EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Search for high-mass $W\gamma$ and $Z\gamma$ resonances using hadronic W/Z boson decays from 139 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

ATLAS Collaboration

A search for high-mass charged and neutral bosons decaying to $W\gamma$ and $Z\gamma$ final states is presented in this paper. The analysis uses a data sample of $\sqrt{s}=13$ TeV proton–proton collisions with an integrated luminosity of 139 fb⁻¹ collected by the ATLAS detector during LHC Run 2 operation. The sensitivity of the search is determined using models of the production and decay of spin-1 charged bosons and spin-0/2 neutral bosons. The range of resonance masses explored extends from 1.0 TeV to 6.8 TeV. At these high resonance masses, it is beneficial to target the hadronic decays of the W and Z bosons because of their large branching fractions. The decay products of the high-momentum W/Z bosons are strongly collimated and boosted-boson tagging techniques are employed to improve the sensitivity. No evidence of a signal above the Standard Model backgrounds is observed, and upper limits on the production cross-sections of these bosons times their branching fractions to $W\gamma$ and $Z\gamma$ are derived for various boson production models.

1 Introduction

Speculations about physics phenomena beyond those described by the Standard Model (SM) often result in the introduction of new bosons, due to either additional gauge symmetries or postulated extensions of the Higgs sector [1–3]. The high-energy proton–proton (pp) collisions provided by the Large Hadron Collider (LHC) make it possible to produce these new bosons with masses up to approximately one hundred times the mass of the SM W and Z bosons. A broad range of beyond-the-SM (BSM) scenarios can therefore be tested with experiments at the LHC that search for high-mass charged and neutral bosons.

Some of the BSM theories predict new charged X^{\pm} and neutral X^0 bosons [3, 4]. From an experimental perspective, $W\gamma$ or $Z\gamma$ final states are attractive since a high-energy photon signature efficiently selects signal events and rejects background. For bosons with masses of the order of TeV, decays of the type $X^{\pm} \to W^{\pm}\gamma$ or $X^0 \to Z\gamma$ result in a highly boosted W or Z boson, where the decay products of such a boson are very collimated. This analysis targets the hadronic decay modes of W and Z bosons to quark–antiquark pairs reconstructed as large-radius (large-R) jets that have a two-prong structure identified using jet-substructure information [5]. The complete reconstruction of the $W\gamma$ or $Z\gamma$ final state can then be used to determine the mass and other properties of the new bosons.

This paper presents searches for massive X^{\pm} and X^0 bosons using 139 fb⁻¹ of pp collisions at a centre-ofmass energy (\sqrt{s}) of 13 TeV recorded with the ATLAS detector. The searches assume that the decay width of the heavy bosons is small compared to the experimental resolution, but are otherwise generic, looking for any excess of events above smooth SM background $W\gamma$ and $Z\gamma$ invariant mass spectra. The measurements are compared with the predictions of models of the production and decay of spin-1 charged bosons and spin-0/2 neutral bosons. These include $q\bar{q}'$ annihilation production of spin-1 $X^{\pm} \to W^{\pm}\gamma$, gluon-gluon fusion production of spin-0 $X^0 \to Z\gamma$, and both gluon-gluon fusion and $q\bar{q}$ annihilation production of spin-2 $X^0 \to Z\gamma$. A boson mass (m_X) range from 1.0 to 6.8 TeV is covered by these searches.

Previous searches for bosons of mass greater than 1.0 TeV decaying to $W\gamma$ and $Z\gamma$ final states have been carried out at the LHC by the ATLAS [6–8] and CMS [9–12] Collaborations. Compared to the previous ATLAS search based on 36.1 fb⁻¹ of Run 2 \sqrt{s} = 13 TeV pp collision data [8], the search reported in this paper achieves better sensitivity in part by including the entire dataset collected by the ATLAS experiment during Run 2. In addition to the four times larger dataset, the search is further improved by an optimization of the identification of the hadronic decays of highly boosted W and Z bosons.

2 ATLAS detector

The ATLAS experiment is a multipurpose detector [13] having a forward-backward symmetric cylindrical geometry and almost 4π coverage in solid angle. The inner tracking detectors are immersed in a 2 T magnetic field produced by a thin superconducting solenoid. The tracking detectors cover a pseudorapidity range $|\eta| < 2.5$ using a combination of silicon pixel detectors closest to the beam pipe, followed by silicon microstrip trackers and an outer transition radiation tracker. The innermost layer, known as the insertable B-layer [14, 15], provides high-resolution hits at small radius to improve the tracking performance.

¹ ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.

The inner tracking detectors are surrounded by calorimeters and a muon spectrometer. The electromagnetic (EM) calorimeter is a lead/liquid-argon (LAr) sampling calorimeter with high granularity. Its barrel ($|\eta| < 1.475$) and endcap (1.375 $< |\eta| < 3.2$) components provide EM energy measurements of electrons and photons up to a pseudorapidity $|\eta| = 3.2$. In the range used for precision measurements of electrons and photons ($|\eta| < 2.5$ excluding a transition region 1.37 $< |\eta| < 1.52$), the EM calorimeter is segmented into three layers along the shower depth, providing excellent measurements of photon properties and allowing precise photon identification. A steel/scintillator-tile hadronic calorimeter covers the central pseudorapidity range $|\eta| < 1.7$. The endcap and forward regions are instrumented up to $|\eta| = 4.9$ with LAr calorimeters for EM and hadronic energy measurements.

The muon spectrometer (MS) comprises separate trigger and high-precision tracking chambers measuring the deflection of muons in a magnetic field generated by superconducting air-core toroidal magnets. The field integral of the toroids ranges between 2.0 and 6.0 Tm across most of the detector. A set of precision chambers covers the region $|\eta| < 2.7$ with three layers of monitored drift tubes, complemented by cathode-strip chambers in the forward region, where the background is highest. The muon trigger system covers the range $|\eta| < 2.4$ with resistive-plate chambers in the barrel, and thin-gap chambers in the endcap regions.

Events are selected from the LHC's *pp* bunch crossings, which occur at a rate of 40 MHz, by a first-level trigger implemented in custom hardware followed by a software-based high-level trigger that employs algorithms similar to those used in offline event reconstruction [16]. The first-level trigger selects events at a rate of 100 kHz by using a subset of detector information, with the high-level trigger then accepting events for offline analysis at the rate of about 1 kHz. An extensive software suite [17] is used in data simulation, in the reconstruction and analysis of real and simulated data, in detector operation, and in the trigger and data acquisition systems of the experiment.

3 Data collection and Monte Carlo event simulation

3.1 Data samples

The data used for this analysis were collected by the ATLAS detector from 2015 to 2018 when the LHC provided pp collisions at $\sqrt{s} = 13$ TeV. Events were selected using a single-photon trigger with loose photon identification requirements based upon EM calorimeter cluster shower-shape variables [18]. The trigger with a photon transverse energy (E_T^{γ}) threshold of 140 GeV is fully efficient for events used in this search. In addition to the trigger selection, events are required to have at least one offline reconstructed signal photon matched to the object that fired the photon trigger. After requiring that all detector systems were recording high-quality data, the final dataset has an integrated luminosity of 139 fb⁻¹ [19, 20].

3.2 Monte Carlo simulation

Monte Carlo (MC) event generators were used to simulate SM background events and BSM heavy-boson signal events. These simulated event samples are used to optimize the event selection for the new-BSM-boson search and validate the parameterization of the templates used to fit the $W/Z + \gamma$ mass distributions. The largest background is due to single-photon production in association with jets (γ +jets) where the jet fulfils the boson-tagging criteria used to identity the large-R jets from W/Z boson hadronic

decays. These events were simulated using the Sherpa 2.2.2 generator [21], with up to two additional parton emissions included at next-to-leading-order (NLO) precision and up to four additional partons at leading-order (LO) precision. The matrix elements of these events were calculated with the Comix [22] and OpenLoops [23, 24] libraries and then matched to the Sherpa parton shower [25] using the MEPS@NLO prescription [26–29]. The NNPDF3.0nnlo [30] parton distribution function (PDF) set was used to describe the parton distributions in the incoming protons. The irreducible SM background from the hadronic decays of W and Z bosons produced with a radiated photon was simulated at LO precision with the Sherpa 2.1.1 generator, and the parton distributions were modelled with the CT10 PDF set [31]. The SM $t\bar{t}$ + γ process was simulated with a matrix element at LO with MadGraph5_aMC@NLO 2.3.3 [32], followed by Pythia 8.186 [33] for the parton showering. The NNPDF2.3lo PDF set [34] and a set of tuned parameters called the A14 tune [35] were used for this $t\bar{t}$ + γ event generation.

Various samples of simulated BSM boson signal events are used to optimize the event selection criteria and to estimate the acceptance and efficiency for the detection of the $X^{\pm} \to W^{\pm} \gamma$ and $X^0 \to Z \gamma$ signals. The production of the X^{\pm} and X^0 bosons was modelled in a narrow-width approximation where the natural width of the bosons is much smaller than the expected experimental resolution of the invariant mass of the $W^{\pm} \gamma$ and $Z \gamma$ resonances.

The production of a spin-0 boson decaying into $Z\gamma$ was simulated in gluon–gluon fusion, $gg \to X^0 \to Z\gamma$ [36]. This process was modelled with the MC generator Powheg Box v2 [37] at NLO precision as used for SM $H \to Z\gamma$ production, with the Higgs boson mass varied. The CT10 PDF set was used to generate these events. The parton showering was modelled with Pythia 8.212 [38] with the AZNLO tune [39].

The spin-1 resonance $q\bar{q'}\to X^\pm\to W^\pm\gamma$ signal process event generation utilized the heavy-vector-triplet framework [3] for event kinematic modelling. The simulations of the spin-2 $gg\to X^0\to Z\gamma$ and $q\bar{q}\to X^0\to Z\gamma$ signal events are based on a resonance model benchmarked from the Higgs characterization model framework with s-channel direct couplings between the spin-2 heavy resonance and the SM Z boson and the γ [40–42]. The MadGraph5_AMC@NLO v2.3.3 MC generator was used at LO precision, followed by Pythia 8.212 for the parton showering with the NNPDF2.3LO PDF set and the A14 tune. In these models the W(Z) boson is produced longitudinally (transversely) polarized. In samples with Pythia used for parton showering, decays of c- and b-hadrons were simulated with EvtGen 1.2.0 [43].

The resulting MC event samples were processed using a detailed simulation of the ATLAS detector with GEANT4 [44, 45], and then passed through the same reconstruction algorithms as those used for the data. Effects of multiple pp collisions (pile-up) are included during reconstruction by overlaying inelastic events simulated with PYTHIA 8.186 using the A3 tune [46] and the NNPDF2.3Lo PDF set. These minimum-bias events are overlaid with multiplicity distributions that approximately match the pile-up observed in the data. A pile-up reweighting approach is then performed to correct for the residual difference between simulation and data in the analysis.

A summary of the MC generators used for the SM and BSM processes is given in Table 1.

4 Event reconstruction

Events are required to pass a loose identification photon trigger with a transverse energy (E_T^{γ}) threshold of 140 GeV. Each of these events is then processed through offline particle reconstruction to identify high- E_T photons and to search for jets that pass a W/Z boson tagging requirement. The details of the photon, jet and

Table 1: Generators	used for the simulation	of SM backgrounds	and BSM signals.

Process	Matrix element generator	QCD order	PDF	Parton shower			
SM backgrounds							
SM γ+jets	Sherpa 2.2.2	NLO	NNPDF3.0nnlo	SHERPA MEPS@NLO			
SM $W\gamma$ and $Z\gamma$	Sherpa 2.1.1	LO	CT10	SHERPA MEPS@LO			
SM $t\bar{t}+\gamma$	MadGraph5_aMC@NLO 2.3.3	LO	NNPDF2.3Lo	Рутніа 8.186 + EvtGen 1.2.0			
Signals							
Spin-0 $gg \to X^0 \to Z\gamma$	Powheg Box v2	NLO	CT10	Pythia 8.212 + EvtGen 1.2.0			
Spin-2 $gg \to X^0 \to Z\gamma$	MadGraph5_aMC@NLO 2.3.3	LO	NNPDF2.3lo	Pythia 8.212 + EvtGen 1.2.0			
Spin-2 $q\bar{q} \to X^0 \to Z\gamma$	MadGraph5_aMC@NLO 2.3.3	LO	NNPDF2.3lo	Pythia 8.212 + EvtGen 1.2.0			
Spin-1 $q\bar{q'} \rightarrow X^{\pm} \rightarrow W^{\pm}\gamma$	MadGraph5_aMC@NLO 2.3.3	LO	NNPDF2.3Lo	Рутніа 8.212 + EvtGen 1.2.0			

W/Z boson reconstruction and identification are described in this section, along with the categorization applied to define the signal regions for the $X^{\pm} \to W^{\pm} \gamma$ and $X^0 \to Z \gamma$ BSM boson searches.

4.1 Particle reconstruction

Photon candidates are reconstructed from clusters of energy in the EM calorimeter and classified either as converted photons (those with a reconstructed vertex consistent with a $\gamma \to e^+e^-$ conversion) or as unconverted photons [47]. The photon identification algorithm uses shower shape variables measured from both the fine segmentation of the inner layers of the EM calorimeter and the outer layers of the EM and hadronic calorimeters to suppress background from photons from neutral meson decays in jets. For this analysis, *tight* photons are selected, with a measured photon identification efficiency greater than 90% (95%) for unconverted (converted) photon candidates with $E_T^{\gamma} > 200 \,\text{GeV}$ [47].

To further reduce backgrounds from jets, an isolation requirement [47] is imposed on the photons, using the transverse energy $(E_{\rm T}^{\rm iso})$ deposited in the EM calorimeter within a cone of size $\Delta R \equiv \sqrt{(\Delta\eta)^2 + (\Delta\phi)^2} = 0.4$ centred on the photon candidate, excluding the photon transverse energy within an area $\Delta\eta \times \Delta\phi = 0.125 \times 0.175$. After corrections for photon energy leakage into the isolation cone and contributions from the underlying event and pile-up interactions, the photon isolation transverse energy $E_{\rm T}^{\rm iso}$ is required to be less than $0.022 \times E_{\rm T}^{\gamma} + 2.45\,{\rm GeV}$. For the signal photons passing the reconstruction and identification requirements, the isolation efficiency is approximately 98%. Events selected for analysis must have at least one isolated photon candidate with $E_{\rm T}^{\gamma} > 200\,{\rm GeV}$ and $|\eta^{\gamma}| < 1.37$. The η requirement is motivated by the fact that the photon from a signal event tends to be more central than those from the background.

Jets are reconstructed using charged-particle tracks and calorimeter energy clusters, combining their information to optimize the measurement of the jet direction and energy [48]. The clustering method is that of the anti- k_t algorithm [49, 50] with radius parameter R=1.0. In order to reduce contributions to the jet from pile-up, a trimming algorithm [51] is applied, which removes contributions from sub-jets clustered using the k_t algorithm [52] with R=0.2 if they carry less than 5% of the jet's transverse momentum. The jets are calibrated to the level of stable final-state particles using MC simulations [53]. Jets are selected if they have a transverse momentum $p_T^J > 200$ GeV and are within a pseudorapidity region $|\eta^J| < 2.0$, where the inner tracker has good charged-particle tracking coverage. The jets are also required to be separated from photons by $\Delta R(J, \gamma) > 1.0$.

A W or Z boson produced by the decay of a boson with a mass of the order of a few TeV is highly boosted, with the di-quark decay products often forming a single large-R jet. The characteristics of these di-quark

jets can be used to distinguish W/Z bosons from a large background of jets originating from single quarks or gluons. The main distinguishing features are the jet mass and the presence of two-prong substructure within the jet.

The jet mass (m_J) is calculated using a combination of particle four-momenta measured from charged-particle tracks and calorimeter cell energies [54]. The jet mass resolution ranges from 8% to 15% for jets with transverse momentum between 500 and 2500 GeV, respectively. Reconstructed jet mass distributions from simulated hadronic decays of W and Z bosons are shown in Figure 1. The low mass tail is caused by events where the decay products from a W or Z boson are not fully captured in the large-R jet. The effects are different for Z and W bosons since the Z boson from X^0 decay is transversely polarized whereas the W boson from X^\pm decay is longitudinally polarized. The jet mass is required to be in a window around the boson mass where the window's size is optimized as a function of p_T^J to maximize the significance of the W or Z boson selection over multijet backgrounds [55]. The size of the mass window increases from about 20 to 50 GeV as p_T^J increases from 500 to 2500 GeV. For a large-R jet with $p_T < 500$ GeV ($p_T > 2500$ GeV), the criterion defined at $p_T = 500$ GeV ($p_T = 2500$ GeV) is applied.

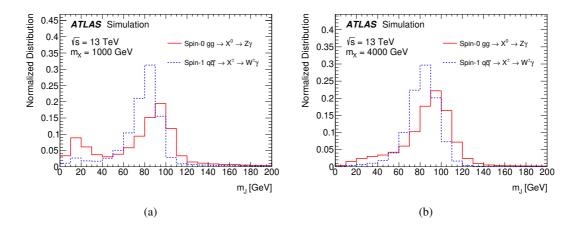


Figure 1: The jet mass distribution of large-R jets originating from the hadronic decay of W and Z bosons produced from the decay of BSM bosons with mass (a) $m_X = 1000 \,\text{GeV}$ and (b) $m_X = 4000 \,\text{GeV}$. The decays simulated are for the production models $q\bar{q}' \to X^\pm \to W^\pm \gamma$ with a spin-1 resonance X^\pm and $gg \to X^0 \to Z\gamma$ with a spin-0 resonance X^0 . The Z bosons from $Z\gamma$ decays of spin-2 resonances have jet mass distributions very similar to those shown for spin-0 resonances.

The two-prong jet substructure from hadronic W/Z boson decays is identified using the energies and pairwise angular distances between clusters of particles within the large-R jets. This is quantified with a variable D_2 defined as the ratio $\epsilon_3/[\epsilon_2]^3$ of N-point energy correlation functions ϵ_N computed from the jet constituents [56, 57]. This variable exploits the sensitivity of ϵ_2 to the hadronic shower produced from a single quark or gluon versus ϵ_3 , which is sensitive to the two hadronic-jet clusters produced from the di-quark decay of W/Z bosons. Studies using simulations and data were used to choose the requirements on D_2 that optimize the W/Z boson identification significance [55]. The chosen upper limit on D_2 varies from 1.0 at low jet p_T to slightly above 2.0 at high jet p_T for the W/Z hadronic jets used in this analysis.

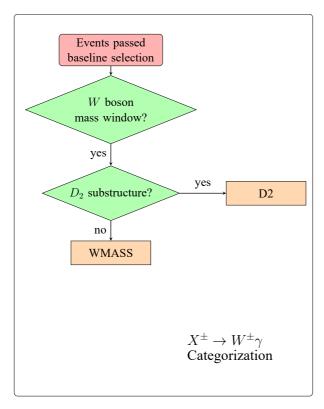
For the fraction of Z bosons that decay into $b\bar{b}$, the purity of the selection can be further improved by applying b-hadron identification requirements. A tagging algorithm is used that exploits the long lifetime of b-hadrons, which leads to tracks with large impact parameters and to secondary vertices. The outputs of

three *b*-tagging techniques are combined into a single multivariate discriminant, called MV2c10, allowing the selection of *b*-hadrons with various efficiencies and background rejections [58]. This *b*-tagging algorithm is applied to variable-radius (VR) track-jets associated with the large-R jet, as determined by the ghost-association algorithm [59]. The VR track-jets are reconstructed from ID tracks using the anti- k_t algorithm with a variable radius parameter R that ranges between 0.02 and 0.4 depending on the jet p_T [60]. The tagging efficiency is determined with simulated $t\bar{t}$ events and corrected to the measurement in data [61]. A working point with a *b*-tagging efficiency of 70% is used. Two VR track-jets are required to pass this *b*-tagging requirement to select $Z \to b\bar{b}$ events.

4.2 Event selection and categorization

The events selected are required to have a photon with $E_{\rm T}^{\gamma} > 200\,{\rm GeV}$ and $|\eta^{\gamma}| < 1.37$ and a jet with $p_{\rm T}^{J} > 200\,{\rm GeV}$ and $|\eta^{J}| < 2.0$, using the identification criteria described above. These selection criteria are called the 'baseline selection' for this analysis. The pp interaction vertex selected for reconstruction of these physics objects is the one with the highest sum of the $p_{\rm T}^2$ of the tracks coming from the vertex. If multiple photons or jets satisfy the photon/jet selection criteria, those with the highest transverse energy or momentum are used. The search considers resonances with masses larger than 1 TeV. Below this mass, the signal selection efficiency drops significantly because of the criteria used to select the hadronic decays of the W/Z bosons, and searches for $pp \to X \to W/Z + \gamma$ with leptonic W/Z boson decays are more sensitive. The search range is limited to 6.8 TeV using the highest-mass γ +jet event observed in data. The selected events are further sorted into exclusive categories of different W and Z boson identification purities to maximize the signal sensitivity.

For the $X^{\pm} \to W^{\pm} \gamma$ search, two categories are defined according to the D_2 and jet mass criteria shown below, with the category designation indicated in parentheses.


- pass D₂ and W boson mass selection (D2),
- fail D_2 and pass W boson mass selection (WMASS).

For the $X^0 \to Z\gamma$ search, three categories are defined, based on the *b*-tagging, D_2 and jet mass criteria shown below.

- pass two b-tagged sub-jets and pass Z boson mass selection (BTAG),
- fail two b-tagged sub-jets: pass D₂ and Z boson mass selection (D2),
- fail two b-tagged sub-jets: fail D_2 and pass Z boson mass selection (ZMASS).

Figure 2 illustrates the categorization of $X^{\pm} \to W^{\pm} \gamma$ and $X^0 \to Z \gamma$ events.

The rejection of the dominant γ +jet background varies strongly among the categories, being highest in those using jet substructure and mass information. A further optimization of the signal sensitivity is implemented by varying the photon E_T^{γ} threshold as a function of the invariant mass $m_{J\gamma}$ of the photon and large-R jet, where the figure of merit is the statistical-only significance of the simulated BSM signal over the expected SM backgrounds, where the SM backgrounds are estimated from the simulated background samples described in Section 3.2. This photon E_T^{γ} optimization is done separately for each of the event categories, taking advantage of the large difference in photon and jet kinematics between signal and background. The photon E_T^{γ} threshold increases with $m_{J\gamma}$, varying from about 300 to 1200 GeV. This results in a small loss of signal efficiency, but a very large suppression of the SM backgrounds. Figure 3

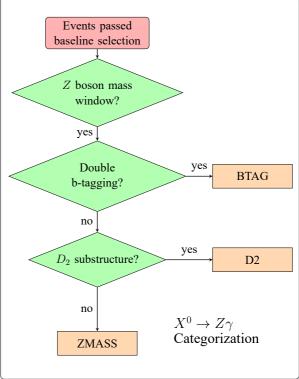


Figure 2: The flow charts of event categorization of $X^{\pm} \to W^{\pm} \gamma$ and $X^0 \to Z \gamma$.

shows the total signal selection efficiencies after optimization of the photon $E_{\rm T}^{\gamma}$ thresholds, and also the contributions to the signal selection from each of the individual categories. The BTAG category has the lowest efficiency but the highest signal purity. The spin-2 $Z\gamma$ channel with gg production mode has a different X boson polarization than the $q\bar{q}$ production mode, leading to a longer lower tail in the photon and jet $p_{\rm T}$ distributions, and wider pseudorapidity distributions, and therefore a lower baseline selection efficiency. For signals with a resonance mass above 4 TeV, the applied D_2 requirement is relatively loose, which results in most signal events entering the D2 category and the W/ZMASS selection appearing to lose efficiency. The signal selection efficiencies increase with the mass m_X , ranging from about 20% at the lowest mass to about 60% at 6.8 TeV.

