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driving resonant processes. These sources, which tend to have more specialized applications,

have seen far less development, and until recently, have lagged behind their single-cycle cousins

in performance.

The preferred approach for multicycle THz generation is based on quasi-phase matching in

periodically-poled lithium niobate (PPLN) which is intrinsically narrowband and benefits from

the ultrahigh nonlinear coefficient of the lithium niobate (LiNbO3) material. Over the past decade,

dedicated efforts at improving the performance of multicycle THz sources have resulted in

several orders of magnitude increases in both conversion efficiency and THz pulse energy [7–17].

Nevertheless, conversion efficiencies have remained in sub-percent range. These results stand

in apparent contradiction to simulations which suggest that efficiencies in the multiple-percent

regime can be achieved by driving PPLN crystals with laser sources of suitably-tailored spectral

and temporal properties [18–21]. The reasons for this contradiction, however, have not been fully

investigated, leaving the fundamental limits of the conversion efficiency unclear.

The physics of efficient THz generation by nonlinear down conversion is complicated by

several factors. The first of these is the necessity of driving the process far into the cascading

regime. Due the orders-of-magnitude difference in photon energy between the optical and THz

photons, even a complete, 100% conversion of photons corresponds to an energy conversion

of only 0.1% for the sub-THz frequencies that are attractive for controlling magnetic order in

materials or driving mm-wave particle accelerators. To reach higher conversion efficiencies

therefore requires a process known as “cascading” in which each optical photon produces a large

number of THz photons. The transfer of energy back and forth between optical and THz photons

that this process represents is naturally complex to describe analytically. For example, the

applicability of the “undepleted-pump” approximation, which is a highly useful for simplifying

the analytical treatment, is rather questionable for efficient THz generation because even negligible

depletion of the pump energy can be accompanied by a high degree of photon-conversion and

hence modification of the pump spectrum. Other complicating factors are the presence of

self-focusing and self-phase modulation that modify the pump laser and may adversely affect

the down-conversion process. The low efficiencies of THz generation also mean that even

non-phase-matched parasitic nonlinear conversion processes such as second harmonic generation,

can have a significant impact. Finally, perhaps the most critical effect is damage of the nonlinear

medium. For LiNbO3 in particular, the traditional laser-induced damage mechanisms, which have

known intensity and fluence scaling, is accompanied by processes such as the photo-refractive

effect which are strongly affected by factors such as temperature and repetition rate and can

cause complex, long-lived changes to the material. In the face of these complexities, a global

optimization of the THz generation process, which requires a highly systematic process of varying

relevant parameters and performing detailed, quantitative comparisons between experiment,

theory and simulation to validate our understanding of the mechanisms at play, has not been

done. Multicycle THz generation thus remains in a quasi-infancy and perhaps not surprisingly,

considering the difficulty in capturing the full scope of relevant physics, quantitative comparisons

between experiment and simulation/theory for the THz yield are practically nonexistent in the

literature.

Simulations of efficient narrowband THz generation point to an optimal configuration in

which the optical pump is composed of a series of narrow spectral lines separated by the THz

frequency [19]. By applying this principle to high-power, Ti:Sapphire laser drivers, new records

in narrowband THz-pulse energy have been achieved [9,10]. In these experiments, chirping of

the broadband pulses was used to narrow the “instantaneous” spectral content, and pairs of pulses

with a delay were combined to produce an effective 2-line spectrum, taking advantage of the

time-frequency mapping. This approach, however, suffers from challenges in controlling the

constancy (within the duration of the pulse) of the frequency separation between the two lines

associated with third order and higher spectral phase inherent to chirped-pulse amplifier (CPA)
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based laser systems [9,22]. Concomitantly, despite the record energies achieved, the conversion

efficiencies demonstrated only reached up to 0.24%. Later experiments improved this efficiency

to a record 0.89%, which remains the highest reported so far, by developing a customized laser

system designed to produce two narrowband spectral lines by combining, temporally chopping

and amplifying a pair of single-frequency continuous wave (CW) sources [23]. Increasing

the number of spectral lines beyond two is predicted to lead to higher efficiencies, however,

maintaining coherence while combining larger numbers of single-frequency sources into a single

laser system leads to a considerable increase in complexity, motivating alternative approaches for

increasing the number of lines in the spectrum.

Here we pursue an approach based on a time-domain interpretation of the multi-line concept.

In the time domain, two spectral lines produce a sinusoidal modulation while greater numbers of

lines lead to a steepening of these modulations into distinct pulses in a regular train. We therefore

employ an optical setup, based on a sequence of Michelson interferometers, to divide a single

short pulse into a high-frequency burst of pulses with a periodicity matching the targeted radiation

frequency (∼350 GHz). Our setup, together with a customized amplification system, provides

tunability over the energy, duration, number and periodicity of the pulses in the train enabling

a thorough exploration of parameter space aimed at determining the limits of the nonlinear

conversion process. Scans of the pulse-train periodicity are also used to map out the frequency

response of our PPLN devices with unprecedented precision, providing a new capability for

characterizing essential material properties, such as refractive index and absorption coefficient,

under actual experimental conditions. The experimental results are accompanied by a complete

set of simulations allowing quantitative comparison and validation of the model. Our results

confirm several analytic predictions which, together with assumptions on boundary conditions

imposed by material damage, point to specific strategies for optimization of conversion efficiency.

