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1 Introduction

Understanding the non-perturbative dynamics of quantum field theories is a central chal-
lenge of theoretical physics. This is particularly true for conformal field theories which are,
through Maldacena’s celebrated AdS/CFT correspondence, related to gravitational quan-
tum theories in Anti-de Sitter space. The dynamics of conformal field theories turns out to
be very strongly constrained by conformal symmetry. In the case of 2-dimensional theories,
this has been exploited for several decades now, starting with the seminal work of Belavin,
Polyakov, and Zamolodchikov [1] which was the first work to implement the conformal
bootstrap program. But it took another 30 years until the constraining power of conformal
symmetry was put to use in higher dimensions [2, 3]. The modern conformal bootstrap was
originally based on a numerical analysis of the bootstrap constraints. Analytic solutions of
the higher-dimensional crossing symmetry equations seem out of reach for now, mostly due
to the complexity of the equations. But when pairs of insertion points in the correlator are
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light-like separated, the operator products for higher-dimensional conformal field theories
are dominated by a finite set of leading-twist fields. This was first exploited in [4, 5] and
initiated the development of the so-called lightcone or analytic bootstrap, see [6–12] and
references therein.

One of the most striking early results of the lightcone bootstrap was to show that any
conformal field theory must contain infinite double-twist families in which the conformal
weights approach the values of a free-field theory when the spin becomes large [4, 5, 13].1
Later, the analytic tools were sharpened such that it is now possible to systematically
compute corrections to the free-field theory behavior for double-twist families in an expan-
sion around large spin [15, 16]. In terms of the AdS dual theories, these results allow in
particular to compute the mass spectrum of two-particle bound states [17, 18].

It is certainly highly desirable to obtain similar results for multi-twist families in confor-
mal field theory or multi-particle states in the dual gravitational theories on AdS, see [19–21]
for some previous discussions. But not much is actually known yet. While double-twist
families already appear in the operator product of two fields in a generalized free-field
theory, it requires at least three fields to build a triple-twist family. Hence, to analyze the
behavior of triple-twist fields in free-field theory and beyond, it seems natural to study
the crossing symmetry of six-point correlators. This turns out to be a rather formidable
task. Nevertheless, it seems worth some effort. Indeed, in an interacting theory, triple-
and higher-twist operators can be exchanged in the intermediate channel of a four-point
function. As long as we remain agnostic about the behavior of higher-twist families, their
exchange will contaminate four-point crossing symmetry equations and this contamination
systematically limits the precision to which conformal data can be determined [22, 23].
Overcoming this limitation of existing bootstrap tools has recently motivated several groups
to probe conformal field theories through multipoint correlation functions involving more
than four scalar fields [24–28].

The main bottleneck of the conformal bootstrap in general and of the multipoint
bootstrap in particular is our very limited knowledge of the relevant conformal blocks.
For N > 4 insertion points, even partial results on conformal blocks are quite recent, see
e.g. [29–37] and references therein. Even though conformal blocks are expected to simplify
drastically when the insertion points lie on their respective lightcones (that is to say, the
relevant regime in the lightcone bootstrap), there exist no universal results yet. The only
cases that were understood recently concern blocks in which pairs of external fields can be
expanded through the lightcone OPE of [38–40]. Through the use of this lightcone OPE,
one can derive integral formulas for multipoint lightcone blocks for up to N = 6 external
points in the snowflake channel. By taking appropriate limits of these integral formulas,
the authors of [24–26] were able to analyze the crossing equation for a duality between two
inequivalent snowflake channels in the lightcone limit and thereby derive new results on the
leading large-spin behavior of OPE coefficients involving several double-twist families. But
in order to effectively access triple-twist families, it is necessary to study crossing symmetry

1The original analysis was based on some natural assumptions regarding the behavior of sums of con-
formal blocks in the double lightcone limit. A rigorous proof was only given very recently in [14].
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relations in which at least one channel has comb topology. Unfortunately, lightcone limits
for general comb channel blocks cannot be accessed through the lightcone OPE formula of
Ferrara et al. Some new tools are required. Here we shall advocate the use of differential
equations as a universal tool to study lightcone blocks for any channel topology and in
particular the comb channels that can give access to multi-twist families.

The characterization of multipoint conformal blocks through differential equations is
by now rather well understood, mostly through the integrability-based approach to con-
formal blocks that was initiated in [41] and developed in [42–44]. In the case of four-point
blocks, Dolan and Osborn first proposed to study them through a set of Casimir differential
equations. While the original equations did not look very inviting, they indeed allowed to
efficiently analyze four-point blocks in dimension d ≥ 2 [45]. Later, the Casimir differential
operators of Dolan and Osborn were identified as the eigenvalue equations for the Hamil-
tonian of a two-particle integrable Calogero-Sutherland model [46]. This insight initiated
an integrability-based approach to four-point function that was advanced in [47–51]. Very
remarkably, this relation between integrable models of quantum mechanics and conformal
blocks persists for correlators involving more than four external fields. More specifically, as
shown in [44], one can identify the relevant differential operators that characterize blocks
for any number of external fields with the commuting Hamiltonians of an integrable Gaudin
model, in a certain homogeneous limit. Even though the complexity of these differential op-
erators grows quickly with the number of cross-ratios, they can be worked out and possess
very nice properties. As we shall see below, these properties make it possible to evaluate
the differential operators in the lightcone limit. After taking sufficiently many insertion
points to be lightlike separated, these differential operators lose much of their complexity
and one can often find explicit solutions in closed form.

The main goal of this work is to develop a systematic theory of multipoint blocks in
the lightcone limit, based on the study of the differential equations the blocks satisfy. In
particular, our new approach does not rely on lightcone OPEs and hence applies to all
channels including the important OPE channels highlighted above. For N = 5 and N = 6
external scalar fields, we will also apply our concrete results on blocks to the analysis of
crossing symmetry equations, leading to a number of new results on OPE coefficients, see
below.

1.1 Lightcone differential equations — an overview

In order not to get lost in technical details later on, we first want to give a bird’s eye view
of the new methods developed herein. We first describe the general setup, then explain
some elements of constructing perturbative solutions to a set of differential equations, and
finally turn to the multipoint lightcone bootstrap.

1.1.1 The general setup

Our setup starts with N external scalar fields that are inserted in points xi ∈ Rd with
i = 1, . . . , N . As is common in the conformal field theory literature, we will represent the
insertions points xi through projective null lines Xi ∈ R1,d+1 in embedding space. Given
Xi one can construct a certain number ncr(N, d) of conformally-invariant cross-ratios. In
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the case of N = 5 points and d ≥ 3, for example, there exist five independent cross-ratios.
For N = 6 points, the number of independent cross-ratios increases by three in d = 3 and
by four in d ≥ 4. This number of independent cross-ratios is easy to count in general, see
e.g. [44, eq. (1.3)].