5 Signal and background modelling

The search for BSM boson signals is carried out by inspecting the invariant mass distribution of the highest- E_T photon and large-R jet identified in each event. The distribution of $m_{J\gamma}$ from SM backgrounds falls smoothly over the mass range 1.0 to 6.8 TeV used in this search. The presence of a boson $X^{\pm} \rightarrow W^{\pm} \gamma$ or $X^0 \rightarrow Z \gamma$ would therefore appear in the data as an excess of events above the background $m_{J\gamma}$ distribution in a relatively narrow mass region around m_X . The search sensitivity is quantified by fitting the data with the sum of the SM background plus a signal that is parameterized from simulations of the various production modes described in Section 3.2. The functional forms chosen for the background and signal are described below, and the fitting procedure used to search for signals is presented in Section 7.

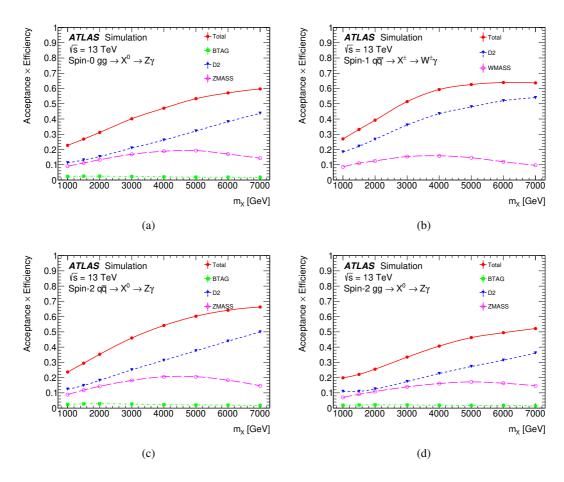


Figure 3: Efficiencies for the selection of signal events after categorization and application of the tighter photon $E_{\rm T}^{\gamma}$ selection used to optimize the signal significance: (a) spin-0 $gg \to X^0 \to Z\gamma$, (b) spin-1 $q\bar{q}' \to X^{\pm} \to W^{\pm}\gamma$, (c) spin-2 $q\bar{q} \to X^0 \to Z\gamma$, and (d) spin-2 $gg \to X^0 \to Z\gamma$. In addition to the total efficiency, contributions to the signal selection from each of the separate event categories are shown. The efficiencies calculated from MC samples with W/Z hadronic decays are shown as the points on each curve. The line presents interpolated results.

5.1 SM background modelling

The SM background is dominated by γ +jet events. In the D2 (W/ZMASS) event category, the production of a photon in association with light-flavour jets and c-jets contributes about 92% (96%) of the SM background, while in the BTAG category the contribution from SM γ +b-jet events is about 88%. The next highest background contribution comes from SM $W\gamma$ and $Z\gamma$ production with the W/Z bosons decaying hadronically. The contribution from SM $t\bar{t}$ + γ production is found to be negligible after the final event selection. Contributions from events with photons misidentified as jets are found to be small and not significant in changing the background shape from the dominant γ +jet backgrounds.

The $m_{J\gamma}$ distribution of the background is parameterized with a function that is flexible enough to accommodate the background shape in each of the four event categories used in the signal search. The function chosen to model the background is taken from Ref. [62], and is described by Eq. (1):

$$\mathcal{B}(m_{J\gamma}; \mathbf{p}) = (1 - x)^{p_1} x^{p_2 + p_3 \log(x)},\tag{1}$$

where $x = m_{J\gamma}/\sqrt{s}$, and $p = (p_1, p_2, p_3)$ is a vector of parameters used to control the shape of the distribution. The ability of the function to describe backgrounds is tested using $m_{J\nu}$ distributions from MC simulations which have about five times the number of data events in the signal region. The number of parameters p_i is determined by testing the ability of each function to fit these background $m_{J\gamma}$ distributions over the mass range used for each category. The determination of the number of parameters also includes studies of fits of the background-only mass distributions to a signal-plus-background hypothesis in order to quantify any 'spurious signal' (N^{SS}) resulting from the parameterization with the procedure documented in Ref. [63]. The number of fit parameters that minimizes the spurious signal is chosen. With this criterion, the number of fit parameters is two or three depending on the category and signal model. The spurious signal is then included as a systematic uncertainty in the fitted signal yield associated with the background fit function, and included in the statistical treatment used for the signal search. The choice of functional form and the spurious signal obtained from MC simulated samples are validated with data in a control region. The control region (CR) events are selected with the photon required to be in the forward pseudorapidity region $1.52 < |\eta^{\gamma}| < 2.37$. This CR is found to have a small signal leakage which varies from 2% to 17% depending on the signal type and the resonance mass. This validation process confirms that the chosen functional form is flexible enough to model the $m_{J\gamma}$ distribution in data.

5.2 BSM signal modelling

The distribution of $m_{J\gamma}$ for a given BSM boson mass is generated with a natural width that is much smaller than the experimental resolution. These MC events are passed through a full detector simulation and selected in the same way as data events. The signal $m_{J\gamma}$ distribution is modelled with a double-sided Crystal Ball (DSCB) function [64]. This function is found to be the best model to describe the peak and the long tails of the signal distribution. It is described by Eq. (2):

$$S(m_{J\gamma}; N, \mu, \sigma, \alpha_{1}, n_{1}, \alpha_{2}, n_{2})$$

$$= N \cdot \begin{cases} \left(\frac{n_{1}}{|\alpha_{1}|}\right)^{n_{1}} \exp\left(-\frac{|\alpha_{1}|^{2}}{2}\right) \left(\frac{n_{1}}{|\alpha_{1}|} - |\alpha_{1}| - \frac{m_{J\gamma} - \mu}{\sigma}\right)^{-n_{1}} & \frac{m_{J\gamma} - \mu}{\sigma} \leq -\alpha_{1} \\ \exp\left(-\frac{(m_{J\gamma} - \mu)^{2}}{2\sigma^{2}}\right) & -\alpha_{1} < \frac{m_{J\gamma} - \mu}{\sigma} \leq \alpha_{2} \\ \left(\frac{n_{2}}{|\alpha_{2}|}\right)^{n_{2}} \exp\left(-\frac{|\alpha_{2}|^{2}}{2}\right) \left(\frac{n_{2}}{|\alpha_{2}|} - |\alpha_{2}| + \frac{m_{J\gamma} - \mu}{\sigma}\right)^{-n_{2}} & \alpha_{2} < \frac{m_{J\gamma} - \mu}{\sigma}. \end{cases}$$

$$(2)$$

The DSCB function includes a central Gaussian core, to model the experimental resolution of the signal, with tails parameterized with power-law functions above and below the peak. The Gaussian core has a mean μ and width σ , while the low (high) $m_{J\gamma}$ tail is fitted using the parameters α_1 (α_2) and α_1 (α_2), with all the parameters constrained to be positive in the fit.

This signal model is used to fit the $m_{J\gamma}$ distribution generated from the four signal hypotheses at masses ranging from 1.0 to 7.0 TeV in steps of 1.0 TeV, with one additional mass point at 1.5 TeV. A linear interpolation between adjacent mass points is performed for each of the fit parameters to obtain the signal shapes at intermediate mass values. The width of the central core grows linearly from a σ of about 30 to 120 GeV as the boson mass increases from 1.0 to 7.0 TeV.

6 Systematic uncertainties

The systematic uncertainties considered in this analysis come from the background estimation, the signal prediction and the detector performance. The effects of these systematic uncertainties are parameterized according to their impact on the signal efficiency, the signal shape peak position and the core width of the signal shape. All these uncertainties are included in the statistical procedure when fitting the signal-plus-background model to the data.

The potential bias from the background fit function describing the data $m_{J\gamma}$ distribution is evaluated using the spurious-signal test described in Section 5. A spurious signal is treated as a systematic uncertainty arising from the choice of background parameterization and only affects the signal yield during the fitting procedure. Assuming there is no signal in the data, the impact of spurious-signal uncertainties when setting cross-section limits decreases from 20% to a negligible value with increasing resonance mass.

The uncertainty in the luminosity determination affects the signal yield prediction. The integrated luminosity is measured using the LUCID-2 Cherenkov detector [65] and calibrated with a van der Meer scan following the methodology documented in Ref. [66]. This results in a 1.7% uncertainty in the 139 fb⁻¹ integrated luminosity collected during the 2015–2018 data-taking period.

The uncertainty in the modelling of inelastic pp pile-up collisions overlaid on the simulation introduces a 2% uncertainty in the signal detection efficiency.

The uncertainty in the photon energy measurement affects the signal selection efficiency and the shape of the invariant mass $m_{J\gamma}$ distribution. The photon energy is calibrated using the method described in Ref. [47]. Various sources of uncertainty contribute to the measurement of the photon energy scale and the photon energy resolution. The photon identification, isolation and trigger efficiencies are all measured from data following the method in Refs. [18, 47].

The uncertainty in large-R jet energy and mass calibration also affects the signal selection efficiency and the $m_{J\gamma}$ shape. The large-R jet energy and mass are calibrated with the method described in Ref. [53]. The impact of the jet energy resolution uncertainty is estimated by applying Gaussian smearing to each jet so as to degrade the jet p_T resolution by 2% [53]. To estimate the impact of the jet mass resolution (JMR) uncertainty, a similar method is used to degrade the JMR by 20%. Similarly, the effect of uncertainty in the D_2 resolution is estimated by degrading the D_2 resolution by 15% with Gaussian smearing.

The uncertainty in the jet-flavour tagging efficiency measurement impacts both the signal selection efficiency and the $m_{J\gamma}$ distribution. The jet-flavour tagging efficiency is measured in a data region enriched in $t\bar{t}$ events and compared with simulations to derive corrections [61]. The uncertainties for high- $p_{\rm T}$ VR

track-jets are extrapolated with simulated samples because there are too few events in data [67]. The associated uncertainties are grouped into b-jet, c-jet and light-flavour jet components that are described by uncorrelated eigenvector variations.

The uncertainty in the signal selection efficiency due to the PDF set is evaluated using the eigenvector variations following the method in Ref. [68]. The uncertainty in the signal selection efficiency from the QCD scales is estimated from alternative samples with the renormalization scale (μ_r) and factorization scale (μ_f) varied by factors of 0.5 and 2 with the cases that differ by a factor of four being ignored. The uncertainty in the signal selection efficiency from the parton shower is estimated from alternative PYTHIA samples with different values of the A14 tune parameters, affecting the underlying events, initial/final-state radiation, multiple parton interactions and colour reconnection [35].

The limited size of the generated signal samples introduces a systematic uncertainty in the signal parameterization with analytic functions as described in Section 5.2. Only the effect on the signal resolution is found to have a significant impact on the final result and is included in the statistical analysis as a systematic uncertainty.

Table 2 summarizes the main sources of signal uncertainty and their impact on the signal measurement. The dominant uncertainties for the signal in this analysis come from jet mass scale, jet mass resolution and jet energy resolution.

7 Statistical analysis

The search for BSM resonance signals above a smoothly falling background $m_{J\gamma}$ mass distribution is carried out with a statistical procedure based on an unbinned likelihood fit over the $m_{J\gamma}$ spectrum, implemented in a RooFit [69] and RooStats [70] framework. The likelihood function is defined as the product of several factors using a Poisson model for the observed event yield in each category. This product includes probabilities for events distributed in $m_{J\gamma}$ as described by a model based on the sum of signal (S) and background (B) probability density functions described in Section 5 and probabilities for auxiliary measurements with their prior distributions (G). This can be written as:

$$\mathcal{L}(\boldsymbol{m}_{J\gamma}^{\text{obs}}|\,\sigma_{\text{had}},\boldsymbol{\theta},\boldsymbol{\theta}^{\text{SS}},\boldsymbol{N}^{\text{B}},\boldsymbol{p}) = \prod_{c \in \mathbb{C}} \left\{ \text{Pois}(N_{c}^{\text{obs}}|N_{c}^{\text{S}}(\sigma_{\text{had}},\boldsymbol{\theta}) + N_{c}^{\text{SS}}(\theta_{c}^{\text{SS}}) + N_{c}^{\text{B}}) \right.$$

$$\left. \prod_{i=1}^{N_{c}^{\text{obs}}} \left[\left(\frac{N_{c}^{\text{S}}(\sigma_{\text{had}},\boldsymbol{\theta}) + N_{c}^{\text{SS}}(\theta_{c}^{\text{SS}})}{N_{c}^{\text{S}}(\sigma_{\text{had}},\boldsymbol{\theta}) + N_{c}^{\text{SS}}(\theta_{c}^{\text{SS}}) + N_{c}^{\text{B}}} \right) \mathcal{S}(\boldsymbol{m}_{J\gamma}^{c,i,\text{obs}}|\,\boldsymbol{\theta}) + \left. \left(\frac{N_{c}^{\text{B}}}{N_{c}^{\text{S}}(\sigma_{\text{had}},\boldsymbol{\theta}) + N_{c}^{\text{SS}}(\theta_{c}^{\text{SS}}) + N_{c}^{\text{B}}} \right) \mathcal{B}(\boldsymbol{m}_{J\gamma}^{c,i,\text{obs}}|\,\boldsymbol{p}^{c}) \right] \right\} \times$$

$$\left. \prod_{s \in \mathbb{S}} \mathcal{G}(0|\theta_{s}, 1) \prod_{c \in \mathbb{C}} \mathcal{G}(0|\theta_{c}^{\text{SS}}, 1), \right.$$

where $m_{J\gamma}^{\text{obs}} = \{m_{J\gamma}^{1,1,\text{obs}}, \cdots, m_{J\gamma}^{c,i,\text{obs}}, \cdots\}$ is a set of observations of $m_{J\gamma}$ in data, c is the label of the various event categories and i the index of events in each category. The Poisson term for each category, Pois $(N_c^{\text{obs}}|N_c^{\text{S}}(\sigma_{\text{had}},\theta)+N_c^{\text{SS}}+N_c^{\text{B}})$, is defined according to observed data events in the signal region, N_c^{obs} , and the expected signal-plus-background yield, which is a sum of the signal yield $N_c^{\text{S}}(\sigma_{\text{had}},\theta)$, the

Table 2: The impact of systematic uncertainties on the signal yield, signal peak position and signal peak resolution. Presented numbers are derived before performing the statistical analysis. A range of values shows the variation of the uncertainty across the m_X range.

Source of uncertainty	Impact on signal yield [%]		
Luminosity	1.7		
Jet energy scale	1–7		
Jet mass scale	1–20		
Jet mass resolution	2–12		
Jet D_2 resolution	2		
Photon energy scale	0.2		
Photon energy resolution	0.1		
Flavour tagging	1–8		
Pile-up	0–3		
PDF	2–12		
QCD	2		
Parton shower	1–2		
	Impact on signal peak position [%]		
Jet energy scale	0–4		
Jet mass scale	0–1		
Photon energy scale	0.4		
	Impact on signal resolution [%]		
Jet energy scale	1–7		
Jet mass scale	0–11		
Jet energy resolution	5–20		
Photon energy scale	0.2–2		
Photon energy resolution	0.2–1.2		
Flavour tagging	0.2–4		
Signal sample statistics	1–6		

background yield $N_c^{\rm B}$, and the spurious signal $N_c^{\rm SS}$. The signal yield $N_c^{\rm S}$ can be expanded as a function of the signal production cross-section $\sigma_{\rm had}$, which is the parameter of interest (POI) in the statistical analysis. This cross-section $\sigma_{\rm had}$, as the abbreviation for $\sigma(pp \to X \to W/Z(\to {\rm hadrons}) + \gamma)$, includes the production cross-section $\sigma(pp \to X)$ of the resonance and the branching fractions of $X \to W/Z + \gamma$ and $W/Z \to {\rm hadrons}$. The experimental and theoretical uncertainties are described by the nuisance parameters (NPs) θ_s for each systematic uncertainty s and shared among categories. A collection of such nuisance parameters is written as θ . These nuisance parameters are constrained with a normal distribution $\mathcal{G}(0|\theta_s,1)$. The spurious-signal contribution $N_c^{\rm SS}$ is formalized as a function of the associated nuisance parameter $\theta_s^{\rm SS}$ for each category individually, with this NP following a normal distribution $\mathcal{G}(0|\theta_c^{\rm SS},1)$. The collection of spurious-signal nuisance parameters is written as $\theta^{\rm SS}$. Both θ_s and $\theta_c^{\rm SS}$ can have an impact on the signal expectation $(N_c^{\rm S} + N_c^{\rm SS})$ of the fit model, while the parameter θ_s can also modify the signal shape. The background shape parameters $p^c = (p_1^c, p_2^c, p_3^c)$ are allowed to float during the fit to data and are uncorrelated among categories. The signal model S is fixed for each tested m_X using the coefficients presented in Section 5.

Both the signal and background yields are extracted by maximizing the likelihood as defined in Eq. (3) for

various hypothetical values of m_X . The fit stability is checked with signal injection tests, and no significant bias is observed. For each of these mass points, the p-value of the background-only hypothesis is calculated to test the compatibility of the background-only hypothesis and the data. This is done with the profiled likelihood ratio (PLR) test statistic [71], which is defined as the ratio of the conditional maximum-likelihood value for a POI value of zero to the global maximum-likelihood value. Its distribution in the low resonance mass region ($m_X < 4000 \,\text{GeV}$) is derived following the asymptotic approach as described in Ref. [71]. In the high resonance mass region ($m_X \ge 4000 \,\text{GeV}$), test statistic distributions are obtained with the pseudo-experiment sampling method. The p-value reflects the possibility of background to produce a signal-like excess larger than that found in the fit to the data, which is reported as the significance according to the normal distribution. Beside the significance, an exclusion of the signal model is derived and presented as the 95% confidence level (CL) upper limit on the resonance production cross-section times branching fraction of $X \to W/Z + \gamma$ for hadronic decay of the W/Z bosons. Similar to the p-value, the upper limit is also calculated from PLR distributions but with a running POI value to indicate various signal cross-section hypotheses. The CL_s approach [72, 73] is used for the limit calculation. The limits are calculated in the low resonance mass regions at 20 GeV steps and are based on the asymptotic approach. In the high resonance mass region, limits are derived by using the pseudo-experiment sampling method. To obtain smooth expected limit bands, the expected limits and the corresponding bands are calculated at 500 GeV steps in the high resonance mass region while the observed ones are obtained at 100 GeV steps. Upper limits on $\sigma(pp \to X) \times B(X \to W/Z + \gamma)$ are derived by assuming the branching fractions of W and Z bosons to hadrons to be 67.41% [74] and 69.91% [74] respectively.

8 Results

Table 3 presents the observed number of events in different categories after the final event selection. The yields quoted are for $m_{J\gamma} \geq 800$ GeV in the BTAG and D2 categories and for $m_{J\gamma} \geq 1000$ GeV in the VMASS (ZMASS or WMASS) categories. The BTAG categories are defined in the same way for the three Z signal hypotheses, while for the D2 and VMASS categories the selection criteria for the photon and jet are chosen differently for each channel. The latter optimizes the signal significance by exploiting differences in the $W/Z+\gamma$ production angular distributions and in the decays of the longitudinally polarized W bosons and transversely polarized Z bosons.

Table 3: Data yields in various categories defined for the four search channels.

Channel	BTAG	D2	VMASS
Spin-0 $gg \to X^0 \to Z\gamma$	436	5 659	20728
Spin-2 $gg \to X^0 \to Z\gamma$	436	10772	32 281
Spin-2 $q\bar{q} \to X^0 \to Z\gamma$	436	5 618	18 264
Spin-1 $q\bar{q'} \rightarrow X^{\pm} \rightarrow W^{\pm}\gamma$		6 3 7 3	25 146

The $m_{J\gamma}$ distributions in different categories are shown in Figures 4–7 for the four signal channels. The background-only fit result is shown as the solid curve overlaid with a shaded band corresponding to statistical uncertainties in background parameters. Various signal mass hypotheses are also plotted, where the signal cross-sections correspond to the expected upper limits obtained in this analysis. For the BTAG category, the fit range is limited to below 3200 GeV due to the significant loss of sensitivity because of the decrease in b-tagging efficiency beyond that range, while for other categories the fit upper boundary is

7000 GeV. The bottom panel presents the binned local significance (filled bars) from a comparison of the data with the background fit using a Poisson model [75]. The background-only model fits the data well, with most of the deviations of the data from the background-only hypothesis having a local significance below two standard deviations. When testing the data with the background-only model, the largest local signal significance (2.5 σ) is found for spin-0 $gg \to X^0 \to Z\gamma$ production from gluon–gluon fusion at $m_X = 3640$ GeV.

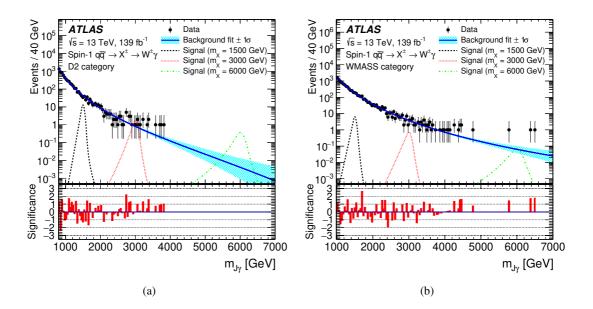


Figure 4: The $m_{J\gamma}$ distributions of data events selected for the spin-1 $q\bar{q}' \to X^{\pm} \to W^{\pm}\gamma$ search in the (a) D2 and (b) WMASS categories. The background-only fit function shape is shown as the solid curve overlaid with a shaded band corresponding to statistical uncertainties in background parameters. Various signal shapes with cross-sections corresponding to expected limits are shown as dashed lines. The bottom panel presents the binned local significance (filled bars) from a comparison of the data with the background fit using a Poisson model [75].

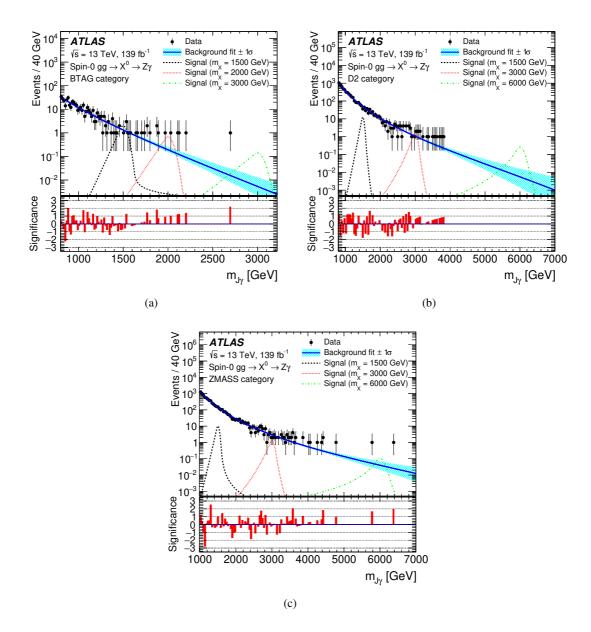


Figure 5: The $m_{J\gamma}$ distributions of data events selected for the spin-0 $gg \to X^0 \to Z\gamma$ search in the (a) BTAG, (b) D2, and (c) ZMASS categories. The background-only fit function shape is shown as the solid curve overlaid with a shaded band corresponding to statistical uncertainties in background parameters. Various signal shapes with cross-sections corresponding to expected limits are shown as dashed lines. The bottom panel presents the binned local significance (filled bars) from a comparison of the data with the background fit using a Poisson model [75].

