
1

Data reduction and processing for photon

science detectors
David Pennicard 1,∗, Vahid Rahmani 1 and Heinz Graafsma 1,2

1Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
2Mid Sweden University, Sundsvall, Sweden

Correspondence*:
Corresponding Author
david.pennicard@desy.de

ABSTRACT2

New detectors in photon science experiments produce rapidly-growing volumes of data. For3

detector developers, this poses two challenges; firstly, raw data streams from detectors must be4

converted to meaningful images at ever-higher rates, and secondly, there is an increasing need5

for data reduction relatively early in the data processing chain. An overview of data correction6

and reduction is presented, with an emphasis on how different data reduction methods apply7

to different experiments in photon science. These methods can be implemented in different8

hardware (e.g. CPU, GPU or FPGA) and in different stages of a detector’s data acquisition (DAQ)9

chain; the strengths and weaknesses of these different approaches are discussed.10

Keywords: Photon science, detectors, X-rays, data processing, data reduction, hardware acceleration, DAQ11

1 INTRODUCTION

Developments in photon science sources and detectors have led to rapidly-growing data rates and volumes12

[1]. For example, experiments at the recently-upgraded ESRF EBS can potentially produce a total of a13

petabyte of data per day, and future detectors targeting frame rates over 100 kHz will have data rates (for14

raw data) exceeding 1 Tbit/s [2].15

These improvements not only allow a much higher throughput of experiments, but also make new16

measurements feasible. For example, by focusing the beam and raster-scanning it across a sample at17

high speed, essentially any X-ray technique can be used as a form of microscopy, obtaining atomic-scale18

structure and chemical information about large samples. But naturally, these increasing data rates pose19

a variety of challenges for data storage and analysis. In particular, there is increasing demand for data20

reduction, to ensure that the volume of data that needs to transferred and stored is not unfeasibly large.21

From the perspective of detector developers, there are two key issues that need to be addressed.22

Firstly, the raw data stream from a detector needs to be converted into meaningful images, as discussed23

in section 2, and this becomes increasingly challenging at high data rates. This conversion process is24

detector-specific, so implementing it requires detailed knowledge of the detector’s characteristics. At the25

same time, since the correction process is relatively fixed, there’s a lot of potential to use accelerators26

such as GPUs or FPGAs to do this. In addition, the complexity of this conversion process depends on the27

detector design, so this is something that should be considered during detector development.28

1

Pennicard et al.

Secondly, it can be beneficial to perform data reduction on-detector, or as part of the detector’s DAQ29

system. For a variety of reasons, the useful information in a dataset can be captured with a smaller number30

of bits than the original raw data size; for example, by taking advantage of patterns or redundancy in the31

raw data, or by rejecting non-useful images in the dataset. In the DAQ system, the data will typically32

pass through a series of stages, as illustrated in Fig. 1 - firstly, from the ASIC or monolithic sensor to a33

custom board in the detector, then to a specialized DAQ PC (or similar hardware), and finally to a more34

conventional computing environment. By performing data reduction early on in this chain, it is possible to35

reduce the bandwidth required by later stages. Not only can this reduce the cost and complexity of later36

stages, it can also potentially enable the development of faster detectors by overcoming data bandwidth37

bottlenecks. Performing this early data reduction often ties together with the process of converting the raw38

data stream to real images, since these can be easier to compress. Conversely, though, performing data39

reduction early in the chain can be more challenging, since the hardware in these early stages tends to offer40

less flexibility, and there are constraints on space and power consumption within the detector.41

This paper presents an overview of image correction and data reduction in photon science, with a42

particular focus on how the characteristics of different detectors and experiments affect the choice of data43

reduction algorithm. After a discussion of the features of common data processing hardware - CPUs, GPUs44

and FPGAs - the paper returns to the topic of how different compression methods may be implemented in45

different stages of a detector’s data acquisition chin.46

Figure 1. Illustration of typical elements in a detector’s DAQ chain.

2 DETECTOR DATA CORRECTION

The raw data stream produced by a detector generally requires processing in order to produce a meaningful47

image. The steps will of course depend on the design; here, two common cases of photon counting48

and integrating pixel detectors are considered. Although it can be possible to compress data before all49

corrections are applied, corrected data can be more compressible - for example, correcting pixel-to-pixel50

variations can result in a more uniform image.51

Firstly, we want the pixels in an image to follow a straightforward ordering; typically this is row-by-row52

or column-by-column, though some image formats represent images as a series of blocks for performance53

reasons. However, data streams from detectors often have a more complex ordering. One reason for this54

is that data readout from an ASIC or monolithic detector is typically parallelized across multiple readout55

signal lines which can result in interleaving of data. In addition, in detectors composed of multiple chips or56

modules, there may be gaps in the image, or some parts of the detector may be rotated - this is illustrated57

for the AGIPD 1M detector [3] in Fig 2. So, data reordering is a common first step.58

Frontiers 2

Pennicard et al.

Figure 2. Module layout of the AGIPD 1M detector, which has a central hole for the beam, gaps between
modules, and different module orientations (with the first pixel of each module indicated by a cross).

In the case of photon counting detectors, the value read out from each pixel correspond relatively directly59

to the number of photons hitting the pixel. Nevertheless, at higher count rates losses occur due pulse60

pileup, when photons hit a pixel in quick succession. So, pileup correction is needed. Although there are61

two well-known models for pileup - paralyzable and non-paralyzable - in practice the behaviour of pixel62

detectors can be somewhere in-between, and in addition to this some modern detectors have additional63

pileup compensation, for example by detecting longer pulses that would indicate pileup [4] . So, the pileup64

correction process can vary between different detectors.65

In integrating detectors, each pixel’s amplifier produces an analog value, which is then digitized. This66

digitized value then needs to be converted to the energy deposited in the pixel. In many detectors, this is67

a linear relationship which can be described in terms of a baseline and gain; these parameters can vary68

from pixel-to-pixel. As discussed later, if the incoming X-ray beam is monochromatic then the measured69

energy may then be converted to photons. In some integrating detectors designed for large dynamic range,70

the response may not be a simple linear one. For example, in dynamic gain switching detectors [3] each71

pixel can adjust its gain in response to the magnitude of the incoming signal, and the output of each pixel72

consists of a digitized value plus information on which gain setting was used; for each gain setting, there is73

a different baseline and gain that need to be applied to calculate the energy deposited in the pixel.74

In practice, detectors may deviate from the ideal response, and additional corrections may be required.75

For example, the response of a detector may not be fully linear, and more complex functions may be need76

to describe their response. There may also be phenomena such as common-mode signals or crosstalk,77

where corrections need to be applied that are dependent on the magnitude and pattern of the incoming78

signal rather than independent for each pixel. It is also common to treat malfunctioning pixels, for example79

by setting them to some special value.80

Frontiers 3

Pennicard et al.

