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Introduction

In 2012, a Higgs boson (H) with a mass of 125GeV was discovered by the ATLAS and
CMS experiments [1-3] at the CERN LHC. Since its discovery, both collaborations have
performed precision measurements of the spin, parity, width, and couplings of the Higgs

boson in its various production and decay modes [4-14], all of which indicate that Higgs

boson properties are compatible with the standard model (SM) predictions. However, data

collected at /s = 13 TeV provide an upper limit on the branching fraction of the Higgs
boson to undetected states of about 40% at 95% confidence level (CL) [15]. This leaves
a large margin for beyond-the-SM (BSM) decays of the Higgs boson. Various theoretical
models, such as 2HDM+S models [16], describe a BSM Higgs boson that decays to light
bosons, which has not yet been excluded.



Figure 1. Feynman diagram for a BSM decay of the Higgs boson into a pair of light pseudoscalar
bosons that subsequently decay into photons.

Multiple searches for exotic decays of the Higgs boson have been performed using the
8 TeV [17-20] and 13 TeV [21-27] data collected at the LHC. Decays of the type H — aa,
where a is a light pseudoscalar boson, are well motivated in various BSM scenarios [28-31],
in particular in 2HDM+S models. In many scenarios, such as fermiophobic a decays, the
branching fraction of the pseudoscalar bosons to a pair of photons is close to unity, which
enables this search at the LHC. The final state, with four photons, provides an experimental
signature that has very small contributions from SM processes and is thus an important
channel for the search for light pseudoscalar bosons.

This paper presents a search for light pseudoscalar bosons that arise from the decay
of a Higgs boson, with four photons in the final state: H — aa — yyyy. The event
topology depends on the mass of the pseudoscalar boson being probed, which determines
the opening angle between the photons for each pair. This analysis considers only events
with four isolated photons in which the angular distance between the photons, for both
photon pairs, is greater than 0.2. These requirements enable a search for pseudoscalar
bosons that range in mass from 15 to 62 GeV and produce an experimental signature with
four well isolated and fully reconstructed photons. The 15 GeV mass boundary is chosen
because below that value most of the events have at least one merged photon pair or one
photon that does not pass the reconstruction criteria. The signal reconstruction efficiency
increases as the mass increases. The dominant Feynman diagram contributing to this
process is shown in figure 1.

A previous search for light pseudoscalar bosons in events with at least three pho-
tons was performed by the ATLAS Collaboration using the LHC data collected at
Vs =8TeV [32]. The first search of this type done by the CMS Collaboration is pre-
sented in this paper. Data collected by the CMS experiment from 2016 to 2018, which
correspond to an integrated luminosity of 132 fbfl7 are used in this analysis.

This paper is organized as follows. A brief description of the CMS detector is given
in section 2. Details of the data and simulation used in this analysis are described in
section 3. The reconstruction of H — aa — yyyy events and the associated selection
requirements are summarized in section 4. An overview of the analysis strategy is given
in section 5. Section 6 describes the background estimation technique, which is used



as input to a multivariate discriminator. The optimization procedure, which uses the
output of this discriminator, is discussed in section 7. Sections 8, 9 and 10 describe the
statistical procedure and the signal and background modeling, respectively. The systematic
uncertainties are discussed in section 11. Finally, the results are presented in section 12,
and the paper is summarized in section 13.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal
diameter, providing a magnetic field of 3.8 T. Within the solenoid volume is a silicon pixel
and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass
and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap
sections. Forward calorimeters extend the pseudorapidity (1) coverage provided by the
barrel and endcap detectors. Muons are detected in gas-ionization chambers embedded in
the steel flux-return yoke outside the solenoid.

Events of interest are selected using a two-tiered trigger system [33]. The first level,
composed of custom hardware processors, uses information from the calorimeters and muon
detectors to select events at a rate of around 100 kHz within a time interval of less than
4 ps [34]. The second level, known as the high-level trigger, consists of a farm of processors
running a version of the full event reconstruction software optimized for fast processing,
and reduces the event rate to around 1kHz before data storage [35].