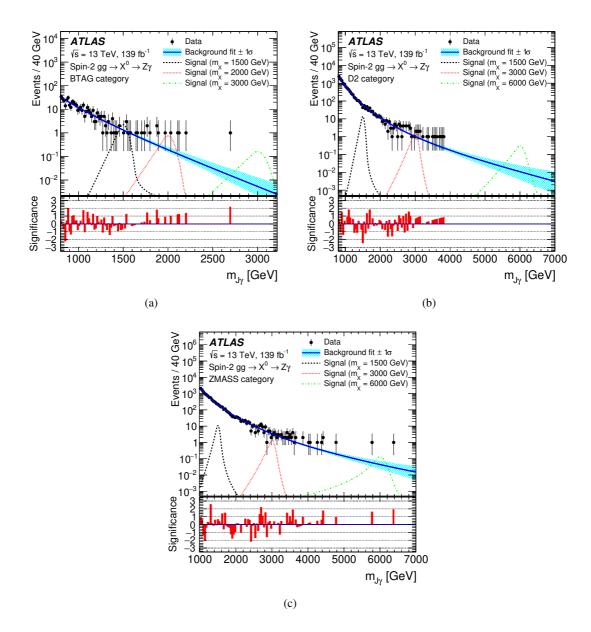


Figure 6: The $m_{J\gamma}$ distributions of data events selected for the spin-2 $gg \to X^0 \to Z\gamma$ search in the (a) BTAG, (b) D2, and (c) ZMASS categories. The background-only fit function shape is shown as the solid curve overlaid with a shaded band corresponding to statistical uncertainties in background parameters. Various signal shapes with cross-sections corresponding to expected limits are shown as dashed lines. The bottom panel presents the binned local significance (filled bars) from a comparison of the data with the background fit using a Poisson model [75].

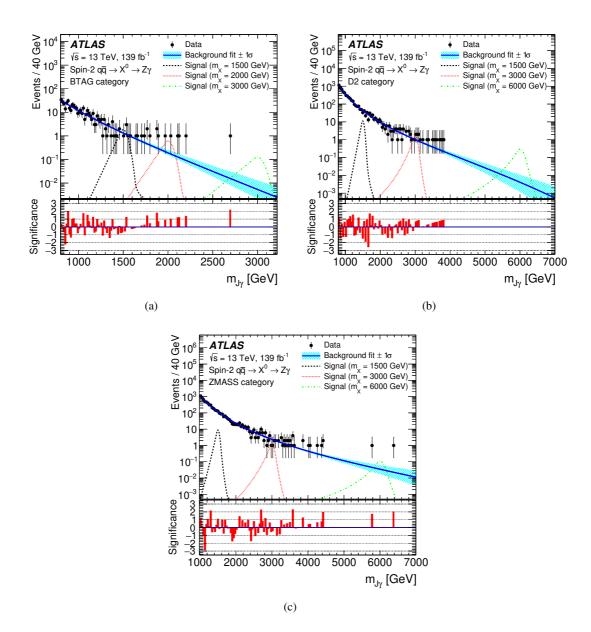


Figure 7: The $m_{J\gamma}$ distributions of data events selected for the spin-2 $q\bar{q} \to X^0 \to Z\gamma$ search in the (a) BTAG, (b) D2, and (c) ZMASS categories. The background-only fit function shape is shown as the solid curve overlaid with a shaded band corresponding to statistical uncertainties in background parameters. Various signal shapes with cross-sections corresponding to expected limits obtained in this analysis are shown as dashed lines. The bottom panel presents the binned local significance (filled bars) from a comparison of the data with the background fit using a Poisson model [75].

Having found no significant deviation of the data from the SM background predictions, upper limits on signal cross-sections are calculated at a 95% confidence level for each of the four search channels. The observed cross-section limits (solid curves) are presented in Figure 8, along with the expected limits (dotted curves) obtained by assuming only SM backgrounds. The limits range between approximately 0.05 fb and 10 fb for m_X between 1 and 6.8 TeV. The one- and two-standard-deviation bands around the expected limits cover the observed limits almost everywhere, which is consistent with the observation that the data agree well with the background-only expectations.

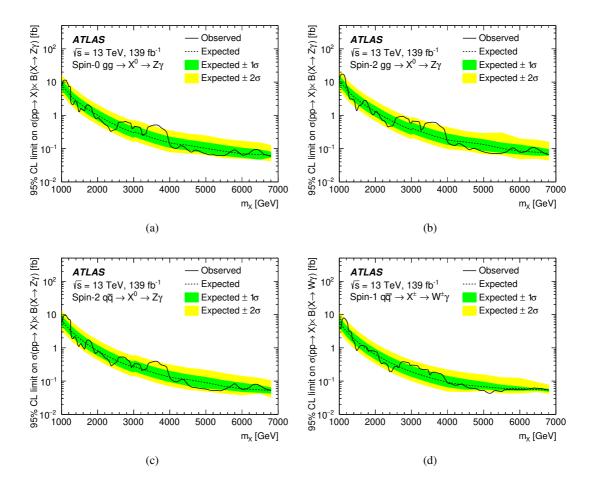


Figure 8: The 95% CL upper limits on $\sigma(pp \to X) \times B(X \to W/Z\gamma)$ as a function of m_X for (a) spin-0 $gg \to X^0 \to Z\gamma$, (b) spin-2 $gg \to X^0 \to Z\gamma$, (c) spin-2 $q\bar{q} \to X^0 \to Z\gamma$ and (d) spin-1 $q\bar{q}' \to X^\pm \to W^\pm\gamma$. The observed limits are shown as a solid black line and the expected ones are shown as a dashed line with the 1σ (2 σ) uncertainty band presented as the green (yellow) band. Small discontinuities in $pp \to X^0 \to Z\gamma$ limits are due to dropping the BTAG category from the limit calculation for mass points with $m_X > 3000$ GeV. Limits for $m_X < 4000$ GeV are derived with the asymptotic approach, while the ones for higher masses are calculated with the pseudo-experiment sampling method.

9 Conclusion

Results of searches for high-mass bosons decaying to $W\gamma$ and $Z\gamma$ final states are presented, using 139 fb⁻¹ of $\sqrt{s}=13$ TeV pp collision data collected with the ATLAS detector during the operation of the LHC from 2015 to 2018. The analysis maximizes the sensitivity of the search by selecting events passing a high- E_T photon trigger and identifying jets from the hadronic decays of highly boosted W and Z bosons. Distributions of the invariant mass of the photon–jet pairs in the mass range from 1.0 to 6.8 TeV are used to search for $X^\pm \to W^\pm \gamma$ and $X^0 \to Z\gamma$ signals above a smoothly falling SM background. No evidence of a new resonance is found, and 95% confidence-level upper limits on the resonance production cross-section times decay branching fraction are set. These vary from about 10 to 0.05 fb as the heavy-boson mass increases from 1.0 to 6.8 TeV. Individual studies are carried out for resonances with spin 0, 1, and 2 produced via gluon–gluon fusion and $q\bar{q}$ annihilation, currently providing the most stringent exclusion limits for these processes. Due to improved analysis techniques, the search sensitivity at high mass has been improved by a factor of two relative to that expected from the increase in integrated luminosity of the analysed data.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; Minciencias, Colombia; MEYS CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRI, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MEiN, Poland; FCT, Portugal; MNE/IFA, Romania; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DSI/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TENMAK, Türkiye; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; PRIMUS 21/SCI/017 and UNCE SCI/013, Czech Republic; COST, ERC, ERDF, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d'Avenir Labex, Investissements d'Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and MINERVA, Israel; Norwegian Financial Mechanism 2014-2021, Norway; NCN and NAWA, Poland; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [76].

References

- [1] E. Eichten and K. Lane, *Low-scale technicolor at the Tevatron and LHC*, Phys. Lett. B **669** (2008) 235, arXiv: **0706.2339** [hep-ph].
- [2] N. Arkani-Hamed, A. G. Cohen, E. Katz and A. E. Nelson, *The Littlest Higgs*, JHEP **07** (2002) 034, arXiv: hep-ph/0206021 [hep-ph].
- [3] D. Pappadopulo, A. Thamm, R. Torre and A. Wulzer, Heavy vector triplets: bridging theory and data, JHEP **09** (2014) 060, arXiv: 1402.4431 [hep-ph].
- [4] P. Artoisenet et al., A framework for Higgs characterisation, JHEP 11 (2013) 043, arXiv: 1306.6464 [hep-ph].
- [5] ATLAS Collaboration, *Performance of top-quark and W-boson tagging with ATLAS in Run 2 of the LHC*, Eur. Phys. J. C **79** (2019) 375, arXiv: 1808.07858 [hep-ex].
- [6] ATLAS Collaboration, Search for new resonances in Wy and Zy final states in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector, Phys. Lett. B **738** (2014) 428, arXiv: 1407.8150 [hep-ex].
- [7] ATLAS Collaboration, Search for heavy resonances decaying to a Z boson and a photon in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Phys. Lett. B **764** (2017) 11, arXiv: 1607.06363 [hep-ex].
- [8] ATLAS Collaboration, Search for heavy resonances decaying to a photon and a hadronically decaying Z/W/H boson in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Phys. Rev. D **98** (2018) 032015, arXiv: 1805.01908 [hep-ex].
- [9] CMS Collaboration, Search for high-mass $Z\gamma$ resonances in $e^+e^-\gamma$ and $\mu^+\mu^-\gamma$ final states in proton–proton collisions at $\sqrt{s}=8$ and 13 TeV, JHEP **01** (2017) 076, arXiv: 1610.02960 [hep-ex].
- [10] CMS Collaboration, Search for high-mass $Z\gamma$ resonances in proton–proton collisions at $\sqrt{s} = 8$ and 13 TeV using jet substructure techniques, Phys. Lett. B **772** (2017) 363, arXiv: 1612.09516 [hep-ex].
- [11] CMS Collaboration, Search for $Z\gamma$ resonances using leptonic and hadronic final states in proton–proton collisions at $\sqrt{s} = 13$ TeV, JHEP **09** (2018) 148, arXiv: 1712.03143 [hep-ex].
- [12] CMS Collaboration, Search for $W\gamma$ resonances in proton–proton collisions at $\sqrt{s} = 13$ TeV using hadronic decays of Lorentz-boosted W bosons, Phys. Lett. B **826** (2021) 136888, arXiv: 2106.10509 [hep-ex].
- [13] ATLAS Collaboration, *The ATLAS Experiment at the CERN Large Hadron Collider*, JINST **3** (2008) S08003.
- [14] ATLAS Collaboration, ATLAS Insertable B-Layer: Technical Design Report, ATLAS-TDR-19; CERN-LHCC-2010-013, 2010, URL: https://cds.cern.ch/record/1291633, Addendum: ATLAS-TDR-19-ADD-1; CERN-LHCC-2012-009, 2012, URL: https://cds.cern.ch/record/1451888.
- [15] B. Abbott et al., *Production and integration of the ATLAS Insertable B-Layer*, JINST **13** (2018) T05008, arXiv: 1803.00844 [physics.ins-det].
- [16] ATLAS Collaboration, *Performance of the ATLAS trigger system in 2015*, Eur. Phys. J. C **77** (2017) 317, arXiv: 1611.09661 [hep-ex].

- [17] ATLAS Collaboration, *The ATLAS Collaboration Software and Firmware*, ATL-SOFT-PUB-2021-001, 2021, url: https://cds.cern.ch/record/2767187.
- [18] ATLAS Collaboration, *Performance of electron and photon triggers in ATLAS during LHC Run* 2, Eur. Phys. J. C **80** (2020) 47, arXiv: 1909.00761 [hep-ex].
- [19] ATLAS Collaboration, *ATLAS data quality operations and performance for 2015–2018 data-taking*, JINST **15** (2020) P04003, arXiv: 1911.04632 [physics.ins-det].
- [20] ATLAS Collaboration,

 Luminosity determination in pp collisions at $\sqrt{s} = 13$ TeV using the ATLAS detector at the LHC,

 ATLAS-CONF-2019-021, 2019, URL: https://cds.cern.ch/record/2677054.
- [21] E. Bothmann et al., Event Generation with Sherpa 2.2, SciPost Phys. 7 (2019) 034, arXiv: 1905.09127 [hep-ph].
- [22] T. Gleisberg and S. Höche, *Comix, a new matrix element generator*, JHEP **12** (2008) 039, arXiv: **0808.3674** [hep-ph].
- [23] F. Cascioli, P. Maierhofer and S. Pozzorini, *Scattering Amplitudes with Open Loops*, Phys. Rev. Lett. **108** (2012) 111601, arXiv: 1111.5206 [hep-ph].
- [24] A. Denner, S. Dittmaier and L. Hofer, *Collier: A fortran-based complex one-loop library in extended regularizations*,

 Comput. Phys. Commun. **212** (2017) 220, arXiv: 1604.06792 [hep-ph].
- [25] S. Schumann and F. Krauss, *A parton shower algorithm based on Catani-Seymour dipole factorisation*, JHEP **03** (2008) 038, arXiv: **0709.1027** [hep-ph].
- [26] S. Catani, F. Krauss, B. R. Webber and R. Kuhn, *QCD Matrix Elements + Parton Showers*, JHEP **11** (2001) 063, arXiv: hep-ph/0109231.
- [27] S. Höche, F. Krauss, S. Schumann and F. Siegert, *QCD matrix elements and truncated showers*, JHEP **05** (2009) 053, arXiv: **0903.1219** [hep-ph].
- [28] S. Höche, F. Krauss, M. Schönherr and F. Siegert, A critical appraisal of NLO+PS matching methods, JHEP **09** (2012) 049, arXiv: 1111.1220 [hep-ph].
- [29] S. Höche, F. Krauss, M. Schönherr and F. Siegert, QCD matrix elements + parton showers. The NLO case, JHEP **04** (2013) 027, arXiv: 1207.5030 [hep-ph].
- [30] R. D. Ball et al., *Parton distributions for the LHC Run II*, JHEP **04** (2015) 040, arXiv: 1410.8849 [hep-ph].
- [31] H.-L. Lai et al., *New parton distributions for collider physics*, Phys. Rev. D **82** (2010) 074024, arXiv: 1007.2241 [hep-ph].
- [32] J. Alwall et al., *The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations*, JHEP **07** (2014) 079, arXiv: 1405.0301 [hep-ph].
- [33] T. Sjöstrand, S. Mrenna and P. Z. Skands, *A brief introduction to PYTHIA 8.1*, Comput. Phys. Commun. **178** (2008) 852, arXiv: 0710.3820 [hep-ph].
- [34] R. D. Ball et al., *Parton distributions with LHC data*, Nucl. Phys. B **867** (2013) 244, arXiv: 1207.1303 [hep-ph].

- [35] ATLAS Collaboration, *ATLAS Pythia 8 tunes to 7 TeV data*, ATL-PHYS-PUB-2014-021, 2014, url: https://cds.cern.ch/record/1966419.
- [36] E. Bagnaschi, G. Degrassi, P. Slavich and A. Vicini, Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM, JHEP 02 (2012) 088, arXiv: 1111.2854 [hep-ph].
- [37] S. Alioli, P. Nason, C. Oleari and E. Re, *A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX*, JHEP **06** (2010) 043, arXiv: 1002.2581 [hep-ph].
- [38] T. Sjöstrand et al., *An introduction to PYTHIA* 8.2, Comput. Phys. Commun. **191** (2015) 159, arXiv: 1410.3012 [hep-ph].
- [39] ATLAS Collaboration, *Measurement of the Z/\gamma^* boson transverse momentum distribution in pp collisions at \sqrt{s} = 7 TeV with the ATLAS detector, JHEP 09 (2014) 145, arXiv: 1406.3660 [hep-ex].*
- [40] B. C. Allanach, J. P. Skittrall and K. Sridhar, Z boson decay to photon plus Kaluza-Klein graviton in large extra dimensions, JHEP 11 (2007) 089, arXiv: 0705.1953 [hep-ph].
- [41] A. Falkowski and J. F. Kamenik, *Diphoton portal to warped gravity*, Phys. Rev. D **94** (2016) 015008, arXiv: 1603.06980 [hep-ph].
- [42] B. M. Dillon and V. Sanz, *Kaluza-Klein gravitons at LHC2*, Phys. Rev. D **96** (2017) 035008, arXiv: 1603.09550 [hep-ph].
- [43] D. J. Lange, *The EvtGen particle decay simulation package*, Nucl. Instrum. Meth. A **462** (2001) 152.
- [44] Geant4 Collaboration, Geant4 a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250.
- [45] ATLAS Collaboration, *The ATLAS Simulation Infrastructure*, Eur. Phys. J. C **70** (2010) 823, arXiv: 1005.4568 [physics.ins-det].
- [46] ATLAS Collaboration, *The Pythia 8 A3 tune description of ATLAS minimum bias and inelastic measurements incorporating the Donnachie–Landshoff diffractive model*, ATL-PHYS-PUB-2016-017, 2016, URL: https://cds.cern.ch/record/2206965.
- [47] ATLAS Collaboration, Electron and photon performance measurements with the ATLAS detector using the 2015–2017 LHC proton–proton collision data, JINST 14 (2019) P12006, arXiv: 1908.00005 [hep-ex].
- [48] ATLAS Collaboration, *Optimisation of large-radius jet reconstruction for the ATLAS detector in* 13 TeV proton—proton collisions, Eur. Phys. J. C **81** (2020) 334, arXiv: 2009.04986 [hep-ex].
- [49] M. Cacciari, G. P. Salam and G. Soyez, *The anti-k_t jet clustering algorithm*, JHEP **04** (2008) 063, arXiv: **0802.1189** [hep-ph].
- [50] M. Cacciari, G. P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896, arXiv: 1111.6097 [hep-ph].
- [51] D. Krohn, J. Thaler and L.-T. Wang, *Jet trimming*, JHEP **02** (2010) 084, arXiv: **0912.1342** [hep-ph].
- [52] S. D. Ellis and D. E. Soper, *Successive combination jet algorithm for hadron collisions*, Phys. Rev. D **48** (1993) 3160, arXiv: hep-ph/9305266.

- [53] ATLAS Collaboration, *In situ calibration of large-radius jet energy and mass in* 13 *TeV proton–proton collisions with the ATLAS detector*, Eur. Phys. J. C **79** (2019) 135, arXiv: 1807.09477 [hep-ex].
- [54] ATLAS Collaboration, *Improving jet substructure performance in ATLAS using Track-CaloClusters*, ATL-PHYS-PUB-2017-015, 2017, URL: https://cds.cern.ch/record/2275636.
- [55] ATLAS Collaboration, Search for heavy diboson resonances in semileptonic final states in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Eur. Phys. J. C **80** (2020) 1165, arXiv: 2004.14636 [hep-ex].
- [56] A. J. Larkoski, G. P. Salam and J. Thaler, *Energy correlation functions for jet substructure*, JHEP **06** (2013) 108, arXiv: 1305.0007 [hep-ph].
- [57] A. J. Larkoski, I. Moult and D. Neill, *Power counting to better jet observables*, JHEP **12** (2014) 009, arXiv: 1409.6298 [hep-ph].
- [58] ATLAS Collaboration,

 Measurements of b-jet tagging efficiency with the ATLAS detector using $t\bar{t}$ events at $\sqrt{s} = 13$ TeV,

 JHEP **08** (2018) 089, arXiv: 1805.01845 [hep-ex].
- [59] M. Cacciari and G. P. Salam, *Pileup subtraction using jet areas*, Phys. Lett. B **659** (2008) 119, arXiv: 0707.1378 [hep-ph].
- [60] ATLAS Collaboration, Variable Radius, Exclusive- k_T , and Center-of-Mass Subjet Reconstruction for Higgs($\rightarrow b\bar{b}$) Tagging in ATLAS, ATL-PHYS-PUB-2017-010, 2017, URL: https://cds.cern.ch/record/2268678.
- [61] ATLAS Collaboration, ATLAS b-jet identification performance and efficiency measurement with $t\bar{t}$ events in pp collisions at $\sqrt{s} = 13$ TeV, Eur. Phys. J. C **79** (2019) 970, arXiv: 1907.05120 [hep-ex].
- [62] CDF Collaboration, Search for new particles decaying into dijets in proton-antiproton collisions at $\sqrt{s} = 1.96$ TeV, Phys. Rev. D **79** (2009) 112002, arXiv: 0812.4036 [hep-ex].
- [63] ATLAS Collaboration, Measurement of Higgs boson production in the diphoton decay channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector, Phys. Rev. D **90** (2014) 112015, arXiv: 1408.7084 [hep-ex].
- [64] ATLAS Collaboration, Search for resonances in diphoton events at $\sqrt{s} = 13$ TeV with the ATLAS detector, JHEP **09** (2016) 001, arXiv: 1606.03833 [hep-ex].
- [65] G. Avoni et al., *The new LUCID-2 detector for luminosity measurement and monitoring in ATLAS*, JINST **13** (2018) P07017.
- [66] ATLAS Collaboration,

 Luminosity determination in pp collisions at $\sqrt{s} = 8$ TeV using the ATLAS detector at the LHC,

 Eur. Phys. J. C **76** (2016) 653, arXiv: 1608.03953 [hep-ex].
- [67] ATLAS Collaboration, Simulation-based extrapolation of b-tagging calibrations towards high transverse momenta in the ATLAS experiment, ATL-PHYS-PUB-2021-003, 2021, URL: https://cds.cern.ch/record/2753444.
- [68] A. Buckley et al., *LHAPDF6: parton density access in the LHC precision era*, Eur. Phys. J. C **75** (2015) 132, arXiv: 1412.7420 [hep-ph].

- [69] W. Verkerke and D. Kirkby, *The RooFit toolkit for data modeling*, (2003), arXiv: physics/0306116 [physics.data-an].
- [70] L. Moneta, K. Cranmer, G. Schott and W. Verkerke, 'The RooStats project', Proceedings of the 13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research. February 22-27, 2010 57 57, arXiv: 1009.1003 [physics.data-an].
- [71] G. Cowan, K. Cranmer, E. Gross and O. Vitells,

 Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554,

 arXiv: 1007.1727 [physics.data-an], Erratum: Eur. Phys. J. C 73 (2013) 2501.
- [72] T. Junk, Confidence level computation for combining searches with small statistics, Nucl. Instrum. Meth. A **434** (1999) 435, arXiv: hep-ex/9902006.
- [73] A. L. Read, *Presentation of search results: the CL_s technique*, J. Phys. G **28** (2002) 2693, ed. by M. R. Whalley and L. Lyons.
- [74] Particle Data Group, *Review of Particle Physics*, 2020-2021. RPP, PTEP **2020** (2020) 083C01. 2093 p, URL: https://cds.cern.ch/record/2729066.
- [75] G. Choudalakis and D. Casadei, *Plotting the differences between data and expectation*, Eur. Phys. J. Plus **127** (2012) 25, arXiv: 1111.2062 [physics.data-an].
- [76] ATLAS Collaboration, *ATLAS Computing Acknowledgements*, ATL-SOFT-PUB-2021-003, 2021, URL: https://cds.cern.ch/record/2776662.