An additional aspect of detector data processing is combining the image data with metadata. Some81

metadata may be directly incorporated into the detector’s data stream. For example, in Free Electron Laser82

(FEL) experiments the detector needs to be synchronised with the X-ray bunches, and bunches can vary in83

quality, so each image will be accompanied by a bunch ID, fed to the detector from the facility’s control84

system. Other metadata may be added later. For example, the NeXuS data format [5] has been adopted85

by many labs; this is based on the HDF5 format [6], and specifies how metadata should be structured in86

experiments in photon science and other fields.87

3 DATA COMPRESSION AND PHOTON SCIENCE DATASETS

In general, data compression algorithms reduce the number of bits needed to represent data, by encoding it88

in a way that takes advantage of patterns or redundancy in the data. These algorithms can be subdivided89

into lossless compression [7], where the original data can be reconstructed with no error, and lossy90

compression [8], where there is some difference between the original and reconstructed data. Currently,91

lossless compression is often applied to photon science data before storage, whereas lossy compression92

is uncommon, due to concerns about degrading or biasing the results of later analysis. However, lossy93

compression can achieve higher compression ratios.94

The compressibility of an image naturally depends on its content, and in photon science this can vary95

depending on both the type of experiment and the detector characteristics. In particular, since random96

noise will not have any particular redundancy or pattern, the presence of noise in an image will reduce the97

amount of compression that can be achieved with lossless algorithms.98

Compared to typical visible light images, X-ray images from pixel detectors can have distinctive features99

that affect their compressibilty, as discussed further below. Firstly, individual X-ray photons have much100

greater energy and thus can more easily be discriminated with a suitable detector. Also, X-ray diffraction101

patterns have characteristics that can make lossless compression relatively efficient. However, imaging102

experiments using scintillators and visible light cameras produce images more akin to conventional visible103

light imaging, which do not losslessly compress well.104

3.1 Noise in X-ray images, and its effects on compression105

Random noise in an image can potentially come from different sources; firstly, electronic noise introduced106

by the detector, and secondly, inherent statistical variation in the experiment itself.107

Any readout electronics will inevitably have electronic noise. However, the signal seen by a detector108

consists of discrete X-ray photons, and the inherent discreteness of our signal makes it possible to reject109

the electronic noise, provided that it is small compared to the signal produced by a single photon. In a110

silicon sensor without gain, we will generate on average one electron-hole pair per 3.6 eV of energy, e.g. a111

12 keV photon will generate approximately 3300 electrons. In turn, if for example the electronic noise is112

Gaussian with a standard deviation corresponding to 0.1 times the photon energy (330 electrons here) then113

the probability of a pixel having a noise fluctuation corresponding to 0.5 photons or more is approximately114

1 in 1.7 million [9].115

In integrating pixel detectors, each pixel measures the total energy deposited in the pixel during the116

integration time of the image. If the photon source is monochromatic, then it is possible to convert the117

integrated signal to an equivalent number of photons in postprocessing. Given sufficiently low noise,118

this value can be quantized to the nearest whole number of photons to eliminate electronic noise. In119

photon counting detectors, a hit will be recorded in a pixel if the pulse produced by the photon exceeds120

Frontiers 4

Pennicard et al.

a user-defined threshold; once again, if the threshold level is far enough from the noise, we will have121

effectively noise-free counting.122

In both cases, the electronic noise in a pixel will be dependent on the integration time for an image, or123

the shaping time in the case of a photon-counting detector. There are two main competing effects here.124

On the one hand, for longer timescales, the shot noise due to fluctuations in leakage current will be larger.125

Conversely, to achieve shorter integration times or shaping times, a higher amplifier bandwidth is required,126

and this will increase the amount of thermal noise detected [10]. Thermal noise is the noise associated with127

random thermal motion of electrons, which is effectively white noise.128

In addition to electronic noise, however, the physics of photon emission and interaction are inherently129

probabilistic, and so even if an experiment were repeated under identical conditions there would be130

statistical fluctuations in the number of photons impinging on each pixel. These fluctuations follow Poisson131

statistics, and if the expected number of photons arriving in a pixel during a measurement is N , then the132

standard deviation of the corresponding Poisson distribution will be
√

(N). On the one hand, this can133

make it easier to develop ”low noise” detectors; provided the detector noise for a given photon flux is134

significantly smaller than
√

(N), then it will have little effect on the final result. However, this makes135

the data less compressible with lossless algorithms, since random noise introduces variation in the image136

that is not patterned or redundant. (As discussed later, quantizing pixel values with a variable step size,137

increasing with
√

(N), can be a way of achieving lossy compression.)138

3.2 Applying lossless compression to diffraction data139

As noted above, data compression relies on patterns or redundancy in data, and this will vary depending140

on the experiment. Diffraction patterns differ from conventional images in a variety of respects, with the141

pattern being mathematically related to the Fourier transform of the object. An example of a diffraction142

pattern from macromolecular crystallography is shown in Fig. 3.143

Figure 3. A diffraction pattern from a thaumatin crystal, recorded with a Pilatus 1M detector. Reproduced
from [11] with permission of the International Union of Crystallography.

Frontiers 5

Pennicard et al.

Diffraction patterns tend to have various features that are advantageous for lossless compression:144

• Hybrid pixel detectors with sensitivity to single photons are the technology of choice for these145

experiments, making the measurement effectively free from electronic noise as described above.146

(Detectors for X-ray diffraction require high sensitivity, but pixel sizes in the range of 50-200 µm are147

generally acceptable.)148

• The intensity values measured in the detector typically have a nonuniform distribution, with most149

pixels measuring relatively low or even zero photons, and a small proportion of pixels having higher150

values. This is partly because the diffracted intensity drops rapidly at higher scattering angles, and151

partly because of interference phenomena that tend to produce high intensity in certain places (e.g.152

Bragg spots or speckles) and low intensity elsewhere.153

• As with many images, nearby pixels will tend to have similar intensities.154

• Combining these points, in images with fewer photons, there can be patches in the image with many155

neighbouring zero-value pixels.156

Empirically, a range of lossless compression algorithms can achieve good results with diffraction data,157

especially in high-frame-rate measurements where the number of photons per image will tend to be158

lower. Experiments applying the DEFLATE [12] algorithm used in GZIP to datasets acquired with photon159

counting detectors running at high speed showed compression ratios of 19 for high-energy X-ray diffraction,160

70 for ptychography and 350 for XPCS experiments with dilute samples (where most pixel values are zero)161

[13]. Experiments with the Jungfrau integrating detector, applying different compression algorithms to the162

same data, found that multiple compression methods such as GZIP, LZ4 with a bitshuffle filter and Zstd163

gave similar compression ratios to one another, but varied greatly in speed, with GZIP being a factor of 10164

slower [14].165

3.2.1 Example - lossless compression with DEFLATE (GZIP) and Bitshuffle/LZ4166

As illustrative examples, we consider the DEFLATE algorithm used in GZIP [15], and the Bitshuffle/LZ4167

algorithm [16], firstly to discuss how they take advantage of redundancy to compress diffraction data, and168

secondly how algorithms with different computational cost can achieve similar performance.169

DEFLATE [12] consists of two stages. Firstly, the LZ77 algorithm [17] is applied to the data, which170

searches for recurring sequences of characters in a file (such as repeated words or phrases in text, or171

long runs of the same character) and encodes them efficiently. In the output of this algorithm, the first172

instance of a sequence of characters is written in full, but then later instances are replaced with special173

codes referring back to the previous instance. In diffraction datasets, long recurring sequences of characters174

are generally rare, but there is one big exception; long runs of zeroes. So, the pattern-matching in LZ77175

will efficiently compress long runs of zeroes, but the computational work the algorithm does to find more176

complex recurring sequences is largely wasted.177

Secondly, DEFLATE takes the output of the LZ77 stage, and applies Huffman coding [18] to it. Normally,178

different characters in a dataset (e.g. integers in image data) are all represented with the same number179

of bits. Huffman coding looks at the frequencies of different characters in the dataset, and produces a180

new coding scheme that represents common characters with shorter sequences of bits and rare ones with181

longer sequences. This is analogous to Morse code, where the most common letter in English, ”E”, is182

represented by a single dot, whereas rare letters have longer sequences. For diffraction data, this stage will183

achieve compression due to the nonuniform statistics of pixel values, where low pixel values are much184

more common than high ones.185

Frontiers 6

Pennicard et al.