Let us now consider some correlation function G of N scalar fields. After some appro-
priate factor Ω is split off from G = Ωg, the remaining function g depends on cross-ratios
only. In principle, one can evaluate G by performing N − 2 operator products between
fields until one ends up with a two-point function that is fixed by conformal symmetry.
The precise sequence of operator products that are performed is known as the OPE chan-
nel. We shall denote OPE channels by C. For N = 6 points, for example, there exist 90
different OPE channels with two different topologies, known as snowflake and comb topol-
ogy, respectively, see the left-hand and right-hand sides of figure 5, respectively. Once all
operator product expansions (OPEs) are performed, the correlator is written as a product
of N−2 constant OPE coefficients and the kinematically-determined conformal blocks that
carry all the dependence on the cross-ratios. These conformal blocks depend on certain
quantum numbers that parametrize the conformal weights and spins of intermediate fields
appearing in the operator products, as well as the choice of tensor structures. There are as
many such quantum numbers as there are independent cross-ratios. In the case of N = 5
external scalars, for example, one has two intermediate fields that transform in symmetric
traceless tensor representations (STTs) of the conformal group and hence carry two quan-
tum numbers each, the conformal weight ∆ and rank J of the tensor. In addition, there
is a fifth label that determines the choice of the tensor structure in the OPE between a
scalar and an STT field. So, indeed, the total number of labels coincides with the number
of cross-ratios.

According to the approach advocated in [41], scalar N -point conformal blocks may be
characterized by a system of ncr(N, d) linear, higher-order differential equations. These
arise as eigenvalue equations of a system of commuting operators DA, A = 1, . . . , ncr(N, d)
that measure the quantum numbers of the conformal blocks. An explicit construction of
such operators for any given OPE channel C was proposed in [44]. Even though these
operators are quite complicated in general, it is possible to introduce a special set of
coordinates in the space of cross-ratios such that all the coefficients in the differential
operators become polynomials, see [42] for OPE channels with comb topology. These
coordinates have been dubbed polynomial cross-ratios. The set of differential operators in
polynomial cross-ratios is the starting point for the lightcone analysis in the present work.

1.1.2 Lightcone differential operators

In order to describe our analysis in a bit more detail, let us denote the polynomial cross-
ratios for an N -point function by wQ, Q = 1 . . . , ncr(N, d). The lightcone bootstrap an-
alyzes crossing symmetry constraints in the limit where some pairs of insertion points xi
become lightlike separated, i.e. in which Xij := Xi ·Xj tends to zero for some set of pairs
(i, j). How many and which pairs of points are selected to become lightlike depends on
the pair of OPE channels that one relates through crossing symmetry, see below. We will
denote the total number of independent lightlike pairs by m and enumerate the individual
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pairs (iν , jν) by ν = 1, . . . ,m. For each lightlike pair we shall introduce a formal parameter
εν , ν = 1, . . . ,m. The parameters εν control the approach to the lightcone of the products
Xiνjν . Since our cross-ratios wQ are multi-homogeneous in each of the products Xij , the
substitution rules Xiνjν → ενXiνjν determine a map γε that attaches formal variables to
the coordinates wQ,

γε(wQ) = εsQwQ . (1.1)

Here, s = (sν) ∈ Zm are multi-indices and we used the notation εs = ∏m
ν=1 ε

sν
ν as usual.

We shall refer to the multi-index sQ as the ε-scaling of the variable wQ and to eq. (1.1) as
scaling laws of the variables wQ.

Next, let us consider the algebra D(n) of differential operators D in the n variables wQ.
We can extend our scaling law (1.1) to a homomorphism γε on differential operators by
imposing the additional rule

γε(∂wQ) = ε−sQ∂wQ (1.2)

where we use ε−s = ∏m
ν=1 ε

−sν
ν . After application of γε to some differential operator D we

obtain an expression in the formal variables εν that takes values in the space of differential
operators. All operators we shall work with below have finite order and polynomial coeffi-
cients in some set of variables wQ. Given any such operator, we can apply γε and expand
the result in a formal series in the variables εν

γε(D) ≡ Dε =
∑
k∈Zm

ε k D(k) . (1.3)

Note that for differential operators of finite order with polynomial coefficients, the sum on
the right-hand side involves a finite number of terms. From time to time we shall refer to
the index k as the ε-scaling of the differential operator D(k).

We will be studying differential operators in a limiting regime in which pairs of points
become lightlike separated in some particular order, with the distance between the first
pair becoming lightlike much faster than the second, which in turn becomes lightlike much
faster than the third, etc. As we remarked above, the pairs are enumerated by our index
ν = 1, . . . ,m. Because of this hierarchy of lightcone limits, the ordering of the formal
parameters εν does matter. Whenever we want to stress this ordering, we shall write

~ε = (ε1, . . . , εm) .

Similar notations are used for the multi-indices s, k, . . . . The ordering of the formal vari-
ables εν introduces a lexicographic order among the scalings, i.e. we write ~k < ~k′ if the first
non-vanishing entry in ~k′ − ~k is positive. Since the differential operators we are dealing
with throughout this work have finite order, their expansion (1.3) contains a term that
contains the leading term. The associated grade vector will be denoted by ~k0. We can then
rewrite the expansion (1.3) in the form

γε(D) ≡ D~ε = ~ε
~k0
∑
~p∈Nm

~ε ~p D(~k0+~p) = ~ε
~k0D( ~k0) + D̃ (1.4)
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where the sum runs over a finite set of vectors ~p with non-negative integer components
only. On the right-hand side we have split D into its leading term and the subleading
remainder.

As we explained above, we will be interested in eigenfunctions of the differential oper-
ator D. In this work we will only look at the leading terms of the eigenvalue equation, i.e.
at eigenfunctions of the leading singular term D(~k0) that is selected by our choice of ~ε. For
the associated eigenfunctions there are two cases that will occur, depending on the scaling
behavior of the eigenvalues λ. In order to describe the scaling behavior of eigenvalues, we
extend the map γ to the eigenvalues, i.e. we introduce λ~ε = γ~ε(λ). The first case that turns
out to be relevant for us is when the eigenvalue does not scale, i.e. when λ~ε = λ. If that
is the case and if the grade vector ~k0 of the leading singular term is negative, then the
differential equation forces the leading behavior of the eigenfunction ψ to lie in the kernel
of the differential operator D(~k0). The other relevant case that we will encounter below is
when the eigenvalue λ scales in the same way as the leading term of the differential oper-
ators, i.e. when λ~ε = ~ε

~k0λ+ λ̃. With this scaling of the eigenvalue, we are led to consider
eigenfunctions of the differential operator D(~k0) for eigenvalue λ. While beyond the scope
of this paper, this expansion of the differential equations actually defines a perturbative
expansion of the eigenfunctions that can be used to calculate corrections to lightcone blocks
away from the strict lightcone limit.

