the anomalous dimensions of v, ) we can use
the result of ref. [26]. For the one-loop anomalous dimensions under the 7T deformation we use

eq. (3.5) while for that of D, D? under a generic bulk Virasoro primary we use eq. (3.10).

3.3.1 The (1,2); conformal b.c. and its deformations

Tree-level analysis. Beside the boundary identity 1, the only allowed boundary Virasoro
primary is 91,3y =~ 92,1y and is Zy-odd, see Table 1. We will study the Z,-invariant four-point
correlation functions between v(; 3y and D along the RG. At tree-level, the leading OPEs are
(schematically)

Pa3) X U3 ~1T+D+...,
Yiag X D~ g+l Ul 4o
DxD~1+D+D’+..., (3.19)
The superscript (n) denotes level-n Virasoro descendants which are global primaries. The quan-

tum numbers of the operators that appear in eq. (3.19) are reported in Table 2 (the analysis of the

parity-odd channel in correlation functions with the displacement is worked out in appendix C).

A | Z, | P
Y(1,3) % —-1]+1
D 2 | +1|+1
@
Vi |[4+3 | -1 +1
D? 4 |41 +1
@
i | T+5 | -1 1

Table 2: Ising model with (1,2)3 conformal boundary condition. Quantum numbers of the

leading global boundary primaries appearing in the OPEs (3.19).

13



One-loop results.

The one-loop anomalous dimensions for the boundary operators ¢, s, D
and D? under the bulk deformations of eq. (3.17) can be found in Table 3.

|

H 9(1,3?1,3) \ 9r7TT \

A (D) ™
AT, | 2 | 3
5Ag) 4m ™
) Ag)g 47 61

Table 3: Anomalous dimensions of the leading boundary primaries in the (1,2)3 conformal

boundary condition under the deformation of eq. (3.17).

3.4 'Tricritical Ising model and its deformations

Bulk theory. The tricritical Ising model is the m = 4 diagonal minimal model. It has ¢ = 7/10

and it is characterized by the following set of scalar Virasoro primaries

A | Symbol (r,s)

0 1 (1,1) or (3,4)
1/5 € (1,2) or (3,3)
6/5 ¢ (1,3) or (3,2)

3 ¢’ (1,4) or (3,1)
3/40 (2,2) or (2,3)
7/8 o’ (2,4) or (2,1)

The non-trivial fusion rules are (see eq. (2.14))

exe=1+¢€, exe =e+e,

/ / / / "
e xe=1+4¢€¢, € Xe =¢€, €

exo=0+0o, exo =0, é¢xo=0+0",

" " / /
€ xo =0, ' xo=0, ' xo =0,

oxo=1+e+e+", oxo =e+¢€, oxo =1+¢€". (3.20)

The bulk theory is invariant under a Zs global symmetry. Such Z, flips the sign of ¢ and o,

and leaves invariant the other Virasoro primaries, see e.g. [30, 31].
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The Zs-invariant conformal boundary conditions. The allowed elementary and Zs-preserving
conformal boundary conditions are listed in Table 4. Corresponding non-vanishing values of bulk

Virasoro primary one-point functions are reported in Table 5.

(a1, a2)m | Boundary spectrum | Zs A
(2,1)4 1 +1| 0
Y1) —11 3/2
(2,2)4 1 +1] 0
Vi1.2) = V3.3) —1/1/10
Y(1,3) +1| 3/5
(LIERY) -1 3/2

Table 4: Zo-preserving conformal boundary conditions for the tricritical Ising model and corre-

sponding spectrum of boundary Virasoro primaries.

Bulk primary | A (2,1)4 b.c. (2,2)4 b.c.
(1,1) 0 1 1

(1,2) or (3,3) | 1/5| —/2 (1+V5) | V—2+5

(1,3) or (3,2) || 6/5 1TA+V6) | =V=2+5

(1,4) or (3,1) | 3 ~1 ~1

Table 5: Non-vanishing one-point functions Bj (see eq. (2.7)) of bulk Virasoro primaries ¢ in

the Zs-preserving boundary conditions of tricritical Ising model.

Let us now discuss the Zy charges in Table 4. In order to determine the Zs charge for the

3,1y boundary operator, in either (2, 1), and (2, 2), conformal boundary conditions, the relevant
bulk-boundary OPE is

B2 . Ba (3,1)
o'z +iy,r —iy) = o1+ o )31 (z) + desc. 3.21
( ) (2y)2 (2y)Ror —R3a (3’1)( ) ( )

One finds that [41]

BpaeE2 — L 3.92
(B7) ™G (3.22)
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We have reproduced this result by studying the bulk two-point function of ¢’ in appendix D.2.

Hence 931y is Zo-odd. For 1)1 3y in (2,2)4 one can consider instead
B ., B
€z +iy,x —iy) = (Qy)GAd 1+ (Qy)z AL Y3 (x) + desc. (3.23)

From the bulk two-point function of ¢ in appendix D.3 we find that v 3 is Zs-even, since [41]
(B

a(13)2 ~ (.663053 . (3.24)

€

For 133y in (2,2)4, instead of computing the bulk-boundary OPE of ¢ (which is complicated),

we can investigate the boundary four-point correlation function with ¢ 3y and (3 1)
(V.3 (@)Y (@2) 00,3 (23) Y0 (@) - (3.25)
Since 1(13) and )31y are (respectively) even and odd, the s-channel blocks expansion of the
above expression can contain at most 13 1) and 1(33). On the other hand
Claenen = Canenas =0 (3.26)
since the self-OPE of 931y does not contain ¢ 3y — see appendix D.3.2. Being (3.25) non-

vanishing, this correlator must contain 13 3), which therefore must be Zy-odd. Proceeding this

way, again we end up reconstructing the holomorphic counterpart of the fusion rules in eq. (3.20)

Y33) X Y33 = 1+ Y3, Y33) X Yas) = YEa) T YE
Y33y X Ve = Yag) s Pagz) X Yz = i+ Paz)
¢(1,3) X ¢(3,1) = ¢(3,3) ) ¢(3,1) X ¢(3,1) =1. (3-27)

Bulk perturbations. We will consider both relevant and (leading) irrelevant, Zs-preserving,
bulk perturbations of the tricritical Ising model in AdS, with either (2,1)4 or (2,2), conformal
boundary conditions (counterterm contributions are left implicit)

(5Srelz/d 23/9 (93,3 B> 2 dz)(x + iy, — iy) + ga 3R o (v + iy, @ — iy)]

0Simrel = /d T\/g [9(3 1) RA31- ¢ siy(T+ iy, @ —iy) + gpp R*TT (z + iy, x — Zy)] . (3.28)

For each allowed global boundary primary with tree-level dimension A we will compute, at the
leading order in the deformation

Ay(gm) = A+ Zg@éAEﬁ) +.o0 90 ={963) 90.3) 961, 963), 9T} - (3.29)

For the contributions of the ¢ 3), ¢(3,1) deformation to the anomalous dimensions of v, s we
can use the result of ref. [26], while the ¢ 2) deformation is studied in our appendix G. For the
one-loop anomalous dimensions under the 7T deformation we use eq. (3.5), while for that of

D, D? under a generic bulk Virasoro primary we use eq. (3.10).
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3.4.1 The (2,1); conformal b.c. and its deformations

Tree-level analysis. Beside the boundary identity 1, the other allowed boundary Virasoro
primary is 1(31), which is Zs-odd (see Table 4). We will study the Z,-invariant four-point
correlation functions between 3 ;) and D along the RG. At tree-level, the leading OPEs are
(schematically)

ey X ey ~1+D+...
Y1) X D~ P + Y + Ul oo s
DxD~1+D+D*+... . (3.30)

The superscript (n) denotes level-n Virasoro descendants which are global primaries. The quan-
tum numbers of the operators that appear in (3.30) are reported in Table 6. The analysis of the

parity-odd channel in correlation functions with the displacement is reviewed in appendix C.

A | Zy| P
w(g’l) % -1 +1
D 2 | 41|41
©)
Dy | 2+5 | -1 +1
D? 4 |41 +1
) 3
Digyy | 5+5 | —1|~1

Table 6: Tricritical Ising model with (2,1)4 conformal boundary condition. Quantum numbers

of the leading global boundary primaries appearing in the OPEs (3.30).

One-loop results. In Table 7 we report the one-loop anomalous dimensions for the boundary
operators ), D and D? under the bulk deformations of eq. (3.28).
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9(3,3)¢(3,3) 9(173)¢(1,3) 9(371)¢(3,1) QTTTT

A () 457 37
5A(:E»,§) 52 —5 14 8

A (@ 38’ 48’ 157
ah | e | e | k| o

A (2 698’ 728’ 457
0AL: | —% — 5 - 6

127
B = 724/53&3) ~ 11.9275 (3.31)

Table 7: Anomalous dimensions of leading boundary primaries in (2,1)4. Rows: contribution
to 5A(T,s) from each deformation. The number ' is defined in (3.31). The corresponding value

of B2

(1.3) is shown in Table 5.

3.4.2 The (2,2), conformal b.c. and its deformations

Tree-level analysis. The allowed boundary Virasoro primaries in the (2, 2), conformal bound-
ary condition are listed in Table 4. The leading OPEs are (schematically)

P(3,3) X Y33) ~ i+ Yz + D+ wéi)i%) T

Yas X Yas ~ 1 +9as +D+ ¢((i)3) T

Y33 X Yaz) ~ Y@z eyt T+ wg?g) T,

Yany X ey ~1+D+...,

Y33 X Y1 ~ Yz + ¢((i)3) cee s

Yaz) X YEay ~ PeEg) t+ (3.32)

The superscript (n) denotes level-n Virasoro descendants which are global primaries. In the third

and fifth lines of eq. (3.32) we have also omitted leading parity-even descendants of 133, and

2)
(1,3

eq. (3.32) are reported in Table 8 (the analysis of the parity-odd channel in correlation functions

3,1y, which are subleading with respect to v )- The quantum numbers of the operators in

with the displacement is worked out in appendix C).
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A |Zy| P
Y(3,3) 1% -1 |+1
Yag || 2 |+1]+1
Y, % —1]+1
D 2 |41 +1
vy | 242 [+1]+1
vy [ 3+ 5] -1] -1

Table 8: Tricritical Ising model with (2,2)4 conformal boundary condition. Quantum numbers

of the leading global boundary primaries appearing in the OPEs (3.32).

One-loop anomalous dimensions. In Table 9 we list the one-loop anomalous dimensions for

the boundary operators 9, ,), D and D? under the bulk deformations of eq. (3.28).

9(3,3) ¢(3,3) 9(1,3) ¢(1,3) 9(3,1) ¢(3,1) QTTTT
ME?g —o =0 it 300
5A(1 3) ¢ @ 677r _?2’_75r
5AE3 1) _5/2 B 415_47r 3%
| 2| % | % | e

4. Rows: contribution
to 6A(r,s) from each deformation. The numbers «, 3,0, 0, ¢ are defined in (3.33).

Table 9: Anomalous dimensions of leading boundary primaries in (2,2)

The parameters a, 3,9, o, ( of Table 9 are defined as follows

_B?

27T
35

127

— B2
C (1,2) < 35

24/5

367
D\ 35

24/5

25 (VB+1) yal (-3)T

“Z2YPBR 5 ks & 0.209884

3m2°T ()T

I o)

19

11
g i) 4) ~ 1.40536

e
(10)@) ~ 6.3241,

224 24557 (=) T (12
127 a
- ——2'PB, 4 ~ 4.55592 ,
g (S (VD VAL () )
B(L3)< 2Py + 224/5F(5)r(1—g) ~ 0.702678 ,

(3.33)



with a = (2,2),. Correspondingly, the values of 3?172)’ Bf‘m) are shown in Table 5, while k; are

the following numbers:

1211
K1 = 4F3 __7_7_7_3;§71_772;1 9
552 5 510
9 3 1 19 1 3 13
Ko = 4F3 e e e S g S S ’
10 10° 510" 10 10° 10
219 17
=52, 5,22 21
R3 32<5a275a10aa)7
3 1 11 3 13
S 0N et i |
R4 32( 107 5a1710717)7
147 17
ks = 3F3 (5,575;1—,2;1) ~ (3.34)

4 Numerical Results

In this section we show results from the numerical bootstrap and compare to the perturbative

predictions of the previous section.

4.1 Universal bounds from Displacement four-point function

The displacement operator D is a universal feature of any BCFT with a stress-energy tensor in
the bulk. At the BCFT point it has (protected) scaling dimension and its four-point correlation
function is completely fixed in terms of the bulk central charge ¢, as shown in (2.4).

As soon as we turn on a (covariant) deformation in the bulk of AdS, the displacement is no
longer protected and we expect its (conformal) four-point correlation function to depend non-
trivially on the RG trajectory. This correlator should remain crossing symmetric along the AdS
deformation, and so we can use the bootstrap to constrain the RG itself.

