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A search for events with a dark photon produced in association with a dark Higgs boson via
rare decays of the Standard Model / boson is presented, using 139 fb−1 of

√
B = 13 TeV

proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider.
The dark Higgs boson decays into a pair of dark photons, and at least two of the three dark
photons must each decay into a pair of electrons or muons, resulting in at least two same-flavor
opposite-charge lepton pairs in the final state. The data are found to be consistent with the
background prediction, and upper limits are set on the dark photon’s coupling to the dark Higgs
boson times the kinetic mixing between the Standard Model photon and the dark photon, UDY

2,
in the dark photon mass range of [5, 40] GeV except for the Υ mass window [8.8, 11.1] GeV.
This search explores new parameter space not previously excluded by other experiments.
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Overwhelming astrophysical evidence [1–4] supports the existence of dark matter, and understanding its
nature is one of the most important goals in particle physics. Dark matter is generally expected to interact
very weakly with Standard Model (SM) particles. This motivates the extension of the SM with hidden or
dark sectors (DS). One of the simplest examples is an additional* (1)D gauge symmetry associated with a
gauge boson, the dark photon �′, that mediates DS–SM interactions [5, 6]. In the dark Abelian Higgs
scenario, the* (1)D symmetry group could be spontaneously broken by a Higgs mechanism through which
the dark photon acquires a mass, adding a dark Higgs boson ℎD to such models [7, 8].

The minimal �′ model has three unknown parameters: the mass of the dark photon, <�′ ; the effective
coupling of the dark photon to SM particles, Y, induced via kinematic mixing with the SM photon; and the
hidden-sector gauge coupling, UD, which is the coupling of the �′ to DS particles [7]. Dark photons will
decay into visible SM particles, either lepton pairs or hadrons, or invisible particles of the DS. Constraints
were placed on visible �′ decays, in the parameter space of <�′ and Y, by previous beam-dump, fixed-target
and collider experiments [7, 9–13]. The dark Abelian Higgs model introduces two additional unknown
parameters: the mass of the dark Higgs boson, <ℎD , and the mixing between ℎD and the SM Higgs boson.
The Higgs-strahlung channel, where a dark photon is produced in association with a dark Higgs boson, was
also explored at low-energy electron–positron colliders via 4+4− → �′ℎD [14, 15]. The Higgs-strahlung
channel is sensitive to UD, which is also the coupling of the �′ to the ℎD. Hence, experimental evidence of
a signal in this process would provide information complementary to that from direct searches for �′.

This Letter presents a search for the dark photon in rare decays of the / boson, / → �′ℎD, with a mass
hierarchy of<�′ +<ℎD < </ and requiring at least two same-flavor opposite-charge lepton pairs in the final
state. For the model considered [8], no mixing between the SM and dark Higgs bosons is assumed, the �′

is the lightest particle in the DS and invisible DS decays are kinematically forbidden. When kinematically
allowed, the dark Higgs boson can decay into one or two on-shell �′ via ℎD → �′�′(∗) , as illustrated in
Figure 1, and the �′ in turn decays into SM fermions. The parameter space <ℎD > <�′ is explored in
this search, giving the process ?? → / → �′ℎD → �′�′�′(∗) . Final states with at least two on-shell
�′ decaying fully leptonically, �′ → ℓ+ℓ− (ℓ = 4, `), are used to search for the �′. In this scenario, the
kinematic mixing Y is small and thus the dark photon has a total decay width narrower than 10−3 GeV, but
Y is large enough (Y > 10−6) to ensure that the dark photon decays promptly [16].
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Figure 1: Feynman diagram illustrating the signal process @@̄ → / → �′ℎD, ℎD → �′�′(∗) .

The
√
B = 13 TeV proton–proton (??) collision data used for this analysis were recorded by the ATLAS

experiment at the Large Hadron Collider (LHC) during 2015–2018. The corresponding integrated
luminosity is 139 fb−1 [17] after applying data quality requirements [18]. A combination of single-lepton
and multi-lepton triggers [19, 20] is used. The ATLAS experiment at the LHC is a multipurpose particle
detector with a forward–backward symmetric cylindrical geometry and a near 4c coverage in solid
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angle [21–23].1 An extensive software suite [24] is used in data simulation, in the reconstruction and
analysis of real and simulated data, in detector operations, and in the trigger and data acquisition systems
of the experiment.

