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A search for high-mass charged and neutral bosons decaying to ,W and /W final states is
presented in this paper. The analysis uses a data sample of

√
B = 13 TeV proton–proton

collisions with an integrated luminosity of 139 fb−1 collected by the ATLAS detector during
LHC Run 2 operation. The sensitivity of the search is determined using models of the
production and decay of spin-1 charged bosons and spin-0/2 neutral bosons. The range of
resonance masses explored extends from 1.0 TeV to 6.8 TeV. At these high resonance masses,
it is beneficial to target the hadronic decays of the , and / bosons because of their large
branching fractions. The decay products of the high-momentum ,// bosons are strongly
collimated and boosted-boson tagging techniques are employed to improve the sensitivity. No
evidence of a signal above the Standard Model backgrounds is observed, and upper limits on
the production cross-sections of these bosons times their branching fractions to ,W and /W

are derived for various boson production models.
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1 Introduction

Speculations about physics phenomena beyond those described by the Standard Model (SM) often result in
the introduction of new bosons, due to either additional gauge symmetries or postulated extensions of the
Higgs sector [1–3]. The high-energy proton–proton (??) collisions provided by the Large Hadron Collider
(LHC) make it possible to produce these new bosons with masses up to approximately one hundred times
the mass of the SM , and / bosons. A broad range of beyond-the-SM (BSM) scenarios can therefore be
tested with experiments at the LHC that search for high-mass charged and neutral bosons.

Some of the BSM theories predict new charged -± and neutral -0 bosons [3, 4]. From an experimental
perspective, ,W or /W final states are attractive since a high-energy photon signature efficiently selects
signal events and rejects background. For bosons with masses of the order of TeV, decays of the type
-± → ,±W or -0 → /W result in a highly boosted , or / boson, where the decay products of such
a boson are very collimated. This analysis targets the hadronic decay modes of , and / bosons to
quark–antiquark pairs reconstructed as large-radius (large-') jets that have a two-prong structure identified
using jet-substructure information [5]. The complete reconstruction of the ,W or /W final state can then be
used to determine the mass and other properties of the new bosons.

This paper presents searches for massive -± and -0 bosons using 139 fb−1 of ?? collisions at a centre-of-
mass energy (

√
B) of 13 TeV recorded with the ATLAS detector. The searches assume that the decay width

of the heavy bosons is small compared to the experimental resolution, but are otherwise generic, looking for
any excess of events above smooth SM background ,W and /W invariant mass spectra. The measurements
are compared with the predictions of models of the production and decay of spin-1 charged bosons and
spin-0/2 neutral bosons. These include @@̄′ annihilation production of spin-1 -± →,±W, gluon–gluon
fusion production of spin-0 -0 → /W, and both gluon–gluon fusion and @@̄ annihilation production of
spin-2 -0 → /W. A boson mass (<- ) range from 1.0 to 6.8 TeV is covered by these searches.

Previous searches for bosons of mass greater than 1.0 TeV decaying to ,W and /W final states have been
carried out at the LHC by the ATLAS [6–8] and CMS [9–12] Collaborations. Compared to the previous
ATLAS search based on 36.1 fb−1 of Run 2

√
B = 13 TeV ?? collision data [8], the search reported in this

paper achieves better sensitivity in part by including the entire dataset collected by the ATLAS experiment
during Run 2. In addition to the four times larger dataset, the search is further improved by an optimization
of the identification of the hadronic decays of highly boosted , and / bosons.

2 ATLAS detector

The ATLAS experiment is a multipurpose detector [13] having a forward-backward symmetric cylindrical
geometry and almost 4c coverage in solid angle. The inner tracking detectors are immersed in a 2 T
magnetic field produced by a thin superconducting solenoid. The tracking detectors cover a pseudorapidity1

range |[ | < 2.5 using a combination of silicon pixel detectors closest to the beam pipe, followed by silicon
microstrip trackers and an outer transition radiation tracker. The innermost layer, known as the insertable
B-layer [14, 15], provides high-resolution hits at small radius to improve the tracking performance.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the I-axis along the beam pipe. The G-axis points from the IP to the centre of the LHC ring, and the H-axis points
upward. Cylindrical coordinates (A, q) are used in the transverse plane, q being the azimuthal angle around the I-axis. The
pseudorapidity is defined in terms of the polar angle \ as [ = − ln tan(\/2).
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The inner tracking detectors are surrounded by calorimeters and a muon spectrometer. The electromagnetic
(EM) calorimeter is a lead/liquid-argon (LAr) sampling calorimeter with high granularity. Its barrel (|[ | <
1.475) and endcap (1.375 < |[ | < 3.2) components provide EM energy measurements of electrons and
photons up to a pseudorapidity |[ | = 3.2. In the range used for precision measurements of electrons and
photons (|[ | < 2.5 excluding a transition region 1.37 < |[ | < 1.52), the EM calorimeter is segmented into
three layers along the shower depth, providing excellent measurements of photon properties and allowing
precise photon identification. A steel/scintillator-tile hadronic calorimeter covers the central pseudorapidity
range |[ | < 1.7. The endcap and forward regions are instrumented up to |[ | = 4.9 with LAr calorimeters
for EM and hadronic energy measurements.