The underlying logic is simple. Let us imagine that we have found a bound saturated by the
‘unperturbed’ correlator (we will soon show an example of such). Then, what happens if we turn
on a deformation in AdS;? We can investigate how the unperturbed bound changes along the
RG, for example by maximizing a certain OPE coefficient along the direction in parameter space
that is predicted by perturbation theory. This upper bound can be then compared with the pre-
diction from perturbation theory for this OPE coefficient. Now, since the unperturbed correlator
saturates the bound there is a potential tension here. In particular the first-order prediction may
extend into the disallowed region, for example for a particular sign of the perturbation. In that

case this particular sign of the perturbation is disallowed on general grounds, and it is this type
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of bound that we are after here.*

As a warm-up exploration, let us focus on the unperturbed theory and look for a bound
saturated by the four-point correlation function of the displacement operator. We recall that
Ap =2, Apz = 4 and that, from eq. (2.6),

DxD~1+D+D*+... (4.1)

The first bound that comes to mind to a bootstrapper is gap maximization, and so we can try
to maximize the gap after D. As it turns out, the bound in this case approaches 2Ap 4+ 1 = 5,
which is the gap of the generalized free fermion solution. In fact this can be proved rigorously:
the same functional that proves that this is the maximal allowed gap in a general correlator
[42] applies here because it also happens to be positive at Ap = 2 where we have an additional
conformal block. We must conclude that the exchange of Ap2 = 4 in our correlator means that
it is far from extremizing the gap.

The next bound that comes to mind is OPE coefficient maximization. One could for example
attempt to find upper bounds on AppD OF S‘DDD2 (independently), but this cannot work because
of the following. The displacement four-point function in eq. (2.4) admits a positive conformal

block decomposition for arbitrary ¢, with the leading OPE coefficients reading:

o 8 o 11+
)‘2DDD - E ) /\]2)DD2 =2+ E)‘ZDDD ) (42)

where we took D and D? to have unit normalized two-point functions. One can formally take
¢ — 0 in the equation above, and this provides a legitimate solution to crossing with arbitrarily
large OPE coefficients.®

On the other hand, what happens if we fix A2, and maximize X%DDQ? In that case we do
find a non-trivial upper bound: it is displayed in fig. 1 and converges nicely to the relation in
eq. (4.2), when extrapolated to an infinite number of derivatives. It would be interesting to prove
this property using for instance extremal functionals [42-45].

Having obtained a bound saturated by the ‘unperturbed’ correlator, we can start exploring
how it changes as we turn on a bulk deformation. An interesting example is provided by the TT
deformation of section 3.2. Guided by one-loop perturbation theory, we can explore the following

direction in the space of CFT data

Ap —2=7grr = grr, Ap2=4+6grr, (4.3)

4This idea was used earlier in [4] to constrain the sign of an irrelevant (9¢)* deformation in two bulk dimensions.
5 Alternatively, note that the unit-normalized four-point function of D contains a GFB piece and a c-dependent
piece that makes the results above unbounded. This piece is exactly equal to the fully connected Wick contractions
of (#?¢?¢>¢?) in a GFB theory. This correlator has a positive conformal block decomposition with no identity

operator, and so it can be multiplied by an arbitrarily large number, leading to the unboundedness property.
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1.0 1.1 1.2 1.3 1.4 1.5

(Appp)*

Figure 1: Upper bound on the squared OPE coefficient (Appp2)? as a function of (Appp)2. The
grey dots denote bounds at increasing derivative order, which are then extrapolated to the blue
dots. The red line corresponds to the analytic results of eq. (4.2). The extrapolated bounds

agree with the analytic result to the third decimal place.

and maximize 5\2DD as a function of g7 and 5\2DDD. Figure 2 shows the difference between the

D2
perturbative prediction

) 11 - 2510 + 2092 N
>\2DDD2 =2+ EAzDDD + ( DDD)

= 4.4
150 arrt ( )

and the extrapolated (upper) bound. Hence, for any given central charge ¢, only the negative
sign of the T'T deformation is allowed. We emphasize that the scale of the variation with g7 is
much larger than the accuracy of the extrapolation, so we believe that our numerical results are
robust. This sign constraint is a known property of the TT deformation, see e.g. [8, 9], which we
have re-discovered using 1d numerical bootstrap.®

We can play a similar game for deformations by a generic scalar Virasoro primary, for which
the first-order analysis was done in section 3.2. For a deformation ¢ with scaling dimension Ay,

the perturbative results can be rewritten as

4+ 160Ap2p +25A4(Ay — 2
Ap—2=3y, AD2:4+§¢<6 +160Appp + 2584(Ay ))

44 + 8052
i ((672 — 25074 + 125A;)X%DD>

. 1.
Abpp? =2+ EAzDDD +9¢ 1200 (4.5)

6Such a result is presumably related to causality. Indeed, for a positive 71" coupling, the anomalous dimensions
grow very quickly, destroying the good Regge behavior of the four-point function, which is associated to bulk
causality. In ref. [9], the same sign of the T'T' coupling leads to a superluminal sound speed. Furthermore, for

small but finite coupling some non-unitarity occurs for high-dimensional operators.
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2 32
DDD2, 1-loop DDD?2, boot

. | =

‘\\\3&// ~0.005 g,z
-0.010

Figure 2: Difference between the perturbative prediction and the extrapolated bound on the

2
ADD

The yellow surface serves as a guide to the eye, excluding points above it.

D2 for varying ¢ and Ap, Apz, following the perturbative prediction parametrized by gpz.

We have explored a few values of Ay, including both relevant and irrelevant deformations. This
time, the very same game leads to a very different result. To within our numerical precision, all
these deformations saturate the numerical upper bounds, and therefore no constraint on the sign
of the coupling seems to be possible.” In turn, we can track the perturbative RG flows, at least
to leading order, by following the numerical bounds, see fig. 3 for an illustrative example with
A, = 1.5. The fact that, unlike for T'T, no sign constraints arise for general deformations at the
leading order is consistent with causality constraints. More precisely, any causality violation by

irrelevant couplings, while linear for T'T, is at least quadratic for a generic interaction [9].

4.2 Bootstrapping the Tricritical to Critical Ising RG flow

In this section we consider the RG flow induced by the ¢ 3) deformation of the tricritical Ising
model in AdS,. In the complex plane, this is the famous tricritical-to-critical Ising RG flow, see
e.g. refs. [1, 2]. These flows have many interesting properties: they preserve integrability, and
as such can be studied through the TBA equations [2]|, and can be studied perturbatively as
the finite m limit of large m perturbation theory [1|. These bulk flows can also be studied in
the presence of a boundary, where highly non-trivial boundary dynamics emerges [38]. Placing
this flow in AdS, is expected to alter the nature of the boundary conditions [26], which we will

assume to always be Zy-preserving.

"In a CFT one can always replace a local primary operator with minus itself, at the expense of flipping also
the relevant OPE coeflicients. The invariant statement we are making is that the sign of the product g4 By is not
constrained by our analysis.
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10.05

10.00 , ,
1-0.05 Appp?, 1-loop ~ A% bbb, boot

(Appp)*

Figure 3: Ay = 1.5. Difference between the perturbative prediction and the extrapolated bound
on the 5‘2DDD2 OPE coefficient for varying ¢ and Ap, Apz2, following the perturbative prediction

parametrized by g4. The yellow surface serves as a guide to the eye, excluding points above it.

4.2.1 Single correlator bound

We consider the four-point correlation function of a Zs-odd (global) boundary primary v with

scaling dimension Ay

(@) (@) (s (2q)) - (4.6)

As we vary A, along the RG, v can interpolate between 13 ) in the (2, 1), boundary condition
for tricritical Ising (UV) and ¢y 3y in the (1,2); boundary condition for Ising (IR). Its scaling
dimension correspondingly is expected to decrease from 3/2 to 1/2 along the flow.

We take the ¥ x ¥ OPE to be, schematically and up to subleading Zs-even exchanges
YxP~T+DFD? ... . (4.7)

Note that the scaling dimensions Ap and Ap2 must equal 2 and 4 both at the UV and at the IR
fixed point, but along the flow they are not protected.

We first searched for the maximal gap Ap2 > Ap as a function of Ay and Ap. The results are
shown in fig. 4, which provides an overview of the landscape in which the RG flow is embedded.
A section of this 3d plot at Ay = 3/2 is shown in fig. 5. The interesting ‘bump’ in the plot of
fig. 4 is delimited by:

(i) A ‘floor’ spanned by the generalized free fermion solution with Ap2 = 2A, + 1 for any Ay

and Ap, shown as a pink surface in the figure.
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Figure 4: The light yellow surface is the 3d bound on the scalar gap from the single correlator
bootstrap obtained with A = 25 derivatives.

(ii) The dashed blue line at the top of the cliff, which is another generalized free fermion
solution with (Ay, Ap = 2Ay + 1, Az = 2A, + 3). The (1,2); boundary condition for
Ising corresponds to A, = 1/2 along this line.

(ii) The dashed blue line at the bottom of the cliff, which corresponds to the following four-

point correlation function (conventions in appendix A.2)

4A,/3

G(n) = —1

T s (4.8)

This solution has has Ap = éAw and Ap2 = Ap + 2, for arbitrary Ay, and has previously
appeared for example in [4, 46]. It merges with the (2, 1), boundary condition at A, = 3/2,

as shown in fig. 5.

4.2.2 Mixed correlator system with ¢¥» and D: the anteater

To further constrain the RG flows around the tricritical and ordinary Ising model, let us assume
that ¢ and D are the leading boundary primaries in the Zs-odd and Zs-even sectors, respectively.
Having analyzed their individual four-point functions in sections 4.1 and 4.2.1, we now consider

the following mixed system of correlators

(yipy),  (DDDD),  (¢¢DD),  (¢DyD). (4.9)
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1.95 200 205 210 2.15 2.20
Ap

Figure 5: Bounds on the Zj even gap from the numerical bootstrap for Ay, = 3/2. We show
the results obtained with different number of derivatives, from A = 15 to A = 45 in steps of 10.
The red dot corresponds to the (2,1)4 b.c. of tricritical Ising.

Besides their Z, charge operators are also labeled by their parity P, which is the analog of spin

for the one-dimensional conformal group. The OPEs consistent with these symmetries are then:

1/)X¢~]1+D+D2+gap(+7+)+...,
D><D~]1+D+D2+gap(+7+)+...,
Y XD~ tgap oo bgap. ..., (4.10)

where the ellipsis denote subleading contributions which are supposed to lie above the threshold
values gapz, py in a given (Zs, P) sector. We decided on these gap assumptions as follows.

In one dimension our bounds are in particular at risk of being saturated by a generalized free
solution. To gain some perspective we therefore plot the spectra of the generalized free fermion
(GFF), the generalized free boson (GFB) and our minimal model boundary conditions in figure
6. This then leads us to consider the gaps (note that operators with (Z,, P) = (+, —) are not

exchanged here) shown in table 10.

gapz.p) | P+ | P—

Zio + 5.5 -
Ly — 3.5 | 6.5
Table 10

Below these gaps we have two operators in the (Zs, P) = (+,+) sector and one operator in
the (Z, P) = (—,+) sector. Altogether this means that these assumptions rule out the GFB
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‘ ‘ gAY ‘ ‘ gAY ‘ ‘ gAY
00 05 1.0 1.5 00 05 1.0 15 00 05 1.0 1.5
— GFB — GFF 0O .2s/(2.1), — GFB — GFF 0O .2s/(21) — GFB — GFF 0O ,2s/(21)

(a) (b) ()

Figure 6: Spectra of GFF (blue lines and circles), GFB (black lines and circles) and minimal
model boundary conditions (red squares) for the different Zy and P sectors: (a) Zg : +, P : +;
(b) Zg : —, P : +; (c) Zg : —, P : —. The red dashed lines are suggestive of the qualitative
behavior that the different dimension might take along the RG flow.

5.0 g e
A 4.5
<
4.0
s ,*’&.;f.
3.5

16 18 20 22 24 26 28 30

Figure 7: Bounds on (Ap, Ap2) for Ay = 3/2, A = 45. The green and black points respectively
denote allowed and excluded points. The circle pinpoints the (2,1)4 b.c., i.e. the eye of the

‘anteater’, which is attached to a very sharp ‘nose’.
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1.6 1.8 20 22 24 26 2.8 3.0 1.6 1.8 20 22 24 26 2.8 3.0
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(a) (b)
5.0—
4.5} i ]
n
< 4.0} i ]
3.5} i ]
16 18 20 22 24 26 16 18 20 22 24 26
AD AD

(c) (d)

Figure 8: The anteater for different values of Ay: (a) 1.25; (b) 1.0; (c) 0.75; (d) 0.5, interpolating
between the UV and IR fixed points. The plots were obtained at A = 30. The black circles
indicate the location of a conformal boundary condition for each A, and the red circles denote
the leading order ¢ 3 deformation of the (2,1)4 b.c, egs.(4.14, 4.15) below, evaluated at the
corresponding value of A,. The ‘anteater’ shrinks as we approach the IR, and forms a tiny

island around the (1,2)3 b.c. of Ising, which is denoted by the green circle.
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except when A, > 1.17, but not the GFF which has a very sparse spectrum. We can nevertheless
hope that the RG flow saturates our bounds at least somewhere in the (Ap, Apz) plane as we
vary Ay.