Monte Carlo (MC) simulated signal samples were generated using MadGraph5_aMC@NLO [25], with
matrix elements (ME) calculated at leading order (LO) in perturbative QCD and with the NNPDF3.0nlo [26]
parton distribution function (PDF) set. The events were interfaced to Pythia 8.230 [27] to model the
parton shower, hadronization, and underlying event, with parameter values set according to the A14
parton-shower tune [28] and using the NNPDF2.3lo [29] set of PDFs. Benchmark signal samples
were generated with UD = 0.1 and Y = 10−3, in the mass ranges 5 GeV < <�′ < 40 GeV and
20 GeV < <ℎD < 70 GeV. The contribution from �′ → g+g− is found to be negligible and thus not
included in MC signal samples. The dominant SM background process, @@̄ → 4ℓ, was simulated with
the Sherpa 2.2.2 event generator [30]. Matrix elements were calculated at next-to-leading-order (NLO)
accuracy in QCD for up to one additional parton and at LO accuracy for two and three additional parton
emissions. The matrix element calculations were matched and merged with the Sherpa parton shower
based on Catani–Seymoour dipole factorization [31, 32], using the MEPS@NLO prescription [33–36].
An alternative @@̄ → 4ℓ sample for estimating the theory modeling uncertainty was generated at NLO
accuracy in QCD using Powheg Box v2 [37–39], interfaced to Pythia 8.186 [40] for the modeling of the
parton shower, hadronization, and underlying event, with parameter values set according to the AZNLO
tune [41]. The CT10 PDF set [42] was used for the hard-scattering processes, whereas the CTEQ6L1 PDF
set [43] was used for the parton shower. The real higher-order electroweak contribution to 4ℓ production
in association with two jets (which includes vector-boson scattering, but excludes processes involving
the Higgs boson) was not included in the sample discussed above but was simulated separately with the
Sherpa 2.2.2 generator. Sherpa 2.2.2 was also used for the 66 → // process, with LO precision for zero-
and one-jet final states, where a constant  -factor of 1.7 [44] is applied to account for NLO effects on the
cross-section. The resonant � → //∗ → 4ℓ process was generated independently to provide the highest
possible precision. The dominant gluon–gluon fusion [45] and vector-boson fusion (VBF) [46] processes
were modeled with Powheg Box v2. The gluon–gluon fusion sample used Powheg-NNLOPS [45, 47–49]
to achieve inclusive NNLO QCD precision. Four or more prompt leptons can also be produced by a number
of triboson processes (/,, , //, and ///) and by / bosons produced in association with a CC̄ pair
(CC̄/). Samples for these triboson and CC̄/ processes were simulated with Sherpa 2.2.2 and Sherpa 2.2.0,
respectively.

Except for the signal, all samples were produced with a detailed simulation of the ATLAS detector [50]
based on Geant4 [51], to produce predictions that can be compared with the data. The signal samples were
produced through a simplified simulation of the ATLAS detector [50]. Furthermore, simulated inelastic
minimum-bias events were overlaid to model additional ?? collisions in the same and neighboring bunch
crossings (pileup) [52]. Simulated events were reweighted to match the pileup conditions in the data. All
simulated events were processed using the same reconstruction algorithms as used for data.

Events are required to have a collision vertex associated with at least two charged-particle tracks, each with
a transverse momentum ?T > 0.5 GeV. The vertex with the highest sum of the squared transverse momenta
of the associated tracks is referred to as the primary vertex. Muon candidates within the range |[ | < 2.5 are
reconstructed by combining the inner detector (ID) and muon spectrometer information [53]. In the region

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector
and the I-axis along the beam pipe.The G-axis points from the IP to the center of the LHC ring, and the H-axis points upward.
Cylindrical coordinates (A , q) are used in the transverse plane, q being the azimuthal angle around the I-axis. The pseudorapidity

is defined in terms of the polar angle \ as [ = − ln tan \/2. Angular distance is measured in units of Δ' ≡
√