The ATLAS Collaboration

```
G. Aad (599), B. Abbott (5117), D.C. Abbott (5100), A. Abed Abud (534), K. Abeling (553),
D.K. Abhayasinghe <sup>©92</sup>, S.H. Abidi <sup>©27</sup>, A. Aboulhorma <sup>©33e</sup>, H. Abramowicz <sup>©149</sup>, H. Abreu <sup>©148</sup>,
Y. Abulaiti <sup>5</sup>, A.C. Abusleme Hoffman <sup>134a</sup>, B.S. Acharya <sup>66a,66b,p</sup>, B. Achkar <sup>53</sup>, L. Adam <sup>97</sup>,
C. Adam Bourdarios <sup>1</sup>0<sup>4</sup>, L. Adamczyk <sup>82a</sup>, L. Adamek <sup>153</sup>, S.V. Addepalli <sup>24</sup>, J. Adelman <sup>112</sup>,
A. Adiguzel 11c,aa, S. Adorni 54, T. Adye 131, A.A. Affolder 133, Y. Afik 34, C. Agapopoulou 564,
M.N. Agaras ©12, J. Agarwala ©70a,70b, A. Aggarwal ©110, C. Agheorghiesei ©25c,
J.A. Aguilar-Saavedra (127f,127a,z), A. Ahmad (134), F. Ahmadov (136,x), W.S. Ahmed (101), X. Ai (146),
G. Aielli ©<sup>73a,73b</sup>, I. Aizenberg ©<sup>166</sup>, S. Akatsuka ©<sup>84</sup>, M. Akbiyik ©<sup>97</sup>, T.P.A. Åkesson ©<sup>95</sup>,
A.V. Akimov (1035), K. Al Khoury (1039), G.L. Alberghi (1021b), J. Albert (10162), P. Albicocco (1051),
M.J. Alconada Verzini 687, S. Alderweireldt 650, M. Aleksa 634, I.N. Aleksandrov 636, C. Alexa 625b,
T. Alexopoulos (D9, A. Alfonsi (D111), F. Alfonsi (D21b), M. Alhroob (D117), B. Ali (D129), S. Ali (D146),
M. Aliev 635, G. Alimonti 668a, C. Allaire 634, B.M.M. Allbrooke 6144, P.P. Allport 619,
A. Aloisio 69a,69b, F. Alonso 87, C. Alpigiani 136, E. Alunno Camelia 73a,73b, M. Alvarez Estevez 96,
M.G. Alviggi 69a,69b, Y. Amaral Coutinho 79b, A. Ambler 101, L. Ambroz 123, C. Amelung<sup>34</sup>,
D. Amidei 10103, S.P. Amor Dos Santos 127a, S. Amoroso 146, K.R. Amos 1610, C.S. Amrouche 4,
V. Ananiev 122, C. Anastopoulos 137, N. Andari 132, T. Andeen 110, J.K. Anders 18,
S.Y. Andrean (68a,45b), A. Andreazza (68a,68b), S. Angelidakis (68a, A. Angerami (639), A.V. Anisenkov (635),
A. Annovi \bigcirc^{71a}, C. Antel \bigcirc^{54}, M.T. Anthony \bigcirc^{137}, E. Antipov \bigcirc^{118}, M. Antonelli \bigcirc^{51},
D.J.A. Antrim (10<sup>16a</sup>, F. Anulli (10<sup>72a</sup>, M. Aoki (10<sup>80</sup>, J.A. Aparisi Pozo (10<sup>160</sup>, M.A. Aparo (10<sup>144</sup>,
L. Aperio Bella <sup>646</sup>, N. Aranzabal <sup>34</sup>, V. Araujo Ferraz <sup>79a</sup>, C. Arcangeletti <sup>51</sup>, A.T.H. Arce <sup>49</sup>,
E. Arena <sup>689</sup>, J-F. Arguin <sup>6105</sup>, S. Argyropoulos <sup>652</sup>, J.-H. Arling <sup>646</sup>, A.J. Armbruster <sup>634</sup>,
A. Armstrong ©157, O. Arnaez ©153, H. Arnold ©34, Z.P. Arrubarrena Tame 106, G. Artoni ©123,
H. Asada (108), K. Asai (115), S. Asai (115), N.A. Asbah (159), E.M. Asimakopoulou (1158), L. Asquith (1144),
J. Assahsah (D<sup>33d</sup>, K. Assamagan (D<sup>27</sup>, R. Astalos (D<sup>26a</sup>, R.J. Atkin (D<sup>31a</sup>, M. Atkinson<sup>159</sup>, N.B. Atlay (D<sup>17</sup>,
H. Atmani<sup>60b</sup>, P.A. Atmasiddha <sup>103</sup>, K. Augsten <sup>129</sup>, S. Auricchio <sup>69a,69b</sup>, V.A. Austrup <sup>168</sup>,
G. Avner (D)148, G. Avolio (D)34, M.K. Ayoub (D)13c, G. Azuelos (D)105,af, D. Babal (D)26a, H. Bachacou (D)132,
K. Bachas (D150), A. Bachiu (D32), F. Backman (D45a,45b), A. Badea (D59), P. Bagnaia (D72a,72b),
H. Bahrasemani<sup>140</sup>, A.J. Bailey <sup>160</sup>, V.R. Bailey <sup>159</sup>, J.T. Baines <sup>131</sup>, C. Bakalis <sup>9</sup>, O.K. Baker <sup>169</sup>,
P.J. Bakker 111, E. Bakos 14, D. Bakshi Gupta 7, S. Balaji 145, R. Balasubramanian 111,
E.M. Baldin 635, P. Balek 6130, E. Ballabene 668a,68b, F. Balli 6132, L.M. Baltes 661a,
W.K. Balunas (D123), J. Balz (D97), E. Banas (D83), M. Bandieramonte (D126), A. Bandyopadhyay (D22),
S. Bansal 622, L. Barak 6149, E.L. Barberio 6102, D. Barberis 655b,55a, M. Barbero 699, G. Barbour 93,
K.N. Barends (D<sup>31a</sup>, T. Barillari (D<sup>107</sup>, M-S. Barisits (D<sup>34</sup>, J. Barkeloo (D<sup>120</sup>, T. Barklow (D<sup>141</sup>,
B.M. Barnett 131, R.M. Barnett 16a, A. Baroncelli 60a, G. Barone 127, A.J. Barr 123,
L. Barranco Navarro (045a,45b), F. Barreiro (096), J. Barreiro Guimarães da Costa (013a), U. Barron (0149),
S. Barsov <sup>1035</sup>, F. Bartels <sup>1061a</sup>, R. Bartoldus <sup>10141</sup>, G. Bartolini <sup>1099</sup>, A.E. Barton <sup>1088</sup>, P. Bartos <sup>1026a</sup>, A. Basalaev <sup>1046</sup>, A. Bas
C.R. Basson <sup>698</sup>, R.L. Bates <sup>657</sup>, S. Batlamous <sup>33e</sup>, J.R. Batley <sup>630</sup>, B. Batool <sup>6139</sup>, M. Battaglia <sup>6133</sup>,
M. Bauce <sup>1</sup>0<sup>72a,72b</sup>, F. Bauer <sup>1</sup>32,*, P. Bauer <sup>22</sup>, H.S. Bawa<sup>29</sup>, A. Bayirli <sup>1</sup>1c, J.B. Beacham <sup>49</sup>,
T. Beau © 124, P.H. Beauchemin © 156, F. Becherer © 52, P. Bechtle © 22, H.P. Beck © 18,q, K. Becker © 164,
C. Becot <sup>646</sup>, A.J. Beddall <sup>611a</sup>, V.A. Bednyakov <sup>636</sup>, C.P. Bee <sup>6143</sup>, T.A. Beermann <sup>634</sup>,
M. Begalli 679b, M. Begel 627, A. Behera 6143, J.K. Behr 646, C. Beirao Da Cruz E Silva 634,
J.F. Beirer \bigcirc^{53,34}, F. Beisiegel \bigcirc^{22}, M. Belfkir \bigcirc^{4}, G. Bella \bigcirc^{149}, L. Bellagamba \bigcirc^{21b}, A. Bellerive \bigcirc^{32},
P. Bellos <sup>19</sup>, K. Beloborodov <sup>35</sup>, K. Belotskiy <sup>35</sup>, N.L. Belyaev <sup>35</sup>, D. Benchekroun <sup>33a</sup>,
```

```
Y. Benhammou 149, D.P. Benjamin 27, M. Benoit 27, J.R. Bensinger 24, S. Bentvelsen 111,
L. Beresford ©<sup>34</sup>, M. Beretta ©<sup>51</sup>, D. Berge ©<sup>17</sup>, E. Bergeaas Kuutmann ©<sup>158</sup>, N. Berger ©<sup>4</sup>,
B. Bergmann (D<sup>129</sup>, L.J. Bergsten (D<sup>24</sup>, J. Beringer (D<sup>16a</sup>, S. Berlendis (D<sup>6</sup>, G. Bernardi (D<sup>124</sup>,
C. Bernius 141, F.U. Bernlochner 22, T. Berry 92, P. Berta 130, A. Berthold 48, I.A. Bertram 88,
O. Bessidskaia Bylund <sup>168</sup>, S. Bethke <sup>107</sup>, A. Betti <sup>42</sup>, A.J. Bevan <sup>91</sup>, S. Bhatta <sup>143</sup>,
D.S. Bhattacharya 163, P. Bhattarai 124, V.S. Bhopatkar 15, R. Bi 126, R.M. Bianchi 15,
O. Biebel <sup>106</sup>, R. Bielski <sup>120</sup>, N.V. Biesuz <sup>171a,71b</sup>, M. Biglietti <sup>74a</sup>, T.R.V. Billoud <sup>129</sup>,
M. Bindi 653, A. Bingul 611d, C. Bini 672a,72b, S. Biondi 621b,21a, A. Biondini 689, C.J. Birch-sykes 698,
G.A. Bird (19,131), M. Birman (166), T. Bisanz (1634), D. Biswas (167,k), A. Bitadze (1998), C. Bittrich (1648),
K. Bjørke ^{\odot 122}, I. Bloch ^{\odot 46}, C. Blocker ^{\odot 24}, A. Blue ^{\odot 57}, U. Blumenschein ^{\odot 91}, J. Blumenthal ^{\odot 97},
G.J. Bobbink <sup>111</sup>, V.S. Bobrovnikov <sup>35</sup>, M. Boehler <sup>52</sup>, D. Bogavac <sup>12</sup>, A.G. Bogdanchikov <sup>35</sup>,
C. Bohm (D45a), V. Boisvert (D92), P. Bokan (D46), T. Bold (D82a), M. Bomben (D124), M. Bona (D91),
M. Boonekamp (D<sup>132</sup>, C.D. Booth (D<sup>92</sup>, A.G. Borbély (D<sup>57</sup>, H.M. Borecka-Bielska (D<sup>105</sup>, L.S. Borgna (D<sup>93</sup>),
G. Borissov <sup>688</sup>, D. Bortoletto <sup>6123</sup>, D. Boscherini <sup>621b</sup>, M. Bosman <sup>612</sup>, J.D. Bossio Sola <sup>634</sup>,
K. Bouaouda (D<sup>33a</sup>, J. Boudreau (D<sup>126</sup>, E.V. Bouhova-Thacker (D<sup>88</sup>, D. Boumediene (D<sup>38</sup>, R. Bouquet (D<sup>124</sup>,
A. Boveia 116, J. Boyd 134, D. Boye 27, I.R. Boyko 36, A.J. Bozson 92, J. Bracinik 19,
N. Brahimi 60d,60c, G. Brandt 6168, O. Brandt 630, F. Braren 646, B. Brau 6100, J.E. Brau 6120,
W.D. Breaden Madden <sup>657</sup>, K. Brendlinger <sup>646</sup>, R. Brener <sup>6166</sup>, L. Brenner <sup>634</sup>, R. Brenner <sup>6158</sup>,
S. Bressler 6166, B. Brickwedde 697, D.L. Briglin 619, D. Britton 657, D. Britzger 6107, I. Brock 622,
R. Brock 104, G. Brooijmans 139, W.K. Brooks 134f, E. Brost 127, P.A. Bruckman de Renstrom 183,
B. Brüers 646, D. Bruncko 626b, A. Bruni 621b, G. Bruni 621b, M. Bruschi 621b, N. Bruscino 672a, 72b,
L. Bryngemark 141, T. Buanes 15, Q. Buat 143, P. Buchholz 139, A.G. Buckley 57,
I.A. Budagov (^{036,*}, M.K. Bugge (^{0122}, O. Bulekov (^{035}, B.A. Bullard (^{059}, S. Burdin (^{089},
C.D. Burgard 646, A.M. Burger 618, B. Burghgrave 7, J.T.P. Burr 646, C.D. Burton 610,
J.C. Burzynski 10140, E.L. Busch 1039, V. Büscher 1097, P.J. Bussey 1057, J.M. Butler 1023, C.M. Buttar 1057,
J.M. Butterworth <sup>1093</sup>, W. Buttinger <sup>10131</sup>, C.J. Buxo Vazquez <sup>104</sup>, A.R. Buzykaev <sup>1035</sup>, G. Cabras <sup>1021b</sup>,
S. Cabrera Urbán 160, D. Caforio 56, H. Cai 126, V.M.M. Cairo 141, O. Cakir 3a, N. Calace 34,
P. Calafiura 616a, G. Calderini 6124, P. Calfayan 665, G. Callea 657, L.P. Caloba 79b, D. Calvet 638,
S. Calvet <sup>138</sup>, T.P. Calvet <sup>199</sup>, M. Calvetti <sup>171a,71b</sup>, R. Camacho Toro <sup>124</sup>, S. Camarda <sup>134</sup>,
D. Camarero Munoz 696, P. Camarri 673a,73b, M.T. Camerlingo 674a,74b, D. Cameron 6122,
C. Camincher (D<sup>162</sup>, M. Campanelli (D<sup>93</sup>, A. Camplani (D<sup>40</sup>, V. Canale (D<sup>69a,69b</sup>, A. Canesse (D<sup>101</sup>),
M. Cano Bret (D<sup>77</sup>, J. Cantero (D<sup>118</sup>, Y. Cao (D<sup>159</sup>, F. Capocasa (D<sup>24</sup>, M. Capua (D<sup>41b,41a</sup>,
A. Carbone 68a,68b, R. Cardarelli 673a, J.C.J. Cardenas 7, F. Cardillo 6160, T. Carli 634,
G. Carlino (1069a, B.T. Carlson (10126, E.M. Carlson (1012154a), L. Carminati (1068a,68b), M. Carnesale (1072a,72b),
R.M.D. Carney (141), S. Caron (110), E. Carquin (134f), S. Carrá (146), G. Carratta (121b), 21a,
J.W.S. Carter 153, T.M. Carter 50, D. Casadei 31c, M.P. Casado 12,h, A.F. Casha 153,
E.G. Castiglia 6169, F.L. Castillo 61a, L. Castillo Garcia 612, V. Castillo Gimenez 6160,
N.F. Castro (D127a,127e), A. Catinaccio (D34), J.R. Catmore (D122), A. Cattai 34, V. Cavaliere (D27),
N. Cavalli (10<sup>21b,21a</sup>, V. Cavasinni (10<sup>71a,71b</sup>, E. Celebi (10<sup>11b</sup>, F. Celli (10<sup>123</sup>, M.S. Centonze (10<sup>67a,67b</sup>,
K. Cerny 119, A.S. Cerqueira 79a, A. Cerri 144, L. Cerrito 73a,73b, F. Cerutti 16a, A. Cervelli 151b,
S.A. Cetin (10) 11b, Z. Chadi (10) 33a, D. Chakraborty (11) 112, M. Chala (10) 127f, J. Chan (10) 167, W.S. Chan (11) 111,
W.Y. Chan 689, J.D. Chapman 630, B. Chargeishvili 6147b, D.G. Charlton 619, T.P. Charman 691,
M. Chatterjee <sup>18</sup>, S. Chekanov <sup>5</sup>, S.V. Chekulaev <sup>154a</sup>, G.A. Chelkov <sup>56,a</sup>, A. Chen <sup>103</sup>,
B. Chen 149, B. Chen 160, C. Chen 60a, C.H. Chen 178, H. Chen 13c, H. Chen 160, J. Chen 160c,
J. Chen 624, S. Chen 6125, S.J. Chen 613c, X. Chen 660c, X. Chen 613b, ae, Y. Chen 660a, Y-H. Chen 646,
C.L. Cheng 6167, H.C. Cheng 662a, A. Cheplakov 636, E. Cheremushkina 646, E. Cherepanova 636,
R. Cherkaoui El Moursli (D<sup>33e</sup>, E. Cheu (D<sup>6</sup>, K. Cheung (D<sup>63</sup>, L. Chevalier (D<sup>132</sup>, V. Chiarella (D<sup>51</sup>,
```

```
G. Chiarelli <sup>1071a</sup>, G. Chiodini <sup>1067a</sup>, A.S. Chisholm <sup>19</sup>, A. Chitan <sup>1025b</sup>, Y.H. Chiu <sup>10162</sup>,
M.V. Chizhov (D<sup>36</sup>, K. Choi (D<sup>10</sup>), A.R. Chomont (D<sup>72a,72b</sup>, Y. Chou (D<sup>100</sup>), E.Y.S. Chow (D<sup>111</sup>),
T. Chowdhury <sup>131f</sup>, L.D. Christopher <sup>31f</sup>, M.C. Chu <sup>62a</sup>, X. Chu <sup>13a,13d</sup>, J. Chudoba <sup>128</sup>,
J.J. Chwastowski <sup>1083</sup>, D. Cieri <sup>107</sup>, K.M. Ciesla <sup>1083</sup>, V. Cindro <sup>1090</sup>, I.A. Cioară <sup>1025b</sup>, A. Ciocio <sup>1016a</sup>,
F. Cirotto (69a,69b), Z.H. Citron (6166,1), M. Citterio (68a), D.A. Ciubotaru<sup>25b</sup>, B.M. Ciungu (6153),
A. Clark <sup>1054</sup>, P.J. Clark <sup>1050</sup>, J.M. Clavijo Columbie <sup>1046</sup>, S.E. Clawson <sup>1098</sup>, C. Clement <sup>1045a,45b</sup>,
L. Clissa (D<sup>2</sup>1b,21a), Y. Coadou (D<sup>99</sup>), M. Cobal (D<sup>66a,66c</sup>), A. Coccaro (D<sup>55b</sup>), J. Cochran<sup>78</sup>,
R.F. Coelho Barrue <sup>127a</sup>, R. Coelho Lopes De Sa <sup>100</sup>, S. Coelli <sup>68a</sup>, H. Cohen <sup>149</sup>,
A.E.C. Coimbra (D<sup>34</sup>, B. Cole (D<sup>39</sup>, J. Collot (D<sup>58</sup>, P. Conde Muiño (D<sup>127a,127g</sup>, S.H. Connell (D<sup>31c</sup>,
I.A. Connelly 657, E.I. Conroy 6123, F. Conventi 69a, ag, H.G. Cooke 619, A.M. Cooper-Sarkar 6123,
F. Cormier <sup>161</sup>, L.D. Corpe <sup>34</sup>, M. Corradi <sup>72a,72b</sup>, E.E. Corrigan <sup>95</sup>, F. Corriveau <sup>101,w</sup>,
M.J. Costa 6160, F. Costanza 64, D. Costanzo 6137, B.M. Cote 6116, G. Cowan 692, J.W. Cowley 630,
K. Cranmer 114, S. Crépé-Renaudin 58, F. Crescioli 124, M. Cristinziani 139,
M. Cristoforetti (575a,75b,c), V. Croft (5156), G. Crosetti (541b,41a), A. Cueto (534),
T. Cuhadar Donszelmann <sup>157</sup>, H. Cui <sup>13a,13d</sup>, A.R. Cukierman <sup>141</sup>, W.R. Cunningham <sup>57</sup>,
F. Curcio (D<sup>41b,41a</sup>, P. Czodrowski (D<sup>34</sup>, M.M. Czurylo (D<sup>61b</sup>, M.J. Da Cunha Sargedas De Sousa (D<sup>60a</sup>,
J.V. Da Fonseca Pinto <sup>1079b</sup>, C. Da Via <sup>1098</sup>, W. Dabrowski <sup>1082a</sup>, T. Dado <sup>1047</sup>, S. Dahbi <sup>1031f</sup>, T. Dai <sup>10103</sup>,
C. Dallapiccola 6100, M. Dam 640, G. D'amen 627, V. D'Amico 674a,74b, J. Damp 697,
J.R. Dandoy (125), M.F. Daneri (28), M. Danninger (140), V. Dao (134), G. Darbo (155b), S. Darmora (15),
A. Dattagupta (D120, S. D'Auria (D68a,68b), C. David (D154b), T. Davidek (D130, D.R. Davis (D49),
B. Davis-Purcell <sup>632</sup>, I. Dawson <sup>691</sup>, K. De <sup>67</sup>, R. De Asmundis <sup>69a</sup>, M. De Beurs <sup>6111</sup>,
S. De Castro ©21b,21a, N. De Groot ©110, P. de Jong ©111, H. De la Torre ©104, A. De Maria ©13c,
D. De Pedis (10<sup>72a</sup>, A. De Salvo (10<sup>72a</sup>, U. De Sanctis (10<sup>73a,73b</sup>, M. De Santis (10<sup>73a,73b</sup>, A. De Santo (10<sup>144</sup>),
J.B. De Vivie De Regie 658, D.V. Dedovich J. Degens 6111, A.M. Deiana 642, J. Del Peso 696,
Y. Delabat Diaz <sup>646</sup>, F. Deliot <sup>6132</sup>, C.M. Delitzsch <sup>66</sup>, M. Della Pietra <sup>69a,69b</sup>, D. Della Volpe <sup>54</sup>,
A. Dell'Acqua (D<sup>34</sup>, L. Dell'Asta (D<sup>68a,68b</sup>, M. Delmastro (D<sup>4</sup>, P.A. Delsart (D<sup>58</sup>, S. Demers (D<sup>169</sup>),
M. Demichev 636, S.P. Denisov 535, L. D'Eramo 5112, D. Derendarz 683, J.E. Derkaoui 533d,
F. Derue (124, P. Dervan (189, K. Desch (122, K. Dette (153, C. Deutsch (122, P.O. Deviveiros (134,
F.A. Di Bello (10,72a,72b), A. Di Ciaccio (10,73a,73b), L. Di Ciaccio (10,4), A. Di Domenico (10,72a,72b),
C. Di Donato 69a,69b, A. Di Girolamo 34, G. Di Gregorio 71a,71b, A. Di Luca 75a,75b,
B. Di Micco (10,74a,74b), R. Di Nardo (10,74a,74b), C. Diaconu (10,99), F.A. Dias (10,111), T. Dias Do Vale (10,127a),
M.A. Diaz (134a,134b), F.G. Diaz Capriles (122), J. Dickinson (134a, M. Didenko (134a,134b), E.B. Diehl (134a,134b), F.G. Diaz Capriles (134a,134b), F.G. Diaz
J. Dietrich 17, S. Díez Cornell 46, C. Diez Pardos 139, A. Dimitrievska 16a, W. Ding 13b,
J. Dingfelder (D<sup>22</sup>, I-M. Dinu (D<sup>25b</sup>, S.J. Dittmeier (D<sup>61b</sup>, F. Dittus (D<sup>34</sup>, F. Djama (D<sup>99</sup>, T. Djobava (D<sup>147b</sup>,
J.I. Djuvsland <sup>15</sup>, M.A.B. Do Vale <sup>135</sup>, D. Dodsworth <sup>24</sup>, C. Doglioni <sup>95</sup>, J. Dolejsi <sup>130</sup>,
Z. Dolezal ©130, M. Donadelli ©79c, B. Dong ©60c, J. Donini ©38, A. D'Onofrio ©13c, M. D'Onofrio ©89,
J. Dopke (D131), A. Doria (D69a), M.T. Dova (D87), A.T. Doyle (D57), E. Drechsler (D140), E. Dreyer (D140),
T. Dreyer (D<sup>53</sup>, A.S. Drobac (D<sup>156</sup>, D. Du (D<sup>60a</sup>, T.A. du Pree (D<sup>111</sup>, F. Dubinin (D<sup>35</sup>, M. Dubovsky (D<sup>26a</sup>, A. Dubreuil (D<sup>54</sup>, E. Duchovni (D<sup>166</sup>, G. Duckeck (D<sup>106</sup>, O.A. Ducu (D<sup>34</sup>, 25b), D. Duda (D<sup>107</sup>, A. Dudarev (D<sup>34</sup>, A. Dudarev (D<sup>34</sup>))
M. D'uffizi 698, L. Duflot 64, M. Dührssen 634, C. Dülsen 6168, A.E. Dumitriu 625b, M. Dunford 61a,
S. Dungs (D<sup>47</sup>, K. Dunne (D<sup>45</sup>a, 45b), A. Duperrin (D<sup>99</sup>, H. Duran Yildiz (D<sup>3</sup>a), M. Düren (D<sup>56</sup>),
A. Durglishvili 10147b, B. Dutta 1046, B.L. Dwyer 10112, G.I. Dyckes 1016a, M. Dyndal 1082a, S. Dysch 1098,
B.S. Dziedzic <sup>683</sup>, B. Eckerova <sup>626a</sup>, M.G. Eggleston <sup>49</sup>, E. Egidio Purcino De Souza <sup>679b</sup>,
