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A B S T R A C T   

The binder jetting printing technique enables in situ impregnation of alumina using a Ni(NO3)2-containing ink 
(NI), facilitating omission of impregnation. NI was compared to wet impregnation (WI). Full characterization by 
quasi-in situ XPS, XAS and TPR revealed the presence of Ni as NiAl2O4 spinel. TPR analysis identified surface NiO 
and NiAl2O4 species with facilitated reduction by NI, in addition to the respective species in bulk form. Post- 
processing affects active site accessibility by coverage. 3D printing limited the Ni loading, but XPS revealed 
higher metal dispersion by NI. CO2 hydrogenation confirmed active Ni/Al2O3 catalysts with enhanced activity by 
NI.   

1. Introduction 

Supported catalysts are the most common form of heterogeneous 
catalysts prepared by depositing small crystallites of an catalytically 
active component on a porous support [1]. The method of catalyst 
immobilization influences the catalyst performance since the resulting 
metal-support interaction controls crucial properties such as active 
phase dispersion and long-term stability. Apart from co-precipitation 
and the sol–gel method [2], wet or incipient wetness impregnation are 
the most relevant and frequently used preparation methods. In this 
process, the support is immersed in the impregnation solution, dried and 
subsequently reduced by calcination and/or reduction [1]. Numerous 
studies have extensively explored and compared the influence of 
mentioned catalyst immobilization methods on metal speciation, parti
cle size, dispersion, reducibility and associated catalyst activity and 
deactivation behavior [3–8] and they have proven correlations between 
the preparation technique and catalyst performance. 

The usage of powdered catalysts is a standard approach for most 
academic questions. However, catalyst shaping is essential for the 
application of heterogeneous catalysts on a technical scale, especially in 
fixed bed reactors. Good abrasion resistance, mechanical durability, 
ease of separation from the reactants, and decreased pressure drop in
side the reactor necessitate forming techniques such as agglomeration, 
spray granulation, tableting or extrusion to enlarge the size of the 

catalyst [9]. The latter two methods are well-established and represent 
the most commonly used catalyst shaping techniques on an industrial 
scale [10]. Related thereto, the active phase distribution in a formed 
catalyst (e.g. uniform, egg-shell, egg-white, egg-yolk) influences the 
performance of a catalytic reactor by varying accessibility of the active 
sites [11–13]. 

Based on the growing number of publications, additive 
manufacturing (AM) or 3D printing has been increasingly exploited for 
catalyst shaping to meet the growing interest in intensification of in
dustrial and environmental heterogeneous catalysis [14–19]. 

In general, catalysts can be 3D printed indirectly by manufacturing a 
template with a polymeric 3D printer. This mold is filled with a paste of 
ceramics or catalytic material and thermally treated to burn off the 
polymer to expose the monolithic catalyst structure [20–22]. Direct 
printing involves 3D printing without removable templates, namely 
printing of catalyst support for further impregnation or incorporation of 
the active phase into the printing feedstock. 

Several printing techniques from the plethora of AM technologies 
available nowadays have been applied for printing of predominantly 
monolithic catalyst geometries. Direct Ink writing (DIW/robocasting) or 
fused deposition modeling (FDM) are extrusion-based principles and 
most commonly used due to their relatively intuitive material design, 
especially regarding processing of metal oxide feedstock [23–28]. 
Powder-based techniques oftentimes require more detailed material and 
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process development. Selective laser melting (SLM) has been used to 
generate monolithic metal frameworks which are subsequently wash
coated with catalytically active material [29–31]. The printing tech
nique used in this paper is binder jetting (BJ), a powder-based AM 
technique. BJ allows for fabrication of highly porous ceramic bodies for 
catalysis [32,33] while enabling relatively complex structures without 
support structures. 

Previous studies on catalyst manufacturing strategies utilizing binder 
jetting exist. One of them includes printing of the metal oxide support 
which has to be followed by impregnation with the active phase [33]. 
The second strategy integrates powdery co-precipitated catalyst pre
cursor into the printing powder [34]. This paper explores the prepara
tion of binder jet 3D printed Ni/Al2O3 catalysts by deposition of nickel 
containing ink onto Al2O3 powder, therefore resembling impregnated 
Ni/Al2O3 catalysts regarding their physicochemical properties. The 
nickel precursor is dissolved in the printing liquid which is deposited 
selectively and layer-by-layer onto the alumina print bed by the inkjet 
print head. This method constitutes an in situ impregnation of the sup
port during 3D printing, thus omitting the successive impregnation step. 
Due to the ejection of fine liquid droplets, this method could influence 
the morphology of the active phase applied onto the support surface. 
Combined with the extensive freedom for catalyst forming provided by 
AM, the new manufacturing strategy could add improvements to con
ventional catalyst preparation procedures by offering tailor-made cata
lyst shapes coupled with effective active phase distribution. 