The muon spectrometer (MS) comprises separate trigger and high-precision tracking chambers measuring
the deflection of muons in a magnetic field generated by superconducting air-core toroidal magnets.
The field integral of the toroids ranges between 2.0 and 6.0 T m across most of the detector. A set of
precision chambers covers the region |[ | < 2.7 with three layers of monitored drift tubes, complemented by
cathode-strip chambers in the forward region, where the background is highest. The muon trigger system
covers the range |[ | < 2.4 with resistive-plate chambers in the barrel, and thin-gap chambers in the endcap
regions.

Events are selected from the LHC’s ?? bunch crossings, which occur at a rate of 40 MHz, by a first-level
trigger implemented in custom hardware followed by a software-based high-level trigger that employs
algorithms similar to those used in offline event reconstruction [16]. The first-level trigger selects events
at a rate of 100 kHz by using a subset of detector information, with the high-level trigger then accepting
events for offline analysis at the rate of about 1 kHz. An extensive software suite [17] is used in data
simulation, in the reconstruction and analysis of real and simulated data, in detector operation, and in the
trigger and data acquisition systems of the experiment.

3 Data collection and Monte Carlo event simulation

3.1 Data samples

The data used for this analysis were collected by the ATLAS detector from 2015 to 2018 when the LHC
provided ?? collisions at

√
B = 13 TeV. Events were selected using a single-photon trigger with loose

photon identification requirements based upon EM calorimeter cluster shower-shape variables [18]. The
trigger with a photon transverse energy (�W

T ) threshold of 140 GeV is fully efficient for events used in this
search. In addition to the trigger selection, events are required to have at least one offline reconstructed
signal photon matched to the object that fired the photon trigger. After requiring that all detector systems
were recording high-quality data, the final dataset has an integrated luminosity of 139 fb−1 [19, 20].

3.2 Monte Carlo simulation

Monte Carlo (MC) event generators were used to simulate SM background events and BSM heavy-
boson signal events. These simulated event samples are used to optimize the event selection for the
new-BSM-boson search and validate the parameterization of the templates used to fit the ,// + W mass
distributions. The largest background is due to single-photon production in association with jets (W+jets)
where the jet fulfils the boson-tagging criteria used to identity the large-' jets from ,// boson hadronic
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decays. These events were simulated using the Sherpa 2.2.2 generator [21], with up to two additional
parton emissions included at next-to-leading-order (NLO) precision and up to four additional partons at
leading-order (LO) precision. The matrix elements of these events were calculated with the Comix [22] and
OpenLoops [23, 24] libraries and then matched to the Sherpa parton shower [25] using the MEPS@NLO
prescription [26–29]. The NNPDF3.0nnlo [30] parton distribution function (PDF) set was used to describe
the parton distributions in the incoming protons. The irreducible SM background from the hadronic
decays of , and / bosons produced with a radiated photon was simulated at LO precision with the
Sherpa 2.1.1 generator, and the parton distributions were modelled with the CT10 PDF set [31]. The
SM CC̄+W process was simulated with a matrix element at LO with MadGraph5_aMC@NLO 2.3.3 [32],
followed by Pythia 8.186 [33] for the parton showering. The NNPDF2.3lo PDF set [34] and a set of tuned
parameters called the A14 tune [35] were used for this CC̄+W event generation.

Various samples of simulated BSM boson signal events are used to optimize the event selection criteria
and to estimate the acceptance and efficiency for the detection of the -± → ,±W and -0 → /W signals.
The production of the -± and -0 bosons was modelled in a narrow-width approximation where the natural
width of the bosons is much smaller than the expected experimental resolution of the invariant mass of the
,±W and /W resonances.

The production of a spin-0 boson decaying into /W was simulated in gluon–gluon fusion, 66 → -0 →
/W [36]. This process was modelled with the MC generator Powheg Box v2 [37] at NLO precision as used
for SM � → /W production, with the Higgs boson mass varied. The CT10 PDF set was used to generate
these events. The parton showering was modelled with Pythia 8.212 [38] with the AZNLO tune [39].

The spin-1 resonance @@̄′ → -± → ,±W signal process event generation utilized the heavy-vector-
triplet framework [3] for event kinematic modelling. The simulations of the spin-2 66 → -0 → /W

and @@̄ → -0 → /W signal events are based on a resonance model benchmarked from the Higgs
characterization model framework with s-channel direct couplings between the spin-2 heavy resonance and
the SM / boson and the W [40–42]. The MadGraph5_aMC@NLO v2.3.3 MC generator was used at LO
precision, followed by Pythia 8.212 for the parton showering with the NNPDF2.3lo PDF set and the A14
tune. In these models the , (/) boson is produced longitudinally (transversely) polarized. In samples with
Pythia used for parton showering, decays of 2- and 1-hadrons were simulated with EvtGen 1.2.0 [43].

The resulting MC event samples were processed using a detailed simulation of the ATLAS detector with
Geant4 [44, 45], and then passed through the same reconstruction algorithms as those used for the data.
Effects of multiple ?? collisions (pile-up) are included during reconstruction by overlaying inelastic events
simulated with Pythia 8.186 using the A3 tune [46] and the NNPDF2.3lo PDF set. These minimum-bias
events are overlaid with multiplicity distributions that approximately match the pile-up observed in the data.
A pile-up reweighting approach is then performed to correct for the residual difference between simulation
and data in the analysis.