(Δ[)2 + (Δq)2.
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2.5 < |[ | < 2.7, muons can also be identified by tracks of the muon spectrometer alone. In the region
|[ | < 0.1, muons are identified by an ID track with ?T > 15 GeV associated with a compatible calorimeter
energy deposit. Muons are required to have ?T > 3 GeV and |[ | < 2.7, and satisfy the “loose” identification
criterion [53]. Electrons are reconstructed from energy deposits in the electromagnetic calorimeter matched
to a track in the ID [54]. Candidate electrons must have ?T > 4.5 GeV and |[ | < 2.47, and satisfy the “loose”
identification criteria [54]. All electrons and muons must be isolated and satisfy the “FixedCutLoose”
and “PflowLoose_VarRad” isolation criteria [54, 55], respectively. Furthermore, electrons (muons) are
required to have associated tracks satisfying |30 |/f30 < 5 (3) and |I0 sin(\) | < 0.5 mm, where 30 is the
transverse impact parameter relative to the beam line, f30 is its uncertainty, and I0 is the longitudinal
impact parameter relative to the primary vertex.

Jets are reconstructed with the anti-:C algorithm [56, 57] with a radius parameter of ' = 0.4. The
jet-clustering input objects are based on particle flow [58] in the ID and the calorimeter. Jets are required
to have ?T > 30 GeV and |[ | < 4.5. A jet-vertex tagger [59] is applied to jets with ?T < 60 GeV and
|[ | < 2.4 to preferentially suppress jets that originated from pileup. An overlap-removal procedure detailed
in Ref. [60] is applied to the selected leptons and jets, to avoid ambiguities in the event selection and in the
energy measurement of the physics objects.

Candidate events are selected by requiring at least two same-flavor and opposite-charge (SFOC) lepton
pairs. The four-lepton invariant mass must satisfy <4ℓ < </ − 5 GeV to suppress the SM ?? → 4ℓ
background. If more than one lepton quadruplet is selected in an event, the one with the smallest lepton-pair
mass difference |<ℓ+ℓ− − <ℓ

′+ℓ′− |, where <ℓ+ℓ− and <ℓ
′+ℓ′− are the invariant masses of the two SFOC

lepton pairs in the quadruplet, is selected. The lepton pair with the higher (lower) invariant mass is
denoted by <ℓ1ℓ2 (<ℓ3ℓ4). To ensure that both SFOC lepton pairs from a signal event originate from an �′

decay and to reduce the mispairing effect, the dilepton masses must satisfy <ℓ3ℓ4/<ℓ1ℓ2 > 0.85. All the
same- (different-)flavored leptons are required to have an angular separation of Δ' > 0.1 (0.2). The two
SFOC lepton pairs (and the two pairs with the alternative opposite-charge pairing, in the case of 44 and
4` final states) within a quadruplet are required to have a dilepton mass <ℓ+ℓ− > 5 GeV, and events with
(<Υ(1() − 0.70 GeV) < <ℓ+ℓ− < (<Υ(3() + 0.75 GeV) are vetoed to suppress the quarkonia background.

Events passing the above selections, referred to as the signal region (SR), are used to search for the dark
photon. The dominant background contribution in the SR is from the @@ → 4ℓ process. The kinematic
distributions of the @@ → 4ℓ background are modeled using simulation, while the background event yield
is normalized to data with the help of a control region (CR) enriched in @@ → 4ℓ events. The CR is
defined similarly to the SR but with </ − 5 GeV < <4ℓ < </ + 5 GeV, and the <ℓ3ℓ4/<ℓ1ℓ2 and Υ veto
requirements are not applied. The modeling of the kinematic properties of the @@ → 4ℓ background is
studied in a validation region (VR), which is disjoint to both the SR and the CR. The VR is defined using
the same selections as for the SR except for requiring <ℓ3ℓ4/<ℓ1ℓ2 < 0.85.

Subleading background originates from processes involving the production of / + jets, top-quark and,/ 9 9
events, with nonprompt leptons from hadron decays or misidentification of jets. A fake-factor method
described in Ref. [61] is used to estimate the contributions from non-prompt leptons. The fake factor
is defined as the ratio of numbers of nonprompt leptons # tight

fake /#
loose
fake , where “tight” or “loose” indicate

whether those leptons pass all the requirements on the impact parameters, isolation and identification,
or fail at least one of the requirements. The fake factor is measured in / + jets events, using additional
leptons and not the lepton pair arising from the / boson decay. The nonprompt-lepton background is then
estimated by applying the fake factor in a region defined with the same event selection as the SR, but with
at least one loose-not-tight lepton required when forming the quadruplet. Minor background contributions
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from ?? → � → 4ℓ, the 66 → // → 4ℓ continuum, and triboson and CC/ processes are estimated from
simulation, and their event yield contribution is found to be about 5% in the SR.