The particle-flow algorithm [36] aims to reconstruct and identify each individual par-
ticle in an event, with an optimized combination of information from the various elements
of the CMS detector. The energy of photons is measured using the ECAL, as described in
ref. [37]. In the barrel section of the ECAL, an energy resolution of about 1% is achieved
for unconverted or late-converting photons in the tens of GeV energy range. The energy
resolution of the remaining barrel photons is about 1.3% up to |n| = 1, changing to about
2.5% at |n| = 1.4. In the endcaps, the energy resolution is about 2.5% for unconverted or
late-converting photons, and between 3 and 4% for the photons that convert closer to the
beam spot [37, 38].

A more detailed description of the CMS detector, together with a definition of the
coordinate system used and the relevant kinematic variables, can be found in ref. [39].

3 Data samples and simulated events

The proton-proton (p-p) collision data at /s = 13 TeV used in this analysis were collected
in 2016, 2017, and 2018 and correspond, respectively, to integrated luminosities of 36.3,
41.5, and 54.4 fb~'. This is 5.4fb~ ! less than the standard CMS detector collected lu-
minosity [40-42], because a required trigger was missing for a short period. Events are
selected using a high-level diphoton trigger, optimized for the low-mass diphoton Higgs bo-
son search [43], with photon transverse momentum (pr) thresholds of 30 GeV and 18 GeV.
Additionally, calorimeter-based identification requirements, which use information such as
the shape of the electromagnetic shower, the isolation of the photon candidate, and the



ratio between the hadronic and electromagnetic energy deposit of the shower, are applied
to the photon candidates at trigger level. Furthermore, the chosen trigger requires the
diphoton candidate to have an invariant mass greater than 55 GeV in data collected during
2016-2017. Each event is required to contain at least one diphoton candidate that satisfies
these high-level trigger requirements. The invariant mass selection on the two highest py
photons discards less than 25% of the signal events.

The simulated signal samples were generated corresponding to a pseudoscalar boson
mass, m,, ranging from 15 to 60 GeV, in steps of 5GeV, assuming a Higgs boson mass
of 125 GeV. These samples were simulated considering only the gluon fusion production
mode of the Higgs boson, using MADGRAPH5__aMC@NLO v2.4.2 [44].

The dominant backgrounds in this search are SM production of yy + jets, v + jets, as
well as multijet events, in which jets are misidentified as isolated photons. As in refs. [45,
46], the background contributions are modeled entirely from data.

All simulated samples used in this analysis model QCD showering and hadronization
with the PYTHIA 8.212 [47] event generator. The CUETP8MI1 tune was used for data
collected in 2016 and the CP5 tune was used for data collected in 2017-2018 [48, 49]. The
response of the CMS detector is modeled using the GEANT4 [50] package. The simulated
events also include additional p-p interactions within the same or nearby bunch crossings
(pileup). The average pileup in the 2016 (2017-2018) datasets is 23 (32) vertices. The
simulated events are weighted to reproduce the distribution of pileup in data.

4 FEvent reconstruction

The particle-flow algorithm [36] is used to reconstruct photon candidates from energy clus-
ters in the ECAL that are not matched to any charged particle trajectories originating in
the pixel detector. The energy of the photon candidates is calculated by applying in-situ
measured calibrations to the reconstructed hits in the ECAL. A multivariate regression
technique is employed to correct the photon energies measured by the ECAL. These pro-
cedures are described in ref. [37].

Deposits from quark fragmentation and hadronization are clustered into hadronic jets.
The energy of charged hadrons is determined from a combination of their momentum
measured in the tracker and the matching ECAL and HCAL energy deposits, while the
energy of neutral hadrons is obtained from the corresponding corrected ECAL and HCAL
energy deposits. Jets are clustered using the anti-kr jet finding algorithm [51, 52] with a
distance parameter of 0.4. The missing transverse momentum vector py 55 g computed as
the negative vector sum of the transverse momenta of all the PF candidates in an event,
and its magnitude is denoted as pT™ [53].

Prompt photons are distinguished from jets, which could be misidentified as a photon,
using a multivariate analysis (MVA) technique that uses information related to the pho-
ton’s electromagnetic shower shape, isolation, energy, and 7. This technique is detailed in
refs. [10, 46].