As a contrasting example, the Bitshuffle LZ4 algorithm [16] implicitly takes advantage of the knowledge186

that the higher bits of pixel values are mostly zero and strongly correlated between neighbouring pixels.187

In the first step, Bitshuffle, the bits in the data stream are rearranged so that the first bit from every pixel188

are all grouped together, then the second bit, etc. After this regrouping, the result will often contain long189

runs of bytes with value zero, as illustrated in Fig. 4. The LZ4 algorithm, which is similar to LZ77, will190

then efficiently encode these long runs of zero bytes. As mentioned above, this algorithm gives similar191

performance to GZIP for X-ray diffraction data while being less computationally expensive.192

Figure 4. Illustration of the Bitshuffle process, used in Bitshuffle/LZ4. This reorders the bits in the data
stream so that the LZ4 compression stage can take advantage of the fact that the upper bits in diffraction
data are mostly zero, and strongly correlated between neighbouring pixels.

3.3 Applying lossy compression to imaging data193

While lossless compression can achieve good compression ratios for diffraction data, there is increasing194

demand for lossy data compression. Firstly, data from some experiments such as imaging do not losslessly195

compress well, due to noise, and secondly, the increasing data volumes produced by new detectors and196

experiments mean that higher compression ratios are desirable. The key challenge of lossy compression197

is ensuring that the compression does not significantly change the final result of analysis. This requires198

evaluating the results of the compression with a variety of datasets, either by directly comparing the199

compressed and uncompressed images with a metric of similarity, or by performing the data analysis and200

applying some appropriate metric of quality to the final result.201

In X-ray imaging and tomography experiments, the detector measures X-ray transmission through the202

sample, and perhaps also additional effects such as enhancement of edges through phase contrast. This203

means that most pixels will receive a reasonably high X-ray flux, in contrast to X-ray diffraction where204

most pixels see few or even zero photons. So, noise due to Poisson statistics will be relatively high in205

most pixels. Likewise, a key requirement for detectors in these experiments is a small effective pixel size,206

whereas single photon sensitivity is less critical. To achieve this, the typical approach is to couple a thin207

scintillator to a visible light camera with small pixels such as a CMOS sensor, using magnifying optics208

[19]. This means that the detector noise is also non-negligible.209

Since an X-ray transmission image is a real-space image of an object, and broadly resembles a210

conventional photograph (unlike a diffraction pattern), widely-used lossy compression algorithms for211

images can potentially be used for compression. In particular, JPEG2000 [20] is already widely used212

in medical imaging, and in tomography at synchrotrons it has been demonstrated to achieve a factor of213

3-4 compression without significantly affecting the results of the reconstruction [21]. To test this, the214

reconstruction of the object was performed both before and after compression, and the two results compared215

Frontiers 7

Pennicard et al.

using the Mean Structural Similarity Index Measure (MSSIM) metric. A compression factor of 6-8 was216

possible in data with a high signal-to-noise ratio.217

3.3.1 Example - lossy compression with JPEG2000218

One common approach to both lossy and lossless compression is apply a transform to the data that219

results in a sparse representation, i.e. most of the resulting values are low or zero. (The choice of transform220

naturally depends on the characteristics of the data.) The sparse representation can then be compressed221

efficiently.222

In the case of JPEG2000 [20], the Discrete Wavelet Transform [22] is used; in effect, this transformation223

represents the image of a sum of wave packets with different positions and spatial frequencies. This tends224

to work well for real space images, which tend to consist of a combination of localized objects and smooth225

gradients, which can be found on different length scales. After applying the transform, the resulting values226

are typically rounded off to some level of accuracy, allowing for varying degrees of lossy compression.227

(By not applying this rounding, lossless compression is also possible.) Then, these values are encoded by228

a method called arithmetic coding, which is comparable to Huffman coding; it achieves compression by229

taking advantage of the nonuniform statistics of the transformed values, which in this case are mostly small230

or zero.231

JPEG2000 can be compared with the older JPEG standard, where the transformation consists of splitting232

the image into 8×8 blocks, and applying the Discrete Cosine Transform to each block, thus taking advantage233

of the fact that images tend to be locally smooth. This is computationally cheaper than JPEG2000, but one234

key drawback is that this can lead to discontinuities between these 8× 8 blocks after compression.235

3.4 Novel methods for lossy compression236

As mentioned previously, increasing data volumes mean there is demand for achieving increasing237

compression, even for experiments such as X-ray diffraction where lossless compression works reasonably238

well. Naturally, this can be approached by testing a variety of well-established lossy compression algorithms239

on data, and experimenting with with methods such as rounding the data to some level of accuracy. However,240

there are also new lossy compression methods being developed specifically for scientific data. One particular241

point of contrast is that most image compression algorithms focus on minimizing the perceptible difference242

to a human viewer, whereas for scientific data other criteria can be more important, such as imposing limits243

on the maximum error allowed between original values and compressed values.244

One simple example is quantizing X-ray data with a step size smaller than the Poisson noise, which245

is proportional to
√

(N). For ptychography, for example, it has been demonstrated that quantizing pixel246

values with a step size of 0.5×
√

(N) [23] does not degrade the quality of the reconstruction.247

A more sophisticated example of error-bounded lossy compression is the SZ algorithm [24], which is a248

method for compressing a series of floating-point values. For each new element in the series, the algorithm249

checks if its value can be successfully ”predicted” (within a specified margin of error) using any one of250

three methods: directly taking the previous value; linear extrapolation from the previous two values; or251

quadratically extrapolating from the previous three values. If so, then the pixel value is represented by a252

2-bit code indicating the appropriate prediction method. If not, then this ”unpredictable” value needs to be253

stored explicitly. This is illustrated in Fig. 5. After the algorithm runs, further compression is applied to the254

list of unpredictable values.255

Frontiers 8

Pennicard et al.

Figure 5. Illustration of the ”predictive” approach used in SZ compression of floating-point data. If the
value of the next data point can be extrapolated (within a user-defined margin of error) from previous data
points using one of 3 methods, the point is represented by a 2-bit code indicating the method, e.g. quadratic
in this case.

