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The low-momentum structure of the gravitational polarization tensor of an ultrarelativistic 
plasma of scalar particles with >@4 interactions is evaluated in a two-loop calculation up to and 
including order X3/‘. This turns out to re&e an improved perturbation theory which resums a 
local thermal mass term as well as nonlocal hard-thermal-loop vertices of scalar and gravitational 
fields. 
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I. INTRODUCTION 

The central quantity in a linear response analysis of 
a thermal field theory is the polarization tensor and in 
particular its infrared behavior. It determines the spec- 
trum of the quasiparticles and their dispersion laws, and 
also the dynamical and static screening of external fields. 
In the physics of the very early Universe, which is filled 
with a hot plasma of various elementary particles, the 
gravitational polarization tensor is also of interest. It 
describes the response of the plasma to metric perturba- 
tions and its in&red behavior determines the dynamics 
of large-scale cosmological perturbations. 

In Ref. [l], one of the pres@ authors has calculated 
the leading temperature contributions to the gravita- 
tional polarization tensor IIap~” of a collisionless ultra- 
relativistic (i.e., effectively massless) plasma for temper- 
atures T < rnplan&, where perturbation theory becomes 
applicable. Because the underlying effective action turns 
out to be conformally invariant, @Pu can be calcu- 
lated with flat-space momentum techniques and the car- 
responding tensor on a curved background space-time 
with vanishing Weyl tensor is obtained by a simple con- 

formal transformation. In Ref. [2] tbis has been used 
to establish self-consistent equations for linear perturba- 
tions of Robertson-Walker cosmological models and exact 
analytic solutions have been constructed. 

In the ultrarelativistic, collisionless case, the leading 
temperature contributions turn out to have a universal 
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form; only the overall normalization changes in accor- 

dance with the magnitude of energy density. Some sub- 
leading contributions, where it starts to make a differ- 
ence which particles constitute the plasma, have been 
obtained in Ref. [3]. 

In the following, we are interested in the correc- 
tions to the leading temperature terms when weak self- 
interactions are switched on. We take the simplest four- 
dimensional model, scalar fields with ,&@ interactions, 
which allows us to carry the calculations through re- 
summed two-loop order. The emphasis of this paper is on 
the technical aspects of finite-temperature perturbation 
theory such as the need for resummation in order to ex- 
tract the contributions proportional to X3j2. It will turn 
out that in the presence of gravitational interactions it is 
no longer sufficient to resum a local thermal mm term 
only. As in the Bra&en-Pisarski resummation scheme for 
finite-temperature gauge theories, it becomes necessary 
to include nonlocal vertex corrections which are gener- 
ated by “hard thermal loops” [4]. 

The implications of our results for self-consistent cos- 
mological perturbations will be dealt with at length in a 
separate, forthcoming paper [5]; some first results have 
already appeared in Ref. [6]. 

II. THE THERMAL GRAVITON POLARIZATION 
TENSOR 

As thermal matter we take massless scalar particles 
with quartic self-interactions and interactions with the 
gravitational field according to the Lagrangian1 

‘Our conventions are those of Ref. [i’]. In particular, the 
metric signature is taken such that 900 > 0. 
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L(z) = &&j{ ~g““&&Qb - ;tR$= - A@}. (2.1) 

If l? denotes all contributions to the effective action be- 
sides the classical Einstein-Hilbert action, the energy- 
momentum tensor is given by the one-point one-particle- 
irreducible (1PI) vertex function 

and the gravitational polarization tensor by the two-point 
function 

(2.3) 

From the last equality it is clear that IIa@u” describes the 

response of the (thermal) matter energy-momentum ten- 
sor to perturbations in the metric. Equating IIn@Nv to the 
perturbation of the Einstein tensor gives self-consistent 
equations for metric perturbations and, in particular, 
cosmological perturbations. 

With massless scalars and t: = +1/6, the matter part is 
conformally invariant, that is r[g] = l?[fl’g]-apart from 
the conformal anomaly which like other renormalization 
issues can be neglected in the high-temperature domain 
on which we shall concentrate. 