We find, in addition, that the agreement between simulation and experiment varies significantly

with the choice of parameters, providing evidence for inadequacies in the current model. We

discuss perspectives on both the strategies for optimization and the additional physics that may

be needed to improve the model.

2. Experimental setup

The laser system used was designed from bottom up to produce pulse trains with the desired

properties (Fig. 1(a)). It consists of a fiber-based front-end, a pulse divider setup and a chain of

home-built amplifiers together with the appropriate dispersion control. The front end, consisting

of a home-made fiber oscillator and several fiber amplifiers, produces broad-band laser pulses

with an average power of 400 mW and a repetition rate of 40 MHz. The spectrum of the pulses is

roughly Gaussian in profile and centered at 1034 nm with a full-width-half-maximum (FWHM)

bandwidth of 12 nm.

2.1. Pulse divider

The pulse train is realized by a series of eight polarization-based Michelson interferometers that

each produce two copies of its input with the appropriate delay (Fig. 1(b)). Figure 1(c) shows

details of an individual interferometer or “divider stage”. The incident beam passes through a

half-wave plate (HWP) which, together with a polarizing beam splitter (PBS), splits the beam

into the two arms. The double-pass through quarter wave plates installed in each arm induces a

90-degree polarization rotation that ensures both beams recombine onto a common output path

and minimizes the amount of energy returning along the input line. The waveplates (zero-order

air-spaced doublets) and polarizers are anti-reflection coated for 1030 nm to minimize generation

of undesired pre- and post-pulses. The pulse in one arm is delayed relative to the other arm by

an amount that doubles from divider to divider using a high-precision translation stage. The

translation stages are actuated by Physik-Instrumente L-220.20DG linear actuators, enabling
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2.3. THz generation and detection

The compressed pulse train is sent into a commercial PPLN crystal with a poling period of 330

µm. The crystal with dimensions 4× 4× 20 mm is cooled to cryogenic temperature (78 K) to

minimize THz absorption. Figure 1(d) shows a schematic of the setup. The diameter of the pump

beam on the crystal is varied from 1 mm – 1.5 mm (intensity 1/e2 radius, w0). The THz radiation

is generated colinearly with the laser beam and afterwards is collected and focused onto a THz

detector (Gentec SDX-1152) by a pair of 2-inch off-axis parabolas (OAPs) to measure the THz

energy. The first OAP features a through-hole allowing investigation of the pump beam after

THz generation. Residual IR light from the pump is blocked in front of the crystal with a 10 mm

thick Teflon plate and a 2-mm Polyethylene (PE) plate. To avoid optically-induced damage to

the PPLN crystal, the incident pulse train peak fluence was limited to below 200 mJ/cm2. To

quantify the THz yield, the “internal” conversion efficiency (CE), i.e., the ratio of THz to optical

pulse energy within the crystal, is used. This metric allows evaluation of the performance of the

THz generation process decoupled from practical issues associated with output coupling and

transport of THz radiation. For the calibration of the THz energy inside the crystal we consider

the THz losses, including both Fresnel reflections as well as absorption, from all components

between the inside of the PPLN crystal and the detector, leading to a total transmission of 19.6%

(Table 1). We also consider the Fresnel losses for the laser at the uncoated crystal surface which

results in an IR pump transmission of 86.6%. The Fresnel losses were calculated analytically

based on indices of refraction, whereas for the fused silica window and the Teflon and PE plate,

the transmission was measured. Finally, for the OAPs, the collection efficiency was calculated

based on the measured THz beam distribution.

Table 1. Transmission of THz through elements
inducing energy loss between the point just inside

the PPLN surface and the detector

Element Transmittance

PPLN exit surface 56%

fused silica window 65%

1 cm Teflon block 83%

2 mm PE plate 73%

Off-axis parabolas 89%

Total 19.6%

3. Results and discussion

The experimental parameters that were investigated were the frequency, energy, number, duration,

bandwidth and mode-size of the pulses in the train. The experiments were performed in two

formats, scanning of the pulse-train frequency, which refers to the periodicity of the pulses in the

burst, and scanning of the pulse train energy, which refers to the total energy of the burst.