Since photons do not leave deposits in the tracker, the most probable primary inter-
action vertex in the event is identified using a boosted decision tree (BDT). The primary



vertex BDT is trained on simulated H — aa — yyYyYy events and uses input variables re-
lated to tracks recoiling against the four-photon system and information related to photons
converted in the tracker material, similar to ref. [4]. A separate training is performed for
each data-taking year (2016-2018) to properly model the variation in detector conditions
over the three years, in particular with respect to the pixel detector upgrade. The analysis
identifies the vertex with the highest BDT score as the primary vertex, which improves the
resolution of the invariant mass of the Higgs boson candidate by approximately 3%. It also
increases the vertex identification efficiency, 80% in total, which is defined as selecting a
vertex within 1 cm of the true generator vertex, by about 10%, with respect to the vertex
chosen with the largest value of summed p2T of the tracks.

5 Analysis strategy and selection

Events considered in this analysis are required to contain at least one diphoton candidate
where both daughter photon candidates pass the identification criteria, which are slightly
more stringent than the trigger requirements. Additionally, events must contain at least
four identified photon candidates in the ECAL and tracker fiducial region (|n| < 2.5). This
excludes the ECAL barrel-endcap transition region (1.44 < |n| < 1.57) where the photon
reconstruction is suboptimal. The four photon candidates are also required to pass pr re-
quirements. The pt thresholds on the first- and second-leading photons are 30 and 18 GeV,
respectively. These selections are in sync with with the pr requirements at trigger level
for the two leading photons. The thresholds on the third- and fourth-leading photons are
15 GeV, since the BDT-based photon identification criteria are optimal for pp > 15 GeV.
When more than four photon candidates are found, the four candidates with the highest
pr are chosen. Each photon candidate must pass an electron veto, based on the presence of
geometrically compatible hits in the pixel detector. The four photon candidates with the
highest pp are also required to have an invariant mass (1, ) between 110 and 180 GeV.
The lower bound is chosen to avoid m.,, spectrum biases coming from the trigger selec-
tions. The Higgs boson candidate is constructed from the four photon candidates, which
have passed all the previously described selection requirements.

To improve the sensitivity of the search, a 4-photon event classifier is trained to separate
signal events from background events. The 4-photon event classifier utilizes the identifi-
cation and kinematic information of the photons and pseudoscalar boson candidates. An
optimized selection on the output of the event classifier is used to define the final signal
regions for the analysis. The input variables for the classifier are uncorrelated with m
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therefore, the shape of the m spectrum is not affected by any selections placed on the

YYYY
4-photon event classifier, as verified in simulation.

When all four photons from the decay of the pseudoscalar boson pair are within the
acceptance criteria of the analysis, the H — aa — yyvyYy signal will create a resonance

in the m distribution at 125 GeV. The analysis performs an unbinned maximum

YYYY
likelihood fit of the signal and background models to the observed m,, ., distribution in
data after a selection on the classifier output is applied. The signal model is constructed

from a parametric fit to the simulated signal, while the background model is created using



a data driven approach. After applying the 4-photon event classifier selection, the full
analysis acceptance has a negligible dependence on the generated Higgs boson pr or the
non-gluon-fusion Higgs boson production modes. Therefore limits are set on the product
of the Higgs boson inclusive production cross section and branching fraction into the four
photon final state.

In this paper, “nominal signal hypothesis" refers to simulated signal samples corre-
sponding to a particular m, value. This assumes a branching ratio of a — vy equal to unity.
In these hypotheses, m, ranges from 15-60 GeV in steps of 5 GeV. The final results are re-
ported with an m, granularity of 0.5 GeV up to m, = 40 GeV and 1 GeV for m, > 40 GeV,
where the signal models for the intermediate mass hypotheses are constructed using the
resolution of the signal model of the closest nominal mass and by interpolating the signal
model normalization between the nominal masses.

6 Classifier training background

Because of the low event selection efficiency on the background samples, it is difficult to
model the background from simulation. Therefore, the expected background model, which
is used to train the 4-photon event classifier, is estimated from data.