The search sensitivity is limited by statistical uncertainties. Systematic uncertainties associated with
the prediction of signal and background processes are also considered. These uncertainties are either
experimental or theoretical in nature, due to imperfect modeling of the detector in the simulation or the
underlying physics of each process. Experimental uncertainties originate mainly from measurements of
lepton energies, and lepton reconstruction and identification efficiencies. Uncertainties due to the trigger
selection efficiency, pileup correction, and luminosity measurement are also considered. Overall, the total
experimental uncertainty in the predicted yields is about 7% (6%) for the signal (background with prompt
leptons). The theoretical uncertainties of the signal, as well as the major background due to the @@ → 4ℓ
process, include the uncertainties from PDFs, QCD scales, and Us. The PDF uncertainty is estimated
following the PDF4LHC [62] procedure. The Us uncertainty’s effect is estimated by varying the Us value by
±0.001. The QCD scale uncertainty’s effect is estimated by varying the renormalization and factorization
scales, following the procedure described in Ref. [63]. The parton showering and hadronization uncertainty
is estimated for the signal by comparing the nominal Pythia 8 parton showering with the alternative
Herwig 7 [64, 65] algorithm. For the @@ → 4ℓ background, the modeling uncertainty due to the matrix
element, showering, and hadronization is obtained by comparing predictions from the nominal Sherpa

sample and an alternative sample generated by Powheg Box v2 interfaced with Pythia 8. Modeling
uncertainties in the ?/T distribution for the signal process, which is simulated at LO, are also considered. The
total theoretical uncertainties in the reconstructed event yields for the signal and the @@ → 4ℓ background
processes are estimated to be about 14% and 13%, respectively. Systematic uncertainties assigned to the
fake-lepton background mainly account for differences in the composition of the events with fake leptons
between / + jets events and the events in the SR, and data statistical uncertainties in the dedicated region
where fake factors are applied. They are estimated to be about 51% and 41%, respectively.

A simultaneous profiled binned maximum-likelihood fit [66–68] to the average invariant mass <̄ℓℓ ,
<̄ℓℓ = (<ℓ1ℓ2 + <ℓ3ℓ4)/2, of events in the SR and CR is performed to constrain uncertainties and obtain
information on a possible signal. A bin width of 1 GeV is used for <̄ℓℓ distributions to take into account
the resolution of the signal samples and data statistical uncertainties. The normalizations of both the signal
and the @@ → 4ℓ background are allowed to float in the fit. Systematic uncertainties described above are
modeled as constrained nuisance parameters. A background-only fit is also performed and the obtained
background prediction is compared with data in the VR to assess the quality of the background modeling.

Table 1 shows the expected background and observed event yields in the SR, CR and VR after the
background-only fit. The normalization factor of the @@ → 4ℓ background is determined to be 0.95 ± 0.08.
The <̄ℓℓ distributions in the SR, CR and VR are presented in Figure 2. The data are found to be consistent
with the background expectation in all three regions. No significant deviation from the SM background
hypothesis is observed and the largest excess of events is found around <̄ℓℓ = 25 GeV, with a significance
of about 1.6f. Exclusion limits are set using the CLs prescription [69]. Upper limits at 95% confidence
level (CL) on the cross-section times branching fraction of the process ?? → / → �′ℎD → 4ℓ + - are
shown in Figure 3 as a function of <�′ for different ℎD masses. The lower sensitivity in the mass range
<�′ > <ℎD/2 is due to the smaller signal acceptance for the off-shell �′. Since it is assumed that the SM
and dark Higgs bosons do not mix, and that �′ is the lightest particle in the DS, the branching fraction for
ℎD decay into a �′ pair, and for �′ decay into a SM fermion pair, is set to 100%. The branching fraction
for �′ decay into a specific fermion pair is dependent on <�′ [7, 16]. In this dark Abelian Higgs model,
upper limits at 90% CL are also set on the parameter combination UDY

2, which scales the signal yield
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linearly, as shown in Figure 4. The search is sensitive to a set of <�′ and <ℎD masses complementary to,
and higher than, those in a similar search reported by the Belle Collaboration [15].