2. Experimental 

2.1. Catalyst preparation by binder jetting with Ni containing ink 

The general manufacturing strategy is based on a previously pre
sented method for alumina supports printed by binder jetting [33]. 
Fig. 1 depicts the setup of the printer used for catalyst printing. The 
powder reservoir and the print platform were filled with the printing 
powder consisting of 73 wt.% bayerite Pural BT (Sasol Chemicals, USA), 
7 wt.% Actilox S40 (Nabaltec AG, Germany), and 20 wt.% of the solid 
binder polyvinyl pyrrolidone (PVP) Sokalan K17P (BASF SE, Germany). 
The aqueous printing liquid consisted of distilled water, 10 wt.% iso
propyl alcohol, 10 wt.% 1,4-butanediol and varying amounts of nickel 
nitrate Ni(NO3)2⋅6H2O (all purchased from Merck KGaA, Germany), 
depending on the desired Ni loading. The powder was selectively bound 
layer-by-layer with the Ni containing printing liquid which is conveyed 
from an ink reservoir by a drop-on-demand (DOD) shear-mode piezo 
inkjet printhead (508GS, Seiko Instruments GmbH, Japan) via hydro
static pressure. After printing, the light green Ni nitrate impregnated 
alumina supports (diameter d = height h = 6 mm) were transferred to a 
drying oven to cure the PVP binder for at least 2 h (Fig. 2a) at 75 ◦C. 
Subsequently, the green parts were debindered in a muffle furnace for 3 
h at 600 ◦C in order to fully remove the binder, resulting in highly 
porous debindered samples. Subsequently, an aqueous boehmite slurry 
was slowly dripped onto the debindered parts until pore saturation for 
additional particle introduction by infiltration. Another calcination step 
(600 ◦C, 3 h) followed, resulting in a mechanically stable3D printed 

nickel catalyst (Fig. 2b). 

2.2. Catalyst preparation by wet impregnation 

Wet impregnated Ni catalysts were prepared using binder jet printed 
cylindrical alumina supports which were subsequently impregnated in 
an excess of nickel nitrate solution of adequate concentration. The Al2O3 
carriers were printed using the same powder mix as described in Section 
2.1 but using ink without any nickel nitrate. The detailed manufacturing 
procedure for porous alumina supports is described in a previous study 
[33]. Printed supports were immersed in an aqueous solution of Ni 
(NO3)2⋅6H2O with varying Ni concentration for 2 h under constant 
stirring. The liquid was then fully removed using a rotary evaporator. 
After drying, the precursors were calcined in a muffle furnace (450 ◦C/ 
600 ◦C, 6 h). 

2.3. Sample nomenclature 

Table 1 summarizes all samples characterized in this study. The 
novel nickel ink deposition 3D printing method (NI) was compared to 
the well-established wet impregnation (WI) method. The letters “d” and 
“i” denote debindered or infiltrated samples, respectively. The pre
cursors were either calcined at 450 ◦C (c450) or 600 ◦C (c600) and 
reduced with H2 at 480 ◦C (r480) or 600 ◦C (r600). 

2.4. Catalyst characterization 

2.4.1. Elemental analysis 
Ni loading was determined by graphite furnace atomic absorption 

spectroscopy (GFAAS), using an ICE 3500 AAS by Thermo Fisher Sci
entific. Ground samples were dissolved in boiling, fuming sulfuric acid 
and diluted with distilled water. Subsequently, 5–20 μL of the diluted 
sample was inserted into the GFAAS and analyzed. 

2.4.2. Compressive test 
Mechanical stability of the 3D printed catalysts were tested with a 

hardness tester with integrated size measurement (MultiTest 50, Dr. 
Schleuniger Pharmatron) by uniaxial compression test. Sample size for 
each measurement was 10. The tested geometries were cylinders 
measuring 6 mm in diameter and height. Testing direction was 
perpendicular to the cylinder axis, the bracket moving speed was set to 
2 mm/s. The compressive strength σcomp was calculated based on the 
fracture load F using the equation given by Timoshenko and Goodier 
[35]. 

σcomp =
2F
πdh

(1)  

where d denotes the cylinder diameter and h its height. 

2.4.3. Archimedes buoyancy method 
Densities and void fractions of the printed and post-processed sam

ples were acquired using the Archimedes buoyancy method according to 
DIN EN 623–2 [36,37]. Distilled water was chosen as the fluid. The 
sample was degassed at 25 mbar in a rotary evaporator at ambient 
temperature before distilled water was added, following repressuriza
tion to atmospheric pressure. For density calculations, the sample was 
weighed in its dry, water-impregnated and submerged state. 

2.4.4. X-ray photoelectron spectroscopy and CO2 hydrogenation activity 
X-ray photoelectron spectra (XPS) were recorded on a Leybold- 

Heraeus LHS 10 spectrometer using a non-monochromatized Al Kα 
source (1486.7 eV). 3D printed cylindrical catalysts were ground prior to 
measurement. The obtained powders were pressed into cavities and 
measured as pellets (∼50 mg). All spectra were recorded in an ultra-high 
vacuum chamber at a pressure below 5⋅10− 8 mbar. The analyzer was Fig. 1. Schematic of the binder jetting printer used in this study.  
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operated at a constant pass energy of 100 eV leading to an energy res
olution with a full width at half-maximum (FWHM) of ca. 1.1 eV. The 
energy scale of the spectra was corrected for sample charging by using 
the Al 2s signal at 120.0 eV. 