L.F. Ehrke 654, T. Eifert 67, G. Eigen 615, K. Einsweiler 616a, T. Ekelof 6158, Y. El Ghazali 633b,
H. El Jarrari (1)33e, A. El Moussaouy (1)33a, V. Ellajosyula (1)158, M. Ellert (1)158, F. Ellinghaus (1)168,
A.A. Elliot <sup>1091</sup>, N. Ellis <sup>1034</sup>, J. Elmsheuser <sup>1027</sup>, M. Elsing <sup>1034</sup>, D. Emeliyanov <sup>10131</sup>, A. Emerman <sup>1039</sup>,
Y. Enari 10151, J. Erdmann 1047, A. Ereditato 1018, P.A. Erland 1083, M. Errenst 10168, M. Escalier 1064,
```

```
C. Escobar 6160, O. Estrada Pastor 6160, E. Etzion 6149, G. Evans 6127a, H. Evans 665, M.O. Evans 6144,
A. Ezhilov <sup>©35</sup>, F. Fabbri <sup>©57</sup>, L. Fabbri <sup>©21b,21a</sup>, G. Facini <sup>©164</sup>, V. Fadeyev <sup>©133</sup>,
R.M. Fakhrutdinov 635, S. Falciano 672a, P.J. Falke 622, S. Falke 634, J. Faltova 6130, Y. Fan 613a,
Y. Fang (13a,13d), G. Fanourakis (14d), M. Fanti (16a,68b), M. Faraj (16d), A. Farbin (17d), A. Farilla (17d),
E.M. Farina (10<sup>70a,70b</sup>, T. Farooque (10<sup>104</sup>, S.M. Farrington (10<sup>50</sup>, P. Farthouat (10<sup>34</sup>, F. Fassi (10<sup>33e</sup>),
D. Fassouliotis <sup>68</sup>, M. Faucci Giannelli <sup>673a,73b</sup>, W.J. Fawcett <sup>630</sup>, L. Fayard <sup>64</sup>, O.L. Fedin <sup>635,a</sup>,
M. Feickert (D159), L. Feligioni (D99), A. Fell (D137), C. Feng (D60b), M. Feng (D13b), M.J. Fenton (D157),
A.B. Fenyuk<sup>35</sup>, S.W. Ferguson <sup>643</sup>, J. Ferrando <sup>646</sup>, A. Ferrari <sup>6158</sup>, P. Ferrari <sup>6111</sup>, R. Ferrari <sup>670a</sup>,
D. Ferrere <sup>54</sup>, C. Ferretti <sup>10</sup><sup>103</sup>, F. Fiedler <sup>97</sup>, A. Filipčič <sup>90</sup>, F. Filthaut <sup>110</sup>,
M.C.N. Fiolhais (D127a,127c,b), L. Fiorini (D160), F. Fischer (D139), W.C. Fisher (D104), T. Fitschen (D19),
I. Fleck (139), P. Fleischmann (103), T. Flick (168), B.M. Flierl (106), L. Flores (125), M. Flores (131d),
L.R. Flores Castillo 62a, F.M. Follega 75a,75b, N. Fomin 615, J.H. Foo 6153, B.C. Forland 65,
A. Formica 132, F.A. Förster 12, A.C. Forti 198, E. Fortin 199, M.G. Foti 123, L. Fountas 8,
D. Fournier <sup>64</sup>, H. Fox <sup>88</sup>, P. Francavilla <sup>71a,71b</sup>, S. Francescato <sup>59</sup>, M. Franchini <sup>21b,21a</sup>,
S. Franchino 61a, D. Francis<sup>34</sup>, L. Franco 4, L. Franconi 18, M. Franklin 59, G. Frattari 72a,72b,
A.C. Freegard (1991), P.M. Freeman 19, W.S. Freund (1979b), E.M. Freundlich (1947), D. Froidevaux (1934),
J.A. Frost 6123, Y. Fu 660a, M. Fujimoto 6115, E. Fullana Torregrosa 6160,*, J. Fuster 6160,
A. Gabrielli 621b,21a, A. Gabrielli 634, P. Gadow 646, G. Gagliardi 555b,55a, L.G. Gagnon 616a,
G.E. Gallardo (D123), E.J. Gallas (D123), B.J. Gallop (D131), R. Gamboa Goni (D91), K.K. Gan (D116),
S. Ganguly 6151, J. Gao 60a, Y. Gao 550, Y.S. Gao 29,n, F.M. Garay Walls 134a, C. García 160,
J.E. García Navarro (160), J.A. García Pascual (13a), M. Garcia-Sciveres (16a), R.W. Gardner (137),
D. Garg \bigcirc^{77}, R.B. Garg \bigcirc^{141}, S. Gargiulo \bigcirc^{52}, C.A. Garner ^{153}, V. Garonne \bigcirc^{122}, S.J. Gasiorowski \bigcirc^{136},
P. Gaspar 6, G. Gaudio 6, P. Gauzzi 72a, 72b, I.L. Gavrilenko 6, A. Gavrilyuk 3, C. Gay 6, C. Ga
G. Gaycken (D46), E.N. Gazis (D9), A.A. Geanta (D25b), C.M. Gee (D133), C.N.P. Gee (D131), J. Geisen (D95),
M. Geisen \bigcirc^{97}, C. Gemme \bigcirc^{55b}, M.H. Genest \bigcirc^{58}, S. Gentile \bigcirc^{72a,72b}, S. George \bigcirc^{92}, W.F. George \bigcirc^{19},
T. Geralis 644, L.O. Gerlach<sup>53</sup>, P. Gessinger-Befurt 634, M. Ghasemi Bostanabad 6162,
M. Ghneimat (139), A. Ghosh (157), A. Ghosh (157), B. Giacobbe (1521), S. Giagu (1572a,72b),
N. Giangiacomi <sup>153</sup>, P. Giannetti <sup>71a</sup>, A. Giannini <sup>69a,69b</sup>, S.M. Gibson <sup>92</sup>, M. Gignac <sup>133</sup>,
D.T. Gil 682b, B.J. Gilbert 639, D. Gillberg 632, G. Gilles 6111, N.E.K. Gillwald 646,
D.M. Gingrich (D<sup>2</sup>,af), M.P. Giordani (D<sup>66a,66c</sup>, P.F. Giraud (D<sup>132</sup>, G. Giugliarelli (D<sup>66a,66c</sup>, D. Giugni (D<sup>68a</sup>,
F. Giuli (D<sup>73a,73b</sup>, I. Gkialas (D<sup>8,i</sup>, P. Gkountoumis (D<sup>9</sup>, L.K. Gladilin (D<sup>35</sup>, C. Glasman (D<sup>96</sup>),
G.R. Gledhill <sup>120</sup>, M. Glisic <sup>120</sup>, I. Gnesi <sup>141b,e</sup>, M. Goblirsch-Kolb <sup>124</sup>, D. Godin <sup>105</sup>, S. Goldfarb <sup>102</sup>,
T. Golling 654, D. Golubkov 635, J.P. Gombas 6104, A. Gomes 6127a,127b, R. Goncalves Gama 653,
R. Gonçalo (D127a,127c), G. Gonella (D120), L. Gonella (D19), A. Gongadze (D36), F. Gonnella (D19),
J.L. Gonski (D<sup>39</sup>, S. González de la Hoz (D<sup>160</sup>, S. Gonzalez Fernandez (D<sup>12</sup>, R. Gonzalez Lopez (D<sup>89</sup>),
C. Gonzalez Renteria 616a, R. Gonzalez Suarez 6158, S. Gonzalez-Sevilla 654,
G.R. Gonzalvo Rodriguez 6160, R.Y. González Andana 6134a, L. Goossens 634, N.A. Gorasia 619,
P.A. Gorbounov <sup>135</sup>, B. Gorini <sup>34</sup>, E. Gorini <sup>67a,67b</sup>, A. Gorišek <sup>90</sup>, A.T. Goshaw <sup>49</sup>,
M.I. Gostkin 636, C.A. Gottardo 6110, M. Gouighri 633b, V. Goumarre 646, A.G. Goussiou 6136,
N. Govender <sup>131c</sup>, C. Goy <sup>14</sup>, I. Grabowska-Bold <sup>182a</sup>, K. Graham <sup>132</sup>, E. Gramstad <sup>122</sup>,
S. Grancagnolo <sup>17</sup>, M. Grandi <sup>144</sup>, V. Gratchev<sup>35,*</sup>, P.M. Gravila <sup>25f</sup>, F.G. Gravili <sup>67a,67b</sup>,
H.M. Gray 16a, C. Grefe 22, I.M. Gregor 46, P. Grenier 141, K. Grevtsov 46, C. Grieco 12,
N.A. Grieser<sup>117</sup>, A.A. Grillo <sup>133</sup>, K. Grimm <sup>29,m</sup>, S. Grinstein <sup>12,t</sup>, J.-F. Grivaz <sup>64</sup>, S. Groh <sup>97</sup>,
E. Gross 6166, J. Grosse-Knetter 53, C. Grud 103, A. Grummer 109, J.C. Grundy 123, L. Guan 10103,
W. Guan <sup>167</sup>, C. Gubbels <sup>161</sup>, J. Guenther <sup>34</sup>, J.G.R. Guerrero Rojas <sup>160</sup>, F. Guescini <sup>107</sup>,
R. Gugel 697, A. Guida 646, T. Guillemin 64, S. Guindon 634, J. Guo 660c, L. Guo 664, Y. Guo 6103,
R. Gupta 646, S. Gurbuz 622, G. Gustavino 6117, M. Guth 654, P. Gutierrez 6117,
```

```
L.F. Gutierrez Zagazeta <sup>10</sup>125, C. Gutschow <sup>10</sup>93, C. Guyot <sup>10</sup>132, C. Gwenlan <sup>10</sup>123, C.B. Gwilliam <sup>10</sup>89,
E.S. Haaland 122, A. Haas 114, M. Habedank 146, C. Haber 16a, H.K. Hadavand 17, A. Hadef 197,
S. Hadzic <sup>107</sup>, M. Haleem <sup>163</sup>, J. Haley <sup>118</sup>, J.J. Hall <sup>137</sup>, G. Halladjian <sup>104</sup>, G.D. Hallewell <sup>99</sup>,
L. Halser 18, K. Hamano 162, H. Hamdaoui 163e, M. Hamer 162, G.N. Hamity 1650, K. Han 1660a,
L. Han 613c, L. Han 660a, S. Han 616a, Y.F. Han 6153, K. Hanagaki 680, M. Hance 6133,
M.D. Hank (1)37, R. Hankache (1)98, E. Hansen (1)95, J.B. Hansen (1)40, J.D. Hansen (1)40, M.C. Hansen (1)22,
P.H. Hansen <sup>640</sup>, K. Hara <sup>6155</sup>, T. Harenberg <sup>6168</sup>, S. Harkusha <sup>635</sup>, Y.T. Harris <sup>6123</sup>, P.F. Harrison <sup>164</sup>,
N.M. Hartman (141), N.M. Hartmann (106), Y. Hasegawa (138), A. Hasib (150), S. Hassani (132),
S. Haug <sup>18</sup>, R. Hauser <sup>104</sup>, M. Havranek <sup>129</sup>, C.M. Hawkes <sup>19</sup>, R.J. Hawkings <sup>34</sup>,
S. Hayashida 108, D. Hayden 104, C. Hayes 103, R.L. Hayes 161, C.P. Hays 123, J.M. Hays 1091,
H.S. Hayward <sup>689</sup>, S.J. Haywood <sup>6131</sup>, F. He <sup>60a</sup>, Y. He <sup>6152</sup>, Y. He <sup>6124</sup>, M.P. Heath <sup>650</sup>,
V. Hedberg <sup>©95</sup>, A.L. Heggelund <sup>©122</sup>, N.D. Hehir <sup>©91</sup>, C. Heidegger <sup>©52</sup>, K.K. Heidegger <sup>©52</sup>,
W.D. Heidorn \bigcirc^{78}, J. Heilman \bigcirc^{32}, S. Heim \bigcirc^{46}, T. Heim \bigcirc^{16a}, B. Heinemann \bigcirc^{46,ac}, J.G. Heinlein \bigcirc^{125},
J.J. Heinrich (D<sup>120</sup>, L. Heinrich (D<sup>34</sup>, J. Hejbal (D<sup>128</sup>, L. Helary (D<sup>46</sup>, A. Held (D<sup>114</sup>, S. Hellesund (D<sup>122</sup>,
C.M. Helling (D<sup>133</sup>, S. Hellman (D<sup>45a,45b</sup>, C. Helsens (D<sup>34</sup>, R.C.W. Henderson<sup>88</sup>, L. Henkelmann (D<sup>30</sup>),
A.M. Henriques Correia<sup>34</sup>, H. Herde <sup>141</sup>, Y. Hernández Jiménez <sup>143</sup>, H. Herr<sup>97</sup>, M.G. Herrmann <sup>160</sup>,
T. Herrmann ^{648}, G. Herten ^{652}, R. Hertenberger ^{6106}, L. Hervas ^{634}, N.P. Hessey ^{6154a}, H. Hibi ^{681},
S. Higashino 680, E. Higón-Rodriguez 6160, K.H. Hiller 65, S.J. Hillier 619, M. Hils 648,
I. Hinchliffe ^{16a}, F. Hinterkeuser ^{122}, M. Hirose ^{121}, S. Hirose ^{155}, D. Hirschbuehl ^{168}, B. Hiti ^{169},
O. Hladik<sup>128</sup>, J. Hobbs (143), R. Hobincu (125e), N. Hod (166), M.C. Hodgkinson (137),
B.H. Hodkinson (D<sup>30</sup>), A. Hoecker (D<sup>34</sup>), J. Hofer (D<sup>46</sup>), D. Hohn (D<sup>52</sup>), T. Holm (D<sup>22</sup>), T.R. Holmes (D<sup>37</sup>),
M. Holzbock 10, L.B.A.H. Hommels 13, B.P. Honan 19, J. Hong 16, T.M. Hong 126,
Y. Hong <sup>53</sup>, J.C. Honig <sup>52</sup>, A. Hönle <sup>107</sup>, B.H. Hooberman <sup>159</sup>, W.H. Hopkins <sup>5</sup>, Y. Horii <sup>108</sup>,
L.A. Horyn \mathbb{D}^{37}, S. Hou \mathbb{D}^{146}, J. Howarth \mathbb{D}^{57}, J. Hoya \mathbb{D}^{87}, M. Hrabovsky \mathbb{D}^{119}, A. Hrynevich \mathbb{D}^{35},
T. Hryn'ova 64, P.J. Hsu 63, S.-C. Hsu 6136, Q. Hu 639, S. Hu 660c, Y.F. Hu 613a,13d,ah,
D.P. Huang (D<sup>93</sup>, X. Huang (D<sup>13c</sup>, Y. Huang (D<sup>60a</sup>, Y. Huang (D<sup>13a</sup>, Z. Hubacek (D<sup>129</sup>, F. Hubaut (D<sup>99</sup>),
M. Huebner (D<sup>22</sup>, F. Huegging (D<sup>22</sup>, T.B. Huffman (D<sup>123</sup>, M. Huhtinen (D<sup>34</sup>, S.K. Huiberts (D<sup>15</sup>),
R. Hulsken <sup>1058</sup>, N. Huseynov <sup>1036,x</sup>, J. Huston <sup>104</sup>, J. Huth <sup>1059</sup>, R. Hyneman <sup>10141</sup>, S. Hyrych <sup>1026a</sup>,
G. Iacobucci <sup>54</sup>, G. Iakovidis <sup>27</sup>, I. Ibragimov <sup>139</sup>, L. Iconomidou-Fayard <sup>64</sup>, P. Iengo <sup>34</sup>,
R. Iguchi 6151, T. Iizawa 654, Y. Ikegami 680, A. Ilg 618, N. Ilic 6153, H. Imam 633a,
T. Ingebretsen Carlson (b45a,45b), G. Introzzi (b70a,70b), M. Iodice (b74a), V. Ippolito (b72a,72b), M. Ishino (b151),
W. Islam 6167, C. Issever 617,46, S. Istin 611c,ai, J.M. Iturbe Ponce 62a, R. Iuppa 675a,75b, A. Ivina 6166,
J.M. Izen (D<sup>43</sup>), V. Izzo (D<sup>69a</sup>), P. Jacka (D<sup>128</sup>), P. Jackson (D<sup>1</sup>), R.M. Jacobs (D<sup>46</sup>), B.P. Jaeger (D<sup>140</sup>),
C.S. Jagfeld 6 106, G. Jäkel 6 168, K. Jakobs 6 7, T. Jakoubek 6 166, J. Jamieson 6 7, K.W. Janas 6 82a,
G. Jarlskog <sup>©95</sup>, A.E. Jaspan <sup>©89</sup>, N. Javadov<sup>36,x</sup>, T. Javůrek <sup>©34</sup>, M. Javurkova <sup>©100</sup>, F. Jeanneau <sup>©132</sup>,
L. Jeanty 120, J. Jejelava 147a, P. Jenni 52, S. Jézéquel 4, J. Jia 143, Z. Jia 13c, Y. Jiang 40a,
S. Jiggins 650, J. Jimenez Pena 6107, S. Jin 613c, A. Jinaru 625b, O. Jinnouchi 6152, H. Jivan 631f,
P. Johansson (D<sup>137</sup>, K.A. Johns (D<sup>6</sup>, C.A. Johnson (D<sup>65</sup>, D.M. Jones (D<sup>30</sup>), E. Jones (D<sup>164</sup>, R.W.L. Jones (D<sup>88</sup>),
T.J. Jones <sup>689</sup>, J. Jovicevic <sup>614</sup>, X. Ju <sup>616a</sup>, J.J. Junggeburth <sup>634</sup>, A. Juste Rozas <sup>612,t</sup>, S. Kabana <sup>6134e</sup>,
A. Kaczmarska 683, M. Kado 672a,72b, H. Kagan 6116, M. Kagan 6141, A. Kahn 6125,
C. Kahra 697, T. Kaji 6165, E. Kajomovitz 6148, C.W. Kalderon 627, A. Kamenshchikov 635,
M. Kaneda © 151, N.J. Kang © 133, S. Kang © 78, Y. Kano © 108, D. Kar © 31f, K. Karava © 123,
M.J. Kareem (154b), I. Karkanias (150), S.N. Karpov (136), Z.M. Karpova (136), V. Kartvelishvili (188),
A.N. Karyukhin <sup>©35</sup>, E. Kasimi <sup>©150</sup>, C. Kato <sup>©60d</sup>, J. Katzy <sup>©46</sup>, K. Kawade <sup>©138</sup>, K. Kawagoe <sup>©86</sup>,
T. Kawaguchi (10)108, T. Kawamoto (11)132, G. Kawamura (13)2, E.F. Kay (10)162, F.I. Kaya (10)156, S. Kazakos (10)12,
V.F. Kazanin (5)35, Y. Ke (5)143, J.M. Keaveney (5)31a, R. Keeler (5)162, J.S. Keller (5)32, A.S. Kelly (9)3,
D. Kelsey 144, J.J. Kempster 19, J. Kendrick 19, K.E. Kennedy 39, O. Kepka 128, S. Kersten 168,
```

```
B.P. Kerševan 690, S. Ketabchi Haghighat 6153, M. Khandoga 6124, A. Khanov 6118,
A.G. Kharlamov (D35), T. Kharlamova (D35), E.E. Khoda (D136), T.J. Khoo (D17), G. Khoriauli (D163),
J. Khubua (1476), S. Kido (1817), M. Kiehn (1817), A. Kilgallon (1817), E. Kim (1817), Y.K. Kim (1817),
N. Kimura \mathbb{D}^{93}, A. Kirchhoff \mathbb{D}^{53}, D. Kirchmeier \mathbb{D}^{48}, C. Kirfel \mathbb{D}^{22}, J. Kirk \mathbb{D}^{131}, A.E. Kiryunin \mathbb{D}^{107},
T. Kishimoto (b151), D.P. Kisliuk 153, C. Kitsaki (b9), O. Kivernyk (b22), T. Klapdor-Kleingrothaus (b52),
M. Klassen (D<sup>61</sup>a), C. Klein (D<sup>32</sup>), L. Klein (D<sup>163</sup>), M.H. Klein (D<sup>103</sup>), M. Klein (D<sup>89</sup>), U. Klein (D<sup>89</sup>),
P. Klimek <sup>1034</sup>, A. Klimentov <sup>1027</sup>, F. Klimpel <sup>10107</sup>, T. Klingl <sup>1022</sup>, T. Klioutchnikova <sup>1034</sup>,
F.F. Klitzner (10) 106, P. Kluit (11) 111, S. Kluth (10) 107, E. Kneringer (17) 7, T.M. Knight (10) 153, A. Knue (15) 2,
D. Kobayashi<sup>86</sup>, R. Kobayashi <sup>©84</sup>, M. Kobel <sup>©48</sup>, M. Kocian <sup>©141</sup>, T. Kodama<sup>151</sup>, P. Kodyš <sup>©130</sup>,
D.M. Koeck 144, P.T. Koenig 22, T. Koffas 32, N.M. Köhler 34, M. Kolb 132, I. Koletsou 4,
T. Komarek 119, K. Köneke 52, A.X.Y. Kong 11, T. Kono 115, V. Konstantinides 3,
N. Konstantinidis <sup>©93</sup>, B. Konya <sup>©95</sup>, R. Kopeliansky <sup>©65</sup>, S. Koperny <sup>©82a</sup>, K. Korcyl <sup>©83</sup>,
K. Kordas (D<sup>150</sup>, G. Koren (D<sup>149</sup>, A. Korn (D<sup>93</sup>, S. Korn (D<sup>53</sup>, I. Korolkov (D<sup>12</sup>, E.V. Korolkova (137),
N. Korotkova 635, B. Kortman 6111, O. Kortner 6107, S. Kortner 6107, W.H. Kostecka 6112,
V.V. Kostyukhin (D139,35), A. Kotsokechagia (D64), A. Kotwal (D49), A. Koulouris (D34),
A. Kourkoumeli-Charalampidi (10,70a,70b), C. Kourkoumelis (10,8), E. Kourlitis (10,5), O. Kovanda (10,144),
R. Kowalewski \mathbb{D}^{162}, W. Kozanecki \mathbb{D}^{132}, A.S. Kozhin \mathbb{D}^{35}, V.A. Kramarenko \mathbb{D}^{35}, G. Kramberger \mathbb{D}^{90},
P. Kramer <sup>697</sup>, D. Krasnopevtsev <sup>60a</sup>, M.W. Krasny <sup>124</sup>, A. Krasznahorkay <sup>34</sup>, J.A. Kremer <sup>97</sup>,
J. Kretzschmar <sup>©89</sup>, K. Kreul <sup>©17</sup>, P. Krieger <sup>©153</sup>, F. Krieter <sup>©106</sup>, S. Krishnamurthy <sup>©100</sup>,
A. Krishnan 661b, M. Krivos 6130, K. Krizka 616a, K. Kroeninger 647, H. Kroha 6107, J. Kroll 6128,
J. Kroll 6125, K.S. Krowpman 6104, U. Kruchonak 636, H. Krüger 622, N. Krumnack 78, M.C. Kruse 649,
J.A. Krzysiak <sup>1</sup>0<sup>83</sup>, A. Kubota <sup>152</sup>, O. Kuchinskaia <sup>153</sup>, S. Kuday <sup>154</sup>, D. Kuechler <sup>154</sup>,
J.T. Kuechler <sup>1046</sup>, S. Kuehn <sup>1034</sup>, T. Kuhl <sup>1046</sup>, V. Kukhtin <sup>1036</sup>, Y. Kulchitsky <sup>1035,a</sup>, S. Kuleshov <sup>10134d</sup>, M. Kumar <sup>1031f</sup>, N. Kumari <sup>1099</sup>, M. Kuna <sup>1058</sup>, A. Kupco <sup>10128</sup>, T. Kupfer <sup>47</sup>, O. Kuprash <sup>1052</sup>,
H. Kurashige <sup>68</sup>, L.L. Kurchaninov <sup>6154a</sup>, Y.A. Kurochkin <sup>635</sup>, A. Kurova <sup>635</sup>, M.G. Kurth <sup>13a,13d</sup>,
E.S. Kuwertz <sup>134</sup>, M. Kuze <sup>152</sup>, A.K. Kvam <sup>136</sup>, J. Kvita <sup>119</sup>, T. Kwan <sup>101</sup>, K.W. Kwok <sup>162</sup>a,
C. Lacasta 16, F. Lacava 16, A. H. Lacker 16, D. Lacour 16, N.N. Lad 16, E. Ladygin 16, E. Ladygin 16,
R. Lafaye <sup>104</sup>, B. Laforge <sup>10124</sup>, T. Lagouri <sup>10134e</sup>, S. Lai <sup>1053</sup>, I.K. Lakomiec <sup>1082a</sup>, N. Lalloue <sup>1058</sup>,
J.E. Lambert 117, S. Lammers 65, W. Lampl 66, C. Lampoudis 150, E. Lançon 27, U. Landgraf 52,
M.P.J. Landon (10) 1, V.S. Lang (10) 52, J.C. Lange (10) 73, R.J. Langenberg (10) 100, A.J. Lankford (10) 157,
F. Lanni <sup>©27</sup>, K. Lantzsch <sup>©22</sup>, A. Lanza <sup>©70a</sup>, A. Lapertosa <sup>©55b,55a</sup>, J.F. Laporte <sup>©132</sup>, T. Lari <sup>©68a</sup>,
F. Lasagni Manghi <sup>©21b</sup>, M. Lassnig <sup>©34</sup>, V. Latonova <sup>©128</sup>, T.S. Lau <sup>©62a</sup>, A. Laudrain <sup>©97</sup>,
A. Laurier (1)32, M. Lavorgna (1)69a,69b, S.D. Lawlor (1)92, Z. Lawrence (1)98, M. Lazzaroni (1)68a,68b, B. Le98,