We compute bounds in the space (Ap, Apz) as we vary A, within the interval [1/2,3/2]. The
numerically allowed region, the ‘anteater’, is shown in figures 7 and 8 for different values of A.
We then use these points to delineate the allowed region using Delaunay triangulation [47]. A

few comments are in order:

(i) In the UV, the (2,1), boundary condition for the tricritical Ising model appears to saturate
the bounds, see e.g. fig. 7.

(ii) As we go with the flow towards lower values of A, the allowed region shrinks, becoming

substantially thinner and subsequently turns to an island, see figures 8(a-c) .

(iii) In the IR, the (1,2)3 boundary condition for the Ising model is almost isolated by our gap
assumptions, up to a small lobe that can be understood from combining a ¢(; 3) with a TT
deformation, see fig. 8(d).®

We are going to explore these features more closely in the next sections, by focusing on specific

perturbative RG flows.

4.3 Bootstrapping perturbative RG flows

In this section we refine the ‘agnostic’ bootstrap employed in section 4.2 by focusing on some of
the Zs-preserving perturbative RG flows of section 3. Specifically, we again adopt the setup of
section 4.2, but this time we bound CFT data along a specific RG trajectory by inputting the
one-loop predictions for A, and Ap and comparing Ap2 to predictions from perturbation theory.

Of course these comparisons are only rigorous close to the origin of the perturbation.

4.3.1 Deformations of the Ising Model with (1,2); boundary condition

In this section we study the vicinity of the Ising model with (1,2)3; boundary condition using the

single-correlator bootstrap setup of section 4.2.1.

(I) The relevant deformation
Turning on ¢(; 3y in the bulk of AdS, corresponds to giving a mass to the free massless Majorana
fermion in the dual description of the Ising model. In terms of boundary correlators, ¥ becomes

a GFF whose scaling dimension A, smoothly moves away from 1/2, the Ising value. Since both

8See also the discussion on combined AdS deformations below.
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Figure 9: Comparison between the numerical upper bounds (solid lines) and the predictions
from the first-order 77T deformation (dashed lines) near (1,2)s. In (a), to the right of the kink,

the bound converges to a GFF with Ay = $ — 92T (hottom dashed line). Figure (b) shows

the convergence of the kink along the perturbation theory line towards g;+ = 0. The data are

fitted with a cubic, and the error on the intercept is ~ 1074,

signs of the fermion mass are allowed, there is no constraint on the sign of ¢ 3). This expectation
is corroborated by our bootstrap study. One can search for the maximal gap (after D) in the
four-point correlation function of 1, along the direction suggested by the one-loop results of

Table 3:
Ay =1/2+guz . Ap=2+20u3 - (4.11)
The upper bound is saturated for both signs of the coupling by
Ap2 =4 +2ga3 =20y + 3, (4.12)

which is just the GFF value. This solution remains valid until gq ) is such that A, decreases

down to zero, below which unitary is necessarily violated.

(IT) The leading irrelevant deformation
We can repeat the same gap maximisation along the T'T deformation of the Ising model (1,2)3

conformal boundary condition, which from Table 3 reads
Ay =1/2—grm/8, Ap =2+ grsm . (4.13)

The comparison with the one-loop prediction for Ap: is shown in fig. 9. After extrapolating in

the number of derivatives we see that the gp7 > 0 region is completely excluded (on the basis
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of crossing and unitarity). This is consistent with the results of section 4.1, but here the same
conclusion is obtained from a different correlation function.

It is clear that this has to be the case. For a single-correlator with external dimension Ay,
the maximal gap above the identity is 2A, 4 1, see e.g. [43]. The Ising model (1,2); boundary
condition saturates this bound when g+ = 0, while first-order TT perturbation clearly violates
it when grp > 0. Note that, in this particular case, the TT deformation can be written as a
special higher derivative interaction around the free fermion, and this sign constraint can be
understood using AdS, dispersion relations [48]. For the tree level correlator, this fermionic
derivative interaction leads to a u-channel Regge behavior (n — ico) of n722¢G(n) ~ an® [42].
This is precisely the maximal Regge behavior allowed in a planar CFT, corresponding to a Regge
spin of 2 [42, 49| (note that higher dimensional u-channel Regge limit bounds can consistently
be studied in 1d by setting z = z). When this Regge behavior is saturated, bounds from
causality /chaos also constrain the sign of a [50, 51|, reproducing the constraint we derived from

the bootstrap. The same argument also applies for the bosonic (9¢)?* coupling discussed in [4].

4.3.2 Deformations of tricritical Ising Model with (2,1), boundary condition

In this section we study the vicinity of the tricritical Ising model with (2, 1), boundary condition

using the mixed-correlator bootstrap setup of section 4.2.2.

(I) The relevant deformations
There are two Zs-even even relevant bulk deformations of tricritical Ising model: ¢ 3) and
¢(3,3)- For the former let us first consider the bootstrap analysis of section 4.2.2, but this time

varying A, and Ap along the one-loop prediction (see Table 7)

3 . 4
Ay = 5 T 903 Ap =2+ =903 5 (4.14)
and comparing with
72
ADQ =4 + %9(173) . (4.].5)

As shown in figure 10, which was obtained with the gaps of Table 10, the (extrapolated) upper
bound is saturated by the RG prediction of eq. (4.15) for both signs of the coupling. This is not
a surprise: one sign (the one for which A, < 1.5) should lead to the Ising model in the bulk,
while the other is expected to gap out the bulk which corresponds to all the boundary scaling
dimensions becoming large. In flat space these massive ¢(; 3 deformations of minimal models
correspond to a family of integrable massive theories known as RSOS models, which are related

to certain restricted versions of the sine-Gordon theory, as discussed in [52, 53].
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Figure 10: Bounds on Ap: as a function of Ay, where Ay and Ap follows the perturbative
prediction of eq. (4.14). The grey dots denote bounds at increasing derivative order, which are
then extrapolated to the blue dots. The red line corresponds to the analytic results of eq. (4.14).
The bound is saturated for both signs of the coupling.

Having two relevant singlet couplings, we can generalize the previous analysis by discussing
a ‘combined” RG flow in AdS, where dimensionful couplings can be made dimensionless through
the AdS radius R. By tuning R we can combine the ¢ 3) and ¢ 3) deformations to define a
space of 1d CFTs parametrized by the two couplings.® For the (2, 1), boundary condition, using
the result of Table 7, we can trade (g(s3), 9a,3)) for (Ay, Ap) and write

1
Ape = (20 +33Ap — 124,) . (4.16)

In the vicinity of the (2,1)s boundary condition, we can tune the two couplings to keep A,
fixed at 1.5 and then compare this one-loop prediction with the bootstrap bounds of section 4.2.2,
in particular with those presented in fig. 7. As shown in fig. 11, this combined flow appears to
saturate the boundary of the anteater, with a slightly better fit to the right of the (2, 1), boundary
condition. Note that an analogous combined flow, with operators ¢ 3y and T T can similarly
be used to understand the structure of the allowed region around the (1, 2)3 boundary condition
with Ay = 1/2 (see fig. 8 (d)).

It is also interesting to investigate how the bounds change as we vary gap, .. Figure 11
was obtained by choosing gap., .y = 5.5, and allows for deformations with both signs of the
(combined) coupling. As shown in figure 12, upon increasing the gap to 5.8 the allowed region
shrinks while still allowing for both signs of the coupling. Taking the gap all the way to 6 leads to

near saturation of the tip by the (2, 1), boundary condition, and a positive sign of the combined

9The individual ¢(3,3) deformation in the complex plane is known to lead to an integrable massive system:
Zamolodchikov’s Er theory [54].
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Figure 11: The combined ¢3 3) + ¢(1,3) deformation of the (2,1)4 b.c. for Ay = 1.5. The solid
line is the perturbative result of eq. (4.16), which appears to saturate the upper bound to the
right of the (2,1)4 point, represented by the red circle.

deformation is in near contradiction with the gap assumption. In other words, as we lower
the gap from 6, the ‘nose’ of the anteater grows, and the location of the tip gives an heuristic
definition for how big ‘the combined coupling’ can be. We also note that the top part of the
bound is insensitive to the gap assumption. This makes robust the identification of the tricritical

Ising as a theory saturating the bound as it sits close precisely to the top of the exclusion plot.

(IT) The leading irrelevant deformation
Next, we consider the ¢ 1) deformation of (2, 1)s, which is Z,-preserving. We run again the

bootstrap analysis of section 4.2.2, varying A, and Ap, along the one-loop prediction (see Table 7)

2

+t 96y, Ap=2- 3031 (4.17)

Ay = 3

[\CR V]

and comparing with
Apz =4 —2q) - (4.18)

The results are shown in fig. 13 (the chosen gaps are those of Table 10). While for g1y <0
the bound appears to be saturated, the other sign points towards the interior of the allowed
region. This is possible due to a quick change in the slope of the bound around the (2, 1), point.
The m’th minimal model flows under the relevant ¢(; 3y deformation to the m — 1’th minimal
model in the IR. From the IR point of view, it is the irrelevant ¢ 1) operator that begins the
flow back up the UV. Nicely enough we see that it is exactly the flow up to the tetracritical Ising
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Figure 12: The combined ¢33y + ¢(1,3) deformation of the (2,1)4 b.c. for Ay = 1.5 at A = 45.
In (a) gap(; ) = 5.5, in (b) gap(y 4y = 5.8 and in (c) gap; ) = 6.0. The solid line is the

perturbative result of eq. (4.16).
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Figure 13: Bounds on Ap2 as a function of Ay, along eq. (4.17). The grey dots denote bounds
at increasing derivative order, which are then extrapolated to the blue dots. The red line

corresponds to the analytic results of eq. (4.18). The bound is saturated for g3y < 0.

model that saturates the bound, since the tricritical ¢ 3) operator is becoming less irrelevant,

as we go to the left of the plot where g 1) < 0.

(II1) The TT deformation
Finally we consider the TT deformation. This time we vary A, and Ap along the one-loop

prediction (see Table 7)

3 . 8.
Aw = 5 + grt, AD =2+ ggTT 5 (419)

and comparing with
Apz =4+ 16977 . (4.20)

As shown in fig. 14, there is a clear sign constraint, so and it must be that gy < 0. This is the
same sign determined in section 4.1, consistent with causality. It is once again reassuring to find

out that different boundary correlators lead to the same inconsistency.

4.3.3 Explorations around tricritical Ising Model with (2,2); boundary condition

We conclude this section with an exploration of the ‘neighborhood’ of tricritical Ising with (2,2),
boundary condition. To this end, we employ again the ‘agnostic’ approach of section 4.2, but
this time we consider a Zy-invariant system of correlators with two (global) boundary primaries,

one Zy-odd (/) and one Zy-even (x). Hence we consider:

W)y, (oexex) > (Wdxx),  (Wxdx), (4.21)
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Figure 14: Bounds on Ap2 as a function of Ay, along eq. (4.19). The grey dots denote bounds
at increasing derivative order, which are then extrapolated to the blue dots. The red line

corresponds to the analytic results of eq. (4.20). The bound is violated for g, > 0.

gapz.p) | P+ | P—

Zio + 24 -
Ly — 1.3 | 2.8
Table 11

In order to bootstrap this system of correlators it is useful to impose gaps. At the (2,2),
conformal boundary condition, we can identity ¢ with 33) and x with v 3). With this in
mind, and recalling the OPEs of eq. (3.32), we assume

¢x¢~ﬂ+x+D+gap(+7+)+...,
XXXN]AI+X+D+gap(+7+)+...,
Yxx~1v+gap_ )y tgap. y+.... (4.22)

A possible choice for the gaps (leaving some leeway to deformations) is displayed in Table 11. In
order to explore the vicinity of (2,2)4 we choose Ay = 1/10 and explore the allowed values of A,
and Ap around their (2, 2), values which are 0.6 and 2, respectively. A systematic binary search
leads to the kinky region of fig. 15, which shows that the (2, 2), boundary condition is deep inside
the allowed region. In order to gain some insights on the two kinks in this figure, we can modify
slightly our gap assumptions. With all the gaps set at their exact values corresponding to the
(2,2), boundary condition, we find the upper bound in figure 16. This time the upper bound is
almost linear, except for a small bump precisely around the (2,2), boundary condition. As we

increase the number of derivatives, the linear part of the bound appears to converge towards the
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Figure 15: Allowed region in (A, Ap) space for Ay = 1/10 with mild gap assumptions. The
red dots is the location of (2,2)4. The plot was obtained at derivative order A = 33.

red dashed line in the figure. This line corresponds to a spurious solution to crossing with the
following properties: no identity is exchanged, and leading (subleading) exchange has dimension
A, (Ap = 3A,/2 +1). In the conventions of appendix A.2, this spurious four-point correlation
function reads:
NEINYL: i 1A/

g(”):(1_77)Ax+(1_77)AX/2_(1_77)AX/2' (4.23)
This correlator can be obtained by taking linear combinations of fully connected Wick contrac-
tions of (p*¢*p*e*), where ¢ is a GFF with scaling dimension A, = A, /4. These spurious
solutions to 1d crossing are common in the 1d bootstrap, see for example [4]. If we identify x
with ¢ 3) of the (2,2)4 boundary condition, the gap in (4.23) is at 3A,3/2+1 = 1.9, just below

the displacement. This explains the unusual features of this bootstrap bound.