Reduction of the catalyst samples (50 mbar H2, 400 ◦C, 5 sccm, >2 h) 
and in situ CO2 hydrogenation (2 mbar CO2, 8 mbar H2, 1 mbar Ar, 
300 ◦C) were carried out in a preparation chamber directly attached to 
the XPS analysis chamber enabling sample transfers without exposing 
the catalyst to air. The composition of the gas phase was analyzed by a 
differentially pumped Pfeiffer Vacuum PrismaPro QMG 250 M3 quad
rupol mass spectrometer which was operated at pressures below 10− 6 

mbar. The intensity of all traces were scaled to the intensity of Ar 
(m/z = 40) to account for volume contraction upon CO2 hydrogenation. 
m/z = 15 was used as characteristic fragment for the partial pressure of 
CH4. The intensity of m/z = 28 indicating the partial pressure of CO was 
corrected for the fraction resulting from CO2 fragmentation by sub
tracting the intensity of m/z = 44 multiplied by the fragmentation ratio. 
The fragmentation ratio was determined by the intensity ratio of m/z =

28 to m/z = 44 in the initial feed gas as the entire m/z = 28 intensity is 
caused by CO2 fragmentation only. Details of the experimental setup and 
the activity measurements are given in the Supplementary Material. 

2.4.5. Ni K-edge X-ray absorption spectroscopy 
Ni K-edge X-ray absorption spectroscopy (XAS) measurements were 

carried out on beamline P65 at PETRA III of DESY in Hamburg, Ger
many. Reduced samples were reduced ex situ at 480 ◦C or 600 ◦C. 
Furthermore, samples were kept under inert conditions after reduction 
and transferred to a glovebox, where the samples were ground and filled 

into a quartz capillary with a diameter of 2 mm. A double-crystal Si(111) 
monochromator was used to adjust the incident photon energy, and the 
spectra were recorded with ionization chambers in transmission and in 
total fluorescence yield using a passivated implanted planar silicon 
(PIPS) detector. ATHENA software was used for the background pro
cessing. XAS normalization followed standard protocol used within the 
Athena software [38]. 

2.4.6. Temperature programmed reduction 
Temperature programmed reduction (TPR) was measured on a 

Micromeritics Autochem II analyzer equipped with a thermal conduc
tivity detector (TCD). Pre-treatment by degassing at 300 ◦C for 2 h under 
inert gas flow had no influence on the TPR signals so that no outgassing 
was necessary. About 300 mg of sample was heated at a rate of 5 K/min 
until 1100 ◦C. 5 % H2/Ar was used as reducing gas with a flow of 30 mL/ 
min [39]. Evolving H2O was frozen out in a cold trap using an isopropyl 
alcohol/liquid N2 frigorific mixture. 

3. Results 

3.1. Proof of concept by preliminary printing tests 

The feasibility of the Ni ink deposition method was verified by pre
liminary tests. Ni containing inks with varying molar concentrations of 
nickel nitrate were used as printing liquid and deposited on the alumina 
print bed (see Table 2). The final Ni loading can be adjusted by the 
concentration of nickel nitrate in the ink or the amount of deposited 
nickel ink during the printing process. Naturally, a higher concentration 
of Ni(NO3)2 in the printing liquid increases the final Ni loading wNi of the 
catalyst. However, the permitted ink pH range declared by the hardware 
manufacturer needs to be considered. The ink pH decreases with 
increasing nickel nitrate concentration so that the print head compati
bility poses an upwards limitation regarding nickel salt concentration in 
the ink. Moreover, the liquid drop size generated by the print head as 
well as the required amount of ink for adequate powder bed saturation 
determines the final metal loading of the 3D printed catalyst. 

Fig. 3 presents the results of compression tests for samples conducted 
after the debinding step and in their final state after second calcination. 
The compressive strength of debindered samples is low in general with 
values below 0.08 MPa since the evaporation of PVP leads to high 
porosity and voidage, decreasing the number and strength of contacting 

Fig. 2. Test cylinders at different processing stages printed by Ni ink deposition.  

Table 1 
Sample nomenclature of catalysts prepared by Ni ink deopsition (NI) and wet 
impregnation (WI) with respective nickel loading wNi, calcination Tcalc and 
reduction Temperature Tred.  

Sample wNi (wt. 
%)a 

Tcalc 

(◦C) 
Tred 

(◦C) 
Preparation method 

Calcined samples 

NI_d_c600 3.4 600 – Ni ink deposition, 
debindered 

NI_i_c600 2.5 600 – Ni ink deposition, 
infiltrated 

Reduced samples 

NI_d_c600_r480 3.4 600 480 Ni ink deposition, 
debindered 

NI_d_c600_r600 3.4 600 600 Ni ink deposition, 
debindered 

NI_i_c600_r480 2.5 600 480 Ni ink deposition, 
infiltrated 

WI_c600_r480 1.6 600 480 Wet impregnation 
WI_c450_r480 1.8 450 480 Wet impgrenation  

a Determined by AAS. 