Underwood et al. in [25] reports on applying SZ to serial crystallography data from LCLS, where the256

images consist of floating point values obtained from an integrating detector. In this method, lossless257

compression is applied to regions of interest consisting of Bragg peaks detected in the image, while binning258

followed by lossy compression is applied to the rest of the image, with the goal of ensuring that any weak259

peaks that went undetected will still have their intensities preserved sufficiently well. It is reported that260

when using this strategy, using SZ for the lossy compression can achieve a compression ratio of 190 while261

still achieving acceptable data quality, whereas other lossy compression methods tested gave a compression262

ratio of 35 at best.263

4 OTHER FORMS OF DATA REDUCTION

The data compression methods discussed thus far work by representing a given file using fewer bits;264

the original file can be reconstructed from the compressed file (albeit with some inaccuracy in the case265

of lossy compression). More broadly, though, there are other methods of data reduction which rely on266

eliminating non-useful data entirely, or transforming the data in a non-recoverable way. These methods267

have the potential to greatly reduce the amount of data needing to be stored, though of course it is crucial268

to establish that these methods are reliable before putting them into practice.269

4.1 Data rejection / vetoing270

In some experiments, a large fraction of the data collected does not contain useful information. For271

example, in experiments at FELs such as serial crystallography and single particle imaging, the sample can272

consist of a liquid jet containing protein nanocrystals or objects such as viruses passing through the path273

of the beam. However, only a small fraction of X-ray pulses (in some cases, of order 1%) actually hit a274

sample to produce an image containing a useful diffraction pattern. So, in these kind of experiments, data275

volumes can be greatly reduced by rejecting images where the beam did not the target.276

Frontiers 9

Pennicard et al.

One example of this is azimuthal integration. In some X-ray diffraction experiments, such as powder301

diffraction, the signal on the detector has rotational symmetry, and so the data can be reduced to a 1-D302

profile of X-ray intensity as a function of diffraction angle. For a multi-megapixel-sized detector, this303

corresponds to a factor of 1000 reduction in data size. Hardware-accelerated implementations of azimuthal304

integration have been developed for GPUs [32], and more recently for FPGAs [33].305

4.3 Connections between data reduction and on-the-fly analysis306

If data reduction involves performing analysis steps on data (e.g. azimuthal integration) or makes the data307

easier to process (e.g. making the dataset smaller by rejecting bad data) then this synergises with on-the-fly308

data processing, where the data is processed immediately during the course of the experiment rather than309

being saved to disk and processed at a later point.310

Typically, these sort of data reduction methods have the drawback that if some or all of the original data311

is discarded, then any errors in the processing cannot be corrected. For example, performing azimuthal312

integration correctly requires accurate calibration of the centre of the diffraction pattern and any tilt of the313

detector relative to the beam.314

However, since on-the-fly data analysis is useful to users, the trustworthiness of these methods can315

be established in stages. For example, as a first stage all the raw data may be saved to disk for later316

analysis, with on-the-fly processing providing quick feedback during the experiment. Once the reliability317

of the automatic processing is better-established, raw data might only be stored for a shorter time before318

deletion, to give the opportunity for the user to cross-check for correctness. Finally, once the on-the-fly data319

processing is fully trusted, it may be possible to only save a small fraction of the raw data for validation320

purposes.321

5 HARDWARE-ACCELERATED IMAGE CORRECTION AND DATA REDUCTION

”Off the shelf” data processing hardware of course naturally plays a key role in building data acquisition322

systems for detectors; even custom hardware such as circuit boards for detector control will incorporate323

commercial parts such as microcontrollers or FPGAs.324

Algorithms can be designed or adapted to take advantage of parallelism on both CPUs and GPUs or325

pipelining of FPGAs. For instance, algorithms like Fast Fourier Transform (FFT) [34], image processing326

filters [35], and some statistical calculations [36] can be parallelized effectively. Furthermore, in the realm327

of data reduction, machine learning models rely significantly on hardware acceleration to address their328

computational requirements [37, 38, 39].329

Here, we give an overview of the distinctive features of CPUs, GPUs and FPGAs for data processing.330

In particular, a major aspect of high-performance computing is parallelization of work, where a data331

processing task is divided between many processing units, but how this is achieved varies between devices,332

which can affect the best choice of hardware for the task.333

5.1 CPUs - Central Processing Units334

The architecture of a typical CPU is shown in Fig. 7. A key feature of modern CPUs is that they’re335

designed to be able to run many different programs in a way that appears simultaneous to the user. Most336

modern CPUs are composed of a number of cores; for example, CPUs in the high-end AMD EPYC337

series have from 32 to 128, though desktop . Each core has a control unit, which is able to independently338

interpret a series of instructions in software and execute them, along with an arithmetic unit for performing339

Frontiers 11

Pennicard et al.

operations on data, and cache memory for temporarily storing data. Furthermore, CPUs cores can very340

rapidly switch between executing different tasks, so even a single CPU core can perform many tasks in a341

way that seems parallel to the user. In most cases, the CPU will be running an operating system, which342

handles the sharing of resources such as memory and peripherals between the tasks in a convenient way for343

programmers. High performance computing with CPUs generally involves parallelization of work across344

multiple cores; in doing this, the different cores can operate relatively independently.345

Physical
Core 1

Physical
Core 0

Physical
Core 3

DD
R4

M

em
or

y
 C

on
tr

ol
le

r

L3 Cash Memory 6MB

Physical
Core 2

Un
co

re
 Q

ue
ue

 I
/O

CPU

X99 Chipset

GPU GPU

PCI Express Bus

DD
R4

M

ai
n

M
em

or
y

ALU

Registers
Logic CPU 0

Registers
Logic CPU 1

BUS INTERFACE

Single core CPU
Core 0

Figure 7. Architecture of a Quad-core hyperthreading CPU.

Compared to GPUs and FPGAs, CPUs are generally the easiest to use and program. Indeed, GPUs are346

virtually always used as accelerator cards as part of a system with a CPU, and it’s common for systems347

based on FPGAs to make use of a CPU (e.g. as part of a System On Chip). In addition, if a task is inherently348

sequential and cannot be parallelized, then a CPU core may give better performance than a GPU or FPGA.349

However, CPUs generally have much less parallel processing power than GPUs or FPGAs.350

5.2 GPUs - Graphics Processing Units351

GPUs are designed to allow massively parallel processing for tasks such as graphics processing or352

general-purpose computing. The basic units of GPUs are called CUDA cores (in NVIDIA GPUs) or stream353

processors (in AMD GPUs). These are much more numerous than CPU cores, numbering in the thousands,354

allowing much greater parallelism and processing power. However, rather than each core being able to355

independently interpret a stream of instructions, these cores are organised into blocks, with all the cores in356

a block simultaneously executing the same instruction on different data elements - for example, applying357

the same mathematical operation to different elements in an array. The structure of a typical GPU is shown358

in Fig. 8.359

GPU programming relies on specialized frameworks such as CUDA or OpenCL. GPUs are generally360

used as accelerator cards in a system with a CPU, and these frameworks firstly allow the CPU to control the361

GPU’s operation (by passing data to and from it, and starting tasks) and secondly to program functions that362

will run on the GPU. Typically, GPU code contains additional instructions controlling how different GPU363

cores in a block access data; e.g. when performing an operation on an array, the first core in a block might364

perform operations on the first element, and so forth. This can be relatively easy to apply to a lot of image365

Frontiers 12

Pennicard et al.

