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Abstract

The length spectrum of closed geodesies on a compact Rictann surface corresponding to
a regular octagon on the Poincaré dise is investigated. The general form of the elements of
the “oeragon group”, a discrete subgroupof SUILT | du terms of 222 matrices is derived, and
the Auricl-Steiner law for the length of periodic orbits is proved analytically. An algorithn
for the multiplicity of geodesies with a given length is developed, whicl: leads to an efficient

enmmeration of the periodic orbits of this strougly chiaotic system.
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1 Introduction

The free motion on a compact two-dinensional surface of constant negative curvature is one
of the simplest and best investigated ergodic models of classical mechanics (see e.g. Ref. [1
and references therein). In Ref. 2 some properties of periodic trajectories were investigated
for one of such surfaces whiclk corresponds to a regular octagon on the Poincaré disc with
opposite sides being identified.

It is known [1.2 that for such a system the periodic trajectories are in one-to-one cor-
respondence with the conjugacy classes of fundamental group matrices. For the problem
considered. i.e. the “octagon group”, the latter can be represented as a product of an arbi-
trary number of the following 8 generators |1.2:

b = 1438 @ EEAYVERL ) (1)
g T\-"-\'\Jﬂdl 1 /2

where 'k = 0.1. .oss i

In Ref. 2 all produets up to 11 generators were found and, using a particular algorithm
for separating the conjugacy classes, the length spectrum of 206 796 242 primitive periodic
trajectories was caleulated. The numerical results strongly suggest that there exists an exact
formmla for the lengths of primitive periodic trajectories 2 :

rr)shi =m-+n\2. (2)

wliere [, 1s the length of a periodic trajectory with n being a natural number and m an odd
natural number. wlich is uniquely defined by the condition that the modulus of the difference

A= m—ny2 (3)

lias a minimum value at given n.

The existence of such aritlimetic relations in terms of algebraic numbers for this ergodic
svstem was not expected before, In particular, from these relations it could be concluded [2]
that the wean multiplicity g(!) of periodic trajectories with a fixed length [ is unexpectedly
large. i.e. g(1} ~ 8x 292, = x.

In Section 2 of this note we shall study the fundamental group matrices for the regular
octagon and shall find their general form from which we shall prove the Aurich-Steiner law
[(2). (3) analviically.

In Seerion 3 we present a few nnportant syumetry relations for such matrices.

In Section 4 we develop an algorithm for the calenlation of the multiplicity of periodic
trajectories with a given length. The usual method of constructing the fundamental group
LA rIces as I:rluiu('ls‘ of a finite mumnber of generators (whick was nsed in Ref, 12 | suffers from
the drawhack that products consisting of & large nmuber of generators can give a periodic
trajectory with a small period, This means that the multiplicity of periodic trajectories
1evernn f( v siall l(‘!l;!tllsl obtained ]l_\' :11(‘1¢ @ methad. in Hl’llr'ral. will be uurlereslimaled due
1o the contribution from products with a larger immber of generators. This fact restricts the
applicability of sucl calculations, especially for chiecking the Sellierg trace formula (periodic-
orbit theory) for the system cousidered [3 .

The method proposed in Section 4 permits us to find 1he exact multiplicity of periodic
trajectories witl a given length independent of the number of generators taken mto account.
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II General form of fundamental group matrices for the
regular octagon

An arbitrary fundamental group matrix of the “octagon group” corresponding to the regnlar
octagon shown in Fig. 1 represented as a product of generators (1) can be written as 2

- y 2 + 2
A!_( A+, V2 hB;tﬂj) ”
\‘\"—1(31*?31) Ay —tA;
where 4,, 4,, By, B, are algebraic numbers of the form
m+ nv?2 (5)
with integers m, n. )
(Note that we choose in the off-diagonal elements the factor v \f" — 1 instead of \ V241
as in 2], The reason for it will become clear below).
The obvious property of (4) is that its determinant must be equal to 1:
A+ - (Ve B +B)=-1. (6)

This condition seems to be trivial, but we shall show in a moment that it gives a lot of
information about the matrix elements.