Table 2 
Molar nickel nitrate concentration cNi(NO3)2 of used ink, its pH, resulting Ni 
loading of the catalyst wNi and sample densities ρ after final post-processing.  

cNi(NO3)2 (mol/L) pH of ink wNi (wt.%) ρapp,s (g/cm3) ∊open 

3.0 1.5 3.4 3.2 0.74 
2.0 2.5 1.8 3.1 0.74 
1.0 3.2 1.0 3.0 0.74 
0.5 3.9 0.5 3.1 0.76  
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points between the alumina particles. However, their σcomp indicates a 
trend towards increased mechanical stability with increasing pH of the 
ink. Therefore, we can infer that decreased ink pH impairs the binding 
ability of PVP to consolidate the green part, the unprocessed geometry 
formed immediately after 3D printing. After drip infiltration with 
boehmite slurry and subsequent calcination, compression strength in
creases significantly for all samples. Considering the relatively large 
standard deviation of σcomp for calcined parts, the final mechanical sta
bility is similar for all investigated samples, ranging between 0.24±0.07 
MPa and 0.40±0.18 MPa. Therefore, the infiltration step is crucial for 
the binder jetting procedure and decisive for mechanical robustness and 
practical applicability of the catalyst inside a chemical reactor. 

The catalytically relevant open porosity ∊open and the apparent solid 
density ρapp,s in dependence of the nickel nitrate concentration and the 
ink pH are tabulated in Table 2. ρapp,s is defined by the sample mass 
divided by the total volume of the solid including closed voids. ρapp,s and 
∊open remain nearly constant throughout all four studied samples 
(Table 2), meaning that the catalytically accessible surface area is 
similar regardless of the pH of the ink. Thus, the NI method allows 
fabrication of catalysts with a consistent pore structure. Moreover, the 
porosity and specific surface area values agree with results determined 
in a previous study which introduced the basic catalyst support printing 
process this paper is based on [33] so that the reproducibility of the 
printing process is given. Results for the specific surface area can be 
taken from TableS1 in the Supporting Information. 

3.2. XPS analysis 

Fig. 4 displays the Ni 2p core level spectra of the catalysts synthe
sized by Ni ink deposition before (NI_d_c600) and after post-processing 
(NI_i_c600) as well as the samples obtained by conventional impregna
tion after calcination at 450 ◦C and 600 ◦C (WI_c450 and WI_c600, 
respectively). The intensity of the spectra is scaled to the Al 2s peak 
intensity as well as the Ni loading so that the intensity reflects the 
amount of Ni present on the sample surface. The binding energy of the Ni 
2p main peak and its satellite is centered around 857.3 eV and 863.4 eV, 
respectively, regardless of the synthesis method and calcination tem
perature. Both binding energy and peak shape are characteristic for Ni2+

and expected for Ni/Al2O3 catalysts after calcination [8]. Drip infiltra
tion of the printed catalysts with a boehmite slurry physically covers the 
Ni surface species, leading to an attenuation of the Ni 2p signal as 
observed by the surface sensitivity of XPS. Thus, the intensity of the Ni 

2p core level of NI_d_c600 exceeds the one of NI_i_c600 by a factor of 
almost 2, indicating an influence of the AM post-processing on the 
calcined samples (see Fig. 5a). The Ni ink deposition method reveals an 
up to three times higher Ni 2p intensity compared to conventional Ni 
wet impregnation after calcination at the same conditions (see Fig. 5a). 
The increased signal intensity proves a higher Ni coverage on the oxidic 
support structure. As intensity correction for slightly differing metal 
loadings was executed, a higher coverage of Ni can be derived from 
smaller Ni oxide particles and, thus, a higher metal oxide dispersion on 
the catalyst surface. The increased Ni dispersion might be introduced by 
the binder jetting 3D printing process as small ink droplets are generated 
when Ni nitrate solution is jetted through the fine nozzles of the 
printhead. 

Surprisingly, Fig. 5a also shows that lowering the calcination tem
perature from 600 ◦C to 450 ◦C results in a three times higher Ni 2p 
intensity for the WI catalysts. Note that a calcination temperature of 
600 ◦C is required for entire removal of the binder materials in NI 
samples and cannot be decreased [33]. As the preparation by wet 
impregnation creates Ni(NO3)2 particles on the alumina support, calci
nation converts the nitrate to an oxide. Although sintering of NiO par
ticles upon calcination at a higher temperature cannot be ruled out 
entirely, the lower Ni coverage on the surface at elevated temperatures 
is likely explained by Ni bulk diffusion. The formation of NiAl2O4 spinel 

Fig. 3. Compressive strength σcomp of debindered (blue) and calcined (gray) test 
cylinders for varying pH values of the Ni ink (see Table 2). 