A summary of the MC generators used for the SM and BSM processes is given in Table 1.

4 Event reconstruction

Events are required to pass a loose identification photon trigger with a transverse energy (�W

T ) threshold of
140 GeV. Each of these events is then processed through offline particle reconstruction to identify high-�T

photons and to search for jets that pass a,// boson tagging requirement. The details of the photon, jet and
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Table 1: Generators used for the simulation of SM backgrounds and BSM signals.

Process Matrix element generator QCD order PDF Parton shower

SM backgrounds
SM W+jets Sherpa 2.2.2 NLO NNPDF3.0nnlo Sherpa MEPS@NLO
SM ,W and /W Sherpa 2.1.1 LO CT10 Sherpa MEPS@LO
SM C C̄+W MadGraph5_aMC@NLO 2.3.3 LO NNPDF2.3lo Pythia 8.186 + EvtGen 1.2.0

Signals
Spin-0 66 → -0 → /W Powheg Box v2 NLO CT10 Pythia 8.212 + EvtGen 1.2.0
Spin-2 66 → -0 → /W MadGraph5_aMC@NLO 2.3.3 LO NNPDF2.3lo Pythia 8.212 + EvtGen 1.2.0
Spin-2 @@̄ → -0 → /W MadGraph5_aMC@NLO 2.3.3 LO NNPDF2.3lo Pythia 8.212 + EvtGen 1.2.0
Spin-1 @@̄′ → -± → , ±W MadGraph5_aMC@NLO 2.3.3 LO NNPDF2.3lo Pythia 8.212 + EvtGen 1.2.0

,// boson reconstruction and identification are described in this section, along with the categorization
applied to define the signal regions for the -± → ,±W and -0 → /W BSM boson searches.

4.1 Particle reconstruction

Photon candidates are reconstructed from clusters of energy in the EM calorimeter and classified either
as converted photons (those with a reconstructed vertex consistent with a W → 4+4− conversion) or as
unconverted photons [47]. The photon identification algorithm uses shower shape variables measured from
both the fine segmentation of the inner layers of the EM calorimeter and the outer layers of the EM and
hadronic calorimeters to suppress background from photons from neutral meson decays in jets. For this
analysis, tight photons are selected, with a measured photon identification efficiency greater than 90%
(95%) for unconverted (converted) photon candidates with �

W

T > 200 GeV [47].

To further reduce backgrounds from jets, an isolation requirement [47] is imposed on the photons, using the
transverse energy (� iso

T ) deposited in the EM calorimeter within a cone of size Δ' ≡
√
(Δ[)2 + (Δq)2 = 0.4

centred on the photon candidate, excluding the photon transverse energy within an area Δ[ × Δq =

0.125 × 0.175. After corrections for photon energy leakage into the isolation cone and contributions from
the underlying event and pile-up interactions, the photon isolation transverse energy � iso

T is required to
be less than 0.022 × �

W

T + 2.45 GeV. For the signal photons passing the reconstruction and identification
requirements, the isolation efficiency is approximately 98%. Events selected for analysis must have at least
one isolated photon candidate with �

W

T > 200 GeV and |[W | < 1.37. The [ requirement is motivated by the
fact that the photon from a signal event tends to be more central than those from the background.

Jets are reconstructed using charged-particle tracks and calorimeter energy clusters, combining their
information to optimize the measurement of the jet direction and energy [48]. The clustering method is
that of the anti-:C algorithm [49, 50] with radius parameter ' = 1.0. In order to reduce contributions to the
jet from pile-up, a trimming algorithm [51] is applied, which removes contributions from sub-jets clustered
using the :C algorithm [52] with ' = 0.2 if they carry less than 5% of the jet’s transverse momentum. The
jets are calibrated to the level of stable final-state particles using MC simulations [53]. Jets are selected if
they have a transverse momentum ?�

T > 200 GeV and are within a pseudorapidity region |[� | < 2.0, where
the inner tracker has good charged-particle tracking coverage. The jets are also required to be separated
from photons by Δ'(�, W) > 1.0.

A , or / boson produced by the decay of a boson with a mass of the order of a few TeV is highly boosted,
with the di-quark decay products often forming a single large-' jet. The characteristics of these di-quark
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jets can be used to distinguish ,// bosons from a large background of jets originating from single quarks
or gluons. The main distinguishing features are the jet mass and the presence of two-prong substructure
within the jet.

The jet mass (<� ) is calculated using a combination of particle four-momenta measured from charged-
particle tracks and calorimeter cell energies [54]. The jet mass resolution ranges from 8% to 15% for jets
with transverse momentum between 500 and 2500 GeV, respectively. Reconstructed jet mass distributions
from simulated hadronic decays of , and / bosons are shown in Figure 1. The low mass tail is caused by
events where the decay products from a , or / boson are not fully captured in the large-' jet. The effects
are different for / and , bosons since the / boson from -0 decay is transversely polarized whereas the
, boson from -± decay is longitudinally polarized. The jet mass is required to be in a window around
the boson mass where the window’s size is optimized as a function of ?�

T to maximize the significance
of the , or / boson selection over multĳet backgrounds [55]. The size of the mass window increases
from about 20 to 50 GeV as ?�

T increases from 500 to 2500 GeV. For a large-' jet with ?T < 500 GeV
(?T > 2500 GeV), the criterion defined at ?T = 500 GeV (?T = 2500 GeV) is applied.
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Figure 1: The jet mass distribution of large-' jets originating from the hadronic decay of , and / bosons produced
from the decay of BSM bosons with mass (a) <- = 1000 GeV and (b) <- = 4000 GeV. The decays simulated are for
the production models @@̄′ → -± → ,±W with a spin-1 resonance -± and 66 → -0 → /W with a spin-0 resonance
-0. The / bosons from /W decays of spin-2 resonances have jet mass distributions very similar to those shown for
spin-0 resonances.