B. Leban 690, A. Lebedev 678, M. LeBlanc 634, T. LeCompte 55, F. Ledroit-Guillon 658, A.C.A. Lee93,
G.R. Lee <sup>15</sup>, L. Lee <sup>59</sup>, S.C. Lee <sup>146</sup>, S. Lee <sup>78</sup>, L.L. Leeuw <sup>31c</sup>, B. Lefebvre <sup>154a</sup>,
H.P. Lefebvre <sup>©92</sup>, M. Lefebvre <sup>©162</sup>, C. Leggett <sup>©16a</sup>, K. Lehmann <sup>©140</sup>, N. Lehmann <sup>©18</sup>,
G. Lehmann Miotto (D<sup>34</sup>, W.A. Leight (D<sup>46</sup>, A. Leisos (D<sup>150</sup>, M.A.L. Leite (D<sup>79c</sup>, C.E. Leitgeb (D<sup>46</sup>),
R. Leitner \bigcirc^{130}, K.J.C. Leney \bigcirc^{42}, T. Lenz \bigcirc^{22}, S. Leone \bigcirc^{71a}, C. Leonidopoulos \bigcirc^{50}, A. Leopold \bigcirc^{142},
C. Leroy 105, R. Les 104, C.G. Lester 1030, M. Levchenko 1035, J. Levêque 104, D. Levin 10103,
L.J. Levinson 6166, D.J. Lewis 619, B. Li 613b, B. Li 660b, C. Li 60a, C-Q. Li 660c,60d, H. Li 660a,
H. Li 600b, H. Li 600b, J. Li 600c, K. Li 6136, L. Li 600c, M. Li 613a, 13d, Q.Y. Li 600a, S. Li 600d, 60c, d,
T. Li •60b, X. Li •46, Y. Li •46, Z. Li •60b, Z. Li •123, Z. Li •101, Z. Li •89, Z. Liang •13a,
M. Liberatore <sup>1046</sup>, B. Liberti <sup>1073a</sup>, K. Lie <sup>1062c</sup>, J. Lieber Marin <sup>1079b</sup>, K. Lin <sup>10104</sup>, R.A. Linck <sup>1065</sup>,
R.E. Lindley 6, J.H. Lindon 2, A. Linss 46, E. Lipeles 5125, A. Lipniacka 15, T.M. Liss 159,ad,
A. Lister 161, J.D. Little 77, B. Liu 131, B.X. Liu 140, J.B. Liu 1500a, J.K.K. Liu 137, K. Liu 1500d,60c,
M. Liu 60a, M.Y. Liu 60a, P. Liu 61a, X. Liu 60a, Y. Liu 646, Y. Liu 61ac, 13d, Y.L. Liu 610a,
Y.W. Liu 600a, M. Livan 700a,70b, J. Llorente Merino 140, S.L. Lloyd 191, E.M. Lobodzinska 146,
```

```
P. Loch 6, S. Loffredo 73a,73b, T. Lohse 17, K. Lohwasser 137, M. Lokajicek 128, J.D. Long 159,
I. Longarini <sup>10</sup>72a,72b, L. Longo <sup>10</sup>34, R. Longo <sup>159</sup>, I. Lopez Paz <sup>10</sup>12, A. Lopez Solis <sup>16</sup>46,
J. Lorenz (10)106, N. Lorenzo Martinez (10)4, A.M. Lory (10)106, A. Lösle (10)52, X. Lou (10)45a,45b, X. Lou (10)13a,13d,
A. Lounis 64, J. Love 5, P.A. Love 88, J.J. Lozano Bahilo 616, G. Lu 613a,13d, M. Lu 660a,
S. Lu (125, Y.J. Lu (136, H.J. Lubatti (136, C. Luci (1372a,72b), F.L. Lucio Alves (13c), A. Lucotte (158,
F. Luehring 65, I. Luise 6143, L. Luminari<sup>72a</sup>, O. Lundberg 6142, B. Lund-Jensen 6142,
N.A. Luongo (D<sup>120</sup>, M.S. Lutz (D<sup>149</sup>, D. Lynn (D<sup>27</sup>, H. Lyons<sup>89</sup>, R. Lysak (D<sup>128</sup>, E. Lytken (D<sup>95</sup>, F. Lyu (D<sup>13a</sup>,
V. Lyubushkin 636, T. Lyubushkina 636, H. Ma 627, L.L. Ma 660b, Y. Ma 693, D.M. Mac Donell 6162,
G. Maccarrone <sup>151</sup>, C.M. Macdonald <sup>137</sup>, J.C. MacDonald <sup>137</sup>, R. Madar <sup>38</sup>, W.F. Mader <sup>48</sup>,
M. Madugoda Ralalage Don 118, N. Madysa 48, J. Maeda 81, T. Maeno 27, M. Maerker 48,
V. Magerl 652, J. Magro 666a,66c, D.J. Mahon 639, C. Maidantchik 679b, A. Maio 6127a,127b,127d,
K. Maj 682a, O. Majersky 626a, S. Majewski 6120, N. Makovec 664, V. Maksimovic 614,
B. Malaescu (D<sup>124</sup>, Pa. Malecki (D<sup>83</sup>, V.P. Maleev (D<sup>35</sup>, F. Malek (D<sup>58</sup>, D. Malito (D<sup>41b,41a</sup>, U. Mallik (D<sup>77</sup>,
C. Malone <sup>©30</sup>, S. Maltezos<sup>9</sup>, S. Malyukov<sup>36</sup>, J. Mamuzic <sup>©160</sup>, G. Mancini <sup>©51</sup>, J.P. Mandalia <sup>©91</sup>,
I. Mandić <sup>690</sup>, L. Manhaes de Andrade Filho <sup>679a</sup>, I.M. Maniatis <sup>6150</sup>, M. Manisha <sup>6132</sup>,
J. Manjarres Ramos (^{648}, K.H. Mankinen (^{695}, A. Mann (^{6106}, A. Manousos (^{676}, B. Mansoulie (^{6132},
I. Manthos 6150, S. Manzoni 6111, A. Marantis 6150, G. Marchiori 6124, M. Marcisovsky 6128,
L. Marcoccia ©<sup>73a,73b</sup>, C. Marcon ©<sup>95</sup>, M. Marjanovic ©<sup>117</sup>, Z. Marshall ©<sup>16a</sup>, S. Marti-Garcia ©<sup>160</sup>,
T.A. Martin 164, V.J. Martin 50, B. Martin dit Latour 15, L. Martinelli 72a,72b, M. Martinez 12,t,
P. Martinez Agullo (160), V.I. Martinez Outschoorn (100), S. Martin-Haugh (131), V.S. Martoiu (125b),
A.C. Martyniuk <sup>1093</sup>, A. Marzin <sup>1034</sup>, S.R. Maschek <sup>10107</sup>, L. Masetti <sup>1097</sup>, T. Mashimo <sup>10151</sup>, J. Masik <sup>1098</sup>,
A.L. Maslennikov (D<sup>35</sup>, L. Massa (D<sup>21b</sup>, P. Massarotti (D<sup>69a,69b</sup>, P. Mastrandrea (D<sup>71a,71b</sup>,
A. Mastroberardino (D<sup>41b,41a</sup>, T. Masubuchi (D<sup>151</sup>, D. Matakias<sup>27</sup>, T. Mathisen (D<sup>158</sup>, A. Matic (D<sup>106</sup>),
N. Matsuzawa<sup>151</sup>, J. Maurer <sup>©25b</sup>, B. Maček <sup>©90</sup>, D.A. Maximov <sup>©35</sup>, R. Mazini <sup>©146</sup>, I. Maznas <sup>©150</sup>,
S.M. Mazza (10)133, C. Mc Ginn (10)27, J.P. Mc Gowan (10)101, S.P. Mc Kee (10)103, T.G. McCarthy (10)107,
W.P. McCormack 1616a, E.F. McDonald 10102, A.E. McDougall 10111, J.A. Mcfayden 10144,
G. Mchedlidze 6147b, M.A. McKay<sup>42</sup>, K.D. McLean 6162, S.J. McMahon 6131, P.C. McNamara 6102,
R.A. McPherson 6162,w, J.E. Mdhluli 631f, Z.A. Meadows 6100, S. Meehan 634, T. Megy 638,
S. Mehlhase <sup>106</sup>, A. Mehta <sup>89</sup>, B. Meirose <sup>43</sup>, D. Melini <sup>148</sup>, B.R. Mellado Garcia <sup>31f</sup>,
A.H. Melo <sup>53</sup>, F. Meloni <sup>46</sup>, A. Melzer <sup>22</sup>, E.D. Mendes Gouveia <sup>127a</sup>,
A.M. Mendes Jacques Da Costa <sup>19</sup>, H.Y. Meng <sup>153</sup>, L. Meng <sup>34</sup>, S. Menke <sup>107</sup>, M. Mentink <sup>34</sup>,
E. Meoni (D<sup>41b,41a</sup>, C. Merlassino (D<sup>123</sup>, P. Mermod (D<sup>54,*</sup>, L. Merola (D<sup>69a,69b</sup>, C. Meroni (D<sup>68a</sup>, G. Merz<sup>103</sup>)
O. Meshkov ^{\odot 35}, J.K.R. Meshreki ^{\odot 139}, J. Metcalfe ^{\odot 5}, A.S. Mete ^{\odot 5}, C. Meyer ^{\odot 65}, J-P. Meyer ^{\odot 132},
M. Michetti 17, R.P. Middleton 131, L. Mijović 50, G. Mikenberg 166, M. Mikestikova 128,
M. Mikuž (1990), H. Mildner (19137), A. Milic (19153), C.D. Milke (1942), D.W. Miller (1937), L.S. Miller (1932),
A. Milov 6166, D.A. Milstead 45a, 45b, T. Min<sup>13c</sup>, A.A. Minaenko 635, I.A. Minashvili 6147b, L. Mince 657,
A.I. Mincer (D114, B. Mindur (D82a, M. Mineev (D36, Y. Minegishi<sup>151</sup>, Y. Mino (D84, L.M. Mir (D12,
M. Miralles Lopez (160), M. Mironova (123), T. Mitani (165), V.A. Mitsou (160), M. Mittal (160), O. Miu (153),
P.S. Miyagawa <sup>191</sup>, Y. Miyazaki<sup>86</sup>, A. Mizukami <sup>1980</sup>, J.U. Mjörnmark <sup>1995</sup>, T. Mkrtchyan <sup>1961</sup>a,
M. Mlynarikova (D<sup>112</sup>, T. Moa (D<sup>45</sup>a,45b), S. Mobius (D<sup>53</sup>, K. Mochizuki (D<sup>105</sup>, P. Moder (D<sup>46</sup>, P. Mogg (D<sup>106</sup>),
A.F. Mohammed <sup>13a,13d</sup>, S. Mohapatra <sup>39</sup>, G. Mokgatitswane <sup>31f</sup>, B. Mondal <sup>139</sup>, S. Mondal <sup>129</sup>,
K. Mönig <sup>646</sup>, E. Monnier <sup>699</sup>, L. Monsonis Romero <sup>160</sup>, A. Montalbano <sup>6140</sup>, J. Montejo Berlingen <sup>634</sup>,
M. Montella 116, F. Monticelli 187, N. Morange 164, A.L. Moreira De Carvalho 127a,
M. Moreno Llácer 6160, C. Moreno Martinez 12, P. Morettini 55b, S. Morgenstern 164, D. Mori 140,
M. Morii • M. Morinaga • M. Morinaga • N. Morisbak • A.K. Morley • A.K. Morley • A.P. Morris • A.P. 
P. Moschovakos <sup>©34</sup>, B. Moser <sup>©111</sup>, M. Mosidze <sup>147b</sup>, T. Moskalets <sup>©52</sup>, P. Moskvitina <sup>©110</sup>,
J. Moss (629,0), E.J.W. Moyse (6100), S. Muanza (699), J. Mueller (6126), D. Muenstermann (688), R. Müller (618),
```

```
G.A. Mullier 695, J.J. Mullin<sup>125</sup>, D.P. Mungo 68a,68b, J.L. Munoz Martinez 612,
F.J. Munoz Sanchez (1998), M. Murin (1998), P. Murin (1926b), W.J. Murray (19164,131), A. Murrone (1968a,68b),
J.M. Muse 117, M. Muškinja 16a, C. Mwewa 127, A.G. Myagkov 135,a, A.J. Myers 17, A.A. Myers 126,
G. Myers 65, M. Myska 129, B.P. Nachman 16a, O. Nackenhorst 647, A.Nag Nag 648, K. Nagai 6123,
K. Nagano (1080), J.L. Nagle (1027), E. Nagy (1099), A.M. Nairz (1034), Y. Nakahama (10108), K. Nakamura (1080),
H. Nanjo (D<sup>121</sup>, F. Napolitano (D<sup>61a</sup>, R. Narayan (D<sup>42</sup>, E.A. Narayanan (D<sup>109</sup>, I. Naryshkin (D<sup>35</sup>),
M. Naseri ©<sup>32</sup>, C. Nass ©<sup>22</sup>, T. Naumann ©<sup>46</sup>, G. Navarro ©<sup>20a</sup>, J. Navarro-Gonzalez ©<sup>160</sup>,
R. Nayak (D<sup>149</sup>, P.Y. Nechaeva (D<sup>35</sup>, F. Nechansky (D<sup>46</sup>, T.J. Neep (D<sup>19</sup>, A. Negri (D<sup>70a,70b</sup>, M. Negrini (D<sup>21b</sup>,
C. Nellist \bigcirc^{110}, C. Nelson \bigcirc^{101}, K. Nelson \bigcirc^{103}, S. Nemecek \bigcirc^{128}, M. Nessi \bigcirc^{34,g}, M.S. Neubauer \bigcirc^{159},
F. Neuhaus <sup>197</sup>, J. Neundorf <sup>164</sup>, R. Newhouse <sup>161</sup>, P.R. Newman <sup>19</sup>, C.W. Ng <sup>17</sup>, Y.S. Ng <sup>17</sup>,
Y.W.Y. Ng 6 157, B. Ngair 6 33e, H.D.N. Nguyen 6 105, R.B. Nickerson 6 123, R. Nicolaidou 6 132,
D.S. Nielsen (D40, J. Nielsen (D133, M. Niemeyer (D53, N. Nikiforou (D10, V. Nikolaenko (D35,a,
I. Nikolic-Audit <sup>124</sup>, K. Nikolopoulos <sup>19</sup>, P. Nilsson <sup>27</sup>, H.R. Nindhito <sup>54</sup>, A. Nisati <sup>72a</sup>,
N. Nishu © 2, R. Nisius © 107, T. Nitta © 165, T. Nobe © 151, D.L. Noel © 30, Y. Noguchi © 84,
I. Nomidis (124, M.A. Nomura<sup>27</sup>, M.B. Norfolk (137, R.R.B. Norisam (1993, J. Novak (1990, T. Novak (1946,
O. Novgorodova <sup>148</sup>, L. Novotny <sup>129</sup>, R. Novotny <sup>109</sup>, L. Nozka <sup>119</sup>, K. Ntekas <sup>157</sup>, E. Nurse<sup>93</sup>,
F.G. Oakham (532,af), J. Ocariz (5124), A. Ochi (581), I. Ochoa (5127a), J.P. Ochoa-Ricoux (5134a), S. Oda (586).
S. Odaka 680, S. Oerdek 6158, A. Ogrodnik 682a, A. Oh 698, C.C. Ohm 6142, H. Oide 6152,
R. Oishi <sup>151</sup>, M.L. Ojeda <sup>46</sup>, Y. Okazaki <sup>84</sup>, M.W. O'Keefe<sup>89</sup>, Y. Okumura <sup>151</sup>, A. Olariu<sup>25b</sup>,
L.F. Oleiro Seabra 6127a, S.A. Olivares Pino 6134e, D. Oliveira Damazio 627, D. Oliveira Goncalves 679a.
J.L. Oliver (157, M.J.R. Olsson (157, A. Olszewski (1583, J. Olszowska (1583,*, Ö.O. Öncel (1522, D.C. O'Neil (1514), A.P. O'Neill (151
M.J. Oreglia ©<sup>37</sup>, G.E. Orellana ©<sup>87</sup>, D. Orestano ©<sup>74a,74b</sup>, N. Orlando ©<sup>12</sup>, R.S. Orr ©<sup>153</sup>,
V. O'Shea 657, R. Ospanov 660a, G. Otero y Garzon 628, H. Otono 686, P.S. Ott 61a, G.J. Ottino 616a,
M. Ouchrif <sup>1033d</sup>, J. Ouellette <sup>1027</sup>, F. Ould-Saada <sup>10122</sup>, A. Ouraou <sup>10132,*</sup>, Q. Ouyang <sup>1013a</sup>, M. Owen <sup>1057</sup>,
R.E. Owen <sup>131</sup>, K.Y. Oyulmaz <sup>11c</sup>, V.E. Ozcan <sup>11c</sup>, N. Ozturk <sup>7</sup>, S. Ozturk <sup>11c</sup>, J. Pacalt <sup>117</sup>,
H.A. Pacey \bigcirc^{30}, K. Pachal \bigcirc^{49}, A. Pacheco Pages \bigcirc^{12}, C. Padilla Aranda \bigcirc^{12}, S. Pagan Griso \bigcirc^{16a},
G. Palacino 65, S. Palazzo 50, S. Palestini 34, M. Palka 82b, P. Palni 82a, D.K. Panchal 10,
C.E. Pandini 654, J.G. Panduro Vazquez 692, P. Pani 646, G. Panizzo 666a,66c, L. Paolozzi 554,
C. Papadatos <sup>105</sup>, S. Parajuli <sup>42</sup>, A. Paramonov <sup>5</sup>, C. Paraskevopoulos <sup>9</sup>,
D. Paredes Hernandez (b62b), S.R. Paredes Saenz (b123), B. Parida (b166), T.H. Park (b153), A.J. Parker (b29),
M.A. Parker <sup>1030</sup>, F. Parodi <sup>1055b,55a</sup>, E.W. Parrish <sup>112</sup>, J.A. Parsons <sup>1039</sup>, U. Parzefall <sup>1052</sup>,
L. Pascual Dominguez 149, V.R. Pascuzzi 15a, F. Pasquali 111, E. Pasqualucci 17a, S. Passaggio 15b,
F. Pastore (1992), P. Pasuwan (1945a,45b), J.R. Pater (1998), A. Pathak (19167), J. Patton (1998), T. Pauly (1998),
J. Pearkes 141, M. Pedersen 122, L. Pedraza Diaz 110, R. Pedro 127a, T. Peiffer 53,
S.V. Peleganchuk (b35), O. Penc (b128), C. Peng (b62b), H. Peng (b60a), M. Penzin (b35), B.S. Peralva (b79a),
A.P. Pereira Peixoto 127a, L. Pereira Sanchez 45a,45b, D.V. Perepelitsa 27, E. Perez Codina 154a,
M. Perganti <sup>69</sup>, L. Perini <sup>68a,68b,*</sup>, H. Pernegger <sup>34</sup>, S. Perrella <sup>34</sup>, A. Perrevoort <sup>111</sup>, K. Peters <sup>46</sup>,
R.F.Y. Peters ©98, B.A. Petersen ©34, T.C. Petersen ©40, E. Petit ©99, V. Petousis ©129, C. Petridou ©150,
P. Petroff<sup>64</sup>, F. Petrucci (D<sup>74a,74b</sup>, A. Petrukhin (D<sup>139</sup>, M. Pettee (D<sup>169</sup>, N.E. Pettersson (D<sup>34</sup>,
K. Petukhova 130, A. Peyaud 132, R. Pezoa 134f, L. Pezzotti 34, G. Pezzullo 169, T. Pham 102,
P.W. Phillips (D131), M.W. Phipps (D159), G. Piacquadio (D143), E. Pianori (D16a), F. Piazza (D68a,68b),
A. Picazio 100, R. Piegaia 28, D. Pietreanu 25b, J.E. Pilcher 37, A.D. Pilkington 59,
M. Pinamonti 666a,66c, J.L. Pinfold 2, C. Pitman Donaldson 3, D.A. Pizzi 532, L. Pizzimento 73a,73b,
A. Pizzini (111), M.-A. Pleier (127), V. Plesanovs<sup>52</sup>, V. Pleskot (130), E. Plotnikova<sup>36</sup>, P. Podberezko (135),
R. Poettgen <sup>1095</sup>, R. Poggi <sup>1054</sup>, L. Poggioli <sup>10124</sup>, I. Pogrebnyak <sup>10104</sup>, D. Pohl <sup>1022</sup>, I. Pokharel <sup>1053</sup>,
G. Polesello <sup>10</sup>70a, A. Poley <sup>140,154a</sup>, A. Policicchio <sup>172a,72b</sup>, R. Polifka <sup>130</sup>, A. Polini <sup>10</sup>21b,
```

```
C.S. Pollard (123, Z.B. Pollock (116, V. Polychronakos (127, D. Ponomarenko (135, L. Pontecorvo (134,
S. Popa 625a, G.A. Popeneciu 625d, L. Portales 64, D.M. Portillo Quintero 6154a, S. Pospisil 6129,
P. Postolache 625c, K. Potamianos 6123, I.N. Potrap 636, C.J. Potter 630, H. Potti 61, T. Poulsen 646,
J. Poveda 6160, T.D. Powell 6137, G. Pownall 646, M.E. Pozo Astigarraga 634, A. Prades Ibanez 6160,
P. Pralavorio <sup>699</sup>, M.M. Prapa <sup>644</sup>, S. Prell <sup>678</sup>, D. Price <sup>698</sup>, M. Primavera <sup>67a</sup>,
M.A. Principe Martin <sup>1096</sup>, M.L. Proffitt <sup>136</sup>, N. Proklova <sup>1035</sup>, K. Prokofiev <sup>1062c</sup>, S. Protopopescu <sup>1027</sup>,
J. Proudfoot <sup>65</sup>, M. Przybycien <sup>682a</sup>, D. Pudzha <sup>635</sup>, P. Puzo<sup>64</sup>, D. Pyatiizbyantseva <sup>635</sup>, J. Qian <sup>6103</sup>,
Y. Qin 698, T. Qiu 691, A. Quadt 53, M. Queitsch-Maitland 534, G. Rabanal Bolanos 59,
F. Ragusa (68a,68b), J.A. Raine (54, S. Rajagopalan (527, K. Ran (513a,13d), D.F. Rassloff (51a),
D.M. Rauch (546, S. Rave (597, B. Ravina (557, I. Ravinovich (5166, M. Raymond (534, A.L. Read (5122),
N.P. Readioff 137, D.M. Rebuzzi 70a,70b, G. Redlinger 27, K. Reeves 43, D. Reikher 149, A. Reiss 7,
A. Rej (139), C. Rembser (134), A. Renardi (140), M. Renda (155), M.B. Rendel (157), A.G. Rennie (157),
S. Resconi 68a, M. Ressegotti 55b,55a, E.D. Resseguie 616a, S. Rettie 693, B. Reynolds 116,
E. Reynolds <sup>19</sup>, M. Rezaei Estabragh <sup>168</sup>, O.L. Rezanova <sup>35</sup>, P. Reznicek <sup>130</sup>, E. Ricci <sup>75a,75b</sup>,
R. Richter 10<sup>107</sup>, S. Richter 10<sup>46</sup>, E. Richter-Was 10<sup>82b</sup>, M. Ridel 10<sup>124</sup>, P. Rieck 10<sup>107</sup>, P. Riedler 10<sup>34</sup>,
O. Rifki 646, M. Rijssenbeek 6143, A. Rimoldi 670a,70b, M. Rimoldi 646, L. Rinaldi 621b,21a,
T.T. Rinn 159, M.P. Rinnagel 10106, G. Ripellino 1142, I. Riu 112, P. Rivadeneira 1046,
J.C. Rivera Vergara 0^{162}, F. Rizatdinova 0^{118}, E. Rizvi 0^{91}, C. Rizzi 0^{54}, B.A. Roberts 0^{164},
B.R. Roberts © 16a, S.H. Robertson © 101,w, M. Robin © 46, D. Robinson © 30, C.M. Robles Gajardo 134f,
M. Robles Manzano <sup>697</sup>, A. Robson <sup>657</sup>, A. Rocchi <sup>673a,73b</sup>, C. Roda <sup>671a,71b</sup>, S. Rodriguez Bosca <sup>61a</sup>,
A. Rodriguez Rodriguez <sup>©52</sup>, A.M. Rodríguez Vera <sup>©154b</sup>, S. Roe<sup>34</sup>, A.R. Roepe-Gier <sup>©117</sup>.
J. Roggel 6168, O. Røhne 6122, R.A. Rojas 6162, B. Roland 652, C.P.A. Roland 655, J. Roloff 627,
A. Romaniouk <sup>©35</sup>, M. Romano <sup>©21b</sup>, A.C. Romero Hernandez <sup>©159</sup>, N. Rompotis <sup>©89</sup>, M. Ronzani <sup>©114</sup>,
L. Roos (D124, S. Rosati (D72a, B.J. Rosser (D125), E. Rossi (D153), E. Rossi (D4, E. Rossi (D69a,69b),
L.P. Rossi ©55b, L. Rossini ©46, R. Rosten ©116, M. Rotaru ©25b, B. Rottler ©52, D. Rousseau ©64,
D. Rousso (50, G. Rovelli (570a,70b), A. Roy (510), A. Rozanov (59, Y. Rozen (5148), X. Ruan (531f),
A.J. Ruby <sup>689</sup>, T.A. Ruggeri <sup>61</sup>, F. Rühr <sup>52</sup>, A. Ruiz-Martinez <sup>6160</sup>, A. Rummler <sup>634</sup>, Z. Rurikova <sup>52</sup>,