This conformal invariance is crucial for our prospected 
applications for two reasons. First, it allows us to have 
matter in thermal equilibrium despite a space-time de- 
pendent metric. As long as the latter is conformally 
flat, ds2 = c+,x)[d? - dxz], the local temperature on 
the’curved background is d&ermined by the scale factor 
0. Second, the thermal correlation functions are simply 
given by the conformal transforms of their counterparts 

on a flat background, so that ordinary momentum-space 
techniques can be employed for their evaluation. 

The energy-momentum tensor through two-loop order 
is given by the diagrams of Fig. 1 which are easily evil- 
uated in flat space-time, e.g., within the imaginary-time 
formalism by choosing periodic boundary conditions for 
the scalar field in imaginary time with a period equal to 
the inverse temperature [S]: 

With 17 + g = 0~ one has T,,” + u-~T,,~, 6: + v1/26E = 
up as the normalized velocity field of the plasma, so that 

FIG. 1. One and two-loop diagrams contributing to the 
energy-momentum tensor of X+4 theory. Wavy lines denote 
external gravitons and straight, lines scalar particles. 
the temperature in curved space-time is obtained by T --f 
O-‘/=T. 

The gravitational polarization tensor is an inherently 
nonlocal object, already in flat space-time, as is apparent 
fxom its diagrammatic expansion, shown in Fig. 2. On 
curved, but conformally flat, space it is then determined 

by 

Denoting by l?,,,+(Q) the Fourier transform of 

II,,va0(z-y)Js=7, thenumerous components ofthepolar- 
ization tensor are restricted by diffeomorphism invariance 
through the Ward identity 

4Q“fiwp(Q) = Q&o - Q” (Tcm~~~ + T’,ll,,v) (2.6) 

and by conformal invariance through the Weyl identity 

~~““fi,m,dQ) = &,P (2.7) 

Using qwy, u,, = 6:, and Qp = (Q”,q), one can 

build 14 tensors to form a basis for l?Cv”(Q) = 

P Cii, 4&K“““‘?&), see Table I. The above identi- 
ties, however, reduce the number of independent str,uc- 
ture functions to three. Choosing (p = Too) 

A(Q) = fbaoo(Q)/f> B(Q) = &,.‘~(Q)/P , 

(2.8) 

C(Q) q fii,uYQ)l~ > 

the c1...14 are determined by the linear combinations 
given in Table II. 

III. ORDINARY PERTURBATIVE 
CALCULATION 

A perturbative expansion in Feynman diagrams makes 
sense for temperatures T < G-‘I2 .a rnPlanck. In 
this regime higher-order diagrams generated by addi- 
tional graviton lines are correspondingly suppressed. 
Apart i?om this restriction, we shall concentrate on a 
high-temperature expansion in the sense of T > Qo, 

Iql(= q), since the typical length scale in the theory of 
cosmological perturbations is given by the horizon scale 
- (GT4)+ > T-‘. 

FIG. 2. The one- and two-loop diagrams of the gravita- 
tional polarization tensor. 



The one-loop diagrams for the energy-momentum ten- 
sor and the gxwitational polarization tensor describe col- 
lisionless matter. Their leading high-temperature con- 
tributions have been obtained first in Ref. (11 and the 
complete underlying effective action has been found sub- 
sequently in Ref. [9]. Here one may also include a thermal 
graviton background, since the leading-temperature con- 
tributions are proportional to the number of spin degrees 
of freedom, so gravitons are as important as any other 
thermalized matter. The one-loop result for the high- 
temperature gravitational polarization tensor is in fact 
determined by only one independent structure function, 
since it is constructed fmm a totally symmetric tensor 

I P”q3 = 
# 

K,K,KeKp 
K K2(K-Q)2’ 

according to 
Therefore the functions B and C are directly related to 
the momentum-independent energy density, to wit, 

B(l) = -1, c(1) = 0, 

and all the nonlocalities reside in 

1 
Ac”(Q) = warctanh; - ; 

with w G Qo/q. 