The method, referred to as event mixing (a simplified version of “Hemisphere mix-
ing" [54]), does not rely on a control or sideband region, but instead aims to estimate the
background contribution using the original dataset as input. This procedure begins with
using data events that have passed the trigger selections, as described in section 3, and
replacing three out of the four reconstructed photons in each event with reconstructed pho-
tons from three consecutive events to create a “mixed” dataset. Photon candidates in the
mixed dataset are required to pass the selections described in section 5. The psedoscalar
boson candidates, a; and ay, are reconstructed considering all possible pair combinations
among the chosen four photons, and taking the two pairs with the smallest value of the
difference between the pair invariant masses. The shuffling of the reconstructed photons
between the events not only constructs a dataset that is similar to the original data, but is
also insensitive to the possible presence of a resonant signal. This procedure is performed
separately for data collected during 2016, 2017, and 2018.

The events in the mixed dataset can potentially have different kinematic properties
from those in the original data. To correct this, a multi-dimensional per-event weight is
calculated by comparing events from the mixed dataset to the original data in the 1.,
sideband region, i.e. 110-115 or 135-180GeV. The weight is computed from the ratio
of the four-dimensional histograms filled with data and event mixing events, using the
following variables: angular distance between the two pseudoscalar boson candidates, de-
fined by AR
momenta of the two pseudoscalar bosons (py 41 and pp 42); and the difference between in-

ajay = vV (Na1 — na2)2 + (Pg1 — ¢a2)2 where ¢ is azimuthal angle; the transverse
variant mass of the two pseudoscalar boson candidates (m,; — mgs). This weight is applied
to each event in the mixed dataset, and the reweighted events are then used to train the
classifier.



The event mixing dataset is used only for training the 4-photon classifier and to op-
timize the selection on the classifier score. Since the background model used in the final
maximum likelihood fit is obtained directly from data, any residual disagreement between
data and event mixing in the background-like regions cannot induce any bias, and it could
only result in suboptimal performance of the classifier.

7 Event classification

A dedicated 4-photon boosted decision tree (BDT) event classifier is trained to separate
signal from background. The training sample is parameterized as a function of m, in order
to make the classifier output uniform and sensitive to the full range of signal hypotheses
considered in the search [55]. In this approach, a parameter equal to the hypothesized
pseudoscalar boson mass (ma’hyp) is provided as input to the training. The set of variables
is chosen such that m,.,, cannot be inferred from the inputs. This is done by verifying
that their correlation with m

variable is negligible and that the m spectrum is

YYYY
not distorted by applying a selection on the classifier output.
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The parameterized classifier requires only a single training and is able to provide
a smooth interpolation to pseudoscalar boson mass hypotheses not used for the training.
The training signal sample is obtained by merging all generated signal samples of equal size
with masses between 15 and 60 GeV in steps of 5 GeV. The value of the m,, j,,,parameter is
equal to the corresponding true mass for the nominal signal simulation. The event mixing
dataset, as described in section 6, is used as the background in the training. For the

background, the value of the parameter m is randomly distributed as a flat function

a,hyp
among all possible nominal m, values in 5 GeV steps.

The variables used in the training help separate isolated photons originating from
the decay of the pseudoscalar boson from those from prompt and non-prompt processes.
Pseudoscalar boson candidates are constructed from the four photon candidates as follows.
For every possible combination of two photon candidate pairs, the difference between the
invariant masses of the paired photons (Am) is evaluated. The pairs with the smallest
value of Am are chosen to reconstruct the pseudoscalar boson candidates.

The following discriminating variables are provided as input to the training:

1. Photon identification BDT score for all four photons.
2. pr of the two pseudoscalar boson candidates, i.e., pr 41 and pr 4o

3. Difference between the reconstructed invariant mass of the pseudoscalar boson can-
didates, i.e., mg — Mya-

4. Difference between the invariant masses of the pseudoscalar boson candidate
and the m,y,parameter divided by myyyy, i€, (Mg — Mg hyp)/Myyyy and

(maZ - ma7hyp)/myyyy)'

5. Angular distance AR, ,, divided by myyyy, i.e.; ARy o) /17y -



6. Angle cos GZY in the pseudoscalar boson rest frame, between the leading pseudoscalar
boson candidate and the leading photon produced from its decay, chosen in the
laboratory frame. This variable is sensitive to the spin of the pseudoscalar boson
object.