Fig. 4. XPS Ni 2p spectra of NI_d (debindered), NI_i (infiltrated), and WI 
samples, calcined at 450 ◦C (c450) and 600 ◦C (c600, solid line) and reduced at 
400 ◦C (r400, dotted line). 

Fig. 5. Ni 2p intensities of calcined and reduced samples.  
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structures instead of NiO/Al2O3 is thermodynamically favored [40]. 
This could occur by diffusion of nickel and oxygen ions through the 
aluminate [41], counterdiffusion of NiO and Al2O3 through the spinel 
layer or counterdiffusion of Ni2+ and Al3+[42]. Huang et al. reported on 
the formation of different nickel species as a function of the Ni loading in 
wet impregnated Ni/Al2O3 systems and found the exclusive formation of 
NiAl2O4 at weight loadings below 1 % while both NiO and NiAl2O4 are 
formed at higher Ni loadings [3]. This goes in line with our spectroscopic 
results; the fairly low Ni loading of 1.7 wt.% on average favors pre
dominant formation of NiAl2O4. The preceding diffusion of Ni into the 
alumina structure reduces the amount of Ni surface species leading to a 
strongly diminished Ni 2p signal. At lower calcination temperatures, Ni 
bulk diffusion is kinetically hindered so that the metal oxide remains on 
the catalyst surface as observed by a significantly higher Ni 2p intensity 
after calcination at 450 ◦C. Those findings are supported by quasi-in situ 
XPS analysis after reduction of all samples in 50 mbar of hydrogen at 
400 ◦C (see dotted lines in Fig. 4). 

While Ni 2p peak shape and intensity remain constant for the 
WI_c600 catalyst, the intensity of WI_c450 is decreased by ∼55% 
compared to the calcined state (see Fig. 5b). The low amount of Ni 
species on the WI_c600 surface is presumably incorporated in a nickel 
aluminate spinel structure and, hence, hard to reduce. In contrast, Ni2+

species on the WI_c450 surface are strongly affected by the reductive 
treatment as can be deduced from the change in signal intensity. How
ever, no metallic Ni 2p component is found in XPS. This might originate 
from the formation of metallic particles which do not contribute to the 
Ni 2p peak intensity if they cover a negligible surface fraction of the 
support. It is well known that reduction of co-precipitated nickel 
aluminum mixed oxides reveals metallic nanoparticles on a Ni-poor 
mixed oxide surface [43,44]. As the Ni0 particles contribute less to the 
overall surface area than homogeneously distributed Ni2+ in the mixed 
oxide, a lower Ni 2p intensity is observed. Considering the loss in Ni 2p 
intensity during reduction of WI_c450, the expected intensity of the 
metallic component might be below the detection limit due to the low Ni 
loading. 

Reduction of NI_d_c600 and NI_i_c600 leads to a decrease of the Ni 2p 
signal of 30% and 20%, respectively (see Fig. 5b), which corresponds to 
the portion of Ni0 particles in coexistence with Ni2+ species. Since the 
Ni2+ species exclusively cause the Ni 2p photoemission yield, the XPS 
data show that in both cases, the Ni2+ present at the catalyst surface 
cannot be reduced completely under typical activation conditions used 
for Ni/Al2O3 catalysts. This confirms the formation of nickel aluminate 
spinel structures upon calcination at 600 ◦C, which are barely reducible 
(see TPR studies discussed in Section 3.4 further below). The higher 
reducibility of the samples before AM post-processing (NI_d_c600) cor
roborates blocking of the Ni species by infiltration with boehmite slurry. 
Covering the surface Ni by alumina inhibits the accessibility by the 
reductive gas atmosphere and, thus, formation of metallic Ni particles 
significantly. Nonetheless, 20 % of the Ni is still reduced under mild 
conditions, proving the successful fabrication of Ni/Al2O3 catalysts by 
the novel Ni ink deposition method. 

3.2.1. CO2 hydrogenation activity 
After reducing the NI and WI samples, their catalytic activity for the 

hydrogenation of CO2 was studied by converting a gas mixture of CO2 
and H2 (p = 10 mbar, CO2/H2 = 1/4) at 300 ◦C in a batch-type reaction 
cell (for experimental details, see Supporting Information). The mass 
traces of the reaction products CH4 and CO are depicted in Fig. 6. The 
methanation rate is slow for all analyzed samples while CO is the main 
product. Comparison with a co-precipitated Ni-Al benchmark catalyst 
reveals that the most active 3D printed catalyst exhibits a CO2 metha
nation rate that is more than two orders of magnitude slower (see Fig.S4 
in Supporting Information). Wet impregnated WI_c600 shows negligible 
activity in general, producing almost no CH4 (Fig. 6a) and and only a 
minor amount of CO (Fig. 6b). The activity of the corresponding 
WI_c450 is significantly higher, which conforms with the XPS findings. 