1.1.3 Multipoint lightcone bootstrap

After these more general comments on the perturbative study of differential eigenvalue
equations, we now return to the study of lightcone blocks and lightcone bootstrap. The
crossing equations we want to analyze are associated with a pair of OPE channels. We
shall refer to one of these channels as the direct channel and denote it as CDC. The second
channel is referred to as crossed channel and denoted by CCC. The choice of direct and
crossed channel largely determines the choice of the vector ~ε that featured in the previous
subsection. In particular, the first N −3 entries of ~ε must ensure that the lightcone limit of
the direct channel receives its leading contributions from leading-twist operators. In order
to remove higher-twist exchange from the crossed-channel contributions as well, one needs
to take at least N − 3 additional lightcone limits. Which pairs of points are required to
become lightlike depends on the crossed OPE channel. Along with the first N − 3 lightlike
limits that removed direct-channel higher twists, the minimal number of lightlike limits
thus amounts to 2N − 6. As a result, the vector ~ε contains at least 2N − 6 components, of
which the first N − 3 entries are determined by the direct channel while the latter depends
on the crossed channel. Obviously, taking additional lightcone limits further reduces the
complexity of the crossing equations, but it also comes at the price of reducing resolution.

Once the vector ~ε has been chosen, we can apply the general discussion from the
previous subsection to the differential operators DA that characterize multipoint conformal
blocks, see above. As we have explained, this set of differential operators depends on the
OPE channel. Since we have singled out a pair of such channels, namely the direct and
the crossed channel, we shall denote the dependence on the channel by DDC

A and DCC
A ,

respectively. With a sufficiently large number m ≥ N − 3 of lightcone limits performed,
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the original complexity of the differential operators is very much reduced and one obtains
rather simple expressions for the leading terms D(~kA0)

A , as well as the subleading corrections.
Many examples will be spelled out explicitly throughout the following sections.

Given explicit formulas for the leading terms of direct-channel differential operators,
one can construct expressions for the lightcone limit of direct-channel blocks. In this case,
the eigenvalues are chosen to scale trivially with the lightcone limit. Following our brief
comments at the end of the previous section, the lightcone limit of direct-channel blocks
must lie in the kernel of the leading terms of the differential operators DDC

A . Given the
simple expressions of the leading singular terms, the kernel can be constructed explicitly.
The lightcone limit of the direct-channel blocks is some particular vector in this linear
space. We will comment on how to identify this vector within the kernel in a moment.

Before we do so, we want to take a first look at the crossed channel. It turns out
that, in order to reproduce the leading terms in the direct-channel expansion within the
crossed channel, we need to take an appropriate scaling limit in the eigenvalues of the
crossed-channel differential operators. To determine the scaling laws for crossed-channel
eigenvalues, we adopt a procedure that was first described by David Simmons-Duffin in
the context of the four-point lightcone bootstrap [22]. It involves applying the crossed-
channel differential operators to the leading terms in the direct channel expansion. So,
given the explicit expression for the crossed-channel differential operators, we are able
to determine the scaling of the crossed-channel quantum numbers as soon as we have
sufficient information about the direct-channel lightcone blocks. The scaling of crossed-
channel eigenvalues in effect drives contributions from the crossed channel to large spins.

Given the relevant scaling of the quantum number/eigenvalues in the crossed-channel
differential equations, we can now determine the lightcone limit of the crossed-channel
blocks by solving the associated differential equations. In all the cases we have looked
at, these solutions can be found explicitly in terms of exponentials and Bessel functions.
Furthermore, the linear differential equations obtained from the complete set of commuting
differential operators possess a finite- dimensional space of solutions. Once again, the
lightcone limit of the crossed-channel conformal blocks corresponds to one particular vector
within this space.

The identification of the relevant vector turns out to be challenging. Even before
taking any lightcone limits, the differential equations for conformal blocks possess finite-
dimensional solution spaces. Within these spaces, the blocks are selected by boundary
conditions that fix their behavior in the OPE limit, which we define in Lorentzian signature
as the limit of two coincident points within lightlike separation. However, the OPE limit is
not part of the lightcone regime for which we solve the lightcone differential equations. So,
in order to select the limiting behavior of the blocks, both in direct and crossed channel,
we must somehow connect the OPE limit with the lightcone limit. At least for the cases
we have studied, it is indeed possible to obtain sufficient control along some curve in the
space of cross-ratios that connects the OPE with the lightcone limit. To obtain this control
for N > 4 is the main challenge within the approach we advance. Once this is overcome,
the gate is open to analyze and solve the crossing equation in the lightcone limit. Before
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we describe more concretely the setups in which the above procedure is implemented, let
us add one more comment. As we have reviewed above, the differential operators that
are used to characterize conformal blocks fall in two classes. Casimir differential operators
measure the weight and spin of the intermediate fields in a given OPE channel, while
vertex differential operators measure the choice of tensor structure. But in order for these
quantum numbers to be measurable simultaneously, we had to introduce a new basis of
tensor structures that has not yet been well explored. It is certainly quite different from the
choice of tensor structure that is commonly used in the conformal field theory literature.
In our construction of lightcone blocks we will initially focus on the Casimir differential
operators and stick to a more conventional basis of tensor structures. This also simplifies
the comparison with previous work, most notably the results in lightcone blocks in [26].
Nevertheless, we shall have a look at the lightcone limit of the vertex differential operator
once the lightcone blocks are constructed. This will provide interesting novel insight into the
relation between eigenfunctions of vertex differential operators and the more conventional
choice of tensor structures. There is an immediate payoff in the analysis of the crossing
equations: crossed-channel lightcone vertex operators can be used much in the same way
as the Casimir operators to determine the scaling of crossed-channel spins in the lightcone
limit. Given our new understanding of the relation between eigenvalues of vertex operators
and conventional tensor structure labels in the lightcone limit, we can apply the lightcone
vertex operators to determine the scaling of tensor structures in the lightcone limit.

1.2 Summary of new results

Even though the main focus of this work is to sharpen universal tools for the multipoint
lightcone bootstrap, and in particular for the analysis of multi-twist operators, see section 6
and [52], this paper does contain a few new results already, both on lightcone blocks and
OPE coefficients. The purpose of this short subsection is to highlight these concrete new
results before we dive into a broader outline of the paper.