(3.2) 

This function has a logarithmic branch cut between 
w = fl. The discontinuity along this cut is similar to 
the one found in the polarization tensor of gauge theories 
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where it is well known to correspond to the phenomenon 
of Landau damping. Indeed, in the application of the 
above results to the theory of cosmological perturbations 
[Z,lO] it haS been fowid that the discontinuity of A is 
responsible for the collisionless damping of subhorizon 
perturbations. 
At two-loop order one begins to see the effects of self- 
interactions of the thermal matter. If X > &T N 
T/mplanek, which we shall assume, only the matter self- 

ititeractions are important. A straightforward (albeit 
somewhat tedious) evaluation of the diagrams of Fig. 2 
yields 
A@‘(Q) = 2 b (uarctanh$ -warctanh; - &] , (3.3) 

(3.4) B”‘(Q) = 2 -(co’ - 1) (u.&anh$ + (2w2 - l)warctanh; - wz] , 

- 1)’ (warctaah;)z 2(w2 1)(3w2 2)warctanh; + 3w* - - - - 40~’ 1 (3.5) 
, 

I 
In addition to a logarithmic branch cut between w = 
+cl, whose discontinuity is now more complicated, there 
are also simple poles in A at w = 51. 

IV. RESUMMATION 

If one now attempts to go further, one encounters a 

problem with ordinary perturbation theory starting at 
three-loop order. Some of the diagrams, e.g., those shown 
in Fig. 3, are in&red divergent. 

The scalar self-energy subdiagrams in Fig. 3(a) are 
proportional to XT2 and their repeated insertion gener- 
ates a chain of massless propagators all with the same 
momentum. This type of divergence and its treatment 
are well known [II]. The interactions of the (massless) 
scalar particles with the plasma generate a thermal mass 
which needs to be resummed. However, in addition to 

repeated insertion of th&na1 masses there are also 1PI 
vertex subdiagrams which can cause infrared divergences. 
In Fig. 3(b) the vertex correction has a similar effect as 
the second mass insertion in Fig. 3(a)-both make the 
respective diagram infrared divergent. 

It is therefore necessary to include the (generally non- 
local) vertex corrections when curing perturbation the- 
ory by a resummation of ,thermal masses. This can 

(a) 09 
FIG. 3. Two examples of infrared divergent graphs beyond 

two-loop order. 
also be understood by noting that a simple local mass 
term would break conformal invariance. But apart horn 
the zero-temperature conformal anomaly the full energy- 
momentum tensor has still to be traceless for confor- 
mally coupled scalars, which shows that thermally in- 
duced masses are not equivalent to ordinary rest masses, 
not even for scalar fields where the thermal mass is inde- 
pendent of momentum. 

A systematic way to improve perturbation theory when 
vertex corrections are. of equal importance has been 
worked out first for high-temperature quantum chromo- 
dynamics by Bra&en and Pisarski [4]. It has been found 
there that it is necessary to resum all the subdiagrams 
which are generated by loop momenta N T (termed “hard 
thermal loops”). In X@ theory without gravitational in- 
teractions, the only hard thermal loop is given by the 
scalar self-energy diagram, Fig. 4(a), which yields a con- 
stant mass term rn’ = XT’. Clearly, when probing mo- 
mentum scales 5 AT, this has to be resummed. In the 
presence of external gravitational fields, vertex diagrams 
like the ones in Fig. 4(b) are of comparable magnitude; 
however, they turn out to be nonlocal. 