4.4 Correlator maximization and the conformal staircase

In this section we will find a different quantity to extremize such that the (2,2); b.c saturates
the bound. It turns out that a natural object is the four-point correlator of the Zs odd operator

v G(n) = x??wngw (Yphe)) and its second derivative evaluated at the crossing symmetric point:

{G(2=1/2),G"(z =1/2)}. (4.24)

Our motivation for studying the allowed region in this plane comes from the observation that
the RG flows between minimal models can be embedded in the so-called staircase RG-Flows,

which are connected to the sinh-Gordon/staircase model and its flat space S-matrix [3|. These
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Figure 16: Allowed region in (A,, Ap) space for Ay = 1/10, for gap assumptions that saturate
the spectrum of (2,2)4 (red dot), at A = 33,41. The red dashed line is the family of solution
described by (4.23).

S-matrices of a single massive particle without bound-states saturate bounds in the space [55]:
{S(2m?), 8" (2m?)}.

Using the connection between S-matrices and correlators in the flat-space limit [56] we arrive at
equation (4.24) as the natural uplift of these bounds to the QFT in AdS setup. A review of the
staircase model and a more detailed explanation of its connection to the bounds below is given
in appendix H.

To bound G(1/2) = g and G"(1/2) = ¢” we need to fix them to a specific value and then
determine whether this value is allowed. For g we can just use the recipe described in [4], where

one works with shifted conformal blocks:
(1=n)***Ga(n) = (1 —n)***Galn) — 6a02 > g = Fi(n), (4.25)

and then adds the zero derivative functional to the search space. Studying the Taylor series of

the crossing equation leads to the following generalization that allows us to fix both ¢ and ¢":

(1= n)***Ga(n) = FA(n) — 620 (77 —~ %) 27172 (0" —8A(2Ay + 1)g) = FA(n),  (4.26)

Then, alongside with the usual odd derivative functionals, we must include the zero- and two-
derivative terms to the basis. We can subsequently perform a two-dimensional feasibility search
in this space, for several external dimensions A,. We will always assuming a gap of 2A,, in the
spectrum since that is appropriate for a theory with no bound states. With these assumptions

the generalized free boson (GFB) and generalized free fermion (GFF) theories are always in the
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Figure 17: Bounds on the space of values of the correlator and its second derivative at the
crossing symmetric point for Ay = 0.1. GFF/GFB sit on the kinks and the (2,2)4 tricritical
Ising point, in red, also saturates the bound. The points shown were obtained upon extrapolation
to infinite A.

allowed space. By convexity that means that the line connecting these theories is also allowed,
which allows one to find a line strictly in the interior of the allowed region. An efficient numerical
exploration can then be performed by doing a radial/angular search around this interior point.

For A, = 1/10, which corresponds to the 91 2 operator in the tricritical Ising model, we find
the bound in figure 17 after extrapolation in the derivative order A.'® We find an island with
two sharp corners corresponding to the GFB and GFF solutions, as expected. Furthermore, we
can compute the four point function of the 1) ) operator using the techniques of appendix D,
and plot the result. This is the red square which neatly saturates the bound.

Computing deformations of these bounds perturbatively is challenging because it involves
integrating five-point functions in AdS. In theory it should however be possible to follow the RG
flow between the (2,2), boundary condition and the (1,2)3 boundary condition by studying the
same bounds for different values of A,.'! This leads to a family of islands similar to the one
above which we present in figure 18. These islands always have two sharp kinks corresponding
to the GFB and GFF solutions and drift in the direction of increasing ¢”.

10We obtained bounds at finite derivative order A = 9,13, ...,33, which converged rather quickly, except very
close to the corners. On the other hand, the (2,2)4 boundary condition is already very close to saturation even
at finite A.

UTt would also be interesting to understand how these bounds change for higher m minimal models. This
presumably sheds some light on the UV of the staircase model.
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Figure 18: Allowed space of Zy symmetric correlators parametrized by g and g” for varying A,.
We see a tower of island shaped regions drifting in the ¢” direction. The red and blue lines
respectively correspond to the GFF and GFB families of correlators which not only saturate the

bounds, but actually sit in kinks at the endpoints of these islands.

This drift is related to the "center of mass" of the GFF and GFB solutions. For explicitness
we write the values of {g, g} for these solutions:
GFF(Ag) = {242,228 A, (2(4%T = 1) Ay +1)}
GFB(Ag) = {2+47%,80, (8As +4 % (24 — 1))} , (4.27)

whose center of mass is {2, 64A? } After subtracting the quadratically growing second component

we find figure 19.

Figure 19: Subtracting the center of mass drift of the previous figure. We now see interesting

rotation and stretching patterns of the islands.
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Finally, we focus on A, = 0.5 which contains the (1,2); boundary condition. We show the
bounds in figure 20, where we see that the Ising theory sits in the kink (red square), since it
coincides with GFF. We also plot the TT deformation which is tangent to bound, with only one
sign being allowed, as we have seen many times by now. In this case, the perturbative calculation
is feasible since we can use a fermionic contact Witten diagrams to compute the correction to

the correlator, as discussed in more detail in appendix H.

Figure 20: Bounds for Ay, = 0.5. GFF/Ising sits on the kink and the TT deformation is tangent.
As always, only one sign of the TT coupling is consistent with the bounds. The points shown

are obtained after extrapolation in A.

These results suggest that we can track two RG flows that end on the same (1,2); boundary
condition of Ising by studying different bootstrap problems. Starting with (2, 1), in tricritical, we

follow gap maximization. Instead, starting with (2,2),, we can study correlator maximization.

5 Outlook

We conclude with a discussion on future directions.

A natural extension of our work is to consider Zs-breaking deformations of minimal models
boundary conditions in AdS. The simplest example would be the magnetic deformation of the
Ising model, which was studied in AdS with Hamiltonian truncation in [35]. More generally, we
could combine the thermal and magnetic deformations hence studying Ising field theory [57]. The
regime of weak magnetic field with only one stable particle in the infrared is particularly amenable
to the bootstrap, since we can parametrize the Z, breaking through a self OPE coefficient Ay
of the Zy-odd field.

One limitation of our setup is that we cannot impose locality of the bulk theory along the

RG flow. Our strategy in this work is to look for bootstrap bounds which are saturated at the
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fixed points of the RG flow when the bulk theory is Weyl-equivalent to a local BCFT, but we are
not guaranteed saturation throughout the flow. In order to make progress on this, a promising
strategy recently discussed in [58, 59| is to include bulk observables into the bootstrap. These
authors considered sum rules on the three-point functions between one bulk operator and two
boundary operators (called AdS 2-particle form factors) which capture bulk locality. In [59] sum
rules stemming from the two-point function of the bulk stress-energy tensor were also found,
allowing the formulation of a positive semi-definite system of correlators involving bulk and
boundary data. This extended the formalism of [60, 61] to AdS, where bounds as a function
of the central charge were obtained. It would be very interesting to see to what extent these
additional constraints would improve the bounds obtained in this paper.

Our strategy works well for computing certain non-perturbative numerical bounds on irrele-
vant couplings of generic CF'Ts. There has been a lot of progress in the context of EFT corrections
for free bosons and fermions in AdS [15, 48|, and our approach could be used in order to search
for such constraints in interacting CF'Ts. As an application, we have found a constraint on the
sign of the TT deformation. For other types of deformations, for instance those of section 3.2, we
found no sign constraints along our one-loop perturbation theory, and higher-order corrections
might be useful to detect further bulk inconsistencies.

Finally, it would be interesting to understand if integrability, which plays a key role in the
solution of minimal model RG flows both in flat space and on the upper half-plane, survives
in AdS. To understand this it would be necessary to follow the behavior of bulk higher-spin
currents which exist at the fixed point, due to Virasoro symmetry. Another notion of solvability
for conformal correlators is extremality, i.e. saturation of the bootstrap bounds, which is known
to lead to sparse spectra. While the relation between these concepts is well understood in the

flat-space limit, it is still an open problem to understand this connection at finite AdS radius.
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A Conventions

m | (a1, a2)m | Zs - preserving | Boundary spectrum
31 (1,2)3 v 1,903
41 (1,2) 1,403
(1,3)4 1,403
(2,1)4 v 1,91
(2,2)4 v 1,903, Y1), YEs)
51 (1,2)s 1,90
(1,3)s v 1,03, Yas)
(1,4)s5 ]17%0(1,3)
(2,1)s L e
(2,2)s 1,903, Y1), Yes)
(2,3)s v 1, 9a .3, Y0 5), ¢(31 V(3,3), V3,5
(2,4)s5 L vag), e, Yes
(2,5)s L ¥e

Table 12: Elementary conformal boundary conditions for diagonal and unitary minimal models
with m < 5. We dropped the conformal b.c. labeled by the identity (and its Zg-conjugate
(1,m),,): they are always possible, and allow only for 1 at the boundary.

A.1 OPEs and basic correlation functions

Consider a generic BCFT on the upper half-plane. Here ¢;(z,z) denotes a scalar bulk global
primary with dimension A;, and ;(z) denotes a scalar global boundary primary with dimension
A;. Unless otherwise specified, primary bulk and boundary operators are taken to be unit-

normalized. The bulk and boundary identity operators satisfy: (1) = (1) = 1.
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The bulk-bulk, bulk-boundary, and boundary-boundary OPEs are
¢i<217 21)¢j(227 22) = Z Cijk¢k(22, 22)‘21 — Z2|Ak7Ai7AJ' 4. ,
k
k

Vi(w1);(20) = Z éijk¢k($2)($1 — xz)A’“_Ai_Aj + .- (x1 > x9) . (A1)
k

The ellipsis in the first (second and third) line above denotes SL(2,C) (SL(2,R)) descendants.
Indices are raised and lowered using the Zamolodchikov metric.

The simplest correlation functions on the upper half-plane are:

(()(w2))ar = (xi)A , (21 > x2)

(0o -+ v = i) = 0 (4> 0)

$o+ i, e =) = s S > 0)
eyt — ————CB sy (A2)

($12)Ai]’k (x23)Ajki (xlg)Az‘kj

with z;; = z; —z; and Aijk = AZ + Aj — Ak In a generic BCFT, the coefficients B, C and C are
determined via the ‘sewing’ constraints of Lewellen [34|. For unitary and diagonal minimal models
with elementary conformal boundary conditions, the solution to these constraints appeared in
[41] (see [62] for the extension to the D-series of minimal models), where C' and B are written in
terms of F-matrices (the one-point function of ¢, s is determined by the Cardy state, as written
in (2.17)). The C coefficients are the same of the homogeneous minimal model, and they can be
computed via the ‘Coulomb gas formalism’ of refs. [63-65] (see also the Mathematica notebook

attached to the submission of [66], where many Coulomb gas formulae are implemented.)

A.2 Global conformal blocks on the upper half-plane

Next, we discuss the four-point correlation function between four boundary conformal primaries
; (not necessarily Virasoro primaries) with scaling dimensions A, in a generic 2d BCFT. By

SL(2,R) symmetry we have

(41 (25 () e = (‘“—)A (—)A (xn)fji(")

XL24 x13

= = xr; > x‘+
Y (2 i+1
I3 )A3+A4

(A.3)
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with Aij = A, — Aj and the cross-ratio n is defined as in eq. (2.5) and repeated here for

convenience

p= 12T <, (A.4)
X13T24

We have the following s-channel expansion

G (n) = Z C1o" CsunG (A1, Agy, Ay m) | (A.5)
k

with global blocks given by [67]
G(a,b, A n) = 0™ oFi(a+ A b+ A;24:m) . (A.6)
We will sometimes use the following notation

B Correlation functions for generalized free theories

B.1 Generalized free fermion

Consider a 1d generalized free fermion 1 of scaling dimension A. We take 1 to be unit normalized.

By Wick’s theorem the four-point correlation function is

21

G () =1 —n*2 + (L> . (B.1)
I—mn

The cross-ration 7 is defined as in eq. (2.5). The global conformal blocks expansion reads 68|

> 2(2A)2
Y _ z : 2n+1
g () =1+ — (2n+ 1)!(4A + 2n)2n11 Gaarann(n) (B-2)

with global blocks given in (A.6). We want to compute mixed four-point correlation functions
between 1 and the leading primary in the ¢ x ¢ OPE;, i.e.

A

Y()0(0) = —gx + 7 (WV)O0) + .. (B.3)

From the four-point function above we can easily obtain

O (0)) = e (B.1)
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Using Wick’s theorem, from the eight-point correlation function of 1) we can obtain the four-point

correlation function of 0y

(Y0P(21)Y 00 (22) 00 (3)10p(24)) - (B.5)
When A =1/2 we get
GOV (1)) = 1 4 n? (n® — 4n° + 22n* — 521 + 66n* — 481 + 16) . (B.6)
(n—1)*
The r.h.s. above can be expanded into s-channel conformal blocks of eq. (A.6) as follows
98 512 1270
Grovivonllvovlvavl (i) = 1 416G, (n) + 3G4(77) + aGﬁ(n) + @GS(U) +.... (BT

Hence the first parity-even primary operator after the identity is the displacement operator D,
and after it there is D?.