Let us begin with the new results on five-point lightcone blocks. The most novel aspect
of our analysis is that we study blocks in a partial lightcone limit where only four of the five
cross ratios are sent to limiting values. That is, we only insist that four of the five distances
between neighboring points become lightlike. In this restricted lightcone limit, we obtain
new explicit formulas for the associated blocks, both in the direct and the crossed channel.
For the direct channel, these are spelled out in eqs. (3.59), (3.61). In these expressions, it
is also straightforward to send the fifth cross ratios to zero and thereby obtain formulas
for direct channel blocks in the full lightcone limit, see eqs. (3.63), (3.64). We stress that
even the latter are new for the regime in which the half-twists h1, h2 of the exchanged fields
satisfy h1, h2 > hφ.

For the crossed channel, the lightcone blocks in the restricted lightcone limit can be
found in eqs. (3.101), (3.102). The limiting behavior in the full lightcone limit is stated in
eq. (3.81). In both the restricted and full lightcone limit, we obtain closed-form expressions
for the blocks that were not known before. The results we have listed so far work with the
usual basis of tensor structures at the central vertex of the five-point blocks. In section 4,
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we also derive the analogous results for the crossed channel blocks in the vertex operator
eigenbasis, see eq. (4.11) and eqs. (4.13), (4.15), (4.16).

By exploiting our new results on five-point blocks in the restricted lightcone limit, we
obtain new formulas for several OPE coefficients. These concern the OPE decompositions

[φφ]× φ ∼ [φφ] and [φO?]× φ ∼ [φφ] .

In the second decomposition, the field O? is assumed to appear in the OPE of φ with itself
and to have lower twist than φ, i.e. h? < hφ. In the limit of large tensor structures (and
large spins, of course), the relevant OPE coefficients

C
(η)
[φφ]0,J1φ[φφ]0,J2

and C
(η)
[φO?]0,J1φ[φφ]0,J2

were first spelled out by Antunes et al. [26]. Here, we recover the same expressions, see
eqs. (5.12) and (5.30), despite relying on different methods and assumptions. But we can
do better. Our new results on five-point blocks in the restricted lightcone limit enable
us to analyze crossing symmetry without sending the fifth cross ratio to zero. Using this
technology, we bootstrap the above OPE coefficients in a new regime with large spins but
discrete tensor structure, i.e. in a regime where the tensor structure label η takes values
η = J1 − δn with δn = 0, 1, 2, . . . ,∞. For the OPE coefficient that involves both [φφ] and
[φO?], the relevant formula for the OPE coefficient is presented in eq. (5.52). For the other
OPE coefficient that involves two double twist fields of the form [φφ], our new results are
spelled out in eqs. (5.45) and (5.56). If the field φ appears in the OPE of φ with itself,
eq. (5.56) represents a subleading correction to the leading term (5.45).

1.3 Detailed plan of part I

Let us now outline the plan of this work in some detail. In order to introduce our analytic
tools and explore how to use them, we shall begin with the case of scalar four-point functions
in section 2. In contrast to the usual treatment, however, we will derive all required results
in lightcone blocks directly from the Casimir equations in the (restricted) lightcone limit.
In the direct channel we first look at the Casimir equation in the restricted lightcone limit
in which only one pair of points becomes lightlike separated, see section 2.2. This regime
contains both the full lightcone limit and the OPE limit. It is well known that the associated
Casimir equation can be solved in closed form. Then we look at the Casimir equations for
both the direct and the crossed channel in the full lightcone limit and determine the finite-
dimensional space of solutions. The existence of a closed-form solution in the restricted
lightcone limit makes it easy to select the relevant solutions that are associated with the
OPE boundary condition, including the overall normalization of the lightcone blocks. Once
the lightcone blocks are constructed, we review the familiar lightcone bootstrap analysis
in section 2.4. Some emphasis is put on how to determine the lightcone scaling behavior of
the spin quantum numbers in the crossed channel by acting with crossed-channel Casimir
operators on terms in the direct-channel expansion.

After this warm-up, we then turn to N = 5 in section 3. Scalar five-point functions
provide an ideal framework to develop our new analytic tools. Indeed, in this case, lightcone
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blocks can be studied through the lightcone OPE, as was exploited in [24–26]. Hence, all
the results that we shall obtain through the mere use of Casimir differential equations can
be cross-checked with those standard techniques. In the full lightcone limit, five pairs of
points become lightlike separated. Once again, we shall start in section 3.2 by looking at
direct-channel blocks in a restricted lightcone limit where only two pairs become lightlike
separated, and which still contains both the OPE and the full lightcone limit. The only
difference with N = 4 is that lightcone blocks in the restricted lightcone limit are not
written down in closed form but rather through an integral formula. As we shall show, the
integral representation we obtain by solving lightcone Casimir equations is equivalent to
the formula one obtains from the lightcone OPE. Then, we solve the direct- and crossed-
channel Casimir equations in the (full) lightcone limit where additional pairs of points
become lightlike separated. The correct solutions of the lightcone Casimir equations can
be selected and normalized with the help of the integral formula for direct channel blocks in
the restricted lightcone limit. As we shall show later in the text, see section 5, the analysis
of crossing symmetry requires the construction of crossed-channel lightcone blocks for two
different scaling laws of the eigenvalues. Our analysis of lightcone blocks results in a set of
relatively simple formulas for direct- and crossed-channel blocks that are clearly marked,
see section 3.3.

Section 4 is devoted to the study of the unique non-trivial vertex operator that exists
for five external points. We find that this operator, being quite complicated for generic
kinematics [43], simplifies considerably in the lightcone limit — so much so that we are
able to find its joint eigenfunctions with the Casimir operators explicitly. This provides
important new insight into the relation between the conventional tensor structure labels
which are used in section 3 and the eigenvalues of vertex differential operators. In analogy
to Simmons-Duffin’s notion of Casimir singular terms we can use vertex differential oper-
ators to introduce the new notion of vertex singular behavior. In this context, the results
of section 4 allow us to determine the scaling behavior of tensor structure labels in the
lightcone regime, see section 5.