3.1. Analytic treatment

In order to guide the interpretation of our results, we present an analytical derivation of the

THz radiation in the undepleted pump approximation. Following the approach which has been

presented in [9,21,23,24], the shape of the THz intensity spectrum can be decomposed into two

essential contributions, one coming from the properties of the PPLN crystal, and the other from
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the properties of the optical drive laser:

ITHz(r,Ω, L) = πε0cn(Ω)Ω2
TPPLN(Ω, L) × Topt(r,Ω). (1)

The term describing the crystal contribution is given by TPPLN(Ω, L) = χ(2)
2

eff
L2gPPLN(Ω, L),

where χ
(2)
eff

is the second order effective nonlinear susceptibility, L is the crystal length and

gPPLN(Ω, L) ≡ 1
1
4α

2(Ω)L2
+ ∆k2(Ω)L2

[

(

1 − e−
α(Ω)L

2

)2

+ 4e−
α(Ω)L

2 sin2

(

∆k(Ω)L
2

)]

, (2)

is a function with maximum value of unity that describes the normalized phase-matching

spectrum, α(Ω) is the THz absorption coefficient and ∆k(Ω) is the phase mismatch. The phase

mismatch is given by ∆k(Ω) = 2π
ΛPPLN

(

Ω−ΩPM

ΩPM

)

, where ΛPPLN is the poling period of the PPLN,

ΩPM ≡ 2πc
ΛPPLN

(n(Ω) − ng(ω))−1 is the phase-matched THz angular frequency, c is the speed of

light, n(Ω) is the THz refractive index, ng(ω) ≡ c
vg(ω) is the optical group index and vg(ω) is the

optical group velocity. To understand the behavior of this function, it is helpful to look at two

extremes. In the first case, we assume a negligible absorption, α ≈ 0. For this case, we obtain

the well-known sinc-squared function:

gPPLN(Ω, L) = sinc2

(

πNPPLN

Ω − ΩPM

ΩPM

)

, (3)

where NPPLN is the number of poling periods, leading to a FWHM relative bandwidth of

∆ΩFWHM/ΩPM ≈ 0.89/NPPLN . For the experiments performed here, the 20 mm crystal length and

the 330 µm period correspond to NPPLN ≈ 61, leading to a bandwidth of ∆ΩFWHM/ΩPM = 1.4%.

On the other extreme if we assume a large absorption, i.e., αL ≫ 1, such as for LiNbO3 at room

temperature, we obtain:

gPPLN(Ω, L) � 1

1
4α

2(Ω)L2
+

(

2πNPPLN
Ω−ΩPM

ΩPM

)2
, (4)

which has a relative FWHM bandwidth of ∆ΩFWHM/ΩPM ≈ αL/2πNPPLN . This result shows

that absorption becomes the dominant factor determining the phase-matching bandwidth when

αL/2π>0.89. At cryogenic temperatures (80 K) and for 350 GHz, the absorption coefficient

is α80K ≈ 0.8 cm−1, leading to a FWHM bandwidth of ∆ΩFWHM/ΩPM ≈ 0.4%, whereas at

room temperature (300 K), the absorption coefficient is α300K ≈ 6.7 cm−1, leading to a FWHM

bandwidth of ∆ΩFWHM/ΩPM ≈ 3.5%.

The second term in Eq. (1), which describes the THz-excitation spectrum associated with the

optical driver, is given by:
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2

, (5)

where Aopt(ω) is the component of the optical field at optical angular frequency ω and Ft→Ω{.}
corresponds to the Fourier transform between the time (t), and angular frequency (Ω), domains.

This expression shows that to first order the key factor in optimizing the optical driver is the shape

of the intensity temporal envelope [19]. This fact has important ramifications. First, it implies

that two pulses with the same temporal profile but different spectral profiles (e.g., a compressed

narrowband pulse and a chirped broadband pulse) should perform equally well. This conclusion,
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of course, ignores higher-order effects such as the dispersion in the optical group velocity which

can affect the phase matching. Second, Eq. (5) implies that the temporal positioning of the

pulses in the train does not need to be precise on an optical wavelength scale, but only on the

scale of the THz wavelength, which is orders of magnitude larger. Therefore, temporal jitter

on the femtosecond timescale between the pulses of the train, which is a natural consequence

of producing the pulse train with a sequence of non-stabilized interferometers, has relatively

little effect on the efficiency of the nonlinear down-conversion process. By comparison, even a

sub-femtosecond level of temporal jitter has a dramatic impact on the optical spectrum of the

pulse train due to variations in the phase of the interference patterns between the various pairings

of pulses in the train. The association of the pulse train with a multi-line optical spectrum is

therefore only valid for a perfect pulse train with exact temporal spacing. Nevertheless, for a

well-tuned pulse train, (i.e., regular on the scale of the THz period) the optical term Topt(Ω)
will have a narrow spectrum centered at the pulse train frequency, ftrain with a bandwidth that is

inversely proportional to the number of pulses, Ntrain. To be more precise, we assume a train of

Gaussian pulses of the form:

Iopt(r, t) =
Ntrain−1
∑

n=0

I(r)e−(
t−tn
∆t )2

(6)

where I(r) = I0e−( r
∆r )2

is the radial intensity profile, tn = n/ftrain is the temporal location of the

nth pulse and ∆t is the 1/e duration of an individual pulse. Topt(Ω) then can be written:

Topt(r,Ω) ≈
1

2

(

I(r)∆tNtrain

πε0cn(ω)

)2

gopt(Ω) (7)

where

gopt(Ω) ≡ e−
1
2 (Ω∆t)2

∞
∑

n=0

sinc2

(

πNtrain

Ω − nΩtrain

Ωtrain

)

(8)

is a function with a maximum value of unity that describes the THz-excitation spectrum of the

optical driver, and Ωtrain ≡ 2πftrain. The exponential term describes the excitation spectrum

attributable to an individual pulse, while the sinc-squared terms describe the contribution from

the pulse train in the form of a harmonic series. As will be discussed further below, for the

pulse-durations used in our experiments, the only significant contribution to the THz generation

comes from the first (n = 1) harmonic. For the remainder of the analytic treatment, we therefore

keep only the term g
(1)
opt(Ω) ≡ e−

1
2 (Ω∆t)2sinc2

(

πNtrain
Ω−Ωtrain

Ωtrain

)

. Since we allow for the pulses being

linearly chirped, we note that ∆t represents the chirped-pulse duration (not the transform-limited

one) and thus satisfies ∆t = 1/∆ωslice, where ∆ωslice is the 1/e width of the optical-intensity

spectrum at an instantaneous temporal slice of an individual pulse. For fully compressed pulses,

∆ωslice = ∆ω, where ∆ω represents the integrated optical-intensity spectrum. We can therefore

see that the exponential term describes the impact on the conversion efficiency of the slice optical

bandwidth (which is connected to the presence of temporal-intensity gradients). This picture is

consistent with the insight provided by Eq. (5).

The FWHM relative bandwidth of the THz-excitation spectrum is∆ΩFWHM/Ωtrain ≈ 0.89/Ntrain.

The pulse divider was operated using NStages = 5 − 8 stages, yielding 32 ≤ Ntrain ≤ 256 and

optical-excitation relative bandwidths in the range 0.3% ≤ ∆ΩFWHM/Ωtrain ≤ 2.8%. The

conversion efficiency, averaged over the radial dimension is then given by:

ηTHz(L) =
∫ ∞
−∞

∫ ∞
0

ITHz(r,Ω, L)2πrdrdΩ
∫ ∞
−∞

∫ ∞
0

Iopt(r, t)2πrdrdt
(9)
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which becomes:

ηTHz(L) =
F0 χ

(2)
0

2
L2

π2ε0c3n2(ω)

∞
∫

−∞

Ω2

n(Ω)gPPLN(Ω, L) × g
(1)
opt(Ω)dΩ (10)

where F0 ≡
√
πI0∆tNtrain is the peak fluence of the optical beam (i.e., the peak fluence integrated

over all pulses in the train).

3.2. Characterization of the pulse train

We performed a detailed analysis of the pulse train’s temporal-intensity structure (Fig. 2) to

evaluate the functionality of the pulse divider and determine how well the output compares to

the desired structure. Key parameters of interest are the regularity of the pulse spacing, the

uniformity of the pulse amplitudes and the pulse duration relative to the period. To measure the

temporal-intensity structure, the output of the pulse divider was compressed and combined with

a background-free geometry in a type II BBO crystal with a single probe pulse picked off before

the pulse divider. By scanning the delay of the probe pulse and monitoring the sum-frequency

yield, a second-order cross-correlation between the probe and the pulse train was obtained. The

results for a complete 256-pulse train are presented in Fig. 2(a). While some variation in the

amplitude of the train is evident, the figure shows that a highly-periodic structure was produced.

To quantify the degree of periodicity in the pulse train, we calculated the Fourier transform (FT)

of the temporal-intensity structure and normalized it to the amplitude of the “DC” peak at zero

frequency (Fig. 2(b)). The normalized FT, which directly corresponds to the function gopt(Ω),
features a strong and very sharp “fundamental” peak at 347.1 GHz, with an amplitude of 20%

(relative to the DC peak), a second-harmonic peak at 694.1 GHz with a relative amplitude of 2%,

and very little amplitude at other frequencies. The fact that most of the spectrum is concentrated

into a single narrow side-peak confirms that the pulse train is highly periodic. The presence of

the second harmonic peak and its amplitude relative to the fundamental also match well with the

prediction (based on Eq. (8)), further confirming the regularity of the train.