As part of this training procedure, simulated signal and background datasets from the
three data-taking years (2016—2018) are scaled by their appropriate integrated luminosities
and combined. This combination of datasets from three years provides large training
statistics. Additionally, the signal and background samples are divided in half to create
the training and testing samples.

The distributions of the four most highly ranked wvariables in the training:
(Ma1 — Mg hyp)/Myyyys Ma1 — Mg2, and the photon identification BDT score of the third
and fourth photon are shown in figure 2 for the event mixing dataset, data, and signal
simulation for various pseudoscalar boson mass hypotheses. It shows the contributions
from the event mixing dataset and the data from the m,,,, sidebands, satisfying either
Myyyy = 110-115 or 135-180 GeV. The distributions of the event mixing dataset and data
are found to be in reasonable agreement, and the residual disagreement does not induce
any biases in the analysis since the final background model is derived directly from data.

A unique 4-photon BDT output is obtained for each pseudoscalar boson mass hypoth-
esis. The difference between the correlations of the input variables used in the training
leads to a disagreement in the output shape of the BDT between the event mixing model
and data. This difference is addressed by reweighting the BDT output distribution for the
event mixing model to match output distribution for data from the m., . sideband region.

In order to maximize the sensitivity of the analysis, events are categorized according
to the output of the 4-photon BDT. The categorization is optimized by maximizing the
approximate mean significance (AMS) [56] over all possible categories in a window covering
the region: 115 < my,, < 135GeV. In particular, AMS is computed for each category,
and the total AMS, defined as the sum in quadrature of the AMS of each category, is
maximized. The AMS of each category is defined as:

AMS—\/z [(S+B)ln (1+§) —s} (7.1)

In eq. (7.1), S refers to the number of expected signal events and B refers to the number
of estimated background events. In order to minimize the impact of statistical fluctuations
on the optimization of the BDT selection, the output BDT distribution of the event mixing
dataset is smoothed, using the super-smoothing technique [57, 58], prior to being used in
this procedure. The distributions of the BDT output for data, simulated signal events, and
event mixing dataset, after smoothing the BDT output distribution, is shown in figure 3
for m, = 15 and 50 GeV. Events shown in this distribution are selected after passing the
yyyy < 180 GeV.

A priori, the greater the number of categories, the better the significance is within the

criteria described in section 4 and are in the mass window 110 < m.

uncertainties. Therefore this optimization procedure was performed separately for each
of the nominal signal hypotheses for up to five categories of the 4-photon BDT score.
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Figure 2. Distributions of the four most highly ranked discriminating variables: the difference
between the invariant masses of the pseudoscalar bosons and the m, 1., parameter, divided by
the invariant mass of the four-photon system (upper left), with off-zero signal peaks from photon
pairing mismatches (those events are discarded after the 4-photon event classifier selection); the
difference between the invariant masses of the pseudoscalar boson (upper right); the photon iden-
tification BDT score of the third leading, 5 (lower left) and the fourth leading, v, (lower right)
photons. The events shown are selected from the m., ., sidebands (110 < m,,,, < 115GeV or
135 < 1My yyy < 180GeV) for event mixing and data after fulfilling the selection criteria described
in section 4, while the signals are scaled with a cross-section of 1 pb.

However, as an increase of less than 1% in the AMS value was observed when increasing
the number of categories beyond one, only a single category based on the BDT output was
created for each pseudoscalar boson mass hypothesis. Table 1 summarizes the minimum
BDT selection and the efficiency of that selection obtained for each of the nominal signal

hypotheses. For the intermediate m, values, the BDT selection obtained from the closest
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Figure 3. Distribution of the BDT output for m, = 15GeV (left) and 50 GeV (right) in data
and simulated signal and event mixing (after smoothing) events. Events shown are selected after
fulfilling the selection criteria described in section 4 in the mass window 110 < m,,,, < 180GeV,
while the signal is scaled with a cross-section of 1 pb.

m, (GeV) Minimum 4-photon event classification BDT Signal efliciency
’ output value of the selection on BDT
15 0.883 33%
20 0.891 87%
25 0.876 86%
30 0.897 84%
35 0.931 8%
40 0.945 78%
45 0.952 80%
50 0.958 80%
55 0.976 7%
60 0.987 1%

Table 1. Summary of the optimized BDT output threshold values and the efficiency with respect
to a selection on this output for each of the nominal signal hypothesis.

nominal signal hypothesis is applied. For each signal hypothesis, events that pass the
selection on the BDT output are used to obtain final results.