Traditionally, firmware is developed by using a hardware description language to describe the required375

functionality; a compiler then finds a suitable configuration of blocks and interconnects to achieve this.376

While hardware description languages differ substantially from conventional programming languages,377

high-level-synthesis tools for FPGAs have been more recently developed to make it possible to describe an378

algorithm with a more conventional programming language (such as C++), with special directives in the379

code being used to indicate how parallelism can be achieved with the FPGA.380

A distinctive form of parallelism in FPGAs is pipelining. A series of processing steps will often be381

implemented as a series of blocks forming a pipeline, with data being passed along from one block to another.382

This is analogous to a production line in a factory, where each station carries out a particular fabrication383

step, and goods pass from one station to another. As with the production line, at any given moment there384

will be multiple data elements in different stages of processing being worked on simultaneously. In turn,385

to make algorithms run efficiently in an FPGA, they need to be designed to make effective use of this386

pipeline parallelism. This means that FPGAs tend to be better-suited to algorithms that operate on relatively387

continuous streams of data, rather than algorithms that rely on holding large amounts of data in memory388

and accessing them in an arbitrary way. As well as achieving a high throughput, algorithms on FPGA can389

give a reliably low latency, which can be important in cases where fast feedback is required. However, it is390

generally more challenging to program FPGAs than CPUs or GPUs.391

6 DATA TRANSFER AND PROCESSING CHAINS IN DETECTORS

A typical detector and DAQ system consist of series of stages, as illustrated previously in Fig. 1. At each392

stage, data transfer is needed, and we face a series of bottlenecks which can limit the possible data rate. By393

doing data reduction earlier on in this chain, the data transfer demands on later stages are reduced, and394

we can take advantage of this to achieve higher detector speeds. Conversely, the hardware used in earlier395

stages of this chain is typically more ”custom” or specialized, making the implementation of data reduction396

more challenging, and typically there is also less flexibility in these stages.397

The stages in the readout and processing chain are as follows, and the potential for data reduction at each398

stage will be discussed in more detail in the following section.399

• The readout chip (hybrid pixel) or monolithic sensor.400

• Readout electronics within the detector itself, which typically incorporate an FPGA, microcontroller401

or similar.402

• Detector-specific data processing hardware. Typically, this consists of one or more PCs, which can403

include peripherals such as FPGAs or GPUs, but it is also possible to build more specialized systems,404

such as crates of FPGA boards.405

• Generic high-performance-computing hardware, typically in the facility’s computing cluster.406

6.1 On-chip data reduction407

The first data bottleneck encountered in the detector is transferring data out of the hybrid pixel readout408

chip or monolithic sensor. In a pixel detector, we have a 2D array of pixels generating data, and within409

the chip it’s possible to have a high density of signal routing. However, data output takes place across a410

limited number of transceivers, which are typically located at the periphery of the chip and connect to a411

circuit board via wire bonds (though there is increasing effort in using Through Silicon Vias - TSVs - for412

interconnect [41]). In turn, in connecting these to the rest of the readout system, further bottlenecks are413

Frontiers 14

Pennicard et al.

faced. To build large detector areas with minimal gaps, it’s typical to adopt a modular detector design, with414

each module’s electronics placed behind it; this naturally creates limits on the space available for PCB415

traces and components such as FPGAs and optical transceivers. So, performing data reduction on-chip416

could potentially allow the chips to overcome these bottleneck and run at higher speeds.417

Naturally, any circuitry for on-chip compression must be designed to not occupy excessive amounts of418

space in the pixels or periphery. Additionally, readout chips are developed in technology scales that are419

relatively large compared to commercial data processing hardware like GPUs and FPGAs, due to the high420

cost of smaller nodes. So, rather than implementing general-purpose processing logic into detector chips,421

specific algorithms are implemented.422

Hammer et al. [13] present a design for on-chip data compression for photon counting detectors, using423

techniques similar to those discussed previously in Section 3. Firstly, within the pixels, count values are424

encoded with a varying step size, with the step size getting larger for larger pixel values such that the step425

does not exceed the
√

(N) Poisson noise. This is lossy compression, but the additional noise introduced by426

this encoding should be less than the Poisson noise. Then, in the chip’s periphery during readout, a lossless427

compression scheme is applied that applies bit shuffling to the data (much as described for bitshuffle LZ4)428

then encodes runs of zeroes efficiently. Applied to example datasets, this computationally-cheap approach429

achieved a compression ratio of around 6 for XRD data, compared to 19 obtained with GZIP.430

One important limitation of on-chip data compression is that in a large tiled detector composed of multiple431

chips, the compressibility of the data can vary a great deal between different chips. In X-ray diffraction432

experiments in particular, the X-ray intensity close to the beam is much higher than at large scattering433

angles, leading to less compression. So, chips close to the beam may encounter data bottlenecks even if a434

high overall level of compression is achieved for the detector as a whole.435

Another example of on-chip reduction is data vetoing by rejecting bad images, as discussed previously.436

The Sparkpix-ED chip is one of a family of chips with built-in data reduction being developed by SLAC437

[42]. It is an integrating pixel detector with two key features. Firstly, each pixel has built-in memory which438

is used to store recent images. Secondly, there is summing circuitry that can add together the signals in439

groups of 3 × 3 pixels, to produce a low-resolution image with 1/9 of the size. During operation, each440

time a new image is acquired the detector will store the full-resolution image in memory and send out the441

low-resolution image to the readout system. The readout system will then analyse the low-resolution images442

to see if an interesting event occurred (e.g. diffraction from a protein crystal in a serial crystallography443

experiment). If so, the detector can be triggered to read out the corresponding full-resolution image from444

memory; if not, the image will be discarded. A small prototype has demonstrated reading out low-resolution445

images at 1 MHz frame rate, and full-resolution images at 100 kHz.446

6.2 On-detector processing and compression447

Data processing and compression can potentially be done within the detector, before data is transferred to448

the control system (typically over optical links). Once again, this can reduce the bandwidth required for449

this data transfer.450

Typically, on-detector electronics are needed both to control the detector’s operation, and to perform451

serialization and encoding of data into some standard format so that it can be sent efficiently back to the452

control system and received using off-the-shelf hardware. (In some cases, it’s also necessary to interface to453

additional components such as on-board ADCs.) One particular benefit of serialization is that individual454

transceivers on a readout chip typically run at a lower data rate than can be achieved by modern optical455

Frontiers 15

Pennicard et al.

links, so serialization can allow these links to be used more efficiently; for example, even the fastest on-chip456

transceivers typically do not have data rates above 5 Gbit/s, whereas data sent using 100 Gigabit Ethernet457

with QSFP28 transceivers consists of 4 channels with a data rate of 25 Gbit/s each. These tasks of control458

and serialization are typically implemented in an FPGA, or a System-On-Chip (SoC) with an FPGA fabric.459

So, the most common approach to on-detector data processing is to use the FPGA’s processing resources.460