As highlighted by Fig. 2(c) a large number of additional peaks are also present across the

spectrum, but at a very low amplitude. These peaks likely come from a variety of sources,

including “ghost” pulses reflecting from the surfaces of transmissive optics in the pulse divider

(e.g., waveplates and polarizers), of which there are many. The transmission through the pulse

divider was measured to be approximately 90%, half of which was split into each output port of

the final polarizer. Considering a total of 144 surfaces (including all waveplates, polarizers and

mirrors), the average loss per surface was therefore ∼0.03%. Any ghost pulses would therefore be

on this level of intensity. Despite this low level, the repeated interaction with optics of a consistent

internal structure (e.g., the air-spaced, zero-order waveplates), could accumulate, resulting in

more prominent peaks in the FT. However, aside from stealing a small amount of energy from

the main side peak, these other peaks are not expected to affect the THz generation process since

they lie outside of the crystal’s phase-matching spectrum delineated by the filled blue areas in

Figs. 2(b) and 2(c). Their contributions are thus effectively filtered out.

We next evaluate how variations in the amplitude, spacing and duration of the pulses in the

train (as measured by the cross-correlation) impact the structure of the FT. We first performed

Gaussian fits to each of the peaks in the cross-correlation in Fig. 2(a) to determine the amplitudes,

temporal locations and temporal widths of each peak. Figure 2(d) shows a close up of a section

of the measured cross-correlation, with the Gaussian fits depicted by the red-filled regions. The

fits indicate that the amplitude varied by 29% (std. dev.), the pulse spacing varied by 8% and the

pulse duration varied by 18%. The fit information was then used to numerically re-create the

pulse train under different assumptions in order to independently evaluate the effect of the three

types of variation on the height and width of the fundamental peak in the FT. An ideal pulse train
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Fig. 2. Analysis of pulse-train temporal structure. (a) Measurement of the temporal-intensity

structure of a 256-pulse train extracted and compressed before the regen amplifier. The

measurement was done by second-harmonic cross-correlation with an individual compressed

pulse extracted before the pulse divider. (b) Fourier transform of the data in (a), solid

black line, together with the calculated phase-matching spectrum of the PPLN, depicted

by the blue-filled region. (c) Same as (b), but zooming in on the y-scale to highlight the

low-intensity peaks. (d) Close-up of a section of the measurement in (a), solid black line,

together with Gaussian fits to the peaks, depicted by the red-filled regions, used to quantify

the variation in parameters of the pulses in the train. (e) Close-up of the fundamental peak

in (b), solid black line, together with a calculation of the fundamental peak for an ideal,

perfectly regular pulse train with the same average pulse spacing and pulse duration, dotted

red line. The blue-filled region depicts the calculated phase-matching spectrum of the PPLN

crystal scaled for convenient comparison to the other traces.

(i.e., uniform amplitudes, temporal spacing and duration) was first created as a reference using

the average values of the measured temporal spacing and FWHM width of the cross-correlation

peaks, i.e., 2.88 ps and 1.0 ps, respectively. For this ideal case, the height of the fundamental

peak was 0.42 (relative to the DC peak) and the FWHM width was 1.2 GHz. Including only the

29% variation in the pulse amplitudes resulted in no noticeable change to the height of the FT

side peak, but did result in a low-level of noise across the spectrum. Including only the 18%

variation in pulse duration lowered the FT side peak height by 5% to 0.40. Finally, including

only the 8% variation in pulse spacing lowered the fundamental peak height by 17% to 0.34. In

all cases, the FWHM width of the fundamental peak remained at 1.2 GHz which corresponds to

a relative bandwidth of 0.35%, in exact agreement with analytic predictions based on Eq. (8).

The pulse spacing regularity is thus (as to be expected) a primary factor determining the height

of the fundamental peak, with pulse duration and amplitude variations playing a relatively small

role. Figure 2(e) shows a comparison of the FT side peaks from the measured cross-correlation

(black solid line) and from the recreated ideal case (red dotted line), with the phase-matching

spectrum (blue-filled region), which has a> 4x larger relative bandwidth of 5.1 GHz, for context.
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As clarified by the analytical treatment above, the structure of the FT (i.e., the function gopt(Ω))
determines the effectiveness of the pulse train for driving THz generation in the PPLN crystal.

Figure 2(e) highlights that the pulse train produced was of sufficient regularity and quality to

produce a fundamental peak in the FT with a height close to 50% of the maximum possible

and a width narrower than the phase-matching spectrum of the PPLN in line with analytical

expectations. It should be noted that a significant fraction of the measured variability comes from

the cross-correlation measurement process itself which required about eight hours to perform.

The measurement error can be evaluated by considering the constraints to the pulse-parameter

variations intrinsic to the design of the pulse divider. First, as the pulse divider is a passive

optical device, it cannot create variations in the pulse duration, since all pulses experienced

the same dispersion. Second, since each divider stage produces a pair of copies of the train it

receives, the temporal structure of each copy must be identical to within an overall amplitude

difference. A detailed comparison of the first and second halves of the cross-correlation (not

shown), however, revealed noticeable discrepancies in both the pattern of amplitudes and the

pattern of pulse spacings which can only be attributed to the measurement. The actual pulse

train was therefore more regular than indicated by the variation figures and FT analysis above.