The explicit formulas for lightcone blocks and differential operators from sections 3
and 4 prepare us for the analysis of the crossing symmetry equation for five external
scalars in the lightcone limit, see section 5. There we shall show how our results on blocks
allow us to recover all of the known OPE coefficients and go beyond. In section 5.1 we
spell out the leading terms within the direct channel. Then we address each of these terms
in section 5.2 and show how to reproduce them from the crossed-channel expansion. While
most of this analysis just reproduces results from [26], there is one important direct-channel
contribution for which we can go much beyond the previous status. Our progress is related
to the fact that we will be able to construct the lightcone blocks in both the direct and
crossed channel with the minimal number 2N − 6 = 4 of lightcone limits performed. This
is one limit less than in [26] and will allow us for the first time to resolve the dependence of
the OPE coefficients on the tensor structure. This motivates us to reanalyze the crossing
equation in the fourfold lightcone limit in section 5.3, where we obtain the OPE coefficients
in the new scaling regime of large spin and discrete tensor structures. Finally, we review
some applications and checks of our results in section 5.4.
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Section 6 contains an outlook to the second part [52] which is devoted to the lightcone
bootstrap for six-point functions. As we shall explain, the crossing equation we will address
in the second part relates a direct snowflake channel to a crossed comb channel. While
direct channel lightcone blocks in the snowflake channel can be studied through lightcone-
OPE integral formulas, such tools no longer exist for the crossed comb channel, and here
is where our new technology comes to shine. Indeed, it turns out that the program we
described in section 3 carries over to six-point comb-channel blocks and for the first time
provides explicit formulas for the relevant lightcone blocks. We shall show a few examples
and also showcase some of the simplest results that can be extracted from the bootstrap
analysis. Additional formulas for relevant lightcone blocks, detailed derivations, as well as
applications to the six-point lightcone bootstrap will be given in the second part. This
includes a discussion of the anomalous corrections to the conformal weights of triple-twist
operators.

2 Lightcone bootstrap for four points

The purpose of this section is to provide a smooth introduction to the multipoint lightcone
bootstrap. In order to do so we shall review the standard lightcone bootstrap analysis for
scalar four-point functions. The lightcone bootstrap program requires a good knowledge
of conformal blocks in certain limits. When dealing with four-point functions, the blocks
and their limiting behavior are well known. Our discussion here will put some stress on the
derivation of these properties from Casimir differential equations. We explain the usefulness
of polynomial cross-ratios, the way we take (scaled) limits, and the resulting expressions
for lightcone blocks. Special attention will be paid to the normalization of the blocks in
the limit.

2.1 Preliminaries on blocks and lightcone limits

There are many ways to parametrize conformal invariants of four points. The most basic
choice is the two cross-ratios (u, v) that are defined by

u = X12X34
X13X24

= zz̄, v = X14X23
X13X24

= (1− z)(1− z̄). (2.1)

Here, Xi denote the embedding space insertion points of the four scalar fields and Xij =
Xi ·Xj , as usual. Note that we have also introduced a second set of cross-ratios, (z, z̄). For
reasons we shall discuss below, we shall refer to u, v as polynomial cross-ratios and use the
term OPE cross-ratios when dealing with (z, z̄).

The usual conformal partial wave or conformal block expansions for correlation func-
tions of four identical scalar fields φ with weight ∆φ are given by

〈φ(X1) . . . φ(X4)〉 = (X14X23)−∆φ
∑
O
C2
φφOψ

(14)(23)
O (u, v) (2.2)

= (X12X34)−∆φ
∑
O
C2
φφOψ

(12)(34)
O (u, v) (2.3)
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The central objects in these equations are the conformal blocks ψ. The second line is an
expansion in terms of s-channel blocks ψ(12)(34) while in the first line we expanded the
same correlator in terms of t-channel blocks ψ(14)(23). The two sets of blocks are related
by a simple exchange of the two cross-ratios, ψ(14)(23)(u, v) = ψ(12)(34)(v, u). The famous
crossing symmetry equations for scalar four-point functions,∑

O
C2
φφOψ

(14)(23)
O (u, v) = v∆φu−∆φ

∑
O
C2
φφOψ

(12)(34)
O (u, v) . (2.4)

are obtained by equating the two expansions in terms of t- and s-channel blocks, respec-
tively.

As emphasized by Dolan and Osborn [45], the conformal blocks can best be char-
acterized through the differential equations they satisfy. For s-channel blocks, these are
given by

D2
12ψ

(12)(34)
O =

{
hO(hO − d+ 1) + h̄O(h̄O − 1)

}
ψ

(12)
O =: λOψ(12)

O , (2.5)

D2
12 := (X12X34)∆φ

1
4tr (T1 + T2)2 (X12X34)−∆φ , (2.6)

To write the eigenvalue λO on the right-hand side we defined the half-twist h := ∆−J
2 and

the half-anti-twist h̄ := ∆+J
2 in terms of the weight ∆ and the spin J of the intermediate

fieldO. In the second line we have introduced Ti to denote the usual action of the generators
of the conformal Lie algebra on the primary field φ(Xi). The operator D2

12 was first
computed by Dolan and Osborn [53]. When expressed in terms of the cross-ratios u, v, it
takes the form

D2
12 = (1− u− v)∂vv∂v + u∂u (2u∂u − d)− (1 + u− v) (u∂u + v∂v)2 . (2.7)

We note that the coefficients of this second-order differential operator are polynomials in
the cross-ratios u, v. This is why we refer to them as polynomial cross-ratios. Clearly,
a similar discussion applies to the t-channel blocks, only that u and v are exchanged in
passing from one channel to the other.

While the crossing symmetry equations of d-dimensional conformal field theories are
too difficult to solve analytically for now, at least if d > 2, there exist certain limits in which
they simplify drastically. The most interesting of these is the so-called lightcone limit that
is reached after continuation to Lorentzian signature when x4 is light-like separated from
x1, i.e. X14 ∼ 0. In Lorentzian signature, this limit can be performed without making
x1 = x4 and hence without imposing u = 1.2 To perform the relevant limit, we shall assign
appropriate orders to the cross ratios. Let us note that all the cross-ratios depend on the
insertion points only through Xij . We can keep track of how a given cross-ratio behaves
as we make a pair of points xi and xj light-like separated by introducing a parameter εij
and performing the substitution Xij 7→ εijXij . In the case at hand, we want to make x1

2Caution: contrary to the usual conventions of the four-point bootstrap and of [26], we will take the
channel containing the (12) OPE as the crossed channel. This will simplify the computations of limits of
blocks in the polynomial cross-ratios later on.
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and x4 light-like separated and hence introduce a parameter ε14. Upon the substitution
X14 → ε14X14, the cross-ratio v behaves as v → ε14v while the second cross-ratio u is
invariant. We can therefore think of v as a quantity of ε14-order O(ε14) while the cross-
ratio u has order O(ε014). Later in the analysis, we will furthermore make x1 and x2
light-like separated. This motivates us to study the order also with respect to ε12. It is
easy to see that u is of ε12 order O(ε112) while v is O(ε012). We note that the order extends
from the polynomial cross-ratios to the Casimir differential operators. The operator (2.7),
for example, has terms of ε12-order O(εn12) with n = 0, 1. With respect to the ε14-order,
on the other hand, it contains terms of order O(εm14) with m = −1, 0, 1, i.e. there are also
ε14-singular terms. Often we want to keep track of several of these orders at the same time.
In the case at hand, we introduce ~ε = (ε14, ε12) and then denote the ~ε-order by O(εn14ε

m
11)

or simply (n,m). With respect to this ~ε-order, our cross-ratios u and v have order (0, 1)
and (1, 0), respectively. This implies that ~ε is associated with the regime

LCL~ε : v � u� 1

in the space of cross-ratios. Note that the vector ~ε ′ = (ε12, ε14) is associated with a different
regime in which we take u and v to zero in the opposite order, i.e. in which u� v � 1.