As discussed in more detail earlier, FPGAs can provide highly-parallelized data processing, but firmware461

development can be challenging and time consuming. So, detector-specific processing routines that will462

always need to be performed on the data are better-suited to FPGA implementation than ones that vary a463

lot between experiments.464

For example, FPGAs in the EIGER photon counting detector perform count-rate correction and image465

summing [43]. Since the counters in the pixel have a depth of 12 bits, this makes it possible for the detector466

to acquire images with a depth of up to 32 bits by acquiring a series of images and internally summing467

them, rather than needing to transfer many 12-bit images to the DAQ system.468

One drawback of on-detector processing is that if the FPGA is used for control, serialization and data469

processing, then it can become more difficult to change the data processing routines. When FPGA firmware470

is compiled, the compiler will route together blocks in the FPGA to produced the desired functionality. So,471

changing the data processing routines can change the routing of other functionality in the FPGA, potentially472

affecting reliability. So, careful re-testing is required after changing the data processing. This is another473

reason why on-detector processing with FPGAs is mostly used for fixed, detector-specific routines.474

6.3 Data acquisition hardware such as PCs with accelerator cards475

Data sent out from a detector module will normally be received by either one or more DAQ PCs, or more476

specialized hardware, located either at the beamline or in the facility’s computing centre. These parts of the477

DAQ system can have a range of functions:478

• Detector configuration and acquisition control, which requires both monitoring the detector’s state and479

data output, and receiving commands from the control system.480

• Ensuring reliable data reception. It is common for a detector’s output to be a continuous flow of data,481

transferred by a simple protocol like UDP without the capability to re-send lost packets [44], So the482

DAQ system is required to reliably receive and buffer this data; this typically requires, for example,483

having dedicated, high performance network or receiver cards.484

• Data correction and reduction.485

• Transferring data to where it’s needed, for example the facility’s storage system, online processing486

and/or a user interface for feedback. This can include tasks like adding metadata and file formatting.487

Compared to detectors themselves, these systems tend to be built with relatively off-the-shelf hardware488

components - for example, standard network cards or accelerator cards. The appeal of using off-the-shelf489

hardware, in addition to reducing development costs, is that it is easier to upgrade the hardware to take490

advantage of rapid improvements in technology. These DAQ systems may use conventional CPUs, hardware491

accelerators such as GPUs and FPGAs, or a mixture of these.492

One recent example of this approach is the Jungfraujoch processing system, developed by PSI for the493

Jungfrau 4-megapixel detector [45]. (A similar approach is taken by the CITIUS detector [46].) The494

Jungfraujoch system is based on an IBM IC922 server PC, equipped with accelerator cards, and can handle495

17 GB/s data when the detector is running at 2 kHz frame rate.496

Frontiers 16

Pennicard et al.

Figure 10. A photograph of the IC922 server (IBM) used in Jungfraujoch, showing the FPGA board used
for data reception and processing, and the OpenCAPI link allowing coherent access to the CPU’s memory.
Reproduced from [45] with permission of the International Union of Crystallography.

The Jungfraujoch server is shown in Fig. 10 (reproduced from [45] with permission of the International497

Union of Crystallography). Firstly, it is equipped with two ”smart network cards” from Alpha Data, each498

with a Xilinx Virtex Ultrascale+ FPGA and a 100 Gigabit Ethernet network link. These receive data directly499

from the detector over UDP. The FPGA then converts the raw data into images, as described in [47].500

Jungfrau is an integrating detector with gain switching, so the raw data consists of ADC values, and the501

process of converting this to either photons or energy values includes subtracting the dark current and502

scaling by an appropriate gain factor. The FPGA also performs the Bitshuffle algorithm, which is the first503

step in Bitshuffle LZ4 compression described previously; since this algorithm involves reordering bits in a504

data stream, this is well-suited to implementation on FPGA. The FPGA is primarily programmed by using505

High Level Synthesis (HLS) based on C++.506

The data from each FPGA is transferred to the host server PC using OpenCAPI interconnects, which both507

allows high speed data transfer at 25 GB/s, and makes it simpler for the FPGA to access memory on the508

server. The CPU in the server performs the LZ4 part of the Bitshuffle LZ4 lossless compression algorithm,509

then forwards this data to the file system using ZeroMQ so it can be written to the file system as an HDF5510

file. There is also a GPU in the system that can perform tasks such as spot finding in macromolecular511

crystallography, and monitoring aspects of the detector’s behaviour such as the dark current. (These tasks512

are well suited to GPUs, since they involve performing operations on full images in parallel.)513

One promising technological development in this field is that FPGA and GPU vendors are increasingly514

developing accelerator cards with built-in network links for the datacenter market. For example, Xilinx515

have the Alveo line of FPGA cards with two 100 Gigabit Ethernet links and optional high-bandwidth516

memory, and likewise NVIDIA is currently developing GPU cards with network links. So, this will increase517

the availability of powerful, standardized hardware for building DAQ systems.518

Frontiers 17

Pennicard et al.

6.4 Computing clusters519

Modern light sources are generally supported by large computer clusters for data processing and large520

storage systems [48]. Data from DAQ PCs or similar hardware at the beamlines can be transferred to them521

over the facilty’s network. Data processing in computing clusters can be divided into online analysis, where522

the data is transferred directly to the cluster to provide fast results to the experiment, and offine analysis523

where data is read back from storage for processing at a later point. (Naturally, there may not be a sharp524

dividing line between these two approaches.) In addition to server PCs with CPUs, computing clusters can525

also incorporate GPUs or less commonly FPGAs.526

In a computing cluster, there is generally a scheduling system that controls how tasks are assigned to the527

computers. This has the advantage of allowing sharing of resources between different experiments and528

users according to needs, whereas dedicated hardware installed at a beamline may be idle much of the529

time. Computing clusters are also much better-suited to allowing users to remotely access to their data and530

providing the software tools required to analyse it. However, this flexibility in task scheduling and usage531

can make it more difficult to ensure that we can reliably receive and process images from the detector at532

the required rate; this is one reason for having dedicated DAQ computers at the beamline for receiving533

detector data.534

7 CONCLUSIONS

The increasing data rates of detectors for photon science mean there is a strong need for high-speed detector535

data correction, and data reduction.536

There are strong ties between these tasks. On the one hand, data reduction can often yield better results537

on properly-corrected data, since the correction process can reduce spurious variation in images (e.g.538

pixel-to-pixel variation in response) and make it easier to exploit redundancy in the data. Conversely, after539

lossy data reduction it is impossible to perfectly recover the original data, so it is crucial to ensure that the540

quality of the data correction is as good as possible.541

Both of these tasks can benefit from making better use of hardware accelerators such as GPUs and542

FPGAs for highly parallel processing. The increasing use of accelerators in other areas, such as datacenters,543

means that we can take advantage of improvements in both their hardware and in tools for programming544

them. In particular, as FPGAs and GPUs with built-in network links become available ”off the shelf”, this545

increases the potential for different labs to build their DAQ systems with compatible hardware, and share546

the algorithms they develop. Although this paper emphasizes data processing hardware, it is also important547

to note that well-designed and coded algorithms can deliver much better performance.548

Data reduction is a growing field in photon science. To date, lossless compression has mainly been used,549

since this ensures that there is no loss in data quality, and in some experiments lossless methods can achieve550

impressive compression ratios. However, lossless compression is relatively ineffective for methods such551

as imaging, and as data volumes increase there is demand for even greater data reduction in diffraction552

experiments. So, there will be an increasing need for lossy compression and other methods of reduction. In553

doing so, it is crucial to use appropriate metrics to test that the data reduction does not significantly reduce554

the quality of the final analysis. By using well-established methods of lossy compression, for example555

image compression with JPEG2000, it is easier to incorporate data reduction into existing data analysis556

pipelines. However, novel methods of data reduction tailored to photon science experiments have the557

potential for better performance.558

Frontiers 18

Pennicard et al.