First of all, we introduce a few definitions. Let us cell the algebraic numbers of form (5)
even or odd depending on the parity of m. (Here the parity of an algebraic number m — ny/2
is defined by p(m + ny'2) = m(mod2)). It is easy to show that 4, must be odd, 4, even, and
B,, B; must have the same parity (both even or odd). Among the general algebraic numbers
[3) which are defined by two independent integers m and n we shall be interested in particular
subsets of these numbers for which m is uniquely connected with » by the requirement that
the quantity

A= |m-—ny2 (7)

acquires its minimum value for fixed # and for a given parity of m. We shall call the numbers
with this property minimal numbers. There are two types of minimal numbers: even and
odd depending on whether m is allowed 10 be even or odd in the minimization of (7). The
necessary and sufficient condition that an algebraic number C = m ~ ny/2 (n # 0) belongs
to the set of minimal numbers can be expressed in form of the inequality

Cl:=m VRl 1. (8)

In Table 1 we present the first 20 minimal numbers for the case n > 0. Minimal numbers have
the interesting property that each class of minimal numbers is closed under multiplication.
This means that if one multiplies two arbitrary minimal numbers with the same parity, the
result will be again a minimal number with the same parity.

Let us consider condition (8) in detail. It is an algebraic relation for the numbers(5). It
is clear that it will remain true if one changes the sign of v/2 in all terms. This implies that
if Ay, Ay, B,, B; of form (5) cbey (6). then their conjugated partners j, etc. will obey the
following relation:

A+ A3+ (V2+1)(B+~BY) = (9)
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Table 1: First positive minimal numbers
where A, := my — ;42 ete.. But all terms in (9) are positive numbers, and therefore they
are restricted by the following values
|[Ai| <1, |Bif - ¥vV2-1<1,i=1,2. (10)

These inequa.li.ties mean that all A, and B, belong to munimal numbers.
Taking into account the above-mentioned parity properties. we conclude that all funda-
mental group matrices for the regular octagon must have form (4) where:

A, is an odd minimal number
A, is an even minimal number (11)

B, and B; are minimal numbers of the same parity.

The length | of & periodic trajectory corresponding to a fundamental group matrix M can be
calculated from the relation [1.2:
cosh = = = ITrM = |4,]. (12)

Combining this with (11). one obtains formulae (2). (3) which were proposed before in Ref. [2].

Now we prove the reverse statement, i. e, that any matrix of form (4) with unit determinant
and with A,, B, obeying (11) belongs to the fundamental group of the regular octagon. Our
proof will be based on the theorem proven in Ref. 4 and cited in Ref. [1]. (Actually, Ref. [4]
was not available to us).

According to this theorem the group of all matrices of form (4) with unit determinant
differs from the considered “octagon group” by the existence of an additional generator

(i 0) o

with the properties
R R '=bp =0 . R2=-1. (14)



The theorem states that an arbitrary matrix (4] can he represented as a word constructed
from the generators b and the additional matrix F.. But according to (14 mairices with an
even number of R.'s can be reduced to fundamental group matrices (without any R.). and
matrices with an odd number of R,'s can be reduced to matrices with one R.. Therefore, an
arbitrary wmatrix (4) with algebraic elements 4,. 4,. By. B; belongs eitler 1o a fundamental
group matrix or to a product of a fundamental group matrix with one R It is not difficult 1o
find & criterinm which distinguishes these two cases, As was indicated above, 4 must be au
odd algebraic number for any fundamental group matrix and 4; must be an even one. The
application of R, to a malrix (4) results in the following substitution: 4, — —4,. 4, = 4,
and By —+ —B,, B; — B,. Hence, for a product of R, and a fundamental group matrix
the 4, element will be an even algebraic number and 4, will be an odd one. (B, and B,
will be, as before, numbers of the same parity). This means that the parity of 4, uniquely
diseriminates between these two cases. If 4, is an odd number, tlie matrix (4) belongs to
the fundamental group, and if 4, is an even number. the matrix (4) is a product of R, and
a fundamental group matrix.