The two-prong jet substructure from hadronic ,// boson decays is identified using the energies and
pairwise angular distances between clusters of particles within the large-' jets. This is quantified with a
variable �2 defined as the ratio n3/[n2]3 of #-point energy correlation functions n# computed from the jet
constituents [56, 57]. This variable exploits the sensitivity of n2 to the hadronic shower produced from
a single quark or gluon versus n3, which is sensitive to the two hadronic-jet clusters produced from the
di-quark decay of ,// bosons. Studies using simulations and data were used to choose the requirements
on �2 that optimize the ,// boson identification significance [55]. The chosen upper limit on �2 varies
from 1.0 at low jet ?T to slightly above 2.0 at high jet ?T for the ,// hadronic jets used in this analysis.

For the fraction of / bosons that decay into 11̄, the purity of the selection can be further improved by
applying 1-hadron identification requirements. A tagging algorithm is used that exploits the long lifetime
of 1-hadrons, which leads to tracks with large impact parameters and to secondary vertices. The outputs of
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three 1-tagging techniques are combined into a single multivariate discriminant, called MV2c10, allowing
the selection of 1-hadrons with various efficiencies and background rejections [58]. This 1-tagging
algorithm is applied to variable-radius (VR) track-jets associated with the large-' jet, as determined by the
ghost-association algorithm [59]. The VR track-jets are reconstructed from ID tracks using the anti-:C
algorithm with a variable radius parameter ' that ranges between 0.02 and 0.4 depending on the jet ?T

[60]. The tagging efficiency is determined with simulated CC̄ events and corrected to the measurement in
data [61]. A working point with a 1-tagging efficiency of 70% is used. Two VR track-jets are required to
pass this 1-tagging requirement to select / → 11̄ events.

4.2 Event selection and categorization

The events selected are required to have a photon with �
W

T > 200 GeV and |[W | < 1.37 and a jet with
?�

T > 200 GeV and |[� | < 2.0, using the identification criteria described above. These selection criteria
are called the ‘baseline selection’ for this analysis. The ?? interaction vertex selected for reconstruction of
these physics objects is the one with the highest sum of the ?2

T of the tracks coming from the vertex. If
multiple photons or jets satisfy the photon/jet selection criteria, those with the highest transverse energy or
momentum are used. The search considers resonances with masses larger than 1 TeV. Below this mass, the
signal selection efficiency drops significantly because of the criteria used to select the hadronic decays
of the ,// bosons, and searches for ?? → - → ,// + W with leptonic ,// boson decays are more
sensitive. The search range is limited to 6.8 TeV using the highest-mass W+jet event observed in data.
The selected events are further sorted into exclusive categories of different , and / boson identification
purities to maximize the signal sensitivity.

For the -± → ,±W search, two categories are defined according to the �2 and jet mass criteria shown
below, with the category designation indicated in parentheses.

• pass �2 and , boson mass selection (D2),

• fail �2 and pass , boson mass selection (WMASS).

For the -0 → /W search, three categories are defined, based on the 1-tagging, �2 and jet mass criteria
shown below.

• pass two 1-tagged sub-jets and pass / boson mass selection (BTAG),

• fail two 1-tagged sub-jets: pass �2 and / boson mass selection (D2),

• fail two 1-tagged sub-jets: fail �2 and pass / boson mass selection (ZMASS).

Figure 2 illustrates the categorization of -± → ,±W and -0 → /W events.

The rejection of the dominant W+jet background varies strongly among the categories, being highest in
those using jet substructure and mass information. A further optimization of the signal sensitivity is
implemented by varying the photon �

W

T threshold as a function of the invariant mass <�W of the photon and
large-' jet, where the figure of merit is the statistical-only significance of the simulated BSM signal over
the expected SM backgrounds, where the SM backgrounds are estimated from the simulated background
samples described in Section 3.2. This photon �

W

T optimization is done separately for each of the event
categories, taking advantage of the large difference in photon and jet kinematics between signal and
background. The photon �

W

T threshold increases with <�W , varying from about 300 to 1200 GeV. This
results in a small loss of signal efficiency, but a very large suppression of the SM backgrounds. Figure 3
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W

D2

Z

D2

X±
→ W±γ X0

→ Zγ

Figure 2: The flow charts of event categorization of -± → ,±W and -0 → /W.

shows the total signal selection efficiencies after optimization of the photon �
W

T thresholds, and also the
contributions to the signal selection from each of the individual categories. The BTAG category has the
lowest efficiency but the highest signal purity. The spin-2 /W channel with 66 production mode has a
different - boson polarization than the @@̄ production mode, leading to a longer lower tail in the photon
and jet ?T distributions, and wider pseudorapidity distributions, and therefore a lower baseline selection
efficiency. For signals with a resonance mass above 4 TeV, the applied �2 requirement is relatively loose,
which results in most signal events entering the D2 category and the W/ZMASS selection appearing to
lose efficiency. The signal selection efficiencies increase with the mass <- , ranging from about 20% at the
lowest mass to about 60% at 6.8 TeV.