2.2 Lightcone blocks in the direct channel

In order to study the behavior of the t-channel blocks in the lightcone regime LCL~ε, we
shall study the limit of the Casimir eigenvalue equation. Let us note that the t-channel
Casimir operator D2

14 is obtained from the s-channel operator we have displayed in eq. (2.7)
by exchanging the cross-ratios u and v, i.e.

D2
14 = (1− u− v)∂uu∂u + v∂v (2v∂v − d)− (1 + v − u) (u∂u + v∂v)2 . (2.8)

For reasons that will become clear later, we will implement the lightcone limit of the direct
channel blocks in stages, starting with the restricted limit in which we only send v to zero
while keeping u finite at first. For the associated regime, we shall write

LCL(1)
ε : v � 1 .

The superscript (1) reminds us that we only consider the first component ε14 of the order
~ε. The dependence of the Casimir operator D2

14 on ε14 gives rise to a split into a sum of
two terms, i.e.

D2,ε14
14 = ε014D

(0)
14 + ε14D(1)

14 (2.9)

where the leading term is given by

D(0)
14 = (1− u) D2 1(v∂v, v∂v; 2v∂v; 1− u;−∂u) + v∂v(2v∂v − d) (2.10)

Here, we find it useful to introduce the symbol D2 1(a, b; c; z, ∂) that will be used in later
discussions:

D2 1(a, b; c;w, ∂) := ∂(w∂ + c− 1)− (w∂ + a)(w∂ + b). (2.11)
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In general, the parameters a, b, c can be differential operators that commute with w, ∂, while
w is some function of the cross-ratios. Since only v scales with ε14 and D(0)

14 is homogeneous
of degree zero in ε14, this operator commutes with the Euler operator ϑv ≡ v∂v.

The t-channel conformal blocks are eigenfunctions of the Casimir differential operator
D2

14. Hence, if we assume the eigenvalues not to scale with ε14, their limits in the regime
LCL(1) where we send v to zero must solve the differential equation

D(0)
14 ψ

(14)(23);(0)
O (u, v) =

{
hO(hO − d+ 1) + h̄O(h̄O − 1)

}
ψ

(14)(23);(0)
O (u, v) . (2.12)

Since the differential operator D(0)
14 commutes with the Euler operator v∂v, we can make

the following Ansatz for a complete set of solutions

ψ
(14)(23);(0)
(h,h̄) (u, v) = vhgh,h̄(u) . (2.13)

We insert this Ansatz into the leading order eigenvalue equation using

v−h
(
D(0)

14 − h(h− d+ 1)
)
vh = (1− u) D2 1(h, h; 2h; 1− u,−∂u). (2.14)

It is now easy to see that eigenfunctions take the form

ψ
(14)(23)
(h,h̄) (u, v) LCL(1)

= ψ
(14)(23);(0)
(h,h̄) (u, v) = vh(1− u)J F2 1 (h̄, h̄; 2h̄; 1− u). (2.15)

with J = h̄ − h, as before. The formula we wrote requires some more comments. Obvi-
ously, the differential equation (2.12) is of second order and, hence, possesses two linearly
independent solutions. But in the regime LCL(1) it is not difficult to determine which one
is relevant. Let us recall that the relevant solution of the four-point Casimir equation is
uniquely determined by its behavior in the OPE limit, which corresponds to v ∼ 0 and
u ∼ 13 with v � (1 − u), in accordance with its Lorentzian definition. In this limit, the
conformal block behaves as

ψ
(14)(23)
(h,h̄) (u, v) = vh(1− u)J (1 + O(v, 1− u)) . (2.16)

With this normalization condition for the blocks stated, we now note a fortunate fact:
the regime LCL(1) in which we were able to solve the Casimir equation through eq. (2.15)
does contain the OPE limit point at which blocks are selected and normalized. So, all
we need to do is verify that the solution we proposed in eq. (2.15) satisfies the boundary
condition (2.16) at u ∼ 1. This is obviously the case.

After discussing conformal blocks in the partial lightcone limit, i.e. in the regime
LCL(1), we now want to address the full lightcone limit in which u is sent to zero as well.
Obviously, we could easily find the limiting behavior of the blocks from our formula (2.15),
using standard properties of hypergeometric functions. But here we want to go back to
the study of differential equations instead and see how much we can deduce from them.
In order to study the full lightcone limit we reinstate the parameter ε12 that determines

3Recall that our direct channel is what is often referred to as t-channel and hence the cross-ratios u and
v are exchanged with respect to the usual s-channel discussion.
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the behavior of u as we go in the lightcone regime LCL. The leading term of the Casimir
operator (2.8) in the order ~ε = (ε14, ε12) reads

D2,~ε
14 = ε−1

12 D
(0,−1)
14 + O(ε012), (2.17)

where the superscript reminds us that the leading term of the quadratic Casimir operator
is of order O(ε014ε

−1
12 ). Explicitly one finds that

D(0,−1)
14 = ∂uu∂u. (2.18)

Let us also note that O(ε012) consists of two terms, one that is constant in ε12 and one that
is linear. Their precise form is easily found but irrelevant for us. If we now assume that
the eigenvalue h̄(h̄− 1) + h(h− d+ 1) of the Casimir operator does not depend on ε12, we
conclude that the leading contribution of our conformal blocks in the limit in which ε12 is
sent to zero must be in the kernel of the operator D0,−1

14 ,

ker(D(0,−1)
14 ) = Span(vh, vh log u). (2.19)

Here the eigenvalue h of the Euler operator v∂v can assume any non-negative real value.
This behavior of the lightcone blocks is indeed consistent with our previous equation (2.15)
for the normalized lightcone blocks. As one can verify with the help of standard results in
the behavior of hypergeometric functions, lightcone blocks behave as

ψ
(14)(23)
(h,h̄) (u, v) LCL~ε∼

 vh if h̄ = 0
−B−1

h̄
vh log u+ O(1) if h̄ > 0

, (2.20)

where Bh̄ := Γ(2h̄)−1Γ(h̄)2. In the first line we have kept the prefactor vh even though h̄ = 0
actually implies h = 0 in a unitary theory. The solution we displayed is consistent with
the statement (2.19). But the analysis of the Casimir equation in the full lightcone limit
LCL is not sufficient to fully determine the solution. Recall that the solution is determined
through the behavior of the blocks in the OPE limit. But the latter is not contained in
LCL. The only way in which we can determine the precise vector in the kernel (2.19)
that is chosen by the OPE boundary condition is to go back to our solution (2.15) which
we argued to satisfy the OPE boundary condition. We can then take the limit u → 0 to
obtain our results in eq. (2.20) with the correct normalization. This follows from standard
limiting formulas for hypergeometric functions.