Consider now the following mixed four-point function

(W (1)t ()W (23) 90 (w4)) - (B.8)
When A = 1/2 we find
solouivov oy _ 1. (11— 2’
g (m) =1+ TESE (B.9)

In the s-channel we find the following decomposition

7 16 29 46G'1o(n)
Yip (O] [1OY] _ L -0 kil U1
G (n) =1+4G5(n) + 5G4(n) + 63G6(n) + 858G8(n) + —51er

The first parity-even primary operator after the identity is D, and after it there is D?. For generic
A we find

... (B.10)

GUOLONIWON) (1) — 9\ (1 + @AM —-1) = D)n** +(1—n)"'2A —n+1) (ﬂ—n)m> ,

(B.11)

with the following s-channel decomposition

GUowIOl () = 2A + 4(2A + 3)A*Gan 1 (1)
LA 1)(A12+A 31(? LR
(A + 1)(A +2)(2A + 1)2(2A + 3)(A(2A + 11) + 10)A?
* 15(4A + 5)(4A + 7) 26457
(A+1)%(A+2)(A+3)(2A + 1)(2A + 3)(2A + 5)(A(2A + 15) + 21)A?
* 31545 + 7)(4A + 9)(4A + 11)
o (B.12)

Gantr(n)
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In order to investigate on parity-odd operators we consider the s-channel decomposition of

(V0 (21) 00 (w2) 1 (23)0O(x4)) - (B.13)
When A = 1/2 we find
4 3 2
Gutvoutviuou](y _ Y10 =207 + 57— A+ 1) (B.14)
(n—1)
whose s-channel decomposition gives
3 31 3 39
YOY|p[1pOY] - - _Z e
g (n) G<27 272777)+G<27 27277])
1 3 313 3
T3¢ (i’_i’ 2’ > 429G(2’ )
T (B.15)

Squared OPE coefficients associated with parity-odd, global primary boundary exchanges appear
with a minus sign, see e.g. appendix K of [69]. Hence, after ¢ itself we have a parity-even operator

of dimension 3A 4 3 and a parity-odd operator of dimension 3A + 6. For generic A we find

1
GUUOUIEIOI () = —2A ((M(n = 1)+t = - (—

2A+1
n—l) (2An+n—1)> , (B.16)

with the following s-channel decomposition (e*™2 = —1)

GO () = ANG (Ag1, Ass, A, 1) + 2(2A + 1)A’G (Agy, Asy, 3A + 3, 1)
A?(A+1)(2A +1)*(2A + 3)
3(6A +7)
2A03(A +1)(A+2)(2A + 1)%(2A + 3)
a 45(3A + 4)(3A +5)
T (B.17)

G (A217 A347 BA + 57 7])

G <A217 A347 3A + 67 T’)

B.2 Generalized free boson

Consider a 1d generalized free boson ¢ of scaling dimension A. We take ¢ to be unit normalized.

By Wick’s theorem the four-point correlation function is

2A
GHO () =1 + 22 + (_1 ﬁ n) ‘ (B.18)

The cross-ration 7 is defined as in eq. (2.5). The global conformal blocks expansion reads 68|

- 2(2A)3
¢>¢>¢>¢ 2n ) B.1
g Z (2n)!(4A + 2n — 1), Gaatan(n) (B.19)
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Next, we compute

(9% (21)9* (x2) 0" (23) % (24)) (B.20)
to find

2A 4A
GO () =4 (1 HAPA 4 (41 =) PR+ 1) ' + 4 (%) + (L) ) . (B21)

The r.h.s. above has the following s-channel decomposition

32(2A + 1)A?

g¢2¢2¢2¢2 (77> =4+ 32G2A(77) + 24G4A(77) + A+ 1 G2A+2(77)

64A%(2A + 1) 8A*(A +1)(2A +1)%(2A + 3)
S8A+1 3(4A + 3)(4A +5)
16A%(2A + 1)(A(BA(4A +5) +17) + 3)
3(8A + 3)(8A +5)
+. (B.22)

Ganta(n) + Ganya(n)

Ganta(n)

When A = 1 the first parity-even primary operator after the identity is the displacement operator.

Note that there are two dimension-four operators: ¢* and ¢9%¢. Consider now

(D(21)(22) 0" (23)0% (24)) - (B.23)

Using Wick’s theorem we find
. 2A
GO (i) = 2 1 gD + 4 <—1 1 ) . (B.24)
-n
The s-channel decomposition reads

2,2 8(2A + 1)A?
Gorre (n) =2+ 8Gaa(n) + %G2A+2<7]>

2A%(A +1)(2A + 1)%(2A + 3)
3(4A + 3)(4A + 5)

Gonsa(n) + ... . (B.25)

When A = 1 the first parity-even primary operator after the identity is the displacement operator,

and after it there is 0%¢. In order to uncover the spectrum of parity-odd operators we consider

(D(21)0° (w2) pa3) ¢ (4)) - (B.26)
Using Wick’s theorem we find
2552 1\ >
Gor e (i) = 2> (2 +2 (1 - 5) + n“) : (B.27)
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The s-channel decomposition reads (e~2™4 = 1)

SA2(2A + 1)
6A + 1

G(A, —A3A+3,n)+... . (B.28)

GO () = AG(A, —A, A, ) + 6G(A, —A,3A, ) +

_8AYA+1)(2A + 1)
2TA(A+1)+6

When A = 1 the first parity-even primary operator after ¢ itself is ¢, while the first parity-odd

G(A,—A,3A +2,n)

primary is constructed from three derivatives acting on ¢3.

C Parity-odd channel in correlators with the displacement

In this appendix we discuss the spectrum of parity-odd primaries in the D x ¢ OPE, being ¢ a
Virasoro primary of scaling dimension A. To this end we consider the conformal block expansion

of the correlator

T14 A2 T14 -4 DyDy
el = (2)(2) S5l ws
Goe ) — 4 (2 » Ao tn A>) , 1)

which was computed in appendix A.3 of [26]. For generic A, the s-channel block decomposition

was found to be:

~

GPP () = NGA-22-A A+ Y Cpy"CopnGA-22-AA+nn), (C2)

n=2,34,...
where the first non-zero coefficients read
. . . 9
Cpo?Cpuys = — + A ( - — ) ,
Dy CDy2 AT 1
. . 2A ) .
Cpu3Chys = —— . c—TNA+c+3A%+2) |
T A (At 2) (=7 )
s A(5e(4A(A +2) + 3) + 4A(A(BA — 19) + 26) — 15)
CDw CD¢4 = = = = . (CS)
(A+3)(2A +3)(2A +5)

Hence, for generic A, the first parity-even global primary (after 1 itself) appears at level 2,
while the first parity-odd appears at level 3. For ¢ = 1/2 when A = 1/2 (i.e. Y(1,3) in the Ising
model with (1,2); boundary condition) the first few coefficients vanish and the first parity-even
global primary after 1)(; 3y appears at level four, while the first parity-odd appears at level seven,
correspondingly

1

N 1 . . ,
Cpy'Cpya = 1 Cpy Cpyr = 120 Y =1vYqa3) in (1,2)s . (C.4)
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For ¢ = 7/10, leading parity-even (odd) quasi-primaries have

119 68

GGy = 119 Cou s = — 58 _
Dy D2 40 ) Dy D5 231 3 ¢ ¢(3,3) y
N N 39 A A 2
Ciou s = Ciou?Cgs = — — _
Dy “Dy4 2480 ) Dy “Dy3 11 ) w w(?),l) ’
. A 13 A A 28
CszQCDwQ = ﬂ ) CD1/15CD1/15 = _@ ) ,QZ) = ¢(1,3) . (C5)

D Correlators in minimal model boundary conditions

In this section we discuss some correlation functions in minimal model boundary conditions
a = (ay,as),. Computing correlation functions with bulk Virasoro primaries is a standard
application of the method of images 23| (see also Chapter 11.2 of [20]). Boundary Virasoro
primaries behave as holomorphic Virasoro primaries as far as the Ward identities are concerned,

hence for their correlation functions we will not need to employ the method of images.

D.1 Bulk two-point function of ¢ o
We start with the bulk two-point functions of ¢(; 2y on the upper half-plane:
(b2 (1 + Y1, 21 — iy1)P,2) (T2 + iz, T2 — iY2))ut - (D.1)

In order to compute this correlator we employ the method of images and consider the differential

equation satisfied by the four-point function of ¢ 9)(2) in the homogeneous theory, i.e:

2 3
(€9 sy ) Gosdusladun@ouatz) =0, (02

where hy 5 is given in eq. (2.11), L4 = 0,,, and E(_)2 is the following differential operator:

W _ o (((k=Dhi 1 |
Lo = Z <(Zz‘ —w)f (25— w)k_lal) ' (D-3)

i=1

By SL(2,R) symmetry, the holomorphic correlator takes the following form

G(1)

(D(1.2)(21)P(1,2) (22)P(1,2) (23) P(1,2) (24)) = Craza P17 (D.4)
The cross-ratio 7 is
= 772 _ 212734 (D 5)
7 I—n ’ 213224 ' '
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It is not difficult to solve the differential equation (D.2) for generic m and a. The particular
solution is obtained by imposing bulk-boundary crossing symmetry, upon setting zo = 27, 24 = 23
(being z; = x1 + iy; and z3 = x5 + iyz). For the case at hand, the two Virasoro blocks that

correspond to the exchange of 1 and ¢, 3) in the bulk are

V'(bulk(~):772h1122F1(2—m 2—m_m+3 1.2—m_ m ._4)

1
L1) 2m + 2’ 2m + 2 2m+2+ "2m + 2 2m+2+’ 1
+3 2—m m 4
Vbulk =\ — ~2h1,2—hi3 F m m — m 1. — 1, —=
(r3) (1) P T2 amt2 mt2 U 2m+2 ama2 U q)
(D.6)
where
1622
= Y192 (D.7)

(g1 —92)% + (21 — 12)%) (11 +92)* + (21 — 12)%)
The final result is
(D) (@1 + iy, 21 — 1) Oa 2) (T2 + (Y2, To — iYo) )+ =

1 bulk / ~ a bulk / ~
()P (V) + B sy CamanasVas (@) (D.8)

where
2mazm sin (Z¢) sin (7%
B2 142
13) — ( +acos < m-+1 )> \/Sin (% sin (—i”ﬂ) ’
PG TG T -9 G-
C — m+1 m—H, m+1 m—+1 ) (D9)
s \/ F(mil)F(Zﬁ)F(mﬂ)F(mil - 1)

In the boundary channel, corresponding to the exchange of 1 and Y(1,3) we have

2—m m .m+3
om+2 2m+2 2m+2"

Vin(@) = ) (

hi,3

, 2m — 1 1 3m+1 1

K D=1k n D.10
13 =172 2 1(2m+2’2m+2 2m+2 4) ( )

The final result is

(ba2) (@1 + iy, 21— )bz (@2 + s, T2 — o) v =
1 a(1,3 -
(4ay1y2 )22 ((B(l 2) Vi (1) + (B(1f2) N2V (77)> ; (D.11)
with
Tasm sin g—fl)

Biig) =2(-1)" - , D.12
(1,2) (—1)"* cos (m+1) sin(ﬁﬂ’}) ( )



and, as it follows from bulk-boundary crossing symmetry

TR (BT ES - ) )
o L1 m— m m )
2L ()T () 2 () T (G- ) T (L

2m—+2 2m—+2 2 m—+1

(1,3)\2
(Biia))

(D.13)

2m+2)

This result is consistent with the F-matrices computation of ref. [41]. As a particular case, for

the Ising model with Zy-preserving conformal boundary conditions we find

1
w32 = = (D.14)
\/§ ’

as predicted by [34, 29]. Hence 9 3) is Zy-odd in this boundary condition.