5 Signal and background modelling

The search for BSM boson signals is carried out by inspecting the invariant mass distribution of the
highest-�T photon and large-' jet identified in each event. The distribution of <�W from SM backgrounds
falls smoothly over the mass range 1.0 to 6.8 TeV used in this search. The presence of a boson -±→
,±W or -0→ /W would therefore appear in the data as an excess of events above the background <�W

distribution in a relatively narrow mass region around <- . The search sensitivity is quantified by fitting
the data with the sum of the SM background plus a signal that is parameterized from simulations of the
various production modes described in Section 3.2. The functional forms chosen for the background and
signal are described below, and the fitting procedure used to search for signals is presented in Section 7.
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Figure 3: Efficiencies for the selection of signal events after categorization and application of the tighter photon �
W

T
selection used to optimize the signal significance: (a) spin-0 66 → -0 → /W, (b) spin-1 @@̄′ → -± → ,±W, (c)
spin-2 @@̄ → -0 → /W, and (d) spin-2 66 → -0 → /W. In addition to the total efficiency, contributions to the
signal selection from each of the separate event categories are shown. The efficiencies calculated from MC samples
with ,// hadronic decays are shown as the points on each curve. The line presents interpolated results.
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5.1 SM background modelling

The SM background is dominated by W+jet events. In the D2 (W/ZMASS) event category, the production
of a photon in association with light-flavour jets and 2-jets contributes about 92% (96%) of the SM
background, while in the BTAG category the contribution from SM W+1-jet events is about 88%. The next
highest background contribution comes from SM ,W and /W production with the ,// bosons decaying
hadronically. The contribution from SM CC̄+W production is found to be negligible after the final event
selection. Contributions from events with photons misidentified as jets are found to be small and not
significant in changing the background shape from the dominant W+jet backgrounds.

The <�W distribution of the background is parameterized with a function that is flexible enough to
accommodate the background shape in each of the four event categories used in the signal search. The
function chosen to model the background is taken from Ref. [62], and is described by Eq. (1):

B(<�W; p) = (1 − G) ?1G?2+?3 log(G) , (1)

where G = <�W/
√
B, and p= (?1, ?2, ?3) is a vector of parameters used to control the shape of the

distribution. The ability of the function to describe backgrounds is tested using <�W distributions from
MC simulations which have about five times the number of data events in the signal region. The number of
parameters ?8 is determined by testing the ability of each function to fit these background <�W distributions
over the mass range used for each category. The determination of the number of parameters also includes
studies of fits of the background-only mass distributions to a signal-plus-background hypothesis in order to
quantify any ‘spurious signal’ (#SS) resulting from the parameterization with the procedure documented in
Ref. [63]. The number of fit parameters that minimizes the spurious signal is chosen. With this criterion, the
number of fit parameters is two or three depending on the category and signal model. The spurious signal
is then included as a systematic uncertainty in the fitted signal yield associated with the background fit
function, and included in the statistical treatment used for the signal search. The choice of functional form
and the spurious signal obtained from MC simulated samples are validated with data in a control region.
The control region (CR) events are selected with the photon required to be in the forward pseudorapidity
region 1.52 < |[W |< 2.37. This CR is found to have a small signal leakage which varies from 2% to 17%
depending on the signal type and the resonance mass. This validation process confirms that the chosen
functional form is flexible enough to model the <�W distribution in data.

5.2 BSM signal modelling

The distribution of <�W for a given BSM boson mass is generated with a natural width that is much smaller
than the experimental resolution. These MC events are passed through a full detector simulation and
selected in the same way as data events. The signal <�W distribution is modelled with a double-sided
Crystal Ball (DSCB) function [64]. This function is found to be the best model to describe the peak and
the long tails of the signal distribution. It is described by Eq. (2):

S(<�W;#, `, f, U1, =1, U2, =2)

= # ·





(
=1
|U1 |

)=1

exp
(
− |U1 |2

2

) (
=1
|U1 | − |U1 | −

<�W−`
f

)−=1 <�W−`
f

≤ −U1

exp
(
− (<�W−`)2

2f2

)
−U1 <

<�W−`
f

≤ U2(
=2
|U2 |

)=2

exp
(
− |U2 |2

2

) (
=2
|U2 | − |U2 | +

<�W−`
f

)−=2

U2 <
<�W−`

f
.

(2)
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The DSCB function includes a central Gaussian core, to model the experimental resolution of the signal,
with tails parameterized with power-law functions above and below the peak. The Gaussian core has a
mean ` and width f, while the low (high) <�W tail is fitted using the parameters U1 (U2) and =1 (=2), with
all the parameters constrained to be positive in the fit.

This signal model is used to fit the <�W distribution generated from the four signal hypotheses at masses
ranging from 1.0 to 7.0 TeV in steps of 1.0 TeV, with one additional mass point at 1.5 TeV. A linear
interpolation between adjacent mass points is performed for each of the fit parameters to obtain the signal
shapes at intermediate mass values. The width of the central core grows linearly from a f of about 30 to
120 GeV as the boson mass increases from 1.0 to 7.0 TeV.