Thus we have proved the following Theorem: The necessary and sufficient condition that
a matrix (4) with unit determinant belongs to the fundamental group of the regular octagon
is that the 4, element is an even minimal number (and all otlier elements obey (11)).

From this theorem it follows that to construct a fundamental group matrix it is enough
to sort out minimal algebraic numbers obeying conditions (11) and select from them those
obeing (6). Let us emplasize that the minimality conditions (7) (or(8)), whick in the end is
a simple consequence of the unit determinant condition (6). is of very importance. As it will
be shown below. due to this condition it will be enough to sort out only a finite number of
minimal numbers in order to find all periodic trajectories with a fixed length.

IIT Symmetry transformations

Let . B
.41 =m; + nyv 2, .4; =mz + Tlg\’z.

Bi=h+kv2 Bi=hL+k/2

be the representation of the matrix elements in terms of integers. As was noted above, m, is

(15)

an odd integer, m, is an even integer, whereas [; and [; can be either even or odd, but must
have the same parity.
We present here a few more parity properties. From Eq.(6) one can show the following:

1) if ny is even, then ny, I, and [, are even and &, and k; are of the same parity:
2) if ny is odd and Iy, I, are even, then n; is even and ky and k; are of different parity:

3

—

if 7, is odd and Iy, [, are odd, then n; is even or odd depending on whether ky and A;
Liave the same or opposite parity.

From Fig.1 it is clear that the simplest symmetry of the octagon is & rotation over 7/4.
If Ay, A,, B,. B; define an admissible matrix (4). then 4,, A, B}, B, with
B, = (By- By)/v2

B, = (B, - B;)/V2 (16)
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also give an admissible fundamental group matrix. Note that an iuverse matrix corresponds

with respect to the line which lias the angle 7 8 with the abscissa. (It is denoted by 1 in

1o Ay, - A,. By, - B:. The reflection over the coordinate axis is equivalent to the inversion

Fig1). Tlds inversion corresponds to the following transformation:

i
L - ;
.B;rfB,Aﬂz]\s y Iy =1« (17)
B: — 1'31 = B:).\

T

131 131

The inversion over circle 2 in Fig. 1 gives the transformation

A= 4
AL = —(42 = 1)4, - 2B,

T, , T3=:1. (18)

I By = (2+42)4; -~ (vV2-1)B;
B, = -B,
Analogously, the inversion over cirele 3 in Fig. 1 corresponds to the transformation

I A= 4,
Ay =<1+ +/2)4;+ B, - B;

T; : P = 5 =il
3 l B, = By/v2— (1+ V2)/v2B; — (1~ v2)4, » A5=4 =
B'2 = =(1-=/Z)/ V2B + By /v2 - (1~ \"2}.—12
Note that
T, = I;T, (20)

as it must be for the reflections over 3 lines having an angle of 60° with each other. And,
finally. the inversion over circle 4 in Fig. 1 gives
A = 4
T, . J A;.—fzsw_’\i-"_n_hﬂEBg- (2+v2)B, P
B} = —(1+v2)B, — (2~ V/2)4; '
l Bl = (4+3v2)4; - (1+v2)B, + (2+2v2)B,

Two important properties of the transformations (17)-(21) are:
i) If 4,. 4;. By. B, obey Eq.(6), then 4,. 4!, B;. B} also obey this relation.

ii) If 4,. 4;. B,. B, are integer algebraic numbers of type (15) obeying (11). then 4,, A},
B. B, will be also integer algebraic numbers obeying (11).

Any sequence of these transformations will be an admissible transformation. So., knowing
a fundaental gronp matrix, one can construct another one with the same trace by the above
svinmetry transformations.

IV  Separation of conjugacy classes

In this Section we discuss the connection between fundamental group matrices and periodic
trajectories. It is known (see e.g. Ref. [1|) that if M is a certain fundamental group matrix.
then all conjugated matrices

M =SMS™', (22)
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where S 1s an arbitrary fundamental group matrix. correspond to the same periodic trajectory.
Therefore. to enumerate the periodic trajectories it 1s necessary to know which fundamental
group matrices are conjugated to each other. If the matrices are given as products of funda-
mental group generators, then a pure algebraic algorithm exists [2], which solves this problem
within a finite number of steps.

