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Observation of an excess of di-charmonium events

in the four-muon final state with the ATLAS

detector

The ATLAS Collaboration

A search is made for potential 222̄2̄ tetraquarks decaying into a pair of charmonium states in
the four muon final state using proton–proton collision data at

√
B = 13 TeV, corresponding

to an integrated luminosity of 140 fb−1 recorded by the ATLAS experiment at LHC. Two
decay channels, �/k + �/k → 4` and �/k + k(2() → 4`, are studied. Backgrounds are
estimated based on a hybrid approach involving Monte Carlo simulations and data-driven
methods. Statistically significant excesses are seen in the di-�/k channel consistent with a
narrow resonance at 6.9 GeV and a broader structure at lower mass. A statistically significant
excess is also seen in the �/k+k(2S) channel. The fitted masses and decay widths of the
structures are reported.
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Beyond the conventional mesons (@@̄) and baryons (@@@ or @̄@̄@̄), exotic hadrons composed of four (@@@̄@̄)
or five quarks (@@@@@̄) are also allowed under color confinement. The - (3872) particle discovered
by Belle in 2003 was the first tetraquark (TQ) candidate [1], and was followed by a series of further
candidates designated as X, Y, and Z states [2]. In 2020, LHCb observed a narrow - (6900) structure in the
di-�/k channel [3]. The structure could be interpreted as a tetraquark with four charm quarks, )222̄2̄ . An
additional enhancement closer to the di-�/k mass threshold was also observed in the LHCb data. Since the
6.9 GeV LHCb resonance is above the �/k+k(2S) mass threshold, a structure in the �/k+k(2S) channel is
also possible. Both channels are investigated by ATLAS in a quite different phase space region from LHCb,
and the new channel of �/k+k(2S) provides more information for di-charmonium excesses. For example
in some predictions, the two channels are coupled via Pomeron exchange between the two charmonia, and
- (6900) is dynamically produced [4].

A search in the 4` final state produced through the di-�/k and �/k+k(2S) channels is carried out, using
140 fb−1 of LHC proton–proton (??) data collected by the ATLAS experiment at a center-of-mass energy of√
B = 13 TeV between the years 2015 and 2018. Only the data where all detector systems are functional and

recording high-quality data are used. The ATLAS detector [5] covers nearly the entire solid angle around the
collision point1 with layered tracking detectors, calorimeters and muon chambers. The muon and tracking
systems are of particular importance in the reconstruction of charmonia. The inner tracking detector (ID)
consists of a silicon pixel detector, a silicon microstrip detector and a transition radiation tracker. The muon
spectrometer (MS) surrounds the calorimeters and consists of three large superconducting air-core toroids
with eight coils each, a system of tracking chambers, and detectors for triggering. Muons are reconstructed
using information from the ID and MS systems.

Signal and background processes are estimated partly by Monte Carlo (MC) simulations and partly from
data. The main backgrounds are di-charmonium production via single parton scattering (SPS) [6–10],
and double parton scattering (DPS) [11–17], non-prompt �/k production from 1-hadron decays, prompt
single �/k production and non-resonant di-muon production. Pythia 8.244 [18] is used to generate SPS,
DPS and non-prompt di-charmonium events. Both the color-singlet and color-octet intermediate states
are included for �/k and k(2S). The A14 [19] set of parameter values and the NNPDF23LO [20] parton
distribution functions (PDF) [21] are used. PHOTOS 3.61 [22] is applied to simulate final state radiation in
particle decays. Signal events are simulated with the event generator JHU [23] and CTEQ6L1 PDF [24], or
with Pythia and the NNPDF23LO PDF. Feed-down backgrounds from the �/k+k(2S) channel to di-�/k
are included. A natural width of 100 MeV is assumed for all the resonances with no interference between
them. An extensive software suite [25] is used in data simulation [26], in the reconstruction and analysis
of real and simulated data, in detector operations, and in the trigger and data acquisition systems of the
experiment. The MC simulated events are weighted to reproduce the same number of ?? interactions per
bunch crossing (pileup) and trigger conditions as occur in data. The remaining backgrounds which contain
a single or no charmonium are modeled using the data.