The analysis of direct channel blocks we presented here serves as a good model for our
discussion of lightcone limits for multipoint blocks. It will turn out that in all the relevant
cases we will be able to solve for blocks in a partial lightcone regime which contains both
the OPE and the full lightcone limit. Though the asymptotics of these solutions are not
well studied in comparison with standard hypergeometric functions, we will obtain integral
formulas that provide access to the limiting behavior in both the OPE and the lightcone
limit. In the case at hand, for example, we can also write the solution to the Casimir
equation (2.12) in the form

ψ
(14)(23)
(h,h̄) (u, v) LCL(1)

∼ vh(1− u)J
Bh̄

∫ 1

0
dt (t(1− t))h̄−1(1− (1− u)t)−h̄ . (2.21)
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It is easy to see that the integral in the last expression has a logarithmic divergence for
u ∼ 0 which stems from the integration near t = 1. In order to determine the leading term
of the integral as we send u to zero, we can write∫ 1

0
dtth̄−1(1− t)h̄−1(1− (1− u)t)−h̄ u�1∼

∫ 1

0
dt 1− u

1− (1− u)t =
∫ 1

u

dv
v
∼ − log u . (2.22)

In sum, we indeed reproduce the expected log u divergence with a coefficient B−1
h̄

of the
integral in eq. (2.24). This matches our result in eq. (2.20).

While the integral formula (2.21) can be found through the analysis of the Casimir
differential equations, it can also be obtained from the lightcone OPE. Let us note that
even in generic kinematics, i.e. before sending any of the cross-ratios to zero, conformal
blocks possess integral representations. But these are difficult to evaluate. They simplify
significantly, however, when some of the external insertion points are lightlike separated
so that one can use the lightcone OPE. In the case of N = 4 external points, the integral
formula for blocks becomes

ψ
(14)(23)
(h,h̄) (u, v) = (X14X23)h(X4∧X1·X2∧X3)J

∫
R2

+

ds1ds4(s1s4)h̄−1

R×Bh̄

X−h̄a2 X
−h̄
a3 (1 + O(X14)) .

(2.23)
In this expression, Xa := s1X1 + s4X4 is a point on the projective lightcone when X14 = 0,
Bh̄ := Γ(h̄)2Γ(2h̄)−1 is the diagonal of the Euler Beta function, and R× :=

∫∞
0 r−1dr is the

volume of the dilation group {(s1, s2)→ (rs1, rs2)}. Formula (2.23) is obtained by inserting
the lightcone OPE — see eq. (A.1) of appendix A.1 — into the four-point function, before
evaluating the resulting three-point function in the integrand using standard formulas for
the three-point function of two scalar fields φ and one spinning field with weight ∆O = h+h̄
and spin J = h̄−h. Since the integral is homogeneous of degree zero in X1, X2, X3, X4 and
manifestly SO(1, d+ 1) invariant, it can be written as a function of the cross-ratios (u, v).
After the change of variables (s1, s4) = (rt, r(1− t)), it indeed takes the form

ψ
(14)(23)
(h,h̄) (u, v) v�1∼

(
x2

14x
2
23
)h

Bh̄

∫
dt

(
x2

24x
2
13 − x2

34x
2
12
)J(

x2
12t+ (1− t)x2

24
)h̄ (

x2
13t+ (1− t)x2

34
)h̄

= vh(1− u)J
Bh̄

∫ 1

0
dt (t(1− t))h̄−1(1− (1− u)t)−h̄ . (2.24)

The expression in the second line gives the integral representation of the hypergeometric
solution (2.15) that we used in the previous paragraph to evaluate the limiting behavior in
the full lightcone limit. With these comments stated, we close the discussion of the direct
channel and turn to the analysis of lightcone blocks in the crossed channel.

2.3 Lightcone blocks in the crossed channel

Let us now discuss the lightcone limit of conformal blocks in the crossed s-channel. We
recall that the Casimir differential operator D2

12 in the crossed channel has been displayed
in eq. (2.7). To analyze its eigenfunctions in the full lightcone limit LCL, we expand the
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Casimir operator D2
12 as

D2,~ε
12 = ε−1

14 (∂vv∂v − ε12u∂vv∂v) + O(ε014). (2.25)

Since the leading contribution commutes with the Euler operator ϑu ≡ u∂u, we can without
loss of generality choose a basis of functions whose leading behavior takes the form

ψ
(12)(34)
(h,h̄) (u, v) ∼ uhg(h,h̄)(v)(1 + O(uh+1)) (2.26)

as we send the cross-ratio u to zero. The leading term eigenvalue equation then becomes

∂vv∂vg(h,h̄)(v) = λ(h,h̄)g(h,h̄)(v), λ(h,h̄) = h(h− d+ 1) + h̄(h̄− 1) . (2.27)

Contrary to the direct t-channel, the v → 0 limit does not restrict the twist of blocks ap-
pearing in the s-channel. Thus, the Casimir eigenvalue can vary over all positive numbers,
and we can distinguish three regimes

g(v) v�1∼ N


1 or log v if λ = O(ε014),
K0(2

√
λv) if λ = O(ε−1

14 ),
0 otherwise.

(2.28)

In the first case, the eigenfunctions must be in the kernel of ∂vv∂v. If the eigenvalue
λ~ε = ε−1

14 λ scales with ε14 as stated in the second line, the right-hand side of the eigenvalue
equation contributes and we obtain the equation

(∂vv∂v − λ) g = 0 (2.29)

which can be transformed into Bessel’s differential equation by a simple change of variables.
This goes a long way toward explaining the behavior of g(v) we have displayed. But as
in the direct channel, we still need to ensure that the blocks satisfy the correct boundary
conditions and in particular determine the normalization N .