The higher amount of surface Ni and enhanced reducibility improve the 
catalytic activity of the wet impregnated sample calcined at lower 
temperatures. Catalysts fabricated with Ni ink deposition yield the 
highest activities. While the debindered sample NI_d_c600 favors CH4, 
the selectivity is driven towards CO after infiltration with boehmite 
slurry and subsequent calcination. Based on the XPS surface analysis, 
this might originate from a lower Ni coverage combined with an inferior 
reducibility after AM post-processing. The CO/CH4 selectivity and re
action pathway have been proven to be highly sensitive to the Ni particle 
size or dispersion [45]. Wu et al. [46] studied the CO2 hydrogenation on 
Ni/SiO2 catalysts with a Ni loading of 0.5 wt.% and 10 wt.% and 
revealed that the selectivity towards methane is significantly enhanced 
on large Ni particles (high Ni loading), whereas CO formation was 
preferred at low Ni loadings. Co-adsorbed CO2 and H2 on Ni0 particles 
form the key intermediate m-HCOO which is subsequently decomposed 
to CO and may follow a consecutive reaction pathway to CH4. However, 
due to the low coverage of the active centers by H2 at low metal load
ings, CO formation is favored [46,47]. 

3.3. Ni K-edge XAS analysis 

Samples reduced at two different temperatures (480 ◦C and 600 ◦C) 
were analyzed regarding the chemical form and oxidation state of Ni to 

Fig. 6. Quadrupol mass spectrometry signal intensities of the CO2 hydroge
nation reaction products methane and carbon monoxide. Feed gas composition: 
CO2/H2/Ar  = 2/8/1. 
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investigate the presence of nickel aluminate by 3D printing. Further
more, the preparation methods NI and WI were compared as well as the 
influence of post-processing. 

3.3.1. Calcined state 
Ni K-edge XANES spectra of the calcined samples show a pre-edge 

peak at around 8335 eV (see exemplary spectrum Fig. 7a, all other 
spectra see Fig.S1), which is attributed to dipole forbidden 1s to 3d 
transitions, thus confirming the Ni2+ character of the sample [48,49]. 
Furthermore, the white line area strongly resembles that of the reference 
samples, indicating the dominant presence of nickel as Ni2+ [50]. The 
pre-edge feature as well as the edge energy of all calcined samples 
notably match with NiAl2O4, substantiating the surface analysis by XPS 
that not only the catalyst surface but also the bulk material mainly 
contains Ni aluminate species. 

Fig. 7a presents the Ni K-edge XANES of NI_i_c600. The spectra of the 
remaining calcined samples NI_d_c600, WI_c600 and WI_c450 can be 
accessed through the Supporting Information (Fig.S1). The strong nickel 
aluminate character of all samples indicates that calcination at 450 ◦C as 
well as 600 ◦C is sufficient to induce growth of nickel aluminate spinel 
due to incorporation of nickel particles into the alumina lattice. Despite 
the overall similarity to NiAl2O4, the effect of calcination temperature is 
visible comparing the samples WI_c450 and WI_c600 (see Fig.S1c and 
S1d, respectively). WI_c450 shows a more pronounced NiO character at 
about 8348 eV, distinguishing it from the wet impregnated sample 
calcined at 600 ◦C (WI_c600) which matches with Ni aluminate across 
the entire energy range. This observation suggests that at a calcination 
temperature of 450 ◦C NiO is preferably formed than at 600 ◦C and Tcalc 

affects the Ni speciation on the catalyst support surface. 
Fig. 8 shows the k2-weighted Fourier-transformed EXAFS at the Ni K- 

edge of calcined NI_i_c600 and its reduced form NI_i_c600_r480. Both 
samples show a prominent peak at ca. 1.5 Å, which corresponds well to 
backscattering from oxygen, directly bonded to Ni. This feature is in 
good agreement for first shell M-O metal oxide bonds, which are ex
pected to be located between 1–2 Å. Furthermore, the prominent peak at 
ca 2.5 Å is associated to Ni-Ni scattering paths of metal oxides. The 
mentioned features of calcined NI_i_c600 show approximately the same 
positions compared to the NiO reference, reconfirming a Ni2+ character 
of the calcined samples. 

3.3.2. Reduced state 
All calcined samples were reduced ex situ at 480 ◦C and kept under 

inert conditions afterwards. NI_d_c600 was additionally reduced at 
600 ◦C to examine the effect of reduction temperature. Ni foil was the 
metallic Ni standard and the corresponding calcined sample acted as the 
fully oxidized reference sample. Fig. 7b presents an exemplary Ni K-edge 
XANES spectrum of a reduced sample. Remaining plots are displayed in 

the Supporting Information (Fig.S2). The extent of reduction to metallic 
nickel is low in general since the character of the calcined sample is 
mostly maintained, as seen in Figs.S2a-e. The existence of the pre-edge 
feature at 8333 eV for all samples confirms an incomplete reduction of 
Ni2+ to metallic nickel which does not display this pre-edge peak. 