In the approach developed in this paper. we can construct any fundamental group matrix
directly, but, a priori, we do not know its representation as a generator product, and the
question of the separation of conjugacy classes has to be considered in detail.

Let us recall a few general facts [1|. Any geodesic on the Poincaré disc is a circle which is
perpendicular to the boundary circle |z] = 1. Inside the fundamental region a closed geodesic
(1.e. a periodic trajectory) is a set of segments of such circles connected with each other by
the identification of the boundary arcs via the generators (1). An arbitrary fundamental

group matrix of the form
3
M= ( ,?- o ) (23)

with unit determinant defines the linear fractional transformation (= = = + 1y)

- az+43 (24)
T Brz4a’ .
which leaves the cirele || = 1 invariant.

Simultaneously, 2 matrix (23] defines a unique geodesic on the Poincaré disc which is not
changed by the transformation (24). In Cartesian coordinates this invariant geodesic is given
by the equation

:r:—v—y:— %[:‘zly— Bor)+1=0, (25)
where 3;. 3;, a;. a; are real and inmgina-r_\' parts, respectively, of 3 and a:
B=p3+13;. a=a,+1a;. (26)
If a; = 0, then the invariant geodesic is the straight line
By = oz . (27)

It is not difficult 1o show that geometrically the conjugated matrix (22) is the result of the
translation of the circle (25) (corresponding to the matrix M) under a transformation of type
(24) defined by the matrix §.

Let us assume that we know a fundamental gronp matrix and we want to construct the
corresponding circle (25) on the Poincaré disc. Two variants are possible. Either the circle
(25) goes through the fundamental domain or it entirely lies outside of it. Only the first case
corresponds to an are of a periodic trajectory of the free motion on the surface considered.
The second case has to be considered as the result of & transformation of a geodesic under
the action of a fundamental group matrix. This means that we have not to consider matrices
for which the invariant circle (25) lies outside the fundamental region.

The necessary and suflicient condition that the circle (25) goes through the fundamental
octagon is that the distance between the centre of the circle and a certain corner of the

octagon is smaller or equal to the radius of (25). If the matrix M is written in the form (4).
this condition is equivalent to the following inequality

Ayl < (2 -2)(By —(vV2-1)By), (28)

where we assume that By > |B;| (this can alwayvs be achieved by rotations over 7/4 as in
Eq.(17)).
Using Eq.(6) one obtains the following condition on By, B; (assuming B; > By > 0)

B} + 5B} —4B,B; < (1+ v2)%(42 - 1). (29)

Therefore, if the length of the geodesic is fixed (i.e. 4, is fixed), there exists only a finite
number of matrices (4) which we have to consider. These and only these matrices correspond
to invariant geodesics (25) which go through the fundamental region.

To numerically construct such matrices, we shall use the following algorithm.

Fix the matrix trace, i.e. choose the number 4,. We repeat that A; must be an odd
minimal number of the form m,; + n;v/2 which is uniquely defined by the integer n;. The
numbers B, and B; have to be minimal numbers with equal parity, so at fixed ky, k; there
exist two sets of By, B, with even and odd I;. l;. Let us sort out all k,, k; such that By, B;
obey inequality (29). As the left-hand side of it is the equation of an ellipse there are only
a finite number of pairs ky, k; obeying it. For each of such pair we find 4, from Eq.(6) and
keep only such cases where A, has the form my ~ nav'2 with my, 17 being integers (and my
is even). This can be achieved. e.g. by a direct solution of Eq.(6) over variables mj, n; or
by sorting out all 7, obeying (28). 1t is these cases that give the fundamental group matrices
(4) with umt determinant.