(By

(e

D.2 Bulk two-point function of ¢ )
Next, we consider the bulk two-point functions of ¢y on the upper half-plane:
(D) (1 + Y1, 21 — iy1) o1y (T2 + iy2, T2 — iYo))u+ - (D.15)

By the method of images, this correlator satisfies the same second order differential equation as

the four-point function of ¢21y(2) in the homogeneous theory

2 3
(/3(—2) - mﬁzl) (D21)(21)d21) (22) P21 (28) P21y (24)) = 0. (D.16)
By SL(2,R) symmetry, this holomorphic correlator takes the following form
_ G
<¢(271)(Zl>¢(2,1)(22)¢(2,1)(23)¢(2,1)(2’4)> = ST (D.17)
(z12234)2021

The cross-ratio 77, defined as in eq. (D.5), becomes (D.7) on the upper half-plane. The two

Virasoro blocks that correspond to the exchange of 1 and 3,1y on the boundary read

- m+1 m+31 1 =7
v = ,F — o . d
(1,1)(77) 241 ( om om 2 m’ 4> )
_ lea 3 1 3 1 g
Vi = Filld+ —, =+ —— ] . D.18
(371)(77) n 2 ol ( +2m7 2ma2+ma 4) ( )

In the bulk channel, corresponding to the exchange of 1 and ¢3 ;) we have

+3 m+3 1 1 m+1 m+3 4
phulk(my _ 2 _m _ - T _ 1:——
) () = 21 2m ' 2m +mjL " 2m 2m +h ’
+1m+1 1 1 m+1 m+3 4
Vbulk — 52h21—h3;1 F m _ _ - 1. —— . D.19
G (1) =1 T\ 2m 7 2m +m+2’ 2m * 2m +h 7 ( )

02



The final solution is
(D) (1 +iy1, 21 — iy1) P,y (T2 + iy, T2 — iY2))mt+ =

1 bulk / ~ a bulk [ ~
(g (VR (D) + B 1y Canenen Ve (1) (D.20)

. sin (5) sin (73)
N ) ¢ s () sin (2)

1+ L 2 3 2\ (o mE2
0(271)(271)(371) :\/ ( m) m) m) ( n; ) . (D21)

FE2+m)r (%) () T (=)

where

In the boundary channel we have

(D (@1 + iy, 1 — Y1) P21y (T2 + Yo, To — 1) )ur =

1 a ) s ]
(4yryz)?=t (<B(2*1)>2V(1’1>(77) + (B(zf)l))QV(&l)(UD , (D.22)

with

By = 2(—1)a2\/ssliz(( ))85111111 ((mj:)) Cos (W) , (D.23)

and, as determined by bulk-boundary crossing symmetry

(BAGDY = VT (2+ 3)m - (B?z,n)QFS;; W) (D.24)
25T (34 ) T (%2) VAT (24 2)

m

This result is consistent with the F-matrices computation of ref. [41]. For the tricritical Ising

model with Z,-preserving conformal boundary conditions one finds

a2 _ T (D.25)

(B, W)

Hence 13,1y is Z-odd in this boundary condition.

D.3 Tricritical Ising model with Zs;-preserving conformal b.c.
D.3.1 Bulk two-point functions of ¢

Consider the bulk two-point correlation function of € = ¢(1 3y in the tricritical Ising model with

Zo-preserving conformal boundary conditions

(€'(x1 + 1y, w1 — iy1)€ (xo + Yo, To — 1y2))u+ - (D.26)
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This correlator satisfies a third order differential equation, whose solution is known in closed
form (for a generic minimal model [26]). In the boundary channel, the Virasoro blocks that are

relevant to the m = 4 case are!'?

- 2m 2 4 1 1 3 =
Vi () = sk ( 1 2; e 1;_Z> 7

m+1m+1 “m—+1 m+1+
Von) g p (G311 8 33 1 2 1
V=T 32\ " ¥ Um+1 2m+1 22 m+lm+1 2 4)°
(D.27)
with 7 defined as in eq. (D.5). The final correlator reads
(ba3) (@1 4+ iyr, 21 — 1) P ,3) (T2 + Y2, Ta — iY2) )+ =
1 a ~ a(1,3 ~
W ((3(1,3))2‘/(1,1)07) + (B(1E3) ))2‘/(1,3) (77)) ) (D.28)

where the coefficient Bf ;) is given in Table 5 and crossing symmetry implies for the (2,2)4

boundary condition that!?

(B3%)2 ~ 0.663053 . (D.29)

€

This results, which is compatible with the F-matrix computation of [41], implies that in the

(2,2)4 conformal boundary condition 1 3y is Zy-even.

D.3.2 The boundary four-point function of )

Consider the boundary four-point correlation function of ¢(3;) in the tricritical Ising model with

Zo-preserving conformal boundary conditions

(e (@)Yen(@2)Ven (@) ey (@a))es ¥ > Tig - (D.30)

This correlator satisfies the same third-order differential equation as the four-point correlation
function 93 1y(2) in the homogeneous tricritical Ising model, and its solution is known in closed

form for any m (see for instance [26]). The most generic solution for m = 4 is

1 N A -
W (V(l,l)(??) + (Cé,1)(3,1)(3,1))2v(3,1)(U)) ;

(a1 (T1)ViE 1) (T2) Ve (@3)YE0) (T4))ur = @
12234
(D.31)

12 Another linearly independent solution corresponds to the exchange of ¥(1,5), which however does not exists
for m < 4.

¥Note that 11 3) does not exist in the (2,1)4 b.c., and correspondingly (Ba‘(l’?’))2 =0.

e’
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(we have set to zero the coefficient of the third linearly independent solution which would corre-

spond to the exchange of 1(51) on the boundary), with

- 4 2 2 3 1 1 7
V(i) = 3F (———27 — =1, —+2— 1,2 E;_Z) 5

N _haa 3 3 1 1 3 5 2 1 1 3 7
Vi =n:s3hHh|{l-———=———= — 4+ — =, — 4+ =, —= D.32
() =1 32( m 2 m 2’m+2’ m 2’m+2’ 4)’ ( )

and
R T (D.33)
L12X14T23T24

which is positive if ; > x;.;. The remaining coefficient in eq. (D.31) is fixed by crossing

symmetry to be

m—2
- r2 cos (2)T (3.4 )T (~152)
o) = e B TG+ TG T @+ T

which vanishes identically for m = 4, but is positive otherwise. Hence, the self-OPE of 13 1) in
the tricritical Ising model contains only the identity. We have checked that eq. (D.34) agrees
with the results of ref. [41].

E One-loop computations for the 7T deformation

In this section we compute the following correlation functions at one loop in 7T deformation of
eq. (3.2)

(D(z1)D(22)) , (D*(21)D*(x2))
(D(21)D(x2)D(x3)) , (D(z1)D(x2)D*(z3)) . (E.1)

Here and in the following of this section, the ordering along the boundary of AdS, is taken such
that x; > x;,1. As we are dealing with covariant bulk RG flows, these correlators take the form

1d conformal correlation functions, i.e. (our conventions are written in appendix A)

(Vi(1)s(22)) = 51']'@ L (i () () (3)) = Cij(9r7)

(22)Ailgrr (l'lz)Aijk(gTT) (ngS)Ajki(gTT) (l‘lg)Aikj (977)
(E.2)

In particular, they are specified by the scaling dimensions of D and D? which we parametrize
along the RG as follows

AD(QTT) =2+ grp 5AD + O(Q%T) 3
AD2 (QTT) =4+ gr7 5AD2 + O(Q%f) ) (E3)
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as well by as their normalizations (tree-level values are computed in appendix A.3 of [26])

Co(grr) = Cop(grr) = ¢/2 + gr7 6Cp + Ol977) -
Ca(9r7) = Cooe(977) = 75(22 4+ 5¢) + g 0Cr2 + Olgi)
Coop(grr) = ¢+ grr 6Copp + O(g7.7)
Cppp2(9r7) = %(22 +5¢) + 977 6Chpp? + Ogz) - (E.4)

For conformal b.c. that support a boundary Virasoro primary ¢ of scaling dimension A we will

also compute, along the same 7T deformation in AdS,

(W(x1)(z2)) 5 (D(@1)d(z2)y(w3)) , (D*(21)d(w2)th(x3)) - (E.5)
We will assume 1) to be unit-normalized at tree level, and so we will let
Ay(grr) = A+ grp 6A, + O(977) -
Cy(grr) = Cyplgrr) = 1+ grr 0Cy + O(g77)
Couw(9r7) = A+ g7 6Coyy + Olg77)
A
5

C’Dwa(gTT) = (5A +1) + g9r7 5OD2¢¢ + O(g77) (E.6)

where for the tree-level OPE coefficients we used the results of appendix A.3 of [26].

E.1 Two-point functions

Starting with the two-point correlation functions, Poincaré coordinates of AdS with radius R the

one-loop corrections are computed by
g [T dy [ — . e
—g9riR ? dz (D(21)D(22)TT (x + iy, x — iy))5 aas, »
y>a —0o0
| 00 3 » . .
—oreR [ L[ o (D)D) TT G i = i) g,
y>a —0o0
| 00 B . - .
—greR [ SE [ o (D)D) TT G = i) s,
y>a —0o0
o0 dy 00 B . . .
—oreR [ SE [ o ()0 @) T+ i = i9)) s, (8.7
y>a —0o0
where (...)° means ‘connected’. We have introduced a IR cut-off at y = a. The correlation

functions in the integrands above are obtained from those on the upper half-plane H™, upon

Weyl rescaling to AdS,. These are (limits) of correlation functions with many insertions of T on
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H*: four, five, six, and two, respectively. Explicit expressions for such correlation functions on
the H* can be found, for example, in the appendices of [26].
Computing the integral is not difficult, and up to O(a, g%T) corrections we find for the one-loop

contribution
4 A ¢ 1 ar
215(D(21)D(22))1 100p = =7 Cppp(0) | 57 + 1+ glog|{ 3 ) ) 9rr
6 2 2 55’3%2
175 (D(21)D*(22)) = —7Cp2(0) | 1 — RaZ arr

25 (D @)D (@2))1 1oop = —67Cr2(0) (o + 3 +1og (12 ) ) grr

(8 W0 o = 75 [34 (8~ 110w (22 | o (©5)

Note that an off-diagonal two-point function is generated at one-loop.

E.1.1 Renormalization and mixings

We define the renormalized operators
Dr=2ZpD+ Zpil + ..., D?gp = Zp2D?*+ ZpopD + Zpopy D" + Zpegd + . .. (E.9)

(D" denotes the second derivative of D). The wave-functions Z44 are fixed by requiring corre-
lation functions with insertions of Dz and D% to be finite and to match the expected form of 1d

conformal correlators. By letting

Zp =1+ grraplog(a/R) ,  Zp: =1+ grr zp2log(a/R)

212
Zpep = g1 % . Zprpr = g7 Zp2D s (E.10)

being R the AdS, radius we see for example that

(Dr(z1)Dr(2)) = Z5(D(21)D(22)) (E.11)
is completely finite if zp = —=, and in particular (taking the a — 0 limit) we get the following
one-loop correction

& 1
219 (Dr(21)Dr(22))1 100p = —CTgrr (ﬂ +1—log2+ B log (95%2/}?)) : (E.12)

Hence, by comparing to the O(gr7) expansion of eq. (E.2) we find

SAp =7, 6Cp=mc (1—log2—§> . (E.13)
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Analogously,

(D?r(21)D?r(22)) = Z5(D*(21)D*(x2)) (E.14)
is completely finite in the a — 0 limit if we set zp = —67. By comparing to the O(gp7) expansion
of eq. (E.2) we find

A 1lc 71 3
0Ap: =67, 0Cpe =7 <%(180 log2 — 131) + ¢ (6 log2 — 1—5> - ﬁ) : (E.15)

For the mixed two-point function, requiring that

0= <DR(ZE1)D2R(x2)>

= Zp2Zp(D(x1)D*(x9)) + Zp2Zpep(D(x1)D(22)) + ZDQZDQD//<D(x1)D,/(Q:2)> , (E.16)
fixes
_ m(5c+22) ~ m(5c+22) (E.17)
ZD2D = —8 s ZD2D// = —100 . .

Finally, in order to renormalize the two-point function of 1 we introduce ¢¥r = Zy1 with

~ ~

Zy =1+ grrzplog(a/R) , 2y = —g(A ~ DA (E.18)
By plugging into the renormalized correlator
(r(x1)VR(22)) = Z7(1h(21)1h(22)) (E.19)

and comparing to the O(gp7) expansion of eq. (E.2) we find

~

0A = —z,, 6C,= —%(210g2 — A(21og2 —1)) . (E.20)

E.2 Three-point functions

For the one-loop corrections to three-point functions we shall compute

* q 00 B ‘ ' .
g R / > / d (D(1)D(2)D(s)TT(x + iy, & — )5 nas, -
y>a —0o0

dy [ o .