8 Statistical procedure

The statistical procedure used in this analysis is identical to that described in ref. [59],
as developed by the ATLAS and CMS Collaborations. Simultaneous unbinned maximum
likelihood fits are performed to the m.,.,, distributions of all analysis categories, with an
m, granularity of 0.5 GeV for 15 < m, < 40 GeV and 1 GeV for 40 < m, < 62GeV. A like-
lihood function is defined for each analysis category using analytic models to describe the

My distributions of signal and background events with nuisance parameters to account

,10,



for the experimental and theoretical systematic uncertainties described in section 11. The
best fit values and confidence intervals for the parameters of interest are estimated using
a profile likelihood test statistic:

q(d) = —2In (8.1)

Where the quantities & and 6 describe the unconditional maximum likelihood estimates
for the parameters of interest and the nuisance parameters, respectively, whereas 5& corre-
sponds to the conditional maximum likelihood estimate for fixed values of the parameters
of interest, &@. The value of twice the negative logarithm of the likelihood ratio, eq. 8.1 is
minimized when a fit of these functions is performed on the m,,, ., distribution. A penalty
term, equal to the number of parameters in the functions, is added to the —2AInL to
prevent the addition of unnecessary floating parameters in the fit.

9 Signal model

The signal shape for the m,., distribution, for each nominal signal hypothesis, is con-
structed from simulation. After all of the analysis selection criteria are applied, a unique
signal model is built for each nominal signal hypothesis for each of the three data-taking
years (2016-2018). The m,.,, distribution is modeled with a double-sided Crystal Ball
(CB) function [60], which is a modified version of the standard CB function with two in-
dependent power-low tails. These signal models, scaled by the integrated luminosity for
each year, are summed in order to construct the final model. The signal models for each
year are shown in figure 4 for m, = 15GeV. The full width at half maximum (FWHM)
and the effective standard deviation (o.g), defined as half the width of the smallest interval
containing 68% of the my,,, distribution, are also shown.

Two factors need to be considered to build the signal models for the intermediate mass
hypotheses: the shape of the m.,,,, distribution and its yield. Since the shape of the
Myyyy distribution is not found to change significantly within a 5GeV window around
the nominal mass hypothesis, only the yield of the signal model is parameterized as a
function of m,, for the intermediate mass hypotheses. For each intermediate point, a signal

model is constructed from the m shape of the nearest nominal mass hypothesis and

YYYY
the interpolated yield between the two nearest nominal mass hypotheses.

10 Background model

The background model is built to describe the shape of the m,.,, distribution that re-
sults from processes other than the signal process. Since the shape of this distribution is
not known, different functional forms must be considered in the construction of the back-
ground model. The function chosen to describe the background can result in a different
number of estimated events in the signal peak and, as a result, affect the measured sig-

nal strength. This inherent uncertainty associated with choosing a background function is
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Figure 4. The parameterized signal shape for m, = 15GeV is shown for the 2016 (upper left),
2017 (upper right), and 2018 (lower) data-taking years. Separate signal models are built for each
of the three data-taking years, which are then scaled by the appropriate luminosity and summed
in order to construct the final signal model. The open squares represent simulated events and the
blue line is the corresponding model. Also shown is the o.g value (half the width of the narrowest
interval containing 68.3% of the invariant mass distribution), with the corresponding interval as a
gray band and the FWHM, with the corresponding interval marked with a double arrow.

incorporated into the statistical uncertainty from the fit model via the discrete profiling
method [61]. This method describes background modeling performed using data as imple-
mented in ref. [45], and treats the choice of the background function as a discrete nuisance
parameter in the likelihood fit to data.