The data sample was collected with triggers requiring either two muons with invariant mass compatible
with �/k or k(2S) mesons (mass in the range of [2.5, 4.3] GeV), or three muons containing at least one
such di-muon pair [27, 28]. Combinations of triggers with different prescales [29] depending on the run
period are used to give the largest acceptance. The trigger efficiency for the - (6900) relative to the offline
selection is about 72%. Dedicated ATLAS offline software is used to reconstruct the charmonium and
4` candidates in each event recorded by the triggers. In each event containing at least four muons with
two opposite-charge pairs, the ID tracks are fit to a common vertex. Afterwards, each vertex of the two

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) and the I-axis along the
beam pipe. The G-axis points from the IP to the center of the LHC ring, and the H-axis points upwards.
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pairs is refit with a �/k or k(2S) mass constraint [30]. The resolution of the TQ mass with these mass
constraints (<4`) is about 0.33% for - (6900). Events are required to contain at least one reconstructed 4`
candidate.

The loose identification selection criteria [31] are required for all muon candidates. Depending on the muon
trigger thresholds and muon identification requirements, different muon momenta on the four muons are
required. Several requirements are imposed on the following variables to further suppress the background:
the vertex fit quality based on j2 per degrees of freedom # , the signed distances between the primary2

and reconstructed 4` vertices (!4`
GH), and between the former vertices and the di-muon mass-constrained

sub-vertices (!di-`
GH ). Events with Δ' < 0.253 between the two reconstructed charmonia are used to study

the signal, whereas events with Δ' ≥ 0.25 are used to validate the shape of the 4` mass distribution for
the SPS background and constrain its normalization. The shape of the signal 4` mass distribution is not
much affected by this requirement. A summary of the kinematic requirements for the analysis regions is
listed in Table 1.

Table 1: Summary of event selection requirements for different regions.

Signal region Control region Non-prompt region

Di-muon or tri-muon triggers, oppositely charged muons from each charmonium,
loose muons, ?1,2,3,4

T > 4, 4, 3, 3 GeV and |[1,2,3,4 | < 2.5 for the four muons,
<�/k ∈ [2.94, 3.25] GeV, or <k (2() ∈ [3.56, 3.80] GeV,

Loose vertex requirements j2
4`/# < 40 (# = 5) and j2

di-`/# < 100 (# = 2),

Vertex j2
4`/# < 3, !4`

GH < 0.2 mm, |!di-`
GH | < 0.3 mm, <4` < 11 GeV, Vertex j2

4`/# > 6,

Δ' < 0.25 between charmonia Δ' ≥ 0.25 between charmonia or |!di-`
GH | > 0.4 mm

The SPS and DPS backgrounds contain two prompt charmonia and are modeled by MC simulations.
Because the event generator does not reproduce the data distributions well, kinematic corrections are
derived from two dedicated control regions. Since SPS (DPS) events are characterized by two charmonia
which are nearby (distant) in [ − q space, the control region is defined with a low (high) 4` mass sideband
not overlapping with the resonances. The corrections are implemented by assigning event weights to
MC simulations such that distributions of kinematic variables such as di-�/k ?T, Δq and Δ[ between
charmonia, and the lowest muon ?T match the data in the control regions. Agreement between the
prediction and data in the SPS and DPS control regions is observed before and after the Δ' requirement.
The non-prompt background also contains two charmonia, albeit originating from 1-hadron decays. These
typically contain a decay vertex that is displaced from the primary ?? interaction. This background is also
modeled using MC simulation, but normalized and validated by dedicated control regions obtained by
reversing the vertex quality requirements as shown in Table 1. Events from prompt single charmonium
production and non-resonant di-muon production are collectively called Others, and have at least one
charmonium candidate containing random combinations of mostly fake muons. Fake muons are tracks,

2 The primary interaction vertex is the collision vertex reconstructed excluding the 4` candidate tracks and with the smallest
distance of closest approach in I from the 4` vertex.