- / 2 / A (D(1)D(22)DA(ws) T (& + iy, & — i) pas, -

y>a —00

© q 00 3 . e
_gTTR4/ y—g/ dx (D (1) (22)Y(23)TT (v + iy, T — 1Y))5 ads, >

y>a —00

o0 d o0 _ ) ) .
_gTTR4/ y_y/ dx <D2($1)¢($2)¢($3)TT(33 +y,x — Zy))O,AdSQ . (E.21)

y>a —00
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The integrands are again obtained from appropriate limits of correlation functions with many
insertions of T on H*: five, six, three, four, respectively. Computing the integral is easy if we

set for example z3 = 0 and z; = 1, so up to O(a, g%T) corrections we find

(z = 1)*2* (D(1)D(2)D(0))1 100p =
_ mgrp - c(x® — 427 4+ 62% — 42° + 32* — 423 + 622 — 4z + 1) +§10 (r — 1)z
4 8c(x — 1)%222a? s 8a3 ’

! <D<1)D( )D2 M1 loop =

50+22 5a?
- gT 4.4 2,2
128 .zz:—l at A(x—1)2a

50+22gT (c+ 20)z? —2( + 14)z + ¢+ 20
6(z—1)2

—4log(x — 1) + 6logx — 8log(2a)) :

(& — 1222 (D(L)(2)(0))1 100p =

WCQTT(x_1)2_7TQTTA < lA_ 2 (A _ 1A
6 2202 o 12+2(A 2" —((A=1)A+1)log2

+ gl ((1 - A%+ A) logz —log(z — 1) + (1 + (A — 1)A) loga> ,

(& — 1) (2?22 (D (1)(2)(0))1 100p =
| me(5e+22) 5A(x—1)2  5(z — 1)4>

10 4ca? " 64x2a* 91T
A . o
- 7;—0( c(2((A +2)z — 6) + 6) + 2((ABABGA — 39) + 238) + 92)x — 132) + 132) g7
TA(BA ) A A,
+ ( 5+ Dz” (((A — 1)A +6) log(2a) + <—A2 +A+ 6) logz — 6log(z — 1)) 91 -

(E.22)

E.2.1 Renormalization and mixings
To resolve the infrared divergences we include the mixings of eq. (E.9) i.e. write
(Dr(z1)Dr(22)Dr(73)) = Z5(D(21)D(72)D(w5))

+ Z8Zpq ((D(@1)D(w2)1) + (D(21)D(23)1) + (D(22)D(x5)1))
3.(111) (E.23)
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with Zp as in the previous section and

mc
7 s = Qpi—— . E.24
pi = 91T 1642 ( )

With these chosen counterterms we find (up to O(g3.7) corrections)
(z — 1)%2*(Dg(1)Dg(2)DR(0)) = ¢ — ZTT (c+2log(z*(1 — 2%)/R*) — 12log2) ,  (E.25)

and so, comparing to the O(gp7) expansion of eq. (E.2) we find

. c
5ODDD = TC (3 10g2 — Zl) . (E26)
The choices above are of course enough in order to renormalize
(Dr(1)¢r(2)Yr(0)) = Zo DY (D (@) (x2)¢(x3)) + 25 Zpg (1) (22)1) (E.27)
from which we can extract
A ~ .
5C.pup = —% ((A —9)2 - 2(A — 1)Alog?2 — 2log2 + 6c> . (E.28)

More mixings are needed in order to remove divergences as well as spurious finite terms in

the second of eq. (E.22), but the essence is the same. We write
(Dr(w1)Dp(w2)Df(w3)) = Zp Zp2(D(w1)D(22)D*(x3))
+ 25 Zpep (D (@1)D(22)D(23)) + Z5 Zpzpy (D(21)D(22)D" (23))
+ Z2 Zpy2q (D(1)D(2)1) + subleading . (E.29)

S~ o~

Almost all divergent terms, and all the spurious finite terms, are subtracted with the previous
choices for the wave functions. We are left with one divergent contribution, which we subtract

by including a mixing term with the identity, i.e.

me(5e + 22)

T o8at (E.30)

Zp2q = 917

The counterterms above will also renormalize

(D?*r(21)vR(22) VR (23)) = Z§ Zp2(D* (21) ) (2) 1 (23))
+ 2} Zpep (D(@1)1 (22)0(w3)) + Zj Zpepe (D (21)(22)1(23))
+ 23 Zpoi (T (22)0(w3)) - (E.31)

The above renormalized correlators have the right conformal structure, and we from them we

extract
- c? 26 11
0Cppp2 = TC (_E +c (4 log2 — —5) 7—5(120 log2 — 41)) :
. ABGA +1 A -
0Cyyp2 = % <180 log2 —5¢c+ 15A(8 — A+ (A —1)log4) — 262) . (E.32)

60



E.2.2 Final results for the OPE coefficients

Taking into account the renormalization of the external operators computed earlier, the OPE

coefficients for unit-normalized operators are

C’DDD(QTT) _ 2\/§ (1 B M

Cop(grp)®? ¢ 8

Coun(9r7) V2A e 2

A . - L—m(1+5; —28)9rr + Olorr))
Cy(gr7)Co(gre)t/2 Ve ( ( 21 ) TT 27 )

A 2 A A
C ol sA(BA +1)
] YyD: (9r7) — \ﬂ ( — 1(5c — 240A + 262) g7 + O(g7 )) ,
Cy(9r7)Cp2 (g77) /2 c(5c + 22) 60
Clorra — 109
pop2 (977) - \/7 e T ) (1 N WQTT n O<gTT)> ' (E.33)
Cop(9r7)Cpepe (9r7)Y

F  One-loop computations for Virasoro deformations

In this section we compute the following correlation functions at one loop in the Virasoro defor-

mation of eq. (3.8)
(D(21)D(x2)) , (D*(21)D*(x2)) ,

(D(x1)D(2)D(x3)) , (D(x1)D(22)D(x3)) - (F.1)

For covariant RG flows in AdSs,, these take the form of 1d correlation functions. The ordering
along the boundary of AdS is taken such that x; > x;,;. Following the conventions of appendix E,
we parametrize the CFT data along the RG as

Ap(gs) =2+ g4 6Ap + O(g3)

Ap2(gy) = 44 95 082 + O(g3) (F.2)
Cp(gs) = Conlgs) = ¢/2+ g4 0Cp + O(g3) .
ODQ (90) = Cpepe (94) = 10(22 +5¢) + g4 5CD2 + O(%)
Coon(9s) = ¢+ 94 Copp + O(g3)
ODDDz (9¢) 10 (22 + 5¢) + 9o 5CDDD2 + O(9¢) . (F.3)
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F.1 Two-point functions

The one-loop corrections are computed by
A, [Tdy [ ; i)\ ¢

—gpR™? "] dz (D(z1)D(22)d(z + iy, x — iy)) aas,
y>a —0o0
00 dy 00 - . .

—goi> [ D[ do D@D an)oe + i = i) aus,
y>a —0o0
00 dy S » . .

—gok® [ <L [ o (DX w)DXaa)oo + i = i), (F.4)
y>a —0o0

where (...)° means ‘connected’ and y = a is an IR cut-off. The correlation functions in the
integrands above are obtained from correlation functions on the upper-half plane H* via Weyl
rescaling. These are in turn computed from appropriate limits of correlation functions with one
insertion of the Virasoro primary ¢ and (respectively) two, three and four insertions of 7" on H.
Explicit expressions of such can be found for example in [26].

Computing the integral we find (up to O(a, gi) corrections)

TAy,B x?
D)D)y = a0 (8o + (B = 2) 105 (§2) ) 5.
6 2 TA By 1’%2
212 (D(21)D”(2))1 100p = TE X 2B ? 8(Ap — 2)(5Ay +2) — 5(2c + 5(A4 — 2)A4 + 4)? 9o 5
A,B
25, (D?(21)D2(22))1 100p = —ﬁ [1344 4+ A4 (600c + 5A4(185A, — 692) 4 4468)
2

Note that an off-diagonal two-point function is generated at one-loop.

F.1.1 Renormalization and mixings

In order to renormalize the two-point functions above we shall essentially repeat the analysis of

appendix E. We define the renormalized operators
Dr=ZpD+ Zpil + ..., D?g = Zp2D*+ ZpepD + ZpopeD” + Zpogd + ... (F.6)

and fix the wave-functions Z, 4/ by requiring correlation functions with insertions of Dy and D7

to be finite and to match the expected form of 1d conformal correlators. By letting

Zp =1+ gszplog(a/R), Zp2 =1+ g4 2p2log(a/R) ,

ZD2D
ZD2D = g¢ a2 s ZD2D// = g¢ ZDQDH , (F7>
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being R the AdS radius, the wave-functions are found to be

= ga T (Be 2B e = g, (5o +22) ’
TB,A B

From the renormalized two-point correlation functions, comparing to the O(gr7) expansion of
eq. (E.2) we find

5AD = —Z2p , 5AD2 = —Zp2,
A TByA
5Cp = — 2;’ 2 (A —2(Ay —2)log2)
A ’/TB¢A¢
0Cr = — 0 x e (1344 + Ay (600c + 5, (185 — 692) + 4468)
—60(Ay — 2)(20c + 25(Ay — 2)Ay + 64)log 2) . (F.9)

F.2 Three-point functions

For the one-loop corrections to three-point functions we shall compute
00 dy 0o . ' .
_g¢RA¢ / ? / dz (D(x1)D(z2)D(x3)o(x + iy, x — zy))O,AdS2 ,
y>a —00
* 4 00 ' . .
—gof® [~ [ de @)D D)oo+ s = i), - (10
y>a —00

The integrand are again obtain from appropriate limits of correlation functions with many in-

sertions of T' and one insertion of ¢ on H™. From the integrals we find

(z —1)%2* (D(1)D(z)D(0))2 loop =
127 By(Ag — 4) A7 4(Ay = 2) (z =Dz
t——mm ' 3a, 04, ( EHE >
c((x — Dz +1) ((x — Dz (z* — 223 +x+3)+1)}g
12(Ag — 4)Ay(z — 1)%222a? -

" (D(1)D(2)D*(0))1 100p =
TB,A, (240(5(A¢ —2)Ay + 4)2? +480cx?  15¢(5A, + 2)at

15 x 28645 (z —1)2€ (= 1)t
2
(4 %_(;116 5202x ) + dy + dy log a + do log(x — 1) 4 dslog x> 96 (F.11)
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with

co = —32(As(Ag(40A, — 229) + 466) + 120) |

c1 = 64(Ag(Ap(40A4 — 259) + 514) + 144) |

03 = —32(Ay(Ay(40A, — 229) + 466) + 120) |

do = 96(20¢(Ag(210g2 — 1) —1og 16) + (Ay — 2)(25(Ay — 2)Ay + 152) log 2) |

dy = 96(Ay — 2)(40¢ 4 25(Ay — 2)Ay 4+ 152) |

dy = 96(Ay — 2)(25(Ay — 2)Ay — 24) |

ds = 96(Ay — 2)(—20c — 25(Ay — 2)A, — 64) . (F.12)

F.2.1 Renormalization and mixings

One can verify that the wave-functions in the previous section, together with the following mixing

terms with the identity

27TB¢A¢ 7TB¢A¢(5A¢ + 2)
ZD g(bm s Zszl = d¢ 24+A¢>a4 s (F].S)

are enough to remove all divergences in eq. (F.11). The resulting functions are conformally

covariant, and by comparing them to the O(g;¢) expansion of eq. (E.2) we extract

- 3T B,A
6Cnp = =" (A = 4)Ag + 4(Ay — 2) log2) |
A 7TB¢A¢
+ 15(Ay — 2)(40¢ + 25(Ay — 2)Ay + 152) log 2 — 672) . (F.14)

F.2.2 Final results for the OPE coefficients

Taking into account the renormalization of the external operators computed earlier, the OPE

coefficients for unit-normalized operators are

éDDD(g¢) B 2v/2 <1 . By 3w

ODD<9¢>3/2_ c 28 ¢

Coopr(9s) _ _ \f c(5c + 22)

CDD(9¢>CD2D2 gqb 1/2
1 + B¢ W(A(Zg — 2)A¢(5A¢ —|— 2)(25A¢ + 336)
24 30c(5¢ + 22)

3T (A - 2>A3>g¢+0<g§>) ,

+0(g§)> . (F.15)
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G ¢(12) deformations of minimal models

In this section we study the ¢ = ¢(; 2) deformation of a diagonal minimal model with elementary

conformal boundary condition a = (ay, as),, on AdSy

6S = gRA? / d*z+\/g ¢(z + iy, x — iy) + counterterms . (G.1)
The scaling dimension of ¢ is, from eq. (2.11)
m — 2
A=A s=2hjo=———. G.2
12 b2 2(m+1) (G-2)

We will work with m finite. The main result of this section pertains the one-loop anomalous
dimension of the boundary Virasoro primary v, (assuming it exists) in a generic conformal

boundary condition a and at finite m i.e.
Ar,s - hr,s + g(SAr,s + 0(92) . (G3)

The tree-level scaling dimension h, ) is given in eq. (2.11). In Poincaré coordinates of AdS, we
shall then study

o0 d o ) ) .
G1(x12) = RA/ y_g/ Az (P(r,s) (21)V(rs) (T2)P1,2) (T + 1Y, T — iY))5 ags, + cOunterterms .
y>a —00
(G.4)

As usual, here (...)¢ means ‘connected’ and y = a is an IR cut-off. The correlation functions
in the integrand above is obtained from correlation functions on the upper-half plane via Weyl

rescaling.

G.1 Correlator between two ¢, ) and one ¢ )

Our first task is to compute

(Vs) (@) V0rs) (T2)P1,2) (0 + 1y, & — Gy))u+ , 21> To . (G.5)

By the method of images, this correlator satisfies the following second order differential equation.