6 Systematic uncertainties

The systematic uncertainties considered in this analysis come from the background estimation, the signal
prediction and the detector performance. The effects of these systematic uncertainties are parameterized
according to their impact on the signal efficiency, the signal shape peak position and the core width
of the signal shape. All these uncertainties are included in the statistical procedure when fitting the
signal-plus-background model to the data.

The potential bias from the background fit function describing the data <�W distribution is evaluated using
the spurious-signal test described in Section 5. A spurious signal is treated as a systematic uncertainty
arising from the choice of background parameterization and only affects the signal yield during the fitting
procedure. Assuming there is no signal in the data, the impact of spurious-signal uncertainties when setting
cross-section limits decreases from 20% to a negligible value with increasing resonance mass.

The uncertainty in the luminosity determination affects the signal yield prediction. The integrated
luminosity is measured using the LUCID-2 Cherenkov detector [65] and calibrated with a van der Meer
scan following the methodology documented in Ref. [66]. This results in a 1.7% uncertainty in the 139 fb−1

integrated luminosity collected during the 2015–2018 data-taking period.

The uncertainty in the modelling of inelastic ?? pile-up collisions overlaid on the simulation introduces a
2% uncertainty in the signal detection efficiency.

The uncertainty in the photon energy measurement affects the signal selection efficiency and the shape
of the invariant mass <�W distribution. The photon energy is calibrated using the method described in
Ref. [47]. Various sources of uncertainty contribute to the measurement of the photon energy scale and the
photon energy resolution. The photon identification, isolation and trigger efficiencies are all measured
from data following the method in Refs. [18, 47].

The uncertainty in large-' jet energy and mass calibration also affects the signal selection efficiency and
the <�W shape. The large-' jet energy and mass are calibrated with the method described in Ref. [53].
The impact of the jet energy resolution uncertainty is estimated by applying Gaussian smearing to each jet
so as to degrade the jet ?T resolution by 2% [53]. To estimate the impact of the jet mass resolution (JMR)
uncertainty, a similar method is used to degrade the JMR by 20%. Similarly, the effect of uncertainty in the
�2 resolution is estimated by degrading the �2 resolution by 15% with Gaussian smearing.

The uncertainty in the jet-flavour tagging efficiency measurement impacts both the signal selection efficiency
and the <�W distribution. The jet-flavour tagging efficiency is measured in a data region enriched in
CC̄ events and compared with simulations to derive corrections [61]. The uncertainties for high-?T VR
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track-jets are extrapolated with simulated samples because there are too few events in data [67]. The
associated uncertainties are grouped into 1-jet, 2-jet and light-flavour jet components that are described by
uncorrelated eigenvector variations.

The uncertainty in the signal selection efficiency due to the PDF set is evaluated using the eigenvector
variations following the method in Ref. [68]. The uncertainty in the signal selection efficiency from the
QCD scales is estimated from alternative samples with the renormalization scale (`r) and factorization
scale (`f) varied by factors of 0.5 and 2 with the cases that differ by a factor of four being ignored. The
uncertainty in the signal selection efficiency from the parton shower is estimated from alternative Pythia

samples with different values of the A14 tune parameters, affecting the underlying events, initial/final-state
radiation, multiple parton interactions and colour reconnection [35].

The limited size of the generated signal samples introduces a systematic uncertainty in the signal
parameterization with analytic functions as described in Section 5.2. Only the effect on the signal resolution
is found to have a significant impact on the final result and is included in the statistical analysis as a
systematic uncertainty.

Table 2 summarizes the main sources of signal uncertainty and their impact on the signal measurement.
The dominant uncertainties for the signal in this analysis come from jet mass scale, jet mass resolution and
jet energy resolution.

7 Statistical analysis

The search for BSM resonance signals above a smoothly falling background <�W mass distribution
is carried out with a statistical procedure based on an unbinned likelihood fit over the <�W spectrum,
implemented in a RooFit [69] and RooStats [70] framework. The likelihood function is defined as the
product of several factors using a Poisson model for the observed event yield in each category. This product
includes probabilities for events distributed in <�W as described by a model based on the sum of signal (S)
and background (B) probability density functions described in Section 5 and probabilities for auxiliary
measurements with their prior distributions (G). This can be written as:

L(mobs
�W | fhad, ) , )

SS, TB, p) =
∏

2∈C

{

Pois(#obs
2 |#S

2 (fhad, )) + #SS
2 (\SS

2 ) + #B
2 )

# obs
2∏

8=1

[(
#S
2 (fhad, )) + #SS

2 (\SS
2 )

#S
2 (fhad, )) + #SS

2 (\SS
2 ) + #B

2

)
S(<2,8,obs

�W
| ))+

(
#B
2

#S
2 (fhad, )) + #SS

2 (\SS
2 ) + #B

2

)
B(<2,8,obs

�W
| p2)

]}

×
∏

B∈S
G(0|\B, 1)

∏

2∈C
G(0|\SS

2 , 1),

(3)

where mobs
�W

= {<1,1,obs
�W

, · · · , <2,8,obs
�W

, · · · } is a set of observations of <�W in data, 2 is the label of the
various event categories and 8 the index of events in each category. The Poisson term for each category,
Pois(#obs

2 |#S
2 (fhad, )) + #SS

2 + #B
2 ), is defined according to observed data events in the signal region,

#obs
2 , and the expected signal-plus-background yield, which is a sum of the signal yield #S

2 (fhad, )), the
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Table 2: The impact of systematic uncertainties on the signal yield, signal peak position and signal peak resolution.
Presented numbers are derived before performing the statistical analysis. A range of values shows the variation of the
uncertainty across the <- range.