Although XANES shows small signs of reduced Ni, the k2-weighted 
Fourier-transformed EXAFS at the Ni K-edge of different NI prepared 
samples exhibits different features. After reduction, NI_i_c600_r480 
shows a decrease and broadening of the Ni-Ni scattering paths, see 
Fig. 8. The broadening is interpreted as partial reduction of Ni(II) species 
to metallic Ni. As seen in Fig. 8, Ni metal foil shows the first shell Ni-Ni at 

Fig. 7. Ni K-edge XANES spectrum of (a) NI_i_c600 (infiltrated, calcined at 600 ◦C) and references NiAl2O4 and NiO and (b) NI_i_c600_r480 (reduced at 480 ◦C) and 
corresponding references NI_i_c600 and Ni foil. 

Fig. 8. Comparison of k2-weighted Fourier-transformed EXAFS of different NI 
prepared samples at the Ni K-edge. Bottom: Debindered samples reduced at 
480 ◦C and 600 ◦C. Middle: Infiltrated samples, calcined and reduced. 
Top: References. 
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ca. 2.1 Å. In fact, NI_i_c600_r480 exhibits a broadening towards 2.1 Å, 
indicating a certain extent of reduction to metallic nickel. This phe
nomenon is even more distinct for the sample NI_d_c600 which is also 
illustrated in Fig. 8. Upon increase of reduction temperature from 
480–600 ◦C, the broadened Ni-Ni peak of the metal oxide shifts about 
0.7 Åtowards a distinct Ni-Ni feature at ca. 2.1 Å, corroborating that 
reduction takes place. 

3.4. TPR analysis 

Fig. 9a compares the normalized H2 consumption by TPR of two Ni 
catalysts prepared by Ni ink deposition, one being debindered and the 
other infiltrated (d/i). Degrees of reduction ranging from 95–100 % 
indicate that TPR conducted until 1100 ◦C fully reduces all present Ni 
species to metallic Ni0 (see RTPR in Table 3). 

Both NI samples reveal four reduction peaks with the first and the 
last two ones overlapping, thus representing two regions. NiO contrib
utes to the first two peaks and Ni aluminate species are associated with 
the last two peaks, corroborating previous findings that multiple Ni 
species can coexist, depending on the preparation conditions (calcina
tion temperature, duration of calcination, Ni loading) [51–54]. It is 
generally known that NiO can already start interacting with Al2O3 at 
about 400 ◦C and that the amount and crystallinity of NiAl2O4 grows 
with increasing Tcalc and tcalc[51]. 

The two NiO signals can be divided into a relatively sharp low 
temperature peak at 330–350 ◦C and a broad higher temperature peak at 
420–460 ◦C. The low temperature NiO peak is assumed to stem from 3D 
printing with nickel ink which finely disperses small Ni particles onto 
the alumina support. This “surface NiO” (sNiO) is weakly bound and 
therefore easily reducible at temperatures below 350 ◦C. The second 
broad peak is matched to bulk nickel oxide (bNiO). Comparison of the 
TPR signals in Fig. 9a and b confirms the prevalence of sNiO by nickel 
ink deposition via binder jetting in contrast to conventionally wet 
impregnated samples. Table 3 lists the fraction of present Ni species 
determined by peak fitting of the TPR signal and reveals that sNiO 
represents 26–30 % of NI samples whereas WI samples contain half of 
the amount of sNiO (WI_c450) or even none (WI_c600). The set of two 
broad reduction peaks above 780 ◦C match the reduction temperature of 
nickel aluminate species since sufficient energy is provided for inte
gration of Ni ions into the alumina lattice. Analogous to NiO, the signal 
at 780–830 ◦C could stem from weakly bound NiAl2O4 and the high 
temperature peak at 910–940 ◦C results from bulk crystalline NiAl2O4. 

TPR profiles of NiAl2O4 featuring two high-temperature peaks were 
reported before [55–58]. Furthermore, pure bulk NiO and NiAl2O4 were 
additionally analyzed by TPR as reference (see Supporting Information, 
Fig.S3) and confirm the presented regions of reduction temperature in 
Fig. 9a and b. The bulk reference samples only feature the reduction 
peaks for bNiO and bulk NiAl2O4 at about 550 ◦C and 900 ◦C, respec
tively and therefore confirm the presence of surface Ni species with 
facilitated reduction behavior when catalysts are prepared by NI. 
Nevertheless, with a fraction of about 60 %, nickel aluminate is overall 
predominantly formed in contrast to nickel oxide. 

Although the NI samples differ in post-processing stage (d/i), the 
ratio of NiO to NiAl2O4 unchangingly approximates 40:60 (see Table 3), 
indicating that under the studied conditions, NI binder jetting generates 
Ni/Al2O3 catalysts with a consistent Ni species composition. The 
different post-processing conditions shift the TPR signals of the NI cat
alysts as shown in Fig. 9a. Comparing NI_i_c600 and NI_d_c600, infil
tration shifts the reduction temperature to higher temperatures. Since 
the in situ impregnation with Ni nitrate containing ink facilitates fine 
dispersion of nickel (as shown with XPS), and a low Ni loading, nickel 
aluminate is formed easily, even at relatively low Tcalc which would 
normally yield less spinel phase [59]. 