As part of the background modeling procedure, the candidate functions considered in
the fit are exponentials, Bernstein polynomials, Laurent series, and power law functions.
A subset of functions from each family are used to build the background model. For
each family, the maximum order of parameters is fixed by means of an F-test [62], and
the minimum order is determined by applying a requirement on the goodness-of-fit. A
penalty is added to —2AInL to take into account the number of floating parameters in
each candidate function. When making a measurement of a given parameter of interest, the
discrete profiling method minimizes the overall —2A In L. considering all allowed functions.

The fits are performed over the range 110 < my,, < 180GeV, and the data from
the three years (2016-2018) are combined in order to construct the background model. A
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unique background model is created corresponding to each m, hypothesis. For each m,
hypothesis, an ensemble of pseudo-experiments was generated using the various background
functions. Each pseudo-experiment was fitted using the discrete profiling method, and it
was established that the chosen functional form, used to describe the background, does not
introduce any potential bias in the signal strength measurement.

11 Systematic uncertainties

The systematic uncertainty associated with the background estimation is taken into ac-
count by the discrete profiling method, as described in section 10. There are two kinds of
systematic uncertainties that affect the signal model: those that modify the shape of the

distribution, and those that leave the shape of the m distribution unchanged

Myyyy
but affect the overall normalization of the signal model.

YYYY

The uncertainties that affect the shape of the m,, distribution, which are incorpo-
rated in the signal model as nuisance parameters, are described below. These uncertainties
are typically related to the energy of the individual photons, and they affect the mean and
width of the signal model.

1. Photon energy scale and resolution: corrections are applied to the photon energy
scale in data and to the energy resolution in simulation. The uncertainties related to
these corrections are computed using Z — ee events [37]. The resulting uncertainty
in the energy scale is 0.05-0.15%, depending on the photon pr.

2. Nonlinearity of the photon energy scale: any remaining differences in the linearity of
the photon energy scale between data and simulation are covered by this uncertainty,
which is estimated using Lorentz-boosted Z — ee events. The procedure for esti-
mating this uncertainty is detailed in ref. [4]. An uncertainty of 0.1% on the photon
energy scale is assigned in this analysis, which accounts for the nonlinearity across
the full range of photon pp values.

3. Shower shape corrections: this uncertainty is associated with the imperfect modeling
of shower shapes in simulation, and it is estimated by comparing the energy scale
before and after any corrections are applied to the shower shape variables as described
in ref. [37]. This uncertainty in the energy scale is at most 0.01-0.15%, and it is
dependent on the photon shower-shape and position in the detector.

4. Nonuniformity of light collection: within a given ECAL crystal, there is an uncer-
tainty associated with the modeling of the light collection as a function of the emission
depth. This uncertainty is estimated by comparing simulation with the longitudinal
shower profile estimates, and the procedure is detailed in ref. [4]. The magnitude of
this uncertainty is 0.07-0.25%, depending on the photon shower-shape.

5. Modeling of material in front of the ECAL: the behavior of electromagnetic showers
is affected by the amount of material present in front of the ECAL. This behavior
may not be well modeled in simulation, and thus special samples with variations in
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the amount of upstream material are used to compute the impact on the photon
energy scale [45]. For most central photons, the magnitude of this uncertainty ranges
0.02-0.05% and increases to approximately 0.24% for photons in the endcaps.

The uncertainties that affect the normalization of the signal model are listed below.

1. Integrated luminosity: uncertainties in the luminosity measurement are estimated to
be 1.2% (2016), 2.3% (2017), and 2.5% (2018) by CMS luminosity monitoring [40—
42]. The uncertainty in the total integrated luminosity of the three years together is
1.6%. The uncertainties for each dataset are partially correlated in order to account

for the common sources in the luminosity measurement schemes.

2. Photon identification BDT score: the systematic uncertainty caused by the imperfect
simulation of the input variables that are used to train the photon identification MVA
is estimated by the procedure described in ref. [37]. The average magnitude of the
resulting uncertainty is below 0.25% across the full m, range.