3 The angular distance is defined as Δ' =

√
Δ[2 + Δq2, with [ and q being the pseudorapidity and azimuthal angle of a particle,

respectively.
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typically charged hadrons, that are misidentified as muons. A data-driven method is used because MC
simulations do not accurately estimate this kind of background. A fake muon control region is defined by
requiring that one charmonium candidate contains a track that is not reconstructed as a muon candidate,
with all the other requirements kept unchanged. To model the Others background in the signal region using
events from the fake region, events with di-muons in the charmonium mass sidebands are used for both the
normalization factors and kinematic shape corrections for Others.

In the di-�/k channel, events from resonances in the �/k+k(2S) channel via k(2S)→ �/k + - , k(2S)→
Wj2� , and j2� → W�/k, where particles other than di-�/k are ignored, are included as the feed-down
background. Its yield in di-�/k and the signal in �/k+k(2S) are related by

#fd =
B ′n ′

B (k(2() → ``) n #, (1)

where n and # (n ′ and #fd) are the signal (feed-down) efficiency and yield in �/k+k(2S) (di-�/k),
and branching fraction B ′

= [B (k(2S) → �/k + -) + B (k(2S) → Wj2� ) B(j2� → W�/k)] B(�/k →
``).
Unbinned maximum likelihood fits are performed to extract the signal information from data in the 4`
mass spectra. The likelihood used for the fit is

L = L('
(
®\, ®_

)
· L�'

(
®\
)
·
 ∏
9=1

�
(
\ ′9 ; \ 9 , f9

)
, (2)

where L(' (L�') is the likelihood in the signal (control) region, ®_ are the parameters of interest, \ 9 are
nuisance parameters (NP) which account for systematic uncertainties shared between the two regions. Each
NP has a Gaussian distribution constraint with a subsidiary measurement \ ′9 , a mean \ 9 and a width set to
f9 = 1 by construction. The background yields in the signal and control regions are related by a transfer
factor which is obtained from the MC predictions or data-driven estimations.

In the di-�/k channel, the feed-down normalized by Eq. 1 is included as an additional background, and
two fit models are considered. In model A, the signal probability density function in L(' consists of three
interfering S-wave Breit–Wigner (BW) resonances multiplied with a phase space factor and convolved
with a mass resolution function, which gives

5B (G) =
�����

2∑
8=0

I8

<2
8
− G2 − 8<8Γ8 (G)

�����
2
√

1 −
4<2

�/k
G2

⊗ '(\), (3)

where <8 (Γ8 (G)) are the masses (widths) of resonances, I8 are complex numbers representing the relative
magnitudes and phases (I1 is fixed to unity with zero phase for this purpose), Γ8 (G) = Γ8

<8

G

@

@8
, where @ (@8)

is the momentum of one charmonium in the rest frame of the di-charmonium system at the invariant mass
equal to G (<8) [32], and ' is the mass resolution function. The <8 terms are ordered by the subscripts.
In model B, two resonances are considered. The first one interferes with the SPS background, while the
second is standalone. The signal+SPS probability distribution function gives

5 (G) = ©­«
����� I0

<2
0 − G2 − 8<0Γ0(G)

+ �48q
�����
2

+
����� I2

<2
2 − G2 − 8<2Γ2(G)

�����
2ª®¬

√
1 −

4<2
�/k
G2

⊗ '(\), (4)
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where � and q are the SPS background amplitude and phase relative to the resonance at <0. In this model,
the control region becomes irrelevant and is excluded from the likelihood given in Eq. 2.

Models A and B are analogous to models I and II of the LHCb study [3], respectively. However, interferences
between the signal resonances are introduced in model A, which is not done in the analysis by LHCb. For
comparison, a two-resonance model with interference, and a three-resonance model without interferences,
are also tried. It is found that when compared with model A, these models are excluded with a confidence
level of more than 95% based on toy MC studies.