Let us consider such a matrix, By construction, i.e. by Eq.(28) an arc of the geodesic
corresponding to this matrix is located inside the fundamantal octagon. In general, this arc
is restricted from both sides by two boundary arcs of our octagon. Since the opposite sides
of the octagon are identified, the part of the geodesic which goes out of the octagon has
to be Lrought back with the aid of a proper generator (1). As was mentioned above, this
corresponds to the conjugation (22) where S is the matrix of this generator. This means that
after the conjugation of the initial matrix with a certain generator (1) one obtains a matrix
whose geodesic goes through the fundamental region (and which obeys (28)).

It is clear geometrically that in general {when the geodesic does not go through a corner
of the fundamental region) there exist only two generators which have this property. They
correspond to the two boundary arcs whicl are crossed by the geodesic considered.

This suggests the following scheme for the construction of periodic trajectories. Let us
assume that we know a fundamental group matrix (4) which obeys (28), i.e. its geodesic
(25) goes through the fundamental octagon. Do the conjugation (22) with all 8 generators
{1). For all matrices obtained by this procedure check condition (28). As was noted, in
general this condition will be satisfied only for two generators. hence only for two matrices
the corresponding geodesic goes through the fundamental octagon. Choose one of these two
matrices and repeat the conjugation with the 8 generators once more. As before only two
generators give matrices whose geodesics lie inside the fundamental region. One of them is
the inverse to the generator used in the first step. Therefore only one gives a new matrix
to be considered. Repeat this process until the new matrix does coincide with the initial
one. (As our matrices belong to the fundamental group, this procedure will stop after a finite
number of steps. )



Let ky. ka..... k, be the labels of the generators obtained by the deseribed procedure and

)Uk, = [nk' A.“-;II
ﬂfh == b_g.: A.lh b;:

M., = b, M b (30)

be the sequence of the corresponding matrices. By construction. trM,_ = trM, and each
M, obeys the condition (28). where the last matrix satisfies

M, =M. (31)
This condition gives a representation of the initial matrix M as a product of generators:
M= by by by s (32)

The periodic trajectory corresponding to the initial matrix M consists exactly of those seg-
ments of geodesics (25) which correspond to the matrices My () = 1.2..... n). Simultane-
ously. the proposed method gives. as a by-product. the canonical representation of the matrix
as a product of generators.

In cases where the geodisic goes through a corner of the fundamental region the arguments
have to be slightly modified but we don’t dwell on 1t here.

Actually, the initial matrix M (or, strictly speaking, the geodesic corresponding to it by
Eq.(25)) defines the position and the momentum of the point particle in the initial moment.
The subsequent motion is uniquely defined by these values. Between boundaries the particle
moves on a geodesic - an arc of a circle of the form (25). When the particle collides with
a boundary arc, it is transformed to another boundary arc according to the identification
used. It is this process that is described by the sequence of matrices (30). It is not difficult
to construct an explicit algorithm which describes the motion inside the fundamental region
directly. The above method with the sorting out of all generators seems to be more algebraic
and more suitable for numerical calculations,

The method outlined above was used to write a program which permits fo find all periodic
trajectories for a given length. The detailed description of this program and results of the
calculations will be published elsewhere. Here we mention the results only for the first 80
lengths presented in Table 1 of Ref. |2| where products of up to 11 generators were calculated.
We find that the length spectrum given in this Table is almost complete; there are only
two lengths for which the multiplicity is too low. since products of 12 generators give a
contribution. They correspond to 4, = 07 + 68y/2 and Ag = 97+ 69v/2 for whicl the
nltiplicities have to be equal to 48 and 576 instead of 40 and 560 respectively.

V  Summary

In this note it is shown that the fundamental group matrices for the regular octagon can be
expressed in terms of minimal algebraic mumbers with well defined parity (see Eq.(11)). This
proves the geodesic-length law conjectured in Ref. 12 on the ground of nuerical caleulations.
A geometrical method for the separation of conjugacy classes is proposed. The method
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permits to construct a simple algorithm for calculating all periodic trajectories with a given
length.
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Figure caption

Fig. 1: Regular octagon on the Poincaré disc. Numbers denote circles of inversion associated
with the symmetries T;.... T,.