In Ref. [12] it has been shown how to construct the 
entire generating functional AS[+,g] for hard thermal 
loops in the presence of gravity. In the case of X@ theory 

(a) (b) 

FIG. 4. (a) The scalar self-energy which gives rise to the 
thermal mass. (b) The general form of the nonlocal vertex di- 
agrams which have to be resummed when going beyond O(X). 
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tbis becomes particularly simple [13]. The ,hard thermal 
loop effective action can be written as an integral over a 
forward scattering amplitude J[K; $, g] according to 

AsIhsl = & / d4Ks(KZ)s(Ko)n(Ko)JIK;~,91, 

(4.1) 

where n(&) = [exp(&/T) - 11-l denotes the Bose- 
Einstein factor. It then turns out that all the depen- 
dence of .7 on the metric can be eliminated by choosing 
the diffeomorphism gauge condition 

whereupon 

K’i$., = K’q,,, (4.2) 

J[K;b,G] = -6X/d”~4~(1). (4.3) 

Assuming an asymptotically conformally flat space, one 
can reconstruct the generally covariant function .I in 
terms of the set of null geodesics y”(r, 0), y’(z, 0) = I“, 
whose tangent vector Ij“(x,S) + K’ for affine parameter 
9 + -rn. The solution is 

The integral over the geodesic divergence is clearly a 
highly nonlocal quantity and is what reconciles the ap 

pearance of a thermal mass for the scalars with invariance 
under Weyl rescalings of the metric. 

The leading high-temperature contributions to the 
graviton self-energy and higher vertex functions with 
only external graviton lines can also be summarized in 
a similar (but more complicated) generating functional 
[12]. However, we shall not need it in our resummation 
program since we assumed A > (T/rn~~~,,~k)~, by which 
we can neglect higher-order diagrams with internal gravi- 
ton lines. 

A resummation of all the hard thermal loops sum- 
marized by AS($, g] is formally achieved by writing 
J” d%L = 5’ = S,,, - Sc,,nt,,, with Sr,. = S + AS and 
S counter = AS. The Feynman rules now include the ther- 
mal mass of the scalars and the additional hard-thermal- 
loop vertices +ich have two scalar lines and an arbi- 
trary number of graviton lines. Overcounting is avoided 
by subtracting them as counterterms, as which they.are 
treated as one-loop objects. [Equivalently, one could con- 
sider AS as coming from integrating out all the modes 
with hard momenta 2 T after which S+ AS is the effec- 
tive action to be taken when integrating out the remain- 
ing soft modes.] 

Performing a resummed two-loop calculation, we can 
collect all terms up ,to but excluding order X2, which is 
the formal order of bare three-loop diagrams. Since the 
resummation introduces 4 through rn = AT, we can 
go up k’o order X3j2, where the plasmon effect enters for 
the tist time. [Because the bare two-loop diagrams are 
infrared convergent, there are no contributions of order 
X1j2.] At two-loop order one has to include the thermal 
counterterms. Here it turns out that the diagmmmatics 
are considerably simplified if the hard-thermal-loop mass 
fi’2’ in AS is replaced by its resummed value, which is 
given by the gap equation 

772 = -12x XT2 _ !!X3/2T2 + 
?r 

(4.5) 

Then thermal counterterms can cancel entire subdia- 
grams, while the sum of the resummed two-loop diagrams 
is unchanged up to order X2. 

A. The energy-momentum tensor up to order X8/= 

When switching to the resummed Feynman rules, the 
one- and two-loop diagrams for the energy momentum 
tensor of Fig. 1 are replaced by the ones shown in 
Figs. 5(a)-5(c), where a dot indicates a dressed propa- 
gator or a dressed vertex, respectively. In addition there 
are two one-loop diagrams involving thermal countert- 
erms (denoted by crosses), 5(d) and 5(e). The mass cotin- 

terterm in diagram 5(e) cancels diagram 5(b) completely 
[using Eq. (4.5)], bringing down the total number of di- 
agrams to two. The vertex counterterm in diagram 5(d) 
reduces the full vertex in diagram 5(a) to a bare vertex, 
so that the resummation of the vertices turns out to be 
superfluous in this case, for there is no hard-thermal-loop 
vertex which could modify the vertex in diagram 5(c). 