In the �/k+k(2S) channel, two fit models are also considered. Model U assumes that the same interfering
resonances observed in the di-�/k channel also decay into �/k+k(2S), in addition to a standalone fourth
resonance in this channel. The signal probability distribution function gives

5B (G) = ©­«
�����

2∑
8=0

I8

<2
8
− G2 − 8<8Γ8 (G)

�����
2

+
����� I3

<2
3 − G2 − 8<3Γ3(G)

�����
2ª®¬

√
1 −

(
<�/k + <k (2()

G

)2

⊗ '(\), (5)

where the parameters of the first three resonances, whose contribution appears as a structure just above
the <�/k + <k (2() mass threshold, are fixed to the values from the fit to the di-�/k channel. In contrast,
model V assumes a single resonance in this channel (i.e., without the I0,1,2 terms in Eq. 5).

The systematic uncertainties are classified into those affecting exclusively normalizations, and those
affecting the mass spectrum shape as well. Only the latter are relevant, since the signal and background
normalizations are freely floating parameters. The systematic uncertainties in <4`, with and without the
muon momentum calibration corrections, are treated as resolution uncertainties. Because the resolution
of the <4` is mass dependent and a constant mass is used in the nominal fit, resolutions in different
mass ranges are treated as systematic uncertainties. A shape uncertainty is assigned to account for
bin-to-bin fluctuations from the limited MC sample size for backgrounds. In the SPS background, a Pythia

model parameter uncertainty from pT0timesMPI [18], which controls the suppression of the soft double
charmonia production, is assigned, and its nominal value is tuned to data in the SPS control region. A shape
uncertainty in the background due to residual di-charmonium ?T mismodeling is applied. Based on toy
MC studies, biases from the fit in the resonance parameters are also considered as systematic uncertainties.
The P and D-wave BW functions are substituted for the S-wave for resonances away from the threshold to
estimate systematic uncertainties due to different orbital angular momentum assumptions4. Systematic
shape variations in the - (6900) in the di-�/k channel, and in the second resonance for the �/k+k(2S)
channel due to the Δ' and muon ?T requirements are considered as well. In the di-�/k channel, a 4th
resonance around 7.2 GeV (hinted by the LHCb analysis) is added to the fit, and the feed-down background
normalizations are varied according to the uncertainties in �/k+k(2S). The transfer factor uncertainty is
dominated by the SPS model parameter, so it is not treated as a separate NP. In the �/k+k(2S) channel,
the uncertainty in a transfer factor between the signal and control regions, and a shape uncertainty derived
from the non-prompt region due to Others (shape inconsistency), are included. Interference between the
4th resonance and the other ones are included in systematic uncertainties.

The 4` mass spectra fit to data in the two channels are shown in Figure 1. The fitted masses and
widths of resonances are given in Table 2. Both the significance of all resonances, and the one for

4 The first resonance at the threshold is always assumed to be S-wave, as the data has no constraining power for its width when
! = 1, 2.
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- (6900) alone, far exceed 5f5. The mass of the third resonance, <2, is consistent with the LHCb mass.
Although both the models A and B describe the data well, the broad structure at the lower mass could
result from other physical effects, such as the feed-down from higher di-charmonium resonances, e.g.,
)222̄2̄ → j2� j2� ′ → �/k�/kWW where the soft photons are not reconstructed. In the �/k+k(2S) channel,
the signal significance with signal shape parameters of model U (V) fixed to their best-fit values is 4.7f
(4.3f). In the fit with model U, the significance of the second resonance alone is found to be 3.0f.

Table 2: The fitted masses and natural widths (in GeV), and relative uncertainties of signal yields (ΔB/B) in the
di-�/k and �/k+k(2S) channels. The results of both the models are given in each channel. The first uncertainties
are statistical while the second ones are systematic.

di-�/k model A model B

<0 6.41 ± 0.08+0.08
−0.03 6.65 ± 0.02+0.03

−0.02

Γ0 0.59 ± 0.35+0.12
−0.20 0.44 ± 0.05+0.06

−0.05

<1 6.63 ± 0.05+0.08
−0.01 —

Γ1 0.35 ± 0.11+0.11
−0.04

<2 6.86 ± 0.03+0.01
−0.02 6.91 ± 0.01 ± 0.01

Γ2 0.11 ± 0.05+0.02
−0.01 0.15 ± 0.03 ± 0.01

ΔB/B ±5.1%+8.1%
−8.9% —

�/k+k(2S) model U model V

<3 or < 7.22 ± 0.03+0.01
−0.03 6.96 ± 0.05 ± 0.03

Γ3 or Γ 0.09 ± 0.06+0.06
−0.03 0.51 ± 0.17+0.11

−0.10

ΔB/B ±21% ± 14% ±20% ± 12%

5 The asymptotic formula based on the profile likelihood ratio, / =

√
2 ln ! ( B̂, \̂)