Quantifying and correcting for these measurement errors is straight forward and will be the

subject of future refinements of the technique.

Finally, we evaluate the resultant pulse train in the context of the goal mentioned in the

introduction to increase the steepness of the temporal modulation beyond what can be done with

the two-spectral-line concept. First, as is evident in Figs. 2(a) and 2(d), the pulse divider was

successful in creating a train of pulses that were highly distinct. The average contrast between the

peaks and values of the temporal-intensity modulation was very high at about 87%. Assuming

Gaussian pulses and accounting for the square-root-of-2 factor between an auto-correlation and

the actual intensity profile, the pulses in the measured train had an average FWHM pulse duration

of 0.71 ps, meaning that the ratio between the pulse duration and the train period was over 4:1,

which is at least twice as good as the 2:1 produced by the interference of two spectral lines. We

thus conclude that the pulse-divider approach is highly effective for producing the desired pump

temporal-intensity structure.

3.3. Measurement of the crystal index and absorption

A major advantage of the pulse-divider approach is the ability to precisely map out the THz

efficiency as a function of pulse-train frequency, ftrain. The shape of the resultant function

ηTHz(Ωtrain), which we henceforth refer to as the “tuning curve”, provides information about the

phase-matching spectrum, gPPLN(Ω, L), for an individual PPLN crystal which can be used to

determine the values of key material properties, such as the THz refractive index, n(ΩPM), and

the THz absorption coefficient, α(ΩPM). Although such parameters can be measured off-line

using devices like time-domain spectrometers, our approach has the distinction of being done

in situ under the actual conditions of THz generation and therefore provides a more direct

characterization of the nonlinear interaction. To understand how the material properties can

be recovered, we examine Eq. (10) more carefully. As shown above, the functions gPPLN(Ω, L)
and g

(1)
opt(Ω) are narrow, with relative bandwidths of at most a few percent. We can therefore

approximate that other terms which vary slowly with frequency, such as n(Ω), α(Ω), Ω2 and

e−
1
2 (Ω∆t)2 are effectively constant. The conversion efficiency, which we use as our THz signal

then simplifies to:

ηTHz(Ωtrain) ≈
F0 χ

(2)
0

2
L2Ω2

PM

π2ε0c3n2(ω)n(ΩPM)
e−

1
2 (ΩPM∆t)2

∞
∫

−∞

gPPLN(Ω, L) × sinc2

[

πNtrain

Ω − Ωtrain

Ωtrain

]

dΩ

(11)
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This expression shows that the tuning curve is essentially the convolution between the phase-

matching spectrum of the crystal and the THz excitation spectrum of the laser. Measuring

ηTHz(Ωtrain) and g
(1)
opt(Ω) therefore, in principle, allows reconstruction of gPPLN(Ω, L). Here we

extract the material parameters of our PPLN crystal by numerically calculating the tuning curve

based on Eq. (11) and varying the parameters n(ΩPM) and α(ΩPM) to optimize the fit with the

data. The results of this analysis for a 128-pulse train are presented in Fig. 3. The measured

tuning curve is shown in Fig. 3(a) (blue dots) together with a calculation using n(ΩPM) = 4.8899

and α(ΩPM) = 0.76 cm−1 from literature [25] (red-filled region), and a calculation using the

best-fit values n(ΩPM) = 4.8325 and α(ΩPM) = 0.50 cm−1 from our optimization (black, solid

line). The match to the data for the best-fit case is remarkably good, confirming the conclusion

from the analysis of Fig. 2 that the pulse train is highly regular. Due to the narrowness of the

tuning curve, the shift of the peak between the measured tuning curve (Ωmeas
PM

/2π = 347.1 GHz)
and the calculated one using the literature value of the index (Ωlit

PM
/2π = 339.7 GHz) is quite

clear, despite the difference in THz index, which defines this frequency, only being about 1%.
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Fig. 3. Analysis of tuning curve for determining THz index and absorption coefficients.

(a) Measured tuning curve (blue dots) compared with the calculated tuning curve (from

Eq. (11)) using literature values of the index and absorption (red-filled region) and the

calculated tuning curve using the best-fit values of index and absorption (black line). (b)

THz-excitation spectrum, g
(1)
opt(Ω), calculated using Eq. (8) for Ωtrain = ΩPM . (c) Phase-

matching spectrum calculated using Eq. (2) and the best-fit values of index and absorption,

n(ΩPM) = 4.8325 and α(ΩPM) = 0.50 cm−1, respectively. (d) RMS error between the

measured and calculated tuning curves as a function of the THz index, normalized to the

minimum value. (e) RMS error between the measured and calculated tuning curves as a

function of the THz absorption coefficient, normalized to the minimum value.