The net result thus reproduces the one obtained by 
simple ring resummation [S] and reads 

1 
7r= x x3/= = ---+ 
90 48 

12n +0(X2) 1 T” 

x (4$x? - %Av) I (4.6) 

which is traceless as it should be. 

(a) (b) 

(d) 

‘= < ) +u4* 
- 

FIG. 5. The resummed energy-momentum tensor. The 
dots denote the dressed propagators and the dressed vertices, 
whereas the CIIOSS~S indicate the thermal mass and vertex 
counterterm.% 
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FIG. 6. The resummed gravitational polarization tensor. 
B. The gravitational polarization tensor 
up to order As/= 

In contrast to the energy-momentum tensor, the re- 
summation of the nonlocal hard-thermal-loop vertices 
turns out to be crucial to obtain the complete result for 
the gravitational polarization tensor up to and including 
order X3/‘. A naive ring resummation of a local mass 
term for the scalars would lead to a violation of the Weyl 
identity (2.7). 

The diagrammatics for the two-point function at re- 
summed two-loop order is given in Fig. 6. As before, the 
two-loop diagrams which correspond to mass insertions 
can be canceled bye thermal counterterms when using 
Eq. (4.5). However, this time the hard-thermal vertices 
do not cancel out completely, except tbe one in diagram 
6(b). In diagram 6(a), there is only a partial cancell~ 
tion with the vertex counterterms, and in the two-loop 
diagrams 6(e)-6(g) the dressed vertices are untouched at 
this order. 

In the application to the theory of cosmological pertur- 
bations, we shall need in particular the low-momentum 
limit Qo, Q - fiT2 < fiT = rn. In this limit the re- 
sults become independent of the coupling constant .$ and 
read explicitly 
x AKAP(K. %,a - -V’s - P&L 

where AK = 1/(K2 - mZ) and P E K - Q. 

(4.7) 

With tbis expression one can explicitly verify that the Ward and Weyl identities are fulfilled. As a consequence 
the tensorial structure is as given in Table II, with three independent structure functions. Evaluating the integrals 
involved, as described in the Appendix, leads to our final result 
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+w(w2 - 1) 3/=--w4+4w= , 
I 

(4.9) 

C=~[3(W2-l)‘(W~~Ctanh~)’ 
1 

- 2(w2 - 1)(3w2 - 2)~ arctanh; + 3w4 - 4w2 1 15x3/2 
+ ~ 

169 

x [3(wa - 1)’ (w” - 1 - wJ;;;--I) (warctanh$ - 2(w2 - 1){3(w2 - 1)2 - 3w(w2 - 1)3’2 

+3wfi 2 3~’ + 1 > warctanh; - 3w(w2 - 1)5/2 f 6w(w2 - 1)3/2 

+wm + 319 - 15w4 + 16w= 1 . (4.10) 

A new feature of the contributions proportional to X ‘1’ is that in addition to poles at w = fl and a logarithmic 

branch cut in between there are now terms involving root singularities and a corresponding branch cut. The singu- 
larities themselves are in fact spurious, since the perturbative expansion breaks down for (w( - 1 5 X. As found in a 
somewhat different context in Ref. [14], the singularities at w = &l are removed by the thermal masses of the scalar 
particles, although the branch cut for IwI < 1 persists. 

Consider the f&t diagram on the right-hand side of Fig. 6 and its contribution to the discontinuity of A = fioooo/p: 

Disc A1 = -O(l - w”)” 
J 

m 
8TP rn/VT3 

&n’(P) (P” - “2/q2, (4.11) 

where we have taken the limit Qo, p < rn = 62’ but refrained &xn any further expansion. 

The expansion in X as performed above gives 

Disc A1 = O(1 - W”)W ,+~-~),+~(~~+~-(l-~a)s,a)+0(~2)}, (4.12) 
which reproduces the discontinuity of A at leading order 
as well as that of the most singular term that occurred 
at order X312. 