N.A. Rusakovich <sup>©36</sup>, H.L. Russell <sup>©34</sup>, L. Rustige <sup>©38</sup>, J.P. Rutherfoord <sup>©6</sup>, E.M. Rüttinger <sup>©137</sup>,
M. Rybar <sup>130</sup>, E.B. Rye <sup>122</sup>, A. Ryzhov <sup>35</sup>, J.A. Sabater Iglesias <sup>46</sup>, P. Sabatini <sup>160</sup>,
L. Sabetta (D<sup>72a,72b</sup>, H.F-W. Sadrozinski (D<sup>133</sup>, F. Safai Tehrani (D<sup>72a</sup>, B. Safarzadeh Samani (D<sup>144</sup>,
M. Safdari 1141, S. Saha 1101, M. Sahinsoy 1107, A. Sahu 1168, M. Saimpert 1132, M. Saito 1151,
T. Saito 151, D. Salamani 34, G. Salamanna 74a,74b, A. Salnikov 141, J. Salt 160,
A. Salvador Salas <sup>12</sup>, D. Salvatore <sup>41b,41a</sup>, F. Salvatore <sup>144</sup>, A. Salzburger <sup>34</sup>, D. Sammel <sup>52</sup>,
D. Sampsonidis <sup>150</sup>, D. Sampsonidou <sup>60d,60c</sup>, J. Sánchez <sup>160</sup>, A. Sanchez Pineda <sup>4</sup>,
V. Sanchez Sebastian <sup>160</sup>, H. Sandaker <sup>122</sup>, C.O. Sander <sup>46</sup>, I.G. Sanderswood <sup>88</sup>,
J.A. Sandesara © 100, M. Sandhoff © 168, C. Sandoval © 20b, D.P.C. Sankey © 131, M. Sannino © 55b,55a,
A. Sansoni <sup>1051</sup>, C. Santoni <sup>1038</sup>, H. Santos <sup>127a,127b</sup>, S.N. Santpur <sup>16a</sup>, A. Santra <sup>16a</sup>,
K.A. Saoucha (D<sup>137</sup>, J.G. Saraiva (D<sup>127a,127d</sup>, J. Sardain (D<sup>99</sup>, O. Sasaki (D<sup>80</sup>, K. Sato (D<sup>155</sup>, C. Sauer<sup>61b</sup>,
F. Sauerburger <sup>652</sup>, E. Sauvan <sup>64</sup>, P. Savard <sup>6153</sup>, R. Sawada <sup>6151</sup>, C. Sawyer <sup>6131</sup>, L. Sawyer <sup>694</sup>,
I. Sayago Galvan<sup>160</sup>, C. Sbarra <sup>©21b</sup>, A. Sbrizzi <sup>©21b,21a</sup>, T. Scanlon <sup>©93</sup>, J. Schaarschmidt <sup>©136</sup>,
P. Schacht 10107, D. Schaefer 1037, U. Schäfer 1097, A.C. Schaffer 1064, D. Schaile 10106,
R.D. Schamberger <sup>143</sup>, E. Schanet <sup>106</sup>, C. Scharf <sup>17</sup>, N. Scharmberg <sup>98</sup>, V.A. Schegelsky <sup>35</sup>,
D. Scheirich 130, F. Schenck 17, M. Schernau 157, C. Schiavi 555,55a, L.K. Schildgen 22,
Z.M. Schillaci (D<sup>24</sup>, E.J. Schioppa (D<sup>67a,67b</sup>, M. Schioppa (D<sup>41b,41a</sup>, B. Schlag (D<sup>97</sup>, K.E. Schleicher (D<sup>52</sup>),
S. Schlenker (D<sup>34</sup>, K. Schmieden (D<sup>97</sup>, C. Schmitt (D<sup>97</sup>, S. Schmitt (D<sup>46</sup>, L. Schoeffel (D<sup>132</sup>,
A. Schoening 61b, P.G. Scholer 52, E. Schopf 123, M. Schott 97, J. Schovancova 34,
S. Schramm <sup>54</sup>, F. Schroeder <sup>168</sup>, H-C. Schultz-Coulon <sup>61a</sup>, M. Schumacher <sup>52</sup>, B.A. Schumm <sup>133</sup>,
```

```
Ph. Schune 132, A. Schwartzman 141, T.A. Schwarz 103, Ph. Schwemling 132, R. Schwienhorst 104,
A. Sciandra 133, G. Sciolla 24, F. Scuri 71a, F. Scutti 12, C.D. Sebastiani 89, K. Sedlaczek 47,
P. Seema 17, S.C. Seidel 109, A. Seiden 133, B.D. Seidlitz 17, T. Seiss 137, C. Seitz 146,
J.M. Seixas <sup>179b</sup>, G. Sekhniaidze <sup>69a</sup>, S.J. Sekula <sup>42</sup>, L. Selem <sup>4</sup>, N. Semprini-Cesari <sup>21b,21a</sup>,
S. Sen (b<sup>49</sup>, C. Serfon (b<sup>27</sup>, L. Serin (b<sup>64</sup>, L. Serkin (b<sup>66a,66b</sup>, M. Sessa (b<sup>74a,74b</sup>, H. Severini (b<sup>117</sup>,
S. Sevova <sup>141</sup>, F. Sforza <sup>55b,55a</sup>, A. Sfyrla <sup>54</sup>, E. Shabalina <sup>53</sup>, R. Shaheen <sup>142</sup>,
J.D. Shahinian ©125, N.W. Shaikh ©45a,45b, D. Shaked Renous ©166, L.Y. Shan ©13a, M. Shapiro ©16a,
A. Sharma (5)<sup>34</sup>, A.S. Sharma (5)<sup>1</sup>, S. Sharma (5)<sup>46</sup>, P.B. Shatalov (5)<sup>35</sup>, K. Shaw (5)<sup>144</sup>, S.M. Shaw (5)<sup>98</sup>,
P. Sherwood <sup>693</sup>, L. Shi <sup>693</sup>, C.O. Shimmin <sup>6169</sup>, Y. Shimogama <sup>6165</sup>, J.D. Shinner <sup>692</sup>,
I.P.J. Shipsey 123, S. Shirabe 54, M. Shiyakova 536, J. Shlomi 166, M.J. Shochet 537, J. Shojaii 10102,
D.R. Shope (D142, S. Shrestha (D116, E.M. Shrif (D31f, M.J. Shroff (D162, E. Shulga (D166, P. Sicho (D128,
A.M. Sickles <sup>159</sup>, E. Sideras Haddad <sup>31f</sup>, O. Sidiropoulou <sup>34</sup>, A. Sidoti <sup>21b</sup>, F. Siegert <sup>48</sup>,
Dj. Sijacki <sup>14</sup>, J.M. Silva <sup>19</sup>, M.V. Silva Oliveira <sup>34</sup>, S.B. Silverstein <sup>45a</sup>, S. Simion <sup>64</sup>,
R. Simoniello (D<sup>34</sup>, N.D. Simpson<sup>95</sup>, S. Simsek (D<sup>11b</sup>, P. Sinervo (D<sup>153</sup>, V. Sinetckii (D<sup>35</sup>, S. Singh (D<sup>140</sup>),
S. Singh 6153, S. Sinha 646, S. Sinha 631f, M. Sioli 621b,21a, I. Siral 6120, S.Yu. Sivoklokov 635,*
J. Sjölin (1045a,45b), A. Skaf (1053), E. Skorda (1095), P. Skubic (10117), M. Slawinska (1083), K. Sliwa (10156),
V. Smakhtin<sup>166</sup>, B.H. Smart <sup>131</sup>, J. Smiesko <sup>130</sup>, S.Yu. Smirnov <sup>35</sup>, Y. Smirnov <sup>35</sup>,
L.N. Smirnova (D<sup>35</sup>, a), O. Smirnova (D<sup>95</sup>, E.A. Smith (D<sup>37</sup>, H.A. Smith (D<sup>123</sup>, M. Smizanska (D<sup>88</sup>),
K. Smolek 129, A. Smykiewicz 83, A.A. Snesarev 35, H.L. Snoek 111, S. Snyder 27,
R. Sobie 6162,w, A. Soffer 6149, F. Sohns 653, C.A. Solans Sanchez 634, E.Yu. Soldatov 635,
U. Soldevila © 160, A.A. Solodkov © 35, S. Solomon © 52, A. Soloshenko © 36, O.V. Solovyanov © 35,
V. Solovyev (D35, P. Sommer (D137, H. Son (D156, A. Sonay (D12, W.Y. Song (D154b), A. Sopczak (D129,
A.L. Sopio 693, F. Sopkova 626b, S. Sottocornola 70a,70b, R. Soualah 666a,66c, Z. Soumaimi 633e,
D. South 646, S. Spagnolo 67a,67b, M. Spalla 6107, M. Spangenberg 6164, F. Spano 692, D. Sperlich 652,
T.M. Spieker (1061a), G. Spigo (1034), M. Spina (10144), D.P. Spiteri (1057), M. Spousta (10130), A. Stabile (1068a,68b),
R. Stamen 6<sup>61a</sup>, M. Stamenkovic 1<sup>111</sup>, A. Stampekis 1<sup>19</sup>, M. Standke 2<sup>22</sup>, E. Stanecka 8<sup>83</sup>,
B. Stanislaus <sup>©34</sup>, M.M. Stanitzki <sup>©46</sup>, M. Stankaityte <sup>©123</sup>, B. Stapf <sup>©46</sup>, E.A. Starchenko <sup>©35</sup>,
G.H. Stark <sup>133</sup>, J. Stark <sup>99</sup>, D.M. Starko<sup>154b</sup>, P. Staroba <sup>128</sup>, P. Starovoitov <sup>61a</sup>, S. Stärz <sup>1010</sup>,
R. Staszewski 683, G. Stavropoulos 644, P. Steinberg 627, A.L. Steinhebel 6120, B. Stelzer 6140,154a,
H.J. Stelzer (D<sup>126</sup>, O. Stelzer-Chilton (D<sup>154a</sup>, H. Stenzel (D<sup>56</sup>, T.J. Stevenson (D<sup>144</sup>, G.A. Stewart (D<sup>34</sup>,
M.C. Stockton <sup>©34</sup>, G. Stoicea <sup>©25b</sup>, M. Stolarski <sup>©127a</sup>, S. Stonjek <sup>©107</sup>, A. Straessner <sup>©48</sup>,
J. Strandberg <sup>142</sup>, S. Strandberg <sup>45a,45b</sup>, M. Strauss <sup>117</sup>, T. Strebler <sup>99</sup>, P. Strizenec <sup>26b</sup>,
R. Ströhmer ^{\bullet 163}, D.M. Strom ^{\bullet 120}, L.R. Strom ^{\bullet 46}, R. Stroynowski ^{\bullet 42}, A. Strubig ^{\bullet 45a,45b},
S.A. Stucci (D<sup>27</sup>, B. Stugu (D<sup>15</sup>, J. Stupak (D<sup>117</sup>, N.A. Styles (D<sup>46</sup>, D. Su (D<sup>141</sup>, S. Su (D<sup>60a</sup>),
W. Su (136,60c), X. Su (160a), K. Sugizaki (151a), V.V. Sulin (135a), M.J. Sullivan (189a), D.M.S. Sultan (155a),
L. Sultanaliyeva (D35), S. Sultansoy (D3c), T. Sumida (D84), S. Sun (D103), S. Sun (D167), X. Sun (D98),
O. Sunneborn Gudnadottir <sup>158</sup>, C.J.E. Suster <sup>145</sup>, M.R. Sutton <sup>144</sup>, M. Svatos <sup>128</sup>,
M. Swiatlowski 154a, T. Swirski 163, I. Sykora 1626a, M. Sykora 16130, T. Sykora 16130, D. Ta 1697,
K. Tackmann 646,u, A. Taffard 6157, R. Tafirout 6154a, R.H.M. Taibah 6124, R. Takashima 685,
K. Takeda •81, T. Takeshita •138, E.P. Takeva •50, Y. Takubo •80, M. Talby •99, A.A. Talyshev •35,
K.C. Tam 662b, N.M. Tamir<sup>149</sup>, A. Tanaka 6151, J. Tanaka 6151, R. Tanaka 664, J. Tang<sup>60c</sup>, Z. Tao 6161,
S. Tapia Araya <sup>1078</sup>, S. Tapprogge <sup>1097</sup>, A. Tarek Abouelfadl Mohamed <sup>10104</sup>, S. Tarem <sup>10148</sup>,
K. Tariq 600b, G. Tarna 255b, G.F. Tartarelli 68a, P. Tas 130, M. Tasevsky 128, E. Tassi 41b,41a,
G. Tateno (151), Y. Tayalati (153), G.N. Taylor (101), W. Taylor (154), H. Teagle (154), A.S. Tee (167),
R. Teixeira De Lima 6141, P. Teixeira-Dias 692, H. Ten Kate34, J.J. Teoh 6111, K. Terashi 6151,
J. Terron 696, S. Terzo 612, M. Testa 551, R.J. Teuscher 5153,w, N. Themistokleous 550,
T. Theveneaux-Pelzer 17, O. Thielmann 16, D.W. Thomas 2, J.P. Thomas 19, E.A. Thompson 16,
```

```
P.D. Thompson <sup>19</sup>, E. Thomson <sup>125</sup>, E.J. Thorpe <sup>91</sup>, Y. Tian <sup>53</sup>, V. Tikhomirov <sup>35,a</sup>,
Yu.A. Tikhonov (D35, S. Timoshenko S5, P. Tipton (D169, S. Tisserant (D99, S.H. Tlou (D31f, A. Tnourji (D38,
K. Todome (D<sup>21b,21a</sup>, S. Todorova-Nova (D<sup>130</sup>, S. Todt<sup>48</sup>, M. Togawa (D<sup>80</sup>, J. Tojo (D<sup>86</sup>, S. Tokár (D<sup>26a</sup>,
K. Tokushuku 680, E. Tolley 6116, R. Tombs 630, M. Tomoto 680,108, L. Tompkins 6141,
P. Tornambe (100), E. Torrence (120), H. Torres (148), E. Torró Pastor (140), M. Toscani (128), C. Tosciri (137),
J. Toth 699,v, D.R. Tovey 6137, A. Traeet 15, C.J. Treado 6114, T. Trefzger 6163, A. Tricoli 627,
I.M. Trigger 6 154a, S. Trincaz-Duvoid 6 124, D.A. Trischuk 6 161, B. Trocmé 58, A. Trofymov 64,
C. Troncon 68a, F. Trovato 144, L. Truong 31c, M. Trzebinski 83, A. Trzupek 83, F. Tsai 143,
A. Tsiamis © 150, P.V. Tsiareshka 35,a, A. Tsirigotis © 150,s, V. Tsiskaridze © 143, E.G. Tskhadadze 147a,
M. Tsopoulou 150, Y. Tsujikawa 184, I.I. Tsukerman 135, V. Tsulaia 1616a, S. Tsuno 180, O. Tsur<sup>148</sup>,
D. Tsybychev 143, Y. Tu 62b, A. Tudorache 25b, V. Tudorache 25b, A.N. Tuna 34, S. Turchikhin 36,
I. Turk Cakir (103a, R.J. Turner 19, R. Turra (1068a, P.M. Tuts (1039), S. Tzamarias (10150), P. Tzanis (109),
E. Tzovara <sup>1097</sup>, K. Uchida<sup>151</sup>, F. Ukegawa <sup>10155</sup>, P.A. Ulloa Poblete <sup>134d</sup>, G. Unal <sup>1034</sup>, M. Unal <sup>1010</sup>, A. Undrus <sup>1027</sup>, G. Unel <sup>10157</sup>, F.C. Ungaro <sup>10102</sup>, K. Uno <sup>10151</sup>, J. Urban <sup>1026b</sup>, P. Urquijo <sup>10102</sup>, G. Usai <sup>107</sup>,
R. Ushioda 6152, M. Usman 6105, Z. Uysal 611d, V. Vacek 6129, B. Vachon 6101, K.O.H. Vadla 6122,
T. Vafeiadis 634, C. Valderanis 6106, E. Valdes Santurio 645a,45b, M. Valente 6154a,
S. Valentinetti (D<sup>21b,21a</sup>, A. Valero (D<sup>160</sup>, R.A. Vallance (D<sup>19</sup>, A. Vallier (D<sup>99</sup>, J.A. Valls Ferrer (D<sup>160</sup>),
T.R. Van Daalen <sup>136</sup>, P. Van Gemmeren <sup>5</sup>, S. Van Stroud <sup>93</sup>, I. Van Vulpen <sup>111</sup>, M. Vanadia <sup>73a,73b</sup>,
W. Vandelli (D<sup>34</sup>, M. Vandenbroucke (D<sup>132</sup>, E.R. Vandewall (D<sup>118</sup>, D. Vannicola (D<sup>149</sup>, L. Vannoli (D<sup>55b,55a</sup>,
R. Vari 6, E.W. Varnes 6, C. Varni 6, T. Varol 6, D. Varouchas 6, K.E. Varvell 6, T. Varol 6, D. Varouchas 6, K.E. Varvell 6, Varyell 6, T. Varol 6, D. Varouchas 6, K.E. Varvell 6, Varyell 6, Varyel
M.E. Vasile (D<sup>25b</sup>, L. Vaslin<sup>38</sup>, G.A. Vasquez (D<sup>162</sup>, F. Vazeille (D<sup>38</sup>, D. Vazquez Furelos (D<sup>12</sup>),
T. Vazquez Schroeder <sup>134</sup>, J. Veatch <sup>53</sup>, V. Vecchio <sup>98</sup>, M.J. Veen <sup>111</sup>, I. Veliscek <sup>123</sup>,
L.M. Veloce <sup>153</sup>, F. Veloso <sup>127a,127c</sup>, S. Veneziano <sup>72a</sup>, A. Ventura <sup>67a,67b</sup>, A. Verbytskyi <sup>107</sup>,
M. Verducci (^{071a,71b}, C. Vergis (^{022}, M. Verissimo De Araujo (^{079b}, W. Verkerke (^{0111},
A.T. Vermeulen <sup>111</sup>, J.C. Vermeulen <sup>111</sup>, C. Vernieri <sup>141</sup>, P.J. Verschuuren <sup>192</sup>, M. Vessella <sup>100</sup>,
M.L. Vesterbacka 114, M.C. Vetterli 140,af, A. Vgenopoulos 150, N. Viaux Maira 134f,
T. Vickey 137, O.E. Vickey Boeriu 137, G.H.A. Viehhauser 123, L. Vigani 161b, M. Villa 121b,21a,
M. Villaplana Perez 160, E.M. Villhauer 50, E. Vilucchi 151, M.G. Vincter 152, G.S. Virdee 159,
A. Vishwakarma <sup>©50</sup>, C. Vittori <sup>©21b,21a</sup>, I. Vivarelli <sup>©144</sup>, V. Vladimirov<sup>164</sup>, E. Voevodina <sup>©107</sup>,
M. Vogel (b)168, P. Vokac (b)129, J. Von Ahnen (b)46, E. Von Toerne (b)22, V. Vorobel (b)130, K. Vorobev (b)35,
M. Vos © 160, J.H. Vossebeld © 89, M. Vozak © 98, L. Vozdecky © 91, N. Vranjes © 14,
M. Vranjes Milosavljevic <sup>14</sup>, V. Vrba<sup>129,*</sup>, M. Vreeswijk <sup>111</sup>, R. Vuillermet <sup>34</sup>, O. Vujinovic <sup>97</sup>,
I. Vukotic (1037, S. Wada (10155), C. Wagner (100), W. Wagner (10168), S. Wahdan (10168), H. Wahlberg (1087),
R. Wakasa 155, M. Wakida 16108, V.M. Walbrecht 16107, J. Walder 16131, R. Walker 16106, S.D. Walker 162,
W. Walkowiak <sup>139</sup>, A.M. Wang <sup>59</sup>, A.Z. Wang <sup>167</sup>, C. Wang <sup>60a</sup>, C. Wang <sup>60c</sup>, H. Wang <sup>16a</sup>,
J. Wang 62a, P. Wang 42, R.-J. Wang 697, R. Wang 659, R. Wang 6112, S.M. Wang 6146,
S. Wang 60b, T. Wang 60a, W.T. Wang 677, W.X. Wang 60a, X. Wang 613c, X. Wang 6159,
X. Wang 60c, Y. Wang 60a, Z. Wang 6103, C. Wanotayaroj 634, A. Warburton 6101, C.P. Ward 630,
R.J. Ward <sup>19</sup>, N. Warrack <sup>57</sup>, A.T. Watson <sup>19</sup>, M.F. Watson <sup>19</sup>, G. Watts <sup>136</sup>, B.M. Waugh <sup>93</sup>,
A.F. Webb 10, C. Weber 27, M.S. Weber 18, S.A. Weber 32, S.M. Weber 161a, C. Wei<sup>60a</sup>,
Y. Wei © 123, A.R. Weidberg © 123, J. Weingarten © 47, M. Weirich © 97, C. Weiser © 52, T. Wenaus © 27,
B. Wendland \mathbb{D}^{47}, T. Wengler \mathbb{D}^{34}, S. Wenig \mathbb{D}^{34}, N. Wermes \mathbb{D}^{22}, M. Wessels \mathbb{D}^{61a}, K. Whalen \mathbb{D}^{120},
A.M. Wharton <sup>688</sup>, A.S. White <sup>59</sup>, A. White <sup>67</sup>, M.J. White <sup>61</sup>, D. Whiteson <sup>6157</sup>,
L. Wickremasinghe 121, W. Wiedenmann 167, C. Wiel 1648, M. Wielers 131, N. Wieseotte 7,
C. Wiglesworth 640, L.A.M. Wiik-Fuchs 52, D.J. Wilbern 117, H.G. Wilkens 534, L.J. Wilkins 592,
D.M. Williams <sup>125</sup>, H.H. Williams <sup>125</sup>, S. Williams <sup>130</sup>, S. Willocq <sup>100</sup>, P.J. Windischhofer <sup>123</sup>,
I. Wingerter-Seez 64, F. Winklmeier 6120, B.T. Winter 52, M. Wittgen 141, M. Wobisch 94,
```

```
A. Wolf •97, R. Wölker •123, J. Wollrath 157, M.W. Wolter •83, H. Wolters •127a,127c, V.W.S. Wong •161,
A.F. Wongel 646, S.D. Worm 46, B.K. Wosiek 83, K.W. Woźniak 83, K. Wraight 57, J. Wu 13a,13d,
S.L. Wu 167, X. Wu 164, Y. Wu 160a, Z. Wu 132,60a, J. Wuerzinger 123, T.R. Wyatt 1698,
B.M. Wynne (50, S. Xella (54), L. Xia (513c, M. Xia 13b, J. Xiang (562c, X. Xiao (5103), M. Xie (560a,
X. Xie 60a, I. Xiotidis 144, D. Xu 613a, H. Xu 60a, H. Xu 60a, L. Xu 60a, R. Xu 6125, T. Xu 60a,
W. Xu 10 10 3, Y. Xu 10 13 b, Z. Xu 10 60 b, Z. Xu 10 14 1, B. Yabsley 10 14 5, S. Yacoob 10 31 a, N. Yamaguchi 10 86,
Y. Yamaguchi (D152), M. Yamatani 151, H. Yamauchi (D155), T. Yamazaki (D16a), Y. Yamazaki (D81), J. Yan 60c,
S. Yan (5)123, Z. Yan (5)23, H.J. Yang (5)60c,60d, H.T. Yang (5)16a, S. Yang (5)60a, T. Yang (5)60a, X. Yang (5)60a,
X. Yang 13a, Y. Yang 151, Z. Yang 60a, 103, W-M. Yao 16a, Y.C. Yap 646, H. Ye 13c, J. Ye 642,
S. Ye 627, I. Yeletskikh 636, M.R. Yexley 688, P. Yin 639, K. Yorita 6165, K. Yoshihara 678,
C.J.S. Young 652, C. Young 6141, M. Yuan 6103, R. Yuan 660b, J. X. Yue 661a, M. Zaazoua 633e,
B. Zabinski 683, G. Zacharis 69, E. Zaid<sup>50</sup>, T. Zakareishvili 6147b, N. Zakharchuk 632, S. Zambito 634,
D. Zanzi 052, S.V. Zeißner 047, C. Zeitnitz 0168, J.C. Zeng 0159, D.T. Zenger Jr 024, O. Zenin 035,
T. Ženiš (D<sup>26a</sup>, S. Zenz (D<sup>91</sup>, S. Zerradi (D<sup>33a</sup>, D. Zerwas (D<sup>64</sup>, B. Zhang (D<sup>13c</sup>, D.F. Zhang (D<sup>137</sup>,
G. Zhang 613b, J. Zhang 55, K. Zhang 613a,13d, L. Zhang 613c, M. Zhang 6159, R. Zhang 6167,
S. Zhang (103), X. Zhang (1060), X. Zhang (1060), Z. Zhang (1064), P. Zhao (1049), T. Zhao (1060), Y. Zhao (10133),
Z. Zhao (1060a), A. Zhemchugov (1036), Z. Zheng (10141), D. Zhong (10159), B. Zhou (103), C. Zhou (10167),
H. Zhou 6, N. Zhou 60, Y. Zhou, C.G. Zhu 60, C. Zhu 613a,13d, H.L. Zhu 60a, H. Zhu 613a,
J. Zhu 6103, Y. Zhu 660a, X. Zhuang 613a, K. Zhukov 635, V. Zhulanov 635, D. Zieminska 665,
N.I. Zimine 636, S. Zimmermann 652,*, J. Zinsser 661b, M. Ziolkowski 6139, L. Živković 614,
A. Zoccoli 621b,21a, K. Zoch 654, T.G. Zorbas 6137, O. Zormpa 644, W. Zou 639, L. Zwalinski 634.
```