Table 1: Post-fit expected background and observed number of data events in the SR, CR and VR. The “Fake”
background represents the contribution from non-prompt leptons, and the “Others” category combines 66 → // ,
Higgs, +++ and CC/ background contributions. The expected signal yields for two benchmark points are also shown,
with cross-sections calculated with UD = 0.1 and Y = 10−3, and they are negligible in the CR and VR.

SM backgrounds SR CR VR
@@ → 4ℓ 26.0 ± 2.4 1555 ± 48 239 ± 15

Fake 13.2 ± 5.6 43 ± 25 47 ± 26
Others 2.2 ± 0.7 5.8 ± 1.9 6.8 ± 2.0

Total background 41.3 ± 5.3 1604 ± 40 293 ± 28

Data 44 1602 286

Signal (<�′ , <ℎD ) = (12, 30) GeV 5.9 ± 0.9 - -
Signal (<�′ , <ℎD ) = (25, 60) GeV 3.5 ± 0.6 - -
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Figure 2: The <̄ℓℓ distribution in the (a) CR, (b) VR and (c) SR for the data and post-fit background contributions.
The error bands include experimental and theoretical systematic uncertainties as constrained by a background-only
fit. The contributions from the production of @@ → 4ℓ events are scaled by a normalization factor 0.95, from the
simultaneous fit in the SR and CR. The “Others” category combines 66 → // , Higgs, +++ and CC/ background
contributions. The “Fake” background represents the contribution from non-prompt leptons. Three representative
signal distributions are overlaid in the SR, assuming <ℎD = 40 GeV and different values of <�′ . The cross-sections
for these benchmark points are calculated with UD = 0.1 and Y = 10−3.

Figure 5 shows the upper limits at 90% CL on Y2 as a function of <�′ with different dark Higgs boson
masses, with a benchmark value of UD = 0.1 as used elsewhere [70–73]. These are compared with recent
results from the LHCb [12] and CMS [74] collaborations, using the process ?? → �′ → `+`−, which
does not depend on UD. For <ℎD . 60 GeV and UD & 0.1, the exclusion sensitivity of this search is
comparable to, or better than, that of the LHCb and CMS searches.

In conclusion, this Letter reports the first search for a dark photon and dark Higgs boson produced via
the dark Higgs-strahlung process in rare / boson decays at the LHC, with a final state of at least four
charged leptons and using 139 fb−1 of

√
B = 13 TeV ?? collision data recorded by the ATLAS detector.

The data are found to be consistent with the background prediction. Upper limits are set on the production
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Figure 3: Observed and expected upper limits at 95% CL on the production cross-section times branching fraction as
a function of <�′ , from top left to bottom right, corresponding to the dark Higgs boson mass of 20 GeV, 30 GeV,
40 GeV, 50 GeV, 60 GeV, and 70 GeV, respectively. The green (inner) and yellow (outer) bands represent the ±1f
and ±2f uncertainty in the expected limits.

cross-section times branching fraction, f(?? → / → �′ℎD → 4ℓ + -), and on the dark photon coupling
to the dark Higgs boson times the kinetic mixing between the Standard Model photon and the dark photon,
UDY

2, in the mass ranges of 5 GeV < <�′ < 40 GeV and 20 GeV < <ℎD < 70 GeV. This search explores
new regions of parameter space not previously excluded by other experiments.
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Appendix

Upper limits at 95% CL are also set on the branching fraction of the rare / boson decay / → �′ℎD,

B(/ → �′ℎD) =
f(?? → / → �′ℎD → 4ℓ + -))
f(?? → /) · B(�′ℎD → 4ℓ + -) ,

wheref(?? → / → �′ℎD → 4ℓ+-) is the 95% CL upper limit taken from Figure 3, B(�′ℎD → 4ℓ+-) is
the branching fraction of �′ and ℎD decaying into at least two lepton pairs, and f(?? → /) is the measured
/ boson production cross-section as described in Ref. [76] in the phase space of 66 GeV < <ℓℓ < 116 GeV.
The branching fraction limits are shown in Figure 6.
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Figure 6: Observed and expected upper limits at 95% CL on the branching fraction B(/ → �′ℎD) as a function
of <�′ , from top left to bottom right corresponding to the dark Higgs boson mass of 20 GeV, 30 GeV, 40 GeV,
50 GeV, 60 GeV, and 70 GeV, respectively. The green (inner) and yellow (outer) bands represent the ±1f and ±2f
uncertainty in the expected limits.
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