The THz-excitation spectrum and the phase-matching spectrum used for the optimization

are shown in Fig. 3(b) and 3(c), respectively, plotted for the optimized values of the index and

absorption, and for Ωtrain = ΩPM . The optimization was done by minimizing the root-mean

square (RMS) difference or “error” between the measured and calculated tuning curves. The

dependence of the RMS error (normalized to the minimum value) on n(ΩPM) is plotted in

Fig. 3(d). The plot shows that the RMS error is highly sensitive to the THz index, with a 7-fold

change in error caused by an 0.16% change in the index. This result indicates that, in principle,

variations in index down to the 3rd digit after the decimal point are resolvable. It must be noted,

however, that shifts in the peak of the tuning curve can also be caused by errors in measurement
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of the pulse-train frequency or in the poling period of the PPLN. Therefore, a precise, absolute

determination of the index also requires an equally precise determination of these other parameters

which is not trivial. However, this methodology is well-adapted for measuring small relative

changes in index caused, e.g., by changes in temperature or by intensity-driven nonlinear effects

which are relevant for precise optimization of the THz generation process.

By contrast, as shown by Fig. 3(e), the sensitivity of the error to the absorption coefficient

is much less. So, while the best-fit value of 0.50 cm−1 is lower than the expected value of

0.76 cm−1, it is not clear how meaningful this difference is. The lack of sensitivity is expected

at cryogenic temperatures since the absorption coefficient is very low and does not strongly

affect the phase-matching spectrum of the crystal. As derived in the analytical section above, the

effect of absorption becomes strong for αL/2π>0.89, whereas for our parameters (L = 2 cm and

α = 0.76 cm−1), αL/2π = 0.24. Nevertheless, the increasing steepness of the error curve for

larger values of α suggests that α<1 cm−1 is reliable. These results confirm the validity and benefit

of the pulse-train approach as an in-situ probe of the crystal properties. In particular, the spectral

resolution is much improved compared to that obtained using the approach described in [23] in

which the separation of two spectral lines was scanned. In the previous work, sampling the tuning

curve with about 10 points over the ∼ 10 GHz bandwidth (i.e., a resolution of ∆Ω/2π ≈ 1 GHz)

required control over and resolution of the optical spectral lines at the level of ∆λopt ≈ 0.003 nm

which was at the edge of what could be achieved, leading to a noisy reconstruction. By contrast,

with the pulse-train approach, the spectral resolution in the measurement of ηTHz(Ωtrain) was

limited by the minimum reliable step size of the delay stages (∼0.1 µm), which allowed an

order-of-magnitude improvement in tuning-curve resolution down to ∆Ω/2π ≈ 0.07 GHz.

3.4. Performance vs. number of pulses

In this section, we examine the dependence of the THz-generation performance on the number

of pulses in the train (Ntrain). For the remainder of the article, the THz yield measurements

correspond to an optimized pulse train with frequency Ωtrain = ΩPM . The “performance” is then

defined as the ratio between the efficiency and either the peak fluence or the peak intensity of

the pulse-train optical driver. We purposefully ran experiments at sufficiently low fluence and

intensity to avoid saturation of the THz generation process and hence remain in a linear regime

where we can expect a good agreement with predictions assuming an undepleted pump. Control

over the number of pulses was implemented by tuning the energy splitting in each divider stage.

When all eight stages have equal splitting between the two arms, 256 pulses are created. To

reduce the number of pulses by half, the energy splitting in the last stage is adjusted, using the

associated half wave plate, to send the energy exclusively into one arm. To ensure the absence

of low-level ghost pulses, the unused arm was also blocked. By continuing this process, the

number of pulses can be reduced by the desired powers of 2, so that Ntrain = 2Nstages , where

Nstages is the number of “active” stages for which the energy is split between the two arms. By

successively activating or deactivating the last stage in the series, we ensured that the periodicity

of the train was not affected but only the number of pulses in the pulse train. The conversion

efficiency (CE) of THz generation was measured as function of the pump fluence, F0, for

Nstages = {5, 6, 7, 8} corresponding to Ntrain = {32, 64, 128, 256}. The results are shown in

Fig. 4 for both the regen configuration (Fig. 4(a),(d)) and the 4-pass configuration (Figs. 4(b),(e))

using fully compressed (near transform-limited) pulses of duration ∆tFWHM = 0.54 ps and

∆tFWHM = 0.88 ps, respectively.

Looking at the graphs of efficiency versus peak fluence (Figs. 4(a),(b)), we see that at a fixed

fluence, the conversion efficiency is lower for larger numbers of optical pulses in the train. This

behavior seems intuitive since increasing the number of pulses at constant fluence reduces the

energy, and hence the intensity, of the individual pulses in the train. We might then expect

that at fixed intensity, the conversion efficiency is independent of pulse-train number. However,
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the predicted efficiencies were higher than the measured ones. Despite the discrepancy in

magnitude, both the linearity of the curves and the dependence of the slope on pulse-train number

match well between experiment and calculation. The comparison is summarized in Fig. 4(c),

which shows the fluence-based performance metric ∂ηTHz/∂F0 as a function of Ntrain and in

Fig. 4(f), which shows the intensity-based performance metric ∂ηTHz/∂I0 as a function of Ntrain.