! (0, ˆ̂\)
, is used to calculate the overall significance,

where B is the signal yield and \ are NPs [33]. Similarly for - (6900) alone, / =

√
2 ln ! ( Î3 , \̂)

! (0, ˆ̂\)
is used. In the calculations, the

signal shape parameters are all fixed to their best-fit values.
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Figure 1: The fit to the mass spectra in the signal regions in the di-�/k (a,b) and �/k+k(2S) (c,d) channels. Fit
results for models A (a), B (b), U (c) and V (d) are shown. The purple dash-dotted lines represent the components of
individual resonances, and the green short dashed ones represent the interferences among them.

In conclusion, the results of a search for potential 222̄2̄ tetraquarks decaying into a pair of �/k charmonium
states, or into a �/k and k(2S), in the 4` final state are presented based on ?? collisions data collected
by the ATLAS experiment at

√
B = 13 TeV corresponding to an integrated luminosity of 140 fb−1. A

significant excess of events (far exceeding 5f) in data above the expected background is observed in
the di-�/k channel. Analogous to LHCb observations, a broad structure at lower mass and a resonance
around 6.9 GeV are observed. A three-resonance model with interferences, or a model with the lower
broad structure interfering with the SPS background, describes the excess better than models with fewer
interfering resonances or with no interferences. In the �/k+k(2S) channel, a 4.7f excess of events is
observed when considering a model involving two resonances, one of which is near the 6.9 GeV threshold.
In both channels, details of the lower-mass structure cannot be discerned directly from the data, and other
interpretations (e.g. multiple non-interfering resonances, reflection effects and threshold enhancements)
cannot be excluded. More data are required to better characterize the excesses observed in both channels.
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Appendix

The �/k and 4` mass distributions of data and predictions in the signal regions of the two channels before
the fits are shown in Figure 2(a,b,c). Similar 4` mass distributions in the control regions are shown in
Figure 3. The systematic uncertainties in the fitted masses and widths of the highest resonances in models
A and U of the two channels are summarized in Table 3.
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Figure 2: The �/k mass spectrum with 6.7 GeV < <4` <7.1 GeV (a) and the 4` mass spectrum (b) in the signal
region in the di-�/k channel, and the similar mass spectrum in the �/k+k(2S) channel (c). The signal from the
- (6900) is scaled to match data around 6.9 GeV. The bars and shaded areas represent uncertainties of data and
predictions in each bin, respectively. The arrows in the lower panel indicate that the ratio of data to prediction is out
of range in that bin.
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Figure 3: The 4` mass spectra in the control regions in the di-�/k (a) and �/k+k(2S) (b) channels. The bars and
shaded areas represent uncertainties of data and predictions in each bin, respectively. The arrows in the lower panel
indicate that the ratio of data to prediction is out of range in that bin.
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Table 3: Different sources of systematic uncertainty in the mass and natural width (in MeV) of the third (second)
resonance in model A (U) of the di-�/k (�/k+k(2S)) channel.

Systematic di-�/k �/k+k(2S)

Uncertainties (MeV) <2 Γ2 <3 Γ3

Muon calibration ±6 ±7 <1 ±1

SPS model parameter ±7 ±7 <1

SPS di-charmonium ?T ±7 ±8 <1

Background MC sample size ±7 ±8 ±1 <1

Mass resolution ±4 −3 −1 +2
−4

Fit bias −13 +10 +9
−10

+50
−16

Shape inconsistency <1 ±4 ±6

Transfer factor — ±5 ±23

Presence of 4th resonance <1 —

Feed-down +4
−1

+6
−2 —

Interference of 4th resonance — −32 −11

P and D-wave BW +9 +19 <1 ±1

Δ' and muon ?T requirements +3
−2

+6
−4

+1
−2 −2
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