Data reduction can be incorporated into different stages of a detector’s DAQ chain; generally, performing559

data reduction earlier in the chain is more challenging and less flexible, but has the advantage of reducing560

the bandwidth requirements of later stages, and can enable greater detector performance by overcoming561

bottlenecks in bandwidth. The development of on-chip data reduction is a particularly exciting development562

for enabling higher-speed detectors, though this would typically require the development of different chips563

for different classes of experiment. As the demand for data reduction increases, we can expect detectors564

and experiments to incorporate a series of data reduction steps, beginning with simpler or more generic565

reduction early in the processing chain, and then more experiment-specific data reduction taking place in566

computer clusters.567

CONFLICT OF INTEREST STATEMENT

The authors declare that the research was conducted in the absence of any commercial or financial568

relationships that could be construed as a potential conflict of interest.569

AUTHOR CONTRIBUTIONS

DP: Writing – original draft, review & editing, Conceptualization, Investigation; VR: Writing – review &570

editing, Visualization; HG: Funding acquisition, Supervision.571

FUNDING

The authors acknowledge support from DESY, a member of the Helmholtz Association HGF. Additional572

funding for work on data reduction has been provided by multiple sources: LEAPS-INNOV, which has573

received funding from the European Union´s Horizon 2020 research and innovation programme under574

grant agreement no. 101004728; Helmholtz Innovation Pool project Data-X; and HIR3X - Helmholtz575

International Laboratory on Reliability, Repetition, Results at the most Advanced X-Ray Sources.576

ACKNOWLEDGMENTS

Thanks to members of the LEAPS consortium and LEAPS-INNOV project, particularly those who577

have presented and discussed their work on data reduction at events; this has been a valuable source of578

information in putting together this review. Thanks also to Thorsten Kracht (DESY) for providing feedback579

on the paper.580

REFERENCES

[1] Rao R. Synchrotrons face a data deluge. Physics Today (2020). doi:10.1063/PT.6.2.20200925a.581

[2] Marras A, Klujev A, Lange S, Laurus T, Pennicard D, Trunk U, et al. Development of CoRDIA: An582

imaging detector for next-generation photon science X-ray sources. Nuclear Instruments and Methods583

in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment584

1047 (2023) 167814. doi:https://doi.org/10.1016/j.nima.2022.167814.585

[3] Allahgholi A, Becker J, Bianco L, Delfs A, Dinapoli R, Goettlicher P, et al. AGIPD, a high dynamic586

range fast detector for the European XFEL. Journal of Instrumentation 10 (2015) C01023. doi:10.587

1088/1748-0221/10/01/C01023.588

[4] Hsieh SS, Iniewski K. Improving paralysis compensation in photon counting detectors. IEEE589

Transactions on Medical Imaging 40 (2021) 3–11. doi:10.1109/TMI.2020.3019461.590

Frontiers 19

Pennicard et al.

[5] Könnecke M, Akeroyd FA, Bernstein HJ, Brewster AS, Campbell SI, Clausen B, et al. The NeXus data591

format. Journal of Applied Crystallography 48 (2015) 301–305. doi:10.1107/S1600576714027575.592

[6] [Dataset] The HDF Group. Hierarchical data format version 5 (2000-2010).593

[7] Sayood K. Lossless compression handbook (Elsevier) (2002).594

[8] Al-Shaykh OK, Mersereau RM. Lossy compression of noisy images. IEEE Transactions on Image595

Processing 7 (1998) 1641–1652.596

[9] Becker J, Greiffenberg D, Trunk U, Shi X, Dinapoli R, Mozzanica A, et al. The single photon597

sensitivity of the Adaptive Gain Integrating Pixel Detector. Nuclear Instruments and Methods in598

Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 694599

(2012) 82–90. doi:https://doi.org/10.1016/j.nima.2012.08.008.600

[10] Ballabriga R, Alozy J, Campbell M, Frojdh E, Heijne E, Koenig T, et al. Review of hybrid pixel601

detector readout ASICs for spectroscopic X-ray imaging. Journal of Instrumentation 11 (2016)602

P01007. doi:10.1088/1748-0221/11/01/P01007.603

[11] Broennimann C, Eikenberry EF, Henrich B, Horisberger R, Huelsen G, Pohl E, et al. The PILATUS604

1M detector. Journal of Synchrotron Radiation 13 (2006) 120–130. doi:10.1107/S0909049505038665.605

[12] Deutsch LP. DEFLATE Compressed Data Format Specification version 1.3. No. 1951 in Request for606

Comments (RFC Editor) (1996). doi:10.17487/RFC1951.607

[13] Hammer M, Yoshii K, Miceli A. Strategies for on-chip digital data compression for X-ray pixel608

detectors. Journal of Instrumentation 16 (2021) P01025. doi:10.1088/1748-0221/16/01/P01025.609

[14] Leonarski F, Mozzanica A, Brückner M, Lopez-Cuenca C, Redford S, Sala L, et al. JUNGFRAU610

detector for brighter x-ray sources: Solutions for IT and data science challenges in macromolecular611

crystallography. Structural Dynamics 7 (2020) 014305. doi:10.1063/1.5143480.612

[15] Gailly J, Adler M. Gzip documentation and sources. available as gzip-*. tar in ftp://prep. ai. mit.613

edu/pub/gnu (1993).614

[16] Masui K, Amiri M, Connor L, Deng M, Fandino M, Höfer C, et al. A compression scheme for radio615

data in high performance computing. Astronomy and Computing 12 (2015) 181–190. doi:https:616

//doi.org/10.1016/j.ascom.2015.07.002.617

[17] Ziv J, Lempel A. A universal algorithm for sequential data compression. IEEE Transactions on618

information theory 23 (1977) 337–343.619

[18] Huffman DA. A method for the construction of minimum-redundancy codes. Proceedings of the IRE620

40 (1952) 1098–1101.621

[19] Mittone A, Manakov I, Broche L, Jarnias C, Coan P, Bravin A. Characterization of a sCMOS-622

based high-resolution imaging system. Journal of Synchrotron Radiation 24 (2017) 1226–1236.623

doi:10.1107/S160057751701222X.624

[20] Skodras A, Christopoulos C, Ebrahimi T. The JPEG 2000 still image compression standard. IEEE625

Signal Processing Magazine 18 (2001) 36–58. doi:10.1109/79.952804.626

[21] Marone F, Vogel J, Stampanoni M. Impact of lossy compression of X-ray projections onto627

reconstructed tomographic slices. Journal of Synchrotron Radiation 27 (2020) 1326–1338.628

doi:10.1107/S1600577520007353.629

[22] Shensa MJ, et al. The discrete wavelet transform: wedding the a trous and mallat algorithms. IEEE630

Transactions on signal processing 40 (1992) 2464–2482.631

[23] Huang P, Du M, Hammer M, Miceli A, Jacobsen C. Fast digital lossy compression for X-632

ray ptychographic data. Journal of Synchrotron Radiation 28 (2021) 292–300. doi:10.1107/633

S1600577520013326.634

Frontiers 20

Pennicard et al.