4. Conclusion 

This work advances heterogeneous catalyst preparation by intro
duction of a fabrication method for supported nickel catalysts utilizing 
the powder-based AM technique binder jetting. Preliminary tests pro
vided a proof of concept for the feasibility of printing mechanically 
stable Al2O3-supported Ni catalysts via BJ where the nickel precursor is 
directly integrated into the printing process, therefore omitting a 

Fig. 9. TPR profiles with normalized H2 consumption of (a) catalysts printed by nickel ink deposition (NI) after infiltration/debindering (i/d) and calcination at 
different temperatures (c450/c600), and (b) wet impregnation (WI), calcined at different temperatures (c450/c600). 

Table 3 
Ni loading wNi, degree of reduction RTPR of NI and WI samples determined by 
TPR analysis weight percentage of nickel oxide (surface NiO: sNiO, bulk NiO: 
bNiO) and Ni aluminate determined by peak fitting of H2 consumption deter
mined by TPR.  

Sample wNi 

(wt.%) 
RTPR 

(%) 
NiO 

(wt.%) 
sNiO 

(wt.%) 
bNiO 

(wt.%) 
NiAl2O4 

(wt.%) 

NI_i_c600 3.0 108 43 28 15 65 
NI_d_c600 3.5 100 43 28 14 57 
WI_c600 2.5 99 17 0 17 82 
WI_c450 2.4 95 22 12 10 73  
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subsequent impregnation step. 
The 3D printed catalysts were characterized thoroughly using XPS, 

XAS and TPR. All three methods complemented each other by providing 
insights into the simultaneous formation of NiO and NiAl2O4 with 
varying ratios considering the underlying preparation conditions such as 
the preparation method (NI/WI) and thermal preparation conditions. NI 
generated Ni catalysts with similar characteristics as conventionally wet 
impregnated samples prepared under comparable conditions. Due to Ni 
loadings of max. 3.5 wt.%, facilitated incorporation of nickel into the 
alumina support resulted in the formation of about 60 wt.% nickel 
aluminate spinel for in situ impregnated catalysts printed by BJ. XPS 
analysis evidenced a finer nickel dispersion using the NI method than 
wet impregnation due to the deposition of nickel nitrate through fine 
printhead nozzles onto the alumina powder. Moreover, a superior CO2 
hydrogenation activity using NI catalysts was observed in comparison to 
WI catalysts treated under the same thermal conditions. The post- 
processing infiltration step, which distinguishes the preparation from 
conventional ones, covers active centers after nickel immobilization by 
introduction of alumina particles and aggravates reduction, observable 
by XPS, XAS and TPR. 

This proof of concept enables further developments regarding the 
usage of AM in catalyst preparation, especially by incorporating catalyst 
precursor into the printing liquid in the context of BJ. A potential 
advancement is the usage of more than one metal salt solution to yield 
multi-metal catalysts by multi-component in situ impregnation. In 
addition, the nickel loading could be improved by repeated deposition of 
Ni ink onto a single powder layer or increasing the amount of metal per 
layer by process parameter optimization. Investigating the point of zero 
charge (PZC) may offer valuable insights into the interaction between 
the ink and (transition) alumina surface, leading to enhanced metal 
dispersion. Moreover, this knowledge could aid in optimizing the se
lection of material feedstock for 3D printing. At a later development 
stage, it becomes pertinent to conduct long-term stability tests to 
enhance catalyst performance and gain insights into its deactivation 
behavior. 
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F. Gracia, CO2 methanation over nickel-ZrO2 catalyst supported on carbon 
nanotubes: A comparison between two impregnation strategies, Appl. Catal. B: 
Environ. 237 (2018) 817–825. 

[5] Y.-L. Lee, B.-J. Kim, H.-R. Park, S.-Y. Ahn, K.-J. Kim, H.-S. Roh, Customized 
Ni–MgO–Al2O3 catalyst for carbon dioxide reforming of coke oven gas: 
Optimization of preparation method and co-precipitation pH, J. CO2 Util. 42 
(2020), 101354. 

[6] M. Yusuf, A. Salaam Farooqi, M. Azad Alam, L. Kok Keong, K. Hellgardt, 
B. Abdullah, Performance of Ni/Al2O3-MgO catalyst for Dry Reforming of Methane: 
Effect of preparation routes, IOP Conf. Ser.: Mater. Sci. Eng. 1092 (2021), 012069. 

[7] G. Li, L. Hu, J.M. Hill, Comparison of reducibility and stability of alumina- 
supported Ni catalysts prepared by impregnation and co-precipitation, Appl. Catal. 
A: General 301 (2006) 16–24. 

[8] S. Ewald, M. Kolbeck, T. Kratky, M. Wolf, O. Hinrichsen, On the deactivation of Ni- 
Al catalysts in CO2 methanation, Appl. Catal. A: General 570 (2019) 376–386. 

[9] J. Regalbuto, Catalyst Preparation: Science and Engineering, Taylor & Francis, 
Hoboken, 2007. 

[10] V.G. Baldovino-Medrano, M.T. Le, I. van Driessche, E. Bruneel, C. Alcázar, M. 
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