¹Department of Physics, University of Adelaide, Adelaide; Australia.

²Department of Physics, University of Alberta, Edmonton AB; Canada.

^{3(a)}Department of Physics, Ankara University, Ankara; ^(b)Istanbul Aydin University, Application and Research Center for Advanced Studies, Istanbul; ^(c)Division of Physics, TOBB University of Economics and Technology, Ankara; Türkiye.

⁴LAPP, Univ. Savoie Mont Blanc, CNRS/IN2P3, Annecy; France.

⁵High Energy Physics Division, Argonne National Laboratory, Argonne IL; United States of America.

⁶Department of Physics, University of Arizona, Tucson AZ; United States of America.

⁷Department of Physics, University of Texas at Arlington, Arlington TX; United States of America.

⁸Physics Department, National and Kapodistrian University of Athens, Athens; Greece.

⁹Physics Department, National Technical University of Athens, Zografou; Greece.

¹⁰Department of Physics, University of Texas at Austin, Austin TX; United States of America.

¹¹(a) Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul; ^(b) Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul; ^(c) Department of Physics, Bogazici University, Istanbul; ^(d) Department of Physics Engineering, Gaziantep University, Gaziantep; Türkiye.

¹²Institut de Física d'Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona

¹²Institut de Física d'Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona; Spain.

¹³(a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ^(b) Physics Department, Tsinghua University, Beijing; ^(c) Department of Physics, Nanjing University, Nanjing; ^(d) University of Chinese Academy of Science (UCAS), Beijing; China.

¹⁴Institute of Physics, University of Belgrade, Belgrade; Serbia.

¹⁵Department for Physics and Technology, University of Bergen, Bergen; Norway.

 $^{^{16(}a)}$ Physics Division, Lawrence Berkeley National Laboratory, Berkeley CA; $^{(b)}$ University of California, Berkeley CA; United States of America.

¹⁷Institut für Physik, Humboldt Universität zu Berlin, Berlin; Germany.

- ¹⁸Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern; Switzerland.
- ¹⁹School of Physics and Astronomy, University of Birmingham, Birmingham; United Kingdom.
- ^{20(a)}Facultad de Ciencias y Centro de Investigaciónes, Universidad Antonio Nariño,
- Bogotá; (b) Departamento de Física, Universidad Nacional de Colombia, Bogotá; Colombia.
- ²¹(a) Dipartimento di Fisica e Astronomia A. Righi, Università di Bologna, Bologna; ^(b)INFN Sezione di Bologna; Italy.
- ²²Physikalisches Institut, Universität Bonn, Bonn; Germany.
- ²³Department of Physics, Boston University, Boston MA; United States of America.
- ²⁴Department of Physics, Brandeis University, Waltham MA; United States of America.
- ^{25(a)}Transilvania University of Brasov, Brasov; ^(b)Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; ^(c)Department of Physics, Alexandru Ioan Cuza University of Iasi,
- Iasi; $^{(d)}$ National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca; $^{(e)}$ University Politehnica Bucharest, Bucharest; $^{(f)}$ West University in Timisoara, Timisoara; Romania.
- ^{26(a)} Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava; ^(b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice; Slovak Republic.
- ²⁷Physics Department, Brookhaven National Laboratory, Upton NY; United States of America.
- ²⁸Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, y CONICET, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires; Argentina.
- ²⁹California State University, CA; United States of America.
- ³⁰Cavendish Laboratory, University of Cambridge, Cambridge; United Kingdom.
- $^{31(a)}$ Department of Physics, University of Cape Town, Cape Town; $^{(b)}$ iThemba Labs, Western
- Cape; (c) Department of Mechanical Engineering Science, University of Johannesburg,
- Johannesburg; (d) National Institute of Physics, University of the Philippines Diliman
- (Philippines); (e) University of South Africa, Department of Physics, Pretoria; (f) School of Physics,
- University of the Witwatersrand, Johannesburg; South Africa.
- ³²Department of Physics, Carleton University, Ottawa ON; Canada.
- ^{33(a)} Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies Université Hassan II, Casablanca; ^(b) Faculté des Sciences, Université Ibn-Tofail, Kénitra; ^(c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; ^(d) LPMR, Faculté des Sciences, Université Mohamed Premier, Oujda; ^(e) Faculté des sciences, Université Mohammed V, Rabat; ^(f) Institute of Applied Physics, Mohammed VI Polytechnic University, Ben Guerir; Morocco.
- ³⁴CERN, Geneva; Switzerland.
- ³⁵Affiliated with an institute covered by a cooperation agreement with CERN.
- ³⁶Affiliated with an international laboratory covered by a cooperation agreement with CERN.
- ³⁷Enrico Fermi Institute, University of Chicago, Chicago IL; United States of America.
- ³⁸LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand; France.
- ³⁹Nevis Laboratory, Columbia University, Irvington NY; United States of America.
- ⁴⁰Niels Bohr Institute, University of Copenhagen, Copenhagen; Denmark.
- $^{41}(a)$ Dipartimento di Fisica, Università della Calabria, Rende; $^{(b)}$ INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; Italy.
- ⁴²Physics Department, Southern Methodist University, Dallas TX; United States of America.
- ⁴³Physics Department, University of Texas at Dallas, Richardson TX; United States of America.
- ⁴⁴National Centre for Scientific Research "Demokritos", Agia Paraskevi; Greece.
- ^{45(a)}Department of Physics, Stockholm University; ^(b)Oskar Klein Centre, Stockholm; Sweden.

- ⁴⁶Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen; Germany.
- ⁴⁷Fakultät Physik, Technische Universität Dortmund, Dortmund; Germany.
- ⁴⁸Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden; Germany.
- ⁴⁹Department of Physics, Duke University, Durham NC; United States of America.
- ⁵⁰SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh; United Kingdom.
- ⁵¹INFN e Laboratori Nazionali di Frascati, Frascati; Italy.
- ⁵²Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg; Germany.
- ⁵³II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen; Germany.
- ⁵⁴Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève; Switzerland.
- ⁵⁵(a) Dipartimento di Fisica, Università di Genova, Genova; (b) INFN Sezione di Genova; Italy.
- ⁵⁶II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen; Germany.
- ⁵⁷SUPA School of Physics and Astronomy, University of Glasgow, Glasgow; United Kingdom.
- ⁵⁸LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble; France.
- ⁵⁹Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA; United States of America.
- ^{60(a)}Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei; ^(b)Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University,
- Qingdao; (c) School of Physics and Astronomy, Shanghai Jiao Tong University, Key Laboratory for Particle Astrophysics and Cosmology (MOE), SKLPPC, Shanghai; (d) Tsung-Dao Lee Institute, Shanghai; China. (b) Physikalisches
- ⁶¹(*a*)Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (*b*) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; Germany.
- ⁶²(a) Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, University of Hong Kong, Hong Kong; (c) Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; China.
- ⁶³Department of Physics, National Tsing Hua University, Hsinchu; Taiwan.
- ⁶⁴IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay; France.
- ⁶⁵Department of Physics, Indiana University, Bloomington IN; United States of America.
- ^{66(a)}INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; ^(b)ICTP, Trieste; ^(c)Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Udine; Italy.
- ^{67(a)}INFN Sezione di Lecce; ^(b)Dipartimento di Matematica e Fisica, Università del Salento, Lecce; Italy.
- ^{68(a)}INFN Sezione di Milano; ^(b)Dipartimento di Fisica, Università di Milano, Milano; Italy.
- ^{69(a)}INFN Sezione di Napoli; ^(b)Dipartimento di Fisica, Università di Napoli, Napoli; Italy.
- ^{70(a)}INFN Sezione di Pavia; ^(b)Dipartimento di Fisica, Università di Pavia, Pavia; Italy.
- ⁷¹(a) INFN Sezione di Pisa; ^(b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa; Italy.
- $^{72(a)}$ INFN Sezione di Roma; $^{(b)}$ Dipartimento di Fisica, Sapienza Università di Roma, Roma; Italy.
- ⁷³(*a*) INFN Sezione di Roma Tor Vergata; ^(b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma; Italy.
- ^{74(a)}INFN Sezione di Roma Tre; ^(b)Dipartimento di Matematica e Fisica, Università Roma Tre, Roma; Italy.
- ⁷⁵(a) INFN-TIFPA; (b) Università degli Studi di Trento, Trento; Italy.
- ⁷⁶Universität Innsbruck, Department of Astro and Particle Physics, Innsbruck; Austria.
- ⁷⁷University of Iowa, Iowa City IA; United States of America.
- ⁷⁸Department of Physics and Astronomy, Iowa State University, Ames IA; United States of America.
- ⁷⁹(*a*) Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora; ^(b) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; ^(c) Instituto de Física, Universidade de São Paulo, São Paulo; Brazil.

- ⁸⁰KEK, High Energy Accelerator Research Organization, Tsukuba; Japan.
- ⁸¹Graduate School of Science, Kobe University, Kobe; Japan.
- ⁸²(*a*) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (*b*) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow; Poland.
- ⁸³Institute of Nuclear Physics Polish Academy of Sciences, Krakow; Poland.
- ⁸⁴Faculty of Science, Kyoto University, Kyoto; Japan.
- ⁸⁵Kyoto University of Education, Kyoto; Japan.
- ⁸⁶Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka; Japan.
- ⁸⁷Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata; Argentina.
- ⁸⁸Physics Department, Lancaster University, Lancaster; United Kingdom.
- ⁸⁹Oliver Lodge Laboratory, University of Liverpool, Liverpool; United Kingdom.
- ⁹⁰Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana; Slovenia.
- ⁹¹School of Physics and Astronomy, Queen Mary University of London, London; United Kingdom.
- ⁹²Department of Physics, Royal Holloway University of London, Egham; United Kingdom.
- ⁹³Department of Physics and Astronomy, University College London, London; United Kingdom.
- ⁹⁴Louisiana Tech University, Ruston LA; United States of America.
- ⁹⁵Fysiska institutionen, Lunds universitet, Lund; Sweden.
- ⁹⁶Departamento de Física Teorica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid; Spain.
- ⁹⁷Institut für Physik, Universität Mainz, Mainz; Germany.
- ⁹⁸School of Physics and Astronomy, University of Manchester, Manchester; United Kingdom.
- ⁹⁹CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille; France.
- ¹⁰⁰Department of Physics, University of Massachusetts, Amherst MA; United States of America.
- ¹⁰¹Department of Physics, McGill University, Montreal QC; Canada.
- ¹⁰²School of Physics, University of Melbourne, Victoria; Australia.
- ¹⁰³Department of Physics, University of Michigan, Ann Arbor MI; United States of America.
- ¹⁰⁴Department of Physics and Astronomy, Michigan State University, East Lansing MI; United States of America.
- ¹⁰⁵Group of Particle Physics, University of Montreal, Montreal QC; Canada.
- ¹⁰⁶Fakultät für Physik, Ludwig-Maximilians-Universität München, München; Germany.
- ¹⁰⁷Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München; Germany.
- ¹⁰⁸Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya; Japan.
- ¹⁰⁹Department of Physics and Astronomy, University of New Mexico, Albuquerque NM; United States of America.
- ¹¹⁰Institute for Mathematics, Astrophysics and Particle Physics, Radboud University/Nikhef, Nijmegen; Netherlands.
- ¹¹¹Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam; Netherlands.
- ¹¹²Department of Physics, Northern Illinois University, DeKalb IL; United States of America.
- ¹¹³(*a*)New York University Abu Dhabi, Abu Dhabi; ^(b)United Arab Emirates University, Al Ain; ^(c)University of Sharjah, Sharjah; United Arab Emirates.
- ¹¹⁴Department of Physics, New York University, New York NY; United States of America.
- ¹¹⁵Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo; Japan.
- ¹¹⁶Ohio State University, Columbus OH; United States of America.
- ¹¹⁷Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK; United States of America.

- ¹¹⁸Department of Physics, Oklahoma State University, Stillwater OK; United States of America.
- ¹¹⁹Palacký University, Joint Laboratory of Optics, Olomouc; Czech Republic.
- ¹²⁰Institute for Fundamental Science, University of Oregon, Eugene, OR; United States of America.
- ¹²¹Graduate School of Science, Osaka University, Osaka; Japan.
- ¹²²Department of Physics, University of Oslo, Oslo; Norway.
- ¹²³Department of Physics, Oxford University, Oxford; United Kingdom.
- ¹²⁴LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris; France.
- ¹²⁵Department of Physics, University of Pennsylvania, Philadelphia PA; United States of America.
- ¹²⁶Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA; United States of America.
- $^{127(a)}$ Laboratório de Instrumentação e Física Experimental de Partículas LIP, Lisboa; $^{(b)}$ Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa; $^{(c)}$ Departamento de Física, Universidade de Coimbra, Coimbra; $^{(d)}$ Centro de Física Nuclear da Universidade de Lisboa, Lisboa; $^{(e)}$ Departamento de Física, Universidade do Minho, Braga; $^{(f)}$ Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada (Spain); $^{(g)}$ Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Lisboa; Portugal.
- ¹²⁸Institute of Physics of the Czech Academy of Sciences, Prague; Czech Republic.
- ¹²⁹Czech Technical University in Prague, Prague; Czech Republic.
- ¹³⁰Charles University, Faculty of Mathematics and Physics, Prague; Czech Republic.
- ¹³¹Particle Physics Department, Rutherford Appleton Laboratory, Didcot; United Kingdom.
- ¹³²IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette; France.
- ¹³³Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA; United States of America.
- $^{134}(a)$ Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; $^{(b)}$ Millennium Institute for Subatomic physics at high energy frontier (SAPHIR), Santiago; $^{(c)}$ Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, y Departamento de Física, Universidad de La Serena; $^{(d)}$ Universidad Andres Bello, Department of Physics, Santiago; $^{(e)}$ Instituto de Alta Investigación, Universidad de Tarapacá, Arica; $^{(f)}$ Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso; Chile.
- ¹³⁵Universidade Federal de São João del Rei (UFSJ), São João del Rei; Brazil.
- ¹³⁶Department of Physics, University of Washington, Seattle WA; United States of America.
- ¹³⁷Department of Physics and Astronomy, University of Sheffield, Sheffield; United Kingdom.
- ¹³⁸Department of Physics, Shinshu University, Nagano; Japan.
- ¹³⁹Department Physik, Universität Siegen, Siegen; Germany.
- ¹⁴⁰Department of Physics, Simon Fraser University, Burnaby BC; Canada.
- ¹⁴¹SLAC National Accelerator Laboratory, Stanford CA; United States of America.
- ¹⁴²Department of Physics, Royal Institute of Technology, Stockholm; Sweden.
- ¹⁴³Departments of Physics and Astronomy, Stony Brook University, Stony Brook NY; United States of America.
- ¹⁴⁴Department of Physics and Astronomy, University of Sussex, Brighton; United Kingdom.
- ¹⁴⁵School of Physics, University of Sydney, Sydney; Australia.
- ¹⁴⁶Institute of Physics, Academia Sinica, Taipei; Taiwan.
- $^{147(a)}$ E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; $^{(b)}$ High Energy Physics Institute, Tbilisi State University, Tbilisi; $^{(c)}$ University of Georgia, Tbilisi; Georgia.
- ¹⁴⁸Department of Physics, Technion, Israel Institute of Technology, Haifa; Israel.
- ¹⁴⁹Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv; Israel.
- ¹⁵⁰Department of Physics, Aristotle University of Thessaloniki, Thessaloniki; Greece.

- ¹⁵¹International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo; Japan.
- ¹⁵²Department of Physics, Tokyo Institute of Technology, Tokyo; Japan.
- ¹⁵³Department of Physics, University of Toronto, Toronto ON; Canada.
- ¹⁵⁴(a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON; Canada.
- ¹⁵⁵Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba; Japan.
- ¹⁵⁶Department of Physics and Astronomy, Tufts University, Medford MA; United States of America.
- ¹⁵⁷Department of Physics and Astronomy, University of California Irvine, Irvine CA; United States of America.
- ¹⁵⁸Department of Physics and Astronomy, University of Uppsala, Uppsala; Sweden.
- ¹⁵⁹Department of Physics, University of Illinois, Urbana IL; United States of America.
- ¹⁶⁰Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia CSIC, Valencia; Spain.
- ¹⁶¹Department of Physics, University of British Columbia, Vancouver BC; Canada.
- ¹⁶²Department of Physics and Astronomy, University of Victoria, Victoria BC; Canada.
- ¹⁶³Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg; Germany.
- ¹⁶⁴Department of Physics, University of Warwick, Coventry; United Kingdom.
- ¹⁶⁵Waseda University, Tokyo; Japan.
- ¹⁶⁶Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot; Israel.
- ¹⁶⁷Department of Physics, University of Wisconsin, Madison WI; United States of America.
- ¹⁶⁸Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal; Germany.
- ¹⁶⁹Department of Physics, Yale University, New Haven CT; United States of America.
- ^a Also Affiliated with an institute covered by a cooperation agreement with CERN.
- ^b Also at Borough of Manhattan Community College, City University of New York, New York NY; United States of America.
- ^c Also at Bruno Kessler Foundation, Trento; Italy.
- ^d Also at Center for High Energy Physics, Peking University; China.
- ^e Also at Centro Studi e Ricerche Enrico Fermi; Italy.
- ^f Also at CERN, Geneva; Switzerland.
- ^g Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève; Switzerland.
- ^h Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona; Spain.
- ⁱ Also at Department of Financial and Management Engineering, University of the Aegean, Chios; Greece.
- ^j Also at Department of Physics and Astronomy, Michigan State University, East Lansing MI; United States of America.
- ^k Also at Department of Physics and Astronomy, University of Louisville, Louisville, KY; United States of America.
- ¹ Also at Department of Physics, Ben Gurion University of the Negev, Beer Sheva; Israel.
- ^m Also at Department of Physics, California State University, East Bay; United States of America.
- ⁿ Also at Department of Physics, California State University, Fresno; United States of America.
- ^o Also at Department of Physics, California State University, Sacramento; United States of America.
- ^p Also at Department of Physics, King's College London, London; United Kingdom.
- ^q Also at Department of Physics, University of Fribourg, Fribourg; Switzerland.
- ^r Also at Faculty of Physics, Sofia University, 'St. Kliment Ohridski', Sofia; Bulgaria.
- ^s Also at Hellenic Open University, Patras; Greece.

- ^t Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona; Spain.
- ^u Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg; Germany.
- $^{\nu}$ Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest; Hungary.
- ^w Also at Institute of Particle Physics (IPP); Canada.
- ^x Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan.
- ^y Also at Institute of Theoretical Physics, Ilia State University, Tbilisi; Georgia.
- ^z Also at Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid; Spain.
- aa Also at Istanbul University, Dept. of Physics, Istanbul; Türkiye.
- ab Also at Physics Department, An-Najah National University, Nablus; Palestine.
- ac Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg; Germany.
- ad Also at The City College of New York, New York NY; United States of America.
- ae Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing; China.
- af Also at TRIUMF, Vancouver BC; Canada.
- ag Also at Università di Napoli Parthenope, Napoli; Italy.
- ah Also at University of Chinese Academy of Sciences (UCAS), Beijing; China.
- ai Also at Yeditepe University, Physics Department, Istanbul; Türkiye.
- * Deceased