[24] Di S, Cappello F. Fast error-bounded lossy HPC data compression with SZ. 2016 IEEE International635

Parallel and Distributed Processing Symposium (IPDPS) (2016), 730–739. doi:10.1109/IPDPS.2016.636

11.637

[25] Underwood R, Yoon C, Gok A, Di S, Cappello F. ROIBIN-SZ: Fast and science-preserving638

compression for serial crystallography (2022). doi:10.48550/arXiv.2206.11297.639

[26] Barty A, Kirian RA, Maia FR, Hantke M, Yoon CH, White TA, et al. Cheetah: software for high-640

throughput reduction and analysis of serial femtosecond x-ray diffraction data. Journal of applied641

crystallography 47 (2014) 1118–1131.642

[27] Winter G, Waterman DG, Parkhurst JM, Brewster AS, Gildea RJ, Gerstel M, et al. DIALS:643

implementation and evaluation of a new integration package. Acta Crystallographica Section D644

74 (2018) 85–97. doi:10.1107/S2059798317017235.645

[28] Rahmani V, Nawaz S, Pennicard D, Setty SPR, Graafsma H. Data reduction for X-ray serial646

crystallography using machine learning. Journal of Applied Crystallography 56 (2023) 200–213.647

doi:10.1107/S1600576722011748.648

[29] Ke TW, Brewster AS, Yu SX, Ushizima D, Yang C, Sauter NK. A convolutional neural network-based649

screening tool for X-ray serial crystallography. Journal of synchrotron radiation 25 (2018) 655–670.650

[30] Blaj G, Chang CE, Kenney CJ. Ultrafast processing of pixel detector data with machine learning651

frameworks. AIP Conference Proceedings (AIP Publishing) (2019), vol. 2054.652

[31] Chen L, Xu K, Zheng X, Zhu Y, Jing Y. Image distillation based screening for x-ray crystallography653

diffraction images. 2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications,654

Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing &655

Networking (ISPA/BDCloud/SocialCom/SustainCom) (IEEE) (2021), 517–521.656

[32] Kieffer J, Wright J. PyFAI: a python library for high performance azimuthal integration on GPU.657

Powder Diffraction 28 (2013) S339–S350. doi:10.1017/S0885715613000924.658

[33] Matěj Z, Skovhede K, Johnsen C, Barczyk A, Weninger C, Salnikov A, et al. Azimuthal integration659

and crystallographic algorithms on field-programmable gate arrays. Acta Crystallographica Section A660

77 (2021) C1185. doi:10.1107/S0108767321085263.661

[34] Lin JM. Python non-uniform fast fourier transform (pynufft): An accelerated non-cartesian mri662

package on a heterogeneous platform (cpu/gpu). Journal of Imaging 4 (2018) 51.663

[35] Qasaimeh M, Denolf K, Lo J, Vissers K, Zambreno J, Jones PH. Comparing energy efficiency of cpu,664

gpu and fpga implementations for vision kernels. 2019 IEEE international conference on embedded665

software and systems (ICESS) (IEEE) (2019), 1–8.666

[36] Becker D, Streit A. Real-time signal identification in big data streams bragg-spot localization in667

photon science. 2015 International Conference on High Performance Computing & Simulation668

(HPCS) (IEEE) (2015), 611–616.669

[37] Becker D, Streit A. A neural network based pre-selection of big data in photon science. 2014 IEEE670

Fourth International Conference on Big Data and Cloud Computing (IEEE) (2014), 71–76.671

[38] Souza A, Oliveira LB, Hollatz S, Feldman M, Olukotun K, Holton JM, et al. Deepfreak:672

learning crystallography diffraction patterns with automated machine learning. arXiv preprint673

arXiv:1904.11834 (2019).674

[39] Branco S, Ferreira AG, Cabral J. Machine learning in resource-scarce embedded systems, fpgas, and675

end-devices: A survey. Electronics 8 (2019) 1289.676

[40] Abuowaimer Z, Maarouf D, Martin T, Foxcroft J, Gréwal G, Areibi S, et al. Gplace3. 0: Routability-677

driven analytic placer for ultrascale fpga architectures. ACM Transactions on Design Automation of678

Electronic Systems (TODAES) 23 (2018) 1–33.679

Frontiers 21

Pennicard et al.

[41] Hügging F, Owtscharenko N, Pohl DL, Wermes N, Ehrmann O, Fritzsch T, et al. Advanced through680

silicon vias for hybrid pixel detector modules. Nuclear Instruments and Methods in Physics Research681

Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 936 (2019) 642–643.682

doi:https://doi.org/10.1016/j.nima.2018.08.067. Frontier Detectors for Frontier Physics: 14th Pisa683

Meeting on Advanced Detectors.684

[42] Rota L, Perez AP, Habib A, Dragone A, Miceli A, Markovic B, et al. X-ray detectors for LCLS-II685

with real-time information extraction: the SparkPix family (2023). 24th International Workshop On686

Radiation Imaging Detectors (IWORID 2023), Oslo, Norway.687

[43] Bruckner M, Bergamaschi A, Cartier S, Dinapoli R, Frojdh E, Greiffenberg D, et al. A multiple 10688

Gbit Ethernet data transfer system for EIGER (2016). 20th IEEE Real Time Conference, Padova,689

Italy.690

[44] Gottlicher P, Sheviakov I, Zimmer M. 10G-Ethernet prototyping for 2-D X-Ray detectors at the XFEL.691

2009 16th IEEE-NPSS Real Time Conference (2009), 434–437. doi:10.1109/RTC.2009.5321620.692

[45] Leonarski F, Brückner M, Lopez-Cuenca C, Mozzanica A, Stadler HC, Matěj Z, et al. Jungfraujoch:693

hardware-accelerated data-acquisition system for kilohertz pixel-array X-ray detectors. Journal of694

Synchrotron Radiation 30 (2023) 227–234. doi:10.1107/S1600577522010268.695

[46] Grimes M, Pauwels K, Schülli TU, Martin T, Fajardo P, Douissard PA, et al. Bragg coherent diffraction696

imaging with the CITIUS charge-integrating detector. Journal of Applied Crystallography 56 (2023)697

1032–1037. doi:10.1107/S1600576723004314.698

[47] Redford S, Andrä M, Barten R, Bergamaschi A, Brückner M, Dinapoli R, et al. First full dynamic699

range calibration of the JUNGFRAU photon detector. Journal of Instrumentation 13 (2018) C01027.700

doi:10.1088/1748-0221/13/01/C01027.701

[48] Thayer J, Damiani D, Ford C, Dubrovin M, Gaponenko I, O’Grady CP, et al. Data systems for the702

Linac Coherent Light Source. Advanced Structural and Chemical Imaging 3 (2017) 3. doi:10.1186/703

s40679-016-0037-7.704

FIGURE CAPTIONS

Frontiers 22