Source of uncertainty Impact on signal yield [%]
Luminosity 1.7

Jet energy scale 1–7
Jet mass scale 1–20

Jet mass resolution 2–12
Jet �2 resolution 2

Photon energy scale 0.2
Photon energy resolution 0.1

Flavour tagging 1–8
Pile-up 0–3
PDF 2–12
QCD 2

Parton shower 1–2
Impact on signal peak position [%]

Jet energy scale 0–4
Jet mass scale 0–1

Photon energy scale 0.4
Impact on signal resolution [%]

Jet energy scale 1–7
Jet mass scale 0–11

Jet energy resolution 5–20
Photon energy scale 0.2–2

Photon energy resolution 0.2–1.2
Flavour tagging 0.2–4

Signal sample statistics 1–6

background yield #B
2 , and the spurious signal #SS

2 . The signal yield #S
2 can be expanded as a function

of the signal production cross-section fhad, which is the parameter of interest (POI) in the statistical
analysis. This cross-section fhad, as the abbreviation for f(?? → - → ,// (→ hadrons) + W), includes
the production cross-section f(?? → -) of the resonance and the branching fractions of - → ,// + W

and ,// → hadrons. The experimental and theoretical uncertainties are described by the nuisance
parameters (NPs) \B for each systematic uncertainty B and shared among categories. A collection of such
nuisance parameters is written as ) . These nuisance parameters are constrained with a normal distribution
G(0|\B, 1). The spurious-signal contribution #SS

2 is formalized as a function of the associated nuisance
parameter \SS

2 for each category individually, with this NP following a normal distribution G(0|\SS
2 , 1).

The collection of spurious-signal nuisance parameters is written as )SS. Both \B and \SS
2 can have an

impact on the signal expectation (#S
2 + #SS

2 ) of the fit model, while the parameter \B can also modify the
signal shape. The background shape parameters p2 = (?21 , ?

2
2 , ?

2
3) are allowed to float during the fit to

data and are uncorrelated among categories. The signal model S is fixed for each tested <- using the
coefficients presented in Section 5.

Both the signal and background yields are extracted by maximizing the likelihood as defined in Eq. (3) for
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various hypothetical values of <- . The fit stability is checked with signal injection tests, and no significant
bias is observed. For each of these mass points, the ?-value of the background-only hypothesis is calculated
to test the compatibility of the background-only hypothesis and the data. This is done with the profiled
likelihood ratio (PLR) test statistic [71], which is defined as the ratio of the conditional maximum-likelihood
value for a POI value of zero to the global maximum-likelihood value. Its distribution in the low resonance
mass region (<- < 4000 GeV) is derived following the asymptotic approach as described in Ref. [71].
In the high resonance mass region (<- ≥ 4000 GeV), test statistic distributions are obtained with the
pseudo-experiment sampling method. The ?-value reflects the possibility of background to produce a
signal-like excess larger than that found in the fit to the data, which is reported as the significance according
to the normal distribution. Beside the significance, an exclusion of the signal model is derived and presented
as the 95% confidence level (CL) upper limit on the resonance production cross-section times branching
fraction of - → ,// + W for hadronic decay of the ,// bosons. Similar to the ?-value, the upper limit is
also calculated from PLR distributions but with a running POI value to indicate various signal cross-section
hypotheses. The CLs approach [72, 73] is used for the limit calculation. The limits are calculated in
the low resonance mass regions at 20 GeV steps and are based on the asymptotic approach. In the high
resonance mass region, limits are derived by using the pseudo-experiment sampling method. To obtain
smooth expected limit bands, the expected limits and the corresponding bands are calculated at 500 GeV
steps in the high resonance mass region while the observed ones are obtained at 100 GeV steps. Upper
limits on f(?? → -) × �(- → ,// + W) are derived by assuming the branching fractions of , and /

bosons to hadrons to be 67.41% [74] and 69.91% [74] respectively.

8 Results

Table 3 presents the observed number of events in different categories after the final event selection. The
yields quoted are for <�W ≥ 800 GeV in the BTAG and D2 categories and for <�W ≥ 1000 GeV in the
VMASS (ZMASS or WMASS) categories. The BTAG categories are defined in the same way for the
three / signal hypotheses, while for the D2 and VMASS categories the selection criteria for the photon
and jet are chosen differently for each channel. The latter optimizes the signal significance by exploiting
differences in the,// +W production angular distributions and in the decays of the longitudinally polarized
, bosons and transversely polarized / bosons.

Table 3: Data yields in various categories defined for the four search channels.