In the limit 1 - wz < X, on the other hand, one can 
read off from Eq. (4.11) that 

2 15w x2 
DiscA+W-w )s(~-~~)~~xP 

so the discontinuous and even singular onset of the imag- 
inary part of A that appeared in Eq. (4.12) ‘is illusory. 
It actually sets in smoothly, but nonanalytically, with 
all derivatives vanishing. Some consequences of this in 

the context of cosmological perturbations have been dis- 
cussed in Ref. (61. 

A more complete application of all the above results to 
the determination of the dynamics of cosmological per- 

turbations in the presence of a weakly interacting ultra- 
relativistic plasma will be the subject of a forthcoming 
publication [5]. 
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APPENDIX: EVALUATION 

OF THE THERMAL INTEGRALS 

The evaluation of the massive thermal integrals in 
Eqs. (4.8)-(4.10) was performed by a MATHEMATICA pro- 
gram. The principal steps are the following. 

Fist, a partial fraction decomposition in k” is per- 
formed, which gives a sum of terms in which k” ap 
pears only linearly in the denominators. After a shift 
k” + k” + q” where necessary, the thermal hums are 
carried out with the help of the formula (dropping zero- 
temperature contributions) 

T, c kc?:. = - &z(E). kG&Ti” T (Al)
The sum does not converge as it stands but it occurs 
only in combinations where the divergent part cancels 

and the above formula applies. The energy can take on 

the values EI. = JiczF;;E;” or J(k - q)2 + rn2 according 
to the loop momentum. In the latter case it is convenient 
to perform a shift of the integration variable k + k + q 
such that Eb becomes the argument in the distribution 
function in all summands. 

The spatial loop integration is split into an integration 
over k and the angle kq/(kq) which is performed first. 
This leads to the following three types of integrals: 
- dk k’ J- n(E!J, I=0 ,..., 4, 
0 Ek 

- dk k’ s- (2k - q)2 + 51’ 

Ek 
+&) ln(2k+q)2+022’ l=L3,5, (A3) 

0 

s 
rn 

dk k’ n(&) arctanh 
8kwEk 

4k2(1 + w”) + 4mZwZ - q2(w2 - 1)2’ 
1=1,3, 

0 
where for the moment we specified to the kinematical 
region f12 = w2[4ma - qz(w2 - l)]/(w2 - 1) ,I 0. The 
corresponding formulas in other regions can be obtained 
by analytic continuation of the final expressions. 

The high-temperature expansion of integrals of the 
form (A2) is well known [8,15] and will not be repeated 

here. The strategy for the remaining integrals is to sub- 
tract the large momentum behavior of the in&grand until 
the subtracted integrand decreases sufficiently for large 
k such that the Bose-Einstein distribution function can 
be replaced by TfEk. For the integrals (A3), a suitable 
subtraction is given by the Taylor-series polynomial in 
l/k of order 1 of the logarithm. 

On the other hand, for integrals of type (A4) the sub 
tractions have been chosen in a different way anticipat- 

ing the subsequent integration. For I = 1 it su&es 
to subtract the k-independent large momentum limit 2 
arctanhw-’ whereas in the case 2 = 3 an additional 
second order subtraction proportional to l/E: was per- 
formed. The subtractions themselves give rise to inte- 
grals of type (A2) without the energy in the denominator 
and may be evaluated along similar lines as the integrals 
(A2). The subtracted integral with the replaced Bose- 
Einstein distribution can be evaluated elementarily by 
introducing Ek as integration variable. 

It still remains to evaluate the order T contribution 
of the type (A3) integrals. For this purpose we take ad- 
vantage of the fact that the integrand is even and we 
integrate from -co to 00. Closing the integration con- 
tour in the upper half plane h(k) 2 0 only picks up a 

cut contribution from the logarithm and a pole contribu- 
tion at k = im since on the arc the subtracted integrand 
vanishes in the limit Ikl --f cu. 

The final expressions are obtained by replacing the 
thermal mass by its value given in (4.5) and expanding 
in powers of X1/‘. 
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