Despite the discrepancy in overall magnitude, the functional dependence of the performance

on pulse-train number is very similar between calculation and experiment. This dependence

can be understood analytically. If we take the case of eight divider stages and 256 pulses, as

discussed above, g
(1)
opt(Ω) is considerably narrower than gPPLN(Ω, L). We can then approximate

that gPPLN(Ω, L) ≈ gPPLN(ΩPM , L) =
(

1 + e−
αL
2

)2

/ 1
4α

2L2 is constant and pull it out of the

integral in Eqn. (10).

ηTHz ≈
F0 χ

(2)
0

2
L2Ω3

PM

π2ε0c3n2(ω)n(ΩPM)Ntrain

e−
1
2 (ΩPM∆t)2gPPLN(ΩPM , L) (12)

This expression shows that the fluence-based performance is inversely related to pulse-train

number (∂ηTHz/∂F0 ∝ 1/Ntrain), which confirms the behavior in Fig. 4(c). Similarly, if we look

at the intensity-based performance metric and remember that F0 =
√
πI0∆tNtrain, the dependence

on pulse-train number disappears and we get ∂ηTHz/∂I0 = const., which also aligns with intuition.

However, the above analysis was predicated on the assumption that Ntrain>NPPLN in order to

consider gPPLN(Ω, L) as constant. For small values of Ntrain, we expect that gPPLN(Ω, L) will be

narrower than g
(1)
opt(Ω), and we can then approximate the latter as constant (g

(1)
opt(Ω) ≈ e−

1
2 (ΩPM∆t)2 ):

ηTHz ≈
√
πI0∆tNtrain χ

(2)
0

2
L2Ω2

PM

π2ε0c3n2(ω)n(ΩPM)
e−

1
2 (ΩPM∆t)2

∞
∫

−∞

gPPLN(Ω, L)dΩ (13)

from which we find that ∂ηTHz/∂I0 ∝ Ntrain. The intensity-based performance metric therefore

should transition from linear at low pulse-train number to flat at high pulse-train number, which

is exactly what we see. The implication is that to optimize the efficiency, the pulse-train number

should be matched to the crystal, with Ntrain ≥ NPPLN . For pulse trains with too few pulses,

the THz-excitation spectrum is broader than the phase-matching spectrum and is consequently

filtered, reducing the efficiency.

3.5. Performance vs. pulse duration

In this section, we examine the effect of pulse duration on the performance. Figure 5 and Fig. 6

show the results of pulse-duration studies for Ntrain = 256 and Ntrain = 128, respectively. Both

4-pass and regen configurations were used. The pulse duration was controlled by adjusting the

spacing between the gratings in the compressor after the final amplifier, and hence the chirp of the

pulses. The pulse durations were then measured using a commercial autocorrelator. In the 4-pass

configuration, the minimum FWHM pulse duration was 0.71 ps, while for the regen configuration,

which supported a broader bandwidth, the minimum pulse duration was 0.47 ps. As in Fig. 4, the

experimental results for each case are accompanied by analytical and numerical calculations. Let

us first consider the results with 256 pulses in Fig. 5. Plotting the efficiency vs. peak fluence

for the regen configuration (Fig. 5(a)) and the 4-pass configuration (Fig. 5(b)), we see that the

efficiency decreases as the pulse duration increases. Equation (11) shows that the fluence-based

performance is described by: ∂ηTHz/∂F0 ∝ e−
1
2 (ΩPM∆t)2 which confirms the reduced performance

for longer pulses. This expression identifies the effective or “slice” bandwidth as the limiting

factor in the efficiency. Longer pulses have reduced temporal gradients, and hence lower slice

bandwidths. Figure 5(c) summarizes the behavior of the fluence-based performance with pulse
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study was enabled by development of a pulse-train-based optical driver with a high degree of

flexibility for tuning parameters. As a result of the optimization a maximum performance of

∂ηTHz/∂F0 ≈ 2.5 × 10−3 %/(mJ/cm2) was achieved which is comparable to the performance

achieved of ∂ηTHz/∂F0 ≈ 2.1 × 10−3 %/(mJ/cm2) using the two line system which produced a

record efficiency of 0.89% at a fluence of over 450 mJ/cm2. The pulse-train optimum corresponds

to a respectable efficiency of just over 0.31% at a fluence of 150 mJ/cm2, which is compatible

with long term operation. Further development of the pulse-train system is currently under way,

which will lead to greater flexibility in pulse train number as well as higher pulse energy and

greater amplitude regularity which are expected to push performance significantly higher.
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