Channel BTAG D2 VMASS
Spin-0 66 → -0 → /W 436 5 659 20 728
Spin-2 66 → -0 → /W 436 10 772 32 281
Spin-2 @@̄ → -0 → /W 436 5 618 18 264
Spin-1 @@̄′ → -± → ,±W — 6 373 25 146

The <�W distributions in different categories are shown in Figures 4–7 for the four signal channels. The
background-only fit result is shown as the solid curve overlaid with a shaded band corresponding to
statistical uncertainties in background parameters. Various signal mass hypotheses are also plotted, where
the signal cross-sections correspond to the expected upper limits obtained in this analysis. For the BTAG
category, the fit range is limited to below 3200 GeV due to the significant loss of sensitivity because of the
decrease in 1-tagging efficiency beyond that range, while for other categories the fit upper boundary is
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7000 GeV. The bottom panel presents the binned local significance (filled bars) from a comparison of the
data with the background fit using a Poisson model [75]. The background-only model fits the data well,
with most of the deviations of the data from the background-only hypothesis having a local significance
below two standard deviations. When testing the data with the background-only model, the largest local
signal significance (2.5f) is found for spin-0 66 → -0 → /W production from gluon–gluon fusion at
<- = 3640 GeV.
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Figure 4: The <�W distributions of data events selected for the spin-1 @@̄′ → -± → ,±W search in the (a) D2 and
(b) WMASS categories. The background-only fit function shape is shown as the solid curve overlaid with a shaded
band corresponding to statistical uncertainties in background parameters. Various signal shapes with cross-sections
corresponding to expected limits are shown as dashed lines. The bottom panel presents the binned local significance
(filled bars) from a comparison of the data with the background fit using a Poisson model [75].
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Figure 5: The <�W distributions of data events selected for the spin-0 66 → -0 → /W search in the (a) BTAG,
(b) D2, and (c) ZMASS categories. The background-only fit function shape is shown as the solid curve overlaid
with a shaded band corresponding to statistical uncertainties in background parameters. Various signal shapes with
cross-sections corresponding to expected limits are shown as dashed lines. The bottom panel presents the binned
local significance (filled bars) from a comparison of the data with the background fit using a Poisson model [75].
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Figure 6: The <�W distributions of data events selected for the spin-2 66 → -0 → /W search in the (a) BTAG,
(b) D2, and (c) ZMASS categories. The background-only fit function shape is shown as the solid curve overlaid
with a shaded band corresponding to statistical uncertainties in background parameters. Various signal shapes with
cross-sections corresponding to expected limits are shown as dashed lines. The bottom panel presents the binned
local significance (filled bars) from a comparison of the data with the background fit using a Poisson model [75].
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Figure 7: The <�W distributions of data events selected for the spin-2 @@̄ → -0 → /W search in the (a) BTAG,
(b) D2, and (c) ZMASS categories. The background-only fit function shape is shown as the solid curve overlaid
with a shaded band corresponding to statistical uncertainties in background parameters. Various signal shapes with
cross-sections corresponding to expected limits obtained in this analysis are shown as dashed lines. The bottom
panel presents the binned local significance (filled bars) from a comparison of the data with the background fit using
a Poisson model [75].
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Having found no significant deviation of the data from the SM background predictions, upper limits on
signal cross-sections are calculated at a 95% confidence level for each of the four search channels. The
observed cross-section limits (solid curves) are presented in Figure 8, along with the expected limits (dotted
curves) obtained by assuming only SM backgrounds. The limits range between approximately 0.05 fb and
10 fb for <- between 1 and 6.8 TeV. The one- and two-standard-deviation bands around the expected
limits cover the observed limits almost everywhere, which is consistent with the observation that the data
agree well with the background-only expectations.
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Figure 8: The 95% CL upper limits on f(?? → -) × �(- → ,//W) as a function of <- for (a) spin-0
66 → -0 → /W, (b) spin-2 66 → -0 → /W, (c) spin-2 @@̄ → -0 → /W and (d) spin-1 @@̄′ → -± → ,±W.
The observed limits are shown as a solid black line and the expected ones are shown as a dashed line with the 1f
(2f) uncertainty band presented as the green (yellow) band. Small discontinuities in ?? → -0 → /W limits are
due to dropping the BTAG category from the limit calculation for mass points with <- > 3000 GeV. Limits for
<- < 4000 GeV are derived with the asymptotic approach, while the ones for higher masses are calculated with the
pseudo-experiment sampling method.
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9 Conclusion

Results of searches for high-mass bosons decaying to ,W and /W final states are presented, using 139 fb−1

of
√
B = 13 TeV ?? collision data collected with the ATLAS detector during the operation of the LHC

from 2015 to 2018. The analysis maximizes the sensitivity of the search by selecting events passing a
high-�T photon trigger and identifying jets from the hadronic decays of highly boosted , and / bosons.
Distributions of the invariant mass of the photon–jet pairs in the mass range from 1.0 to 6.8 TeV are used to
search for -± → ,±W and -0 → /W signals above a smoothly falling SM background. No evidence of a
new resonance is found, and 95% confidence-level upper limits on the resonance production cross-section
times decay branching fraction are set. These vary from about 10 to 0.05 fb as the heavy-boson mass
increases from 1.0 to 6.8 TeV. Individual studies are carried out for resonances with spin 0, 1, and 2
produced via gluon–gluon fusion and @@̄ annihilation, currently providing the most stringent exclusion
limits for these processes. Due to improved analysis techniques, the search sensitivity at high mass has
been improved by a factor of two relative to that expected from the increase in integrated luminosity of the
analysed data.
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