2 3
(5(2) - m£21) (Vi) (21)0(1,2)(22) 91,3 (23) P (1,3) (24)) = 0, (G.6)

where £ is the differential operator defined in eq. (D.3) and £_1 = 0,,. By SL(2,R) symmetry

we have

G(n)

(212)%rs (234) 22

(V(r,5) (21)V(r,0) (22) D(1,2) (23) P1,2) (24)) = (G.7)
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The cross-ratio 7 is

212734 21yz1o

= ) G.8
213724 (.%'1 — Z) (.TQ — Z*) ( )
From (G.6) we get
n(n —1)*(m +1)*G"(n) + 4(n — )(m + 1)(n(m +2) = 2)G"(n) + (2 = m)mG(n) =0 .
(G.9)
In order to solve this equation, it is convenient to define another function
G(n) =G(7) . (G.10)
where
2 2 2
. 4y*(212) "
= = , 0<n<4. G.11
T T @ D) (@ v 5T (1)
The Virasoro blocks corresponding to the exchange of 1 and .3y read
_ mr—ms+r+1 —((m+1)r)+ms+1 m+3 7,
Vi = oF! . N
(i) = 1( om+2 2(m + 1) om+24)
- - - +m+r —rm+sm+m—r Im+1 7
Vv — phs/2 rm = sm : P — G.12
(1) = 777 1( om+2 om + 2 om+2' 4 (G.12)
The final solution is then
. . G(n)
<1/}(r,s) (xl)w(r,s) (I2>¢(1,2) (l’ T, T — Zy)>H+ = ($12)2th5 (2y)2h172 )
5~ a ~ Na a(1,3 ~
Gg(m) = B(1,2)V(1,1)(77) + C(r,s)(r,s)(l,3)B(1E2) )V(LS)(TI) ’ (G.13)

where Bf; ,) was given in eq. (D.13). The remaining coefficient in the equation above is determined
by the following requirement. The function G(77) has a branch cut along 77 € [4,00]. None
of these singularities correspond to an OPE channel: they are unphysical and so they should
disappear [34].'* Requiring that Disc G = 0 across the cut one finds

Q%H—lr (% + 1 ) T (Tm—sm—i—m—i—r) T (—Tm-l-sm-i—m—r)

(r8)(r;s)(1,3) = (1,2) (1.2) 3 1 mr+r—ms+1 —((m+1)r)+ms+1
r (5 - m+1) r ( ng+2 = ) r ( 2(m+1) )

This formula is consistent with the results from F-matrices [41].

14This condition has been exploited in higher dimensions as well: to prove ‘triviality’ of certain free theory
conformal defects [70, 71|, to constrain the space of conformal boundary conditions for a theory of a free massless
scalar field |72, 73|, to compute perturbative data in O(N) models with boundaries of defects [74, 75], in the
context of QFTs in AdS [58].
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(3.2 Anomalous dimensions

We have all the ingredients to compute the anomalous dimension of boundary Virasoro primaries
along the deformation of eq. (G.1). Following the same steps as those of section 4.2 in [26] we

arrive at the following result for the anomalous dimension of 1,
5Ar,s — 5A171 —|— 5A1,3 5 (G15>

where

SA B2 iﬁ(l/%n(mr—ms—l—?“—1)(mr—m3+r+1)
1,1 — , 3
(1.2) = 2w (m4 1) (m+3)n!(2). (2 + S

m+1
y r+m(r—s+2)+3 —r+m(—r+s+2)+3
2(m + 1) . 2(m+1) .
00 m—1 1 rm—sm-+m-+r —rm-+sm+m—r
SA, . — 523 m(m —1)I (m+1) (_m+1)n ( 2m:_2 + )n ( ;rerer )n
L3 = M (rs)(r,s)(1,3) 7 (1,2) 22—%11 1 1 3 1
o P+ D (n+5 - 25) T (n+3 - o)

(G.16)

H Review of the Staircase model

In the main text we discussed how to study the (2,2)4 b.c. of the tricritical Ising by analyzing
the space of values of the four-point function and its derivatives at the crossing symmetric point.
We motivated this by recalling that RG flows between minimal models can be embedded in the
so-called staircase RG flows which are associated to the S-matrix of the staircase model. In this
appendix we review the definition and properties of this model and flesh out the connection to

our original problem of minimal model RG flows in AdS.

H.1 Defining properties

The staircase model is an integrable 2-dimensional quantum field theory, whose S-matrix is
obtained by analytic continuation in the coupling of sinh-Gordon (shG) theory as first done
by Alyosha Zamolodchikov in an unpublished paper [3]. It describes the scattering of a single

massive scalar without bound-states. The shG S-matrix is a pure CDD-zero:

sinh § — ¢sin~y

Sana(0) = (H.1)

sinh + isin~y’

where 7 is related to the sinh-Gordon coupling and 6 is the usual rapidity defined in terms of
Mandelstam’s s = (p; + ps)? through s = 2m?(1 + cosh #). This S-matrix is invariant under the
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duality v — 7 — 7y, which is a weak-strong duality in the original coupling. One then goes to the

self-dual point and gives the coupling an imaginary part: v — § + i, leading to the S-matrix:

sinh # — i cosh 6,

Sseel0) = sinh 6 + i cosh 0

(H.2)

This is a perfectly healthy S-matrix with all the right reality and crossing properties. However
the Lagrangian nature of the UV theory is completely obscured by this procedure, as it would
correspond to a sine-Gordon theory with a complex potential. It is important to recall that
since this is a purely elastic theory, one has access to some off-shell quantities through the
Thermodynamic Bethe Ansatz (TBA). In particular, one can obtain the ground state energy on
a circle of radius R which is related to the effective central-charge of the theory [76]:

TCeft ()

E(R) = ——¢2 (H.3)

where = log(mR/2) is a convenient dimensionless scale. This quantity, in the UV and IR
matches the central charges of the UV and IR CFTs (which can of course be trivial and have ¢ =
0), and is an RG monotone. In fact it is the monotonic quantity defined in Sasha Zamolodchikov’s
c-theorem [77|. Solving the TBA equations (numerically), one finds that the IR central charge is
0, as it should for a massive theory, and the UV one is 1, as one might expect from the relation
to the shG model. We emphasize that this does not mean that the theory can be described by
a UV lagrangian with a massless scalar, since such a theory would have a rather sick potential.
Looking at the explicit solutions replicated in figure 21, one sees that the central charge
develops a staircase pattern, spending RG time at central charge plateaus which precisely match
the central charges of the unitary minimal models M,,,. Indeed, as 8y — oo, the RG flow of this
theory approaches the integrable RG flows between M,, — M,,_; which are triggered by the
integrable, nearly marginal deformation driven by the ¢ 3y operator in the UV. This operator
obviously becomes irrelevant and manifests itself as the ¢ 1) operator in the IR. In the Ising
model (the last plateau), this operator does not exist, and the irrelevant deformation is instead

driven by the T'T operator, as we have seen in the main text.

H.2 A hint from the S-matrix Bootstrap

As a simple CDD factor, we expect the shG and staircase S-matrices to saturate S-matrix bounds
[78]. Since they have no poles/bound-states, the natural observable is the effective quartic
coupling which we can take to be S(s = 2m?). However this leads to very trivial bounds
—1 < 5(2) <1 which are saturated by a free Majorana fermion on the left and a free boson on
the right. A natural extension of this is to consider a low energy expansion, which we can take to

be the Taylor series around s = 2m?. Crossing ensures that S’(2) = 0, so we can focus on the two
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Figure 21: Effective central charge from the TBA equation for the staircase model at several
values of 6, taken from [3]. As 6y increases, the function develops plateaus which take precisely

the minimal model values.

dimensional space of parameters {5(2), S”(2)}. Using the standard numerical S-matrix bootstrap
we find the region in figure 22. Indeed, the staircase model saturates the bounds, interpolating
between the self-dual point of shG and the massive Majorana. A deformed version of this plot
was presented previously in the work of [55]. This feature is reminiscent of the O(2) symmetric
S-matrices of the sine-Gordon kinks. Indeed, this one parameter family of S-matrices saturates
similar bounds, where the 2-dimensional space is instead spanned by 2 components associated
to different representations of the O(2) symmetry (say singlet and rank 2 tensor components).
In the work of [4], the authors understood how to embed such bounds as a flat space limit of
1d CFT bounds, with the role of the AdS radius being played by the dimension of the external
O(2) fundamentals. There it was clear that the UV is well described by free vertex operators,
deformed by the sine-Gordon interaction. One can then wonder whether repeating this strategy
for the Zy symmetric space of correlators labeled by g(z = 1/2) and ¢”(z = 1/2) might illuminate
the UV origin of the staircase model. This also leads us to the Minimal Model flows in AdS which
we studied in the main text.

H.3 More on Minimal Model RG flows

From our analysis so far, one thing that remains unclear, is why it should be the specific (2,2),
b.c. of tricritical Ising and the specific (1,2) = (3, 3) operator saturating this bound. While this

is not completely clear, there is some evidence we can follow:
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Figure 22: Allowed space of S-matrices for a single scalar particle without bound states projected
to the {S(2),5”(2)} subspace. The right and left endpoints are a real free boson and fermion,
respectively. The bottom right section, in dashed red, are the shG S-matrices as  varies from
0 to m/2. Going beyond this brings us back, by duality. Reaching the self-dual point and giving
an imaginary part 6y from 0 to oo builds the green dashed line, corresponding to the staircase

models. At large 8y we recover the gapped fermion.

— Our S-matrix has a Z, symmetry, so it seems natural to keep it along the flow. Therefore

we should pick Zs preserving boundary conditions.
— The particles are Zy odd. We therefore should consider Zy odd boundary operators.

— For a massless boson in AdS, the natural Z, preserving boundary conditions are the Dirich-
let ones ¢|pary = 0. Although the UV of the staircase model is not a free massless boson,
one might be tempted to impose the analogue of the Dirichlet BC along the flow. For the
Minimal Models this can be understood from the Landau-Ginzburg formulation. The L-G
field ¢ corresponds to the lightest Z, odd operator which is ¢ 9) in the Kac table. Indeed,
(2,2) boundary conditions are always Z, preserving. In this case, the bulk Z, even opera-
tors will appear in the BOE of ¢(32). It seems tempting to consider the lightest boundary
operator 13 3) which becomes Zj; odd in these boundary conditions. These operators satisfy

the property that their dimensions become small in the UV limit m — oo.

We can now check this in more detail for the Ising and tricritical Ising cases.

H.3.1 Ising Model and 7T deformation

There is only one Zy preserving boundary condition (2,2)3 = (1,2)3 for the Ising model. The
boundary theory contains only the identity and the 1) 1) modules. The 1d operator 12 1) has

dimension A9y = 1/2, which is unsurprisingly dual to a bulk massless free fermion, which
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corresponds to the boundary GFF correlator. In this language, the irrelevant deformation which
takes us back up the RG flow is the 7T deformation which can be written as a quartic fermion

interaction leading to the action

dxdy dxdy

(ypou)(yo),  (H4)

Srr + Srr :/

AdSs

W (B + yPOB) + grr /

AdSs

Note that on the boundary there can only be one fermionic degree of freedom, corresponding to
the identification ¢ = —QZ. Using standard, but somewhat involved Witten diagram techniques,
we can find the first order deformation of the conformal data. Taking the four fermion operator to
be normal-ordered is a convenient renormalization scheme in which the external operator doesn’t
get a leading order anomalous dimensions. Computing the full four-point function, we get:
8n°((5 — 2n)n — 5)log(n)

or7G(n) o — (n— 12y

C8(@P+n+2)(n—1)log(1 —n) +2n((n—Ln+1)(n—1))
(n—1)%n

The anomalous dimensions and correction to OPE coefficients of two-fermion operators cor-

(H.5)

responding to this interaction were actually bootstrapped using analytic functionals in [42].
Expanding our answer into blocks matches all their anomalous dimensions and all their OPE
coefficients except for the OPE coefficient of the first non-trivial exchanged operator. This is to
be expected since they include certain subtraction terms. These results lead to the saturation of

the bounds of figure 20, in the main text.

H.3.2 Tricritical Ising

For the tricritical Ising, there are of course two different Z, preserving boundary conditions,
associated to (2,1)4 and (2,2)s. However, only the (2,2), BC contains the lightest (Zy odd)
boundary operator ¥ 9) = 13 3) of dimension A(; 2y = 1/10. In this case, the symmetry of the
Kac table means that we can still solve a second order BPZ equation of the (1,2) type as in
Appendix D. Imposing crossing and normalization for the unit operator once again leads to a

unique solution:

$}é5$§z{5<¢(1 2) (%)@/) (I3)¢(1,2) (953)7»0(1,2) (%))(2,2)4

_ R (EEsgt-n) AT ()T () A (G5igil—n)
8
5

vi=n V2,/(3+ V3) T (8)

(1.6)

We can then plot this point in the bounds for A, = 1/10 as we did in figure 17 in the main text.
It saturates the bound, and is an expected position, somewhat close to the GFF point, in the

direction predicted by the T'T deformation.
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If we were to try to backtrack the flows of this boundary conditions to the UV, the prediction
of [26] would tell us that (a1, as2) flows to (ag,a;). This is consistent with the picture outlined
above, since the RG flows would stick to the (2,2) boundary conditions, containing the lightest
Zs odd operator. This in contrast to the results in the UHP [38], where our scattering of the
lightest Zy odd particle can not be consistently embedded in the chain of bulk and boundary RG
flows.
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