3. Trigger efficiency: the efficiency of the trigger selection is measured using a “tag-
and-probe" technique on Z — ee events [63]. An additional uncertainty is introduced
to account for a gradual shift in the timing to the inputs of the ECAL’s hardware
level trigger in the region |n| > 2.0, which caused a specific trigger inefficiency during
2016-2017 data-taking [34]. The size of this uncertainty across the m, range is around
0.5% for 2016 and 2018 data-taking and around 1.5% for 2017 data-taking.

4. Photon preselections: the systematic uncertainty on photon-based preselection is
computed as the uncertainty on the ratio between the efficiency measured in data
and in simulation. This is measured with the tag-and-probe technique using Z — ee
events. The average magnitude of this uncertainty across the m, range is about 5%.

A summary of all the systematic uncertainties considered in this analysis is given in
table 2. The impact of systematic uncertainties on the expected limit is about 1% across
the m, range, and so the analysis sensitivity is primarily limited by the expected signal
event yields. Because of this, only the main sources of systematic uncertainties are taken
into account in the final result.

12 Results

The data collected by the CMS experiment in 2016, 2017, and 2018 are combined for the

fit. The data and the signal-plus-background model that was fit to the m distribution

YYYY
are shown in figure 5 for m, = 15 and 50 GeV.

No significant deviation from the background-only hypothesis is observed. Upper limits
are set at the 95% confidence level (CL) on the product of the production cross section of
the Higgs boson and the branching fraction into four photons via a pair of pseuodscalars,
og B(H — aa — yyyy). This is done using the modified frequentist approach for CLy,

with the LHC profile likelihood ratio used as the test statistic [59, 64]. The observed
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M.+ distribution shape 20162018
Photon energy scale and resolution 0.05-0.15%
Nonlinearity of the photon energy scale 0.10%

Shower shape corrections 0.01-0.15%
Nonuniformity of light collection 0.07-0.25%

Modeling of material in front of the ECAL  0.02-0.05% (EB) and 0.24% (EE)

Signal model normalization 2016 2017 2018
Integrated luminosity 1.20% 2.30% 2.50%
Photon identification 0.25% 0.25% 0.25%
Trigger efficiency 0.50% 1.50% 0.50%
Photon preselections 5.00% 5.00% 5.00%

Table 2. Summary of the systematic uncertainties considered in this analysis.
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Figure 5. The invariant mass distribution, m.,,,, for data (black points) and the signal-plus-
background model fit is shown for m, = 15GeV (left) and m, = 50 GeV (right). The solid red
line shows the total signal-plus-background contribution, whereas the dashed red line shows the
background component only. The lower panel in each plot shows the residual signal yield after the
background subtraction. The one (green) and two (yellow) standard deviation bands include the
uncertainties in the background component of the fit.

(expected) limit, shown in figure 6, ranges from 0.80 (1.00)fb for m, = 15GeV to 0.26
(0.24) fb for m, = 62GeV. For comparison, the Higgs production cross section for all
channels combined is 52 pb [65].

The results presented in this section are provided in a tabulated form in the HEPDATA
record [66] for this analysis.

13 Summary

A search for a pair of light pseudoscalar bosons produced from the decay of the 125 GeV
Higgs boson, which subsequently decay into photons, is presented. The analysis is based on
proton-proton collision data collected at /s = 13T eV by the CMS experiment at the LHC
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Figure 6. Expected and observed 95% CL limits on the product of the production cross section of
the Higgs boson and the branching fraction into four photons via a pair of pseuodscalars, oy B(H —
aa — yYyYY), are shown as a function of m,. The green (yellow) bands represent the 68% (95%)
expected limit CL intervals. The fluctuation between individual points is due to the statistical
limitation of the data sample and the result of individual BDT training networks utilized for each
individual mass point scenario.

in 2016, 2017, and 2018, which corresponds to a total integrated luminosity of 132 fb~t. The
analysis probes pseudoscalar bosons ranging in mass (m,,) from 15 to 62 GeV. No significant
deviation from the background-only hypothesis is observed. Upper limits are set at 95%
confidence level on the product of the production cross section of the Higgs boson and the
branching fraction into four photons via a pair of pseuodscalars, oy B(H — aa — yyyy).
The observed (expected) limits range from 0.80 (1.00) fb for m, = 15 GeV to 0.26 (0.24) fb
for m, = 62 GeV.
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