In order to so, we exploit the fact that the leading term ∂vv∂v in the Casimir operator
C2

12 at order O(ε−1
14 ε

0
12) is the same regardless of whether we take ε14 or ε12 to zero first, i.e.

lim
ε14→0

lim
ε12→0

ε14
(
D2,~ε

12 − λ
~ε
)

= lim
ε12→0

lim
ε14→0

ε14
(
D2,~ε

12 − λ
~ε
)
. (2.30)

We can thus retrieve these asymptotics of the crossed channel lightcone blocks by taking ε12
to zero first. In this case, the analysis is identical to the one we described in our discussion
of the direct channel. Consequently, in the limit ε12 → 0 (with v kept finite), our blocks
take the exact form of (2.15) with u↔ v and with h corresponding to a fixed half-twist,

ψ
(12)(34)
(h,h̄) (u, v) u�1∼ uh(1− v)J F2 1 (h̄, h̄; 2h̄; v) . (2.31)

Here we have already inserted the normalization that we had determined previously. Con-
sequently, given that the eigenvalue is λ = h(h− d+ 1) + h̄(h̄− 1), and that we have fixed
h already, our three regimes correspond to

ψ
(12)(34)
(h,h̄) (u, v) LCL~ε∼


1 or B−1

h̄
log v−1 if h̄ = O(ε014)

N LS
(h,h̄)u

hK0(2h̄
√
v), if h̄ = O(ε−1/2

14 )
0 otherwise,

(2.32)
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with
N LS

(h,h̄) = 4h̄
√
h̄/π (2.33)

and Bx := B(x, x) = Γ(x)2/Γ(2x) given by the diagonal of the beta function as before. In
order to determine the normalization N in the second case we have used that K0(2x) ∼
− log(x) near x ∼ 0 along with the Stirling formula to evaluate B−1

h̄
as h̄ tends to infinity.

This concludes our discussion of the lightcone limit of four-point blocks for identical scalars
in the direct and the crossed channel. We stress once again that in order to obtain the
two key results (2.20) and (2.32) for the lightcone limits of blocks in the direct and crossed
channel, respectively, we only needed the Casimir differential equations. This applies in
particular to the dependence of the lightcone blocks on the cross-ratios. The normalizations
could also be determined from the Casimir equations, though for this purpose we had to
solve them outside the lightcone limit to connect with the OPE limit.

2.4 Review of the four-point lightcone bootstrap

We can now exploit the results on lightcone blocks to analyze the crossing symmetry
equation (2.4). Here, our discussion will closely follow some of the original literature [4, 5].
Let us first evaluate the direct channel, i.e. the left-hand side of the crossing equation, in
the regime v � u� 1. Using the result (2.20) for the limit of the blocks one finds

∑
O
CφφOψ

(14)(23)
O (u, v) ∼ 1+C2

φφO∗
Γ(2h̄∗)
Γ(h̄∗)2

[
vh∗

(
log u−1 + O(u0)

)
+ O(vh∗+1)

]
+O(vh>h∗).

(2.34)
Here, we denote the leading-twist operator in the operator product of φ with itself by O?,
and we assume it is unique. Note that uniqueness does not apply to generalized free-field
(GFF) theory, where the leading twist is infinitely degenerate and the operator product
takes the form

φ(X1)φ(X4) = 1 +
∞∑
n=0

Xn
14

∞∑
J∈2Z+

Cφφ[φφ]n,Jfφφ[φφ]n,J (X1 −X4, ∂X4)[φφ]n,J(X4). (2.35)

Here we have introduced the standard notation [φφ]n,J for the double-twist operators of
the form

[φφ]n,J ;µ1,...µJ (X) = φ(X)�n ∂µ1 · · · ∂µJφ(X) . (2.36)

The label J denotes the spin of the field, while τn,J = 2∆φ+2n is the twist in GFF theory.
In terms of our parameters h and h̄ this means

h[φφ]n,J = τn,J/2 = ∆φ + n , h̄[φφ]n,J = ∆φ + n+ J . (2.37)

Note that if φ is a real scalar field, then only even spins will appear in the φ × φ OPE,
see e.g. [2, footnote 12]. As one can read off from these formulas, the operator prod-
uct (2.35) contains an infinite tower of operators {[φφ]n,J}n,J∈2Z+ at leading twist. There
are degeneracies that may be lifted by interactions.

Now, analytic bootstrap teaches us that for a general conformal field theory, with an
isolated operator contribution like O? in eq. (2.34), there exist towers of operators whose
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OPE coefficients and twists approach those of GFF double-twist operators at large spin.
The main goal is to find precise expressions for how their OPE data is corrected. Note
also that C2

φφO∗O(vh∗+1) in eq. (2.34) corresponds to the contributions of descendants
of the leading-twist operator, whereas the next-to-leading-twist operator O′ would give
C2
φφO′O(vh′). In many cases of interest, we can expect several h′ < h? + 1 primaries to

dominate over the first descendants. In the 3D Ising model, for example, ε and Tµν give
important contributions [22].

We will now re-derive two of the important results of the lightcone bootstrap, the
computation of the OPE coefficients Cφφ[φφ]0,J and the anomalous dimensions h[φφ]0,J−∆φ,
to leading order in the large J limit. Here [φφ]0,J is the family of operators whose twists
approach the GFF double twist tower for n = 0. Given our results (2.32) on the lightcone
limit of crossed-channel blocks, we can write the s-channel sum on the right-hand side of
the crossing symmetry equation (2.4) in the v � u� 1 limit as∑
O
C2
φφOψ

(12)(34)(u, v) =

1 +
∫ ∞
O(ε014)

dλO
4
√
λO
N LSC2

φφOu
hmin
O K0(2

√
λOv)

(
1 + O(v

τ
2 )
)

+
∑

λO=O(ε014)

log v−1

Bh̄

(
1 + O(v0)

)
.

(2.38)

In the integral over large Casimir eigenvalues, hmin
O is the minimal twist that appears in

the operator product of φ with itself for which the Casimir λO is not bounded above. If
this hmin

O is finite (which it usually is), then this implies that O has large spin

h̄O = JO + hmin
O =

√
λO + O(ε012). (2.39)

Comparing the two expressions (2.34) and (2.38) for the limiting behaviors of the two sides
of the crossing equation (2.4) we deduce to leading order

1 + O(vh?) = v∆φu−∆φ
∑
O
C2
φφOψ

(12)(34)(u, v). (2.40)

One immediately observes that the s-channel sum must yield a divergent power law v−∆φ

to leading order — this eliminates the finite sum over primaries with λO = O(v0), since
these contributions diverge logarithmically at most. We thus need to solve

1 + · · · = v∆φ

∫ ∞
O(1)

dλO
4
√
λO
N LSC2

φφOu
hmin
O −∆φK0(2

√
λOv) + . . . (2.41)

This equation requires us to impose hmin
O = ∆φ = 2hφ, from which we deduce that the

left-hand side of the crossing symmetry equations is obtained from the exchange of the
double-twist operators [φφ]0,J with spins J that scale as

√
λ = J + O(1) = O(v−1/2) .

If we make such a scaling Ansatz, we then find

N LSC2
φφO = c0

8Jβ−1

Γ(β/2)2
(
1 + O(J−τ )

)
, (2.42)
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and using the auxiliary formula∫ ∞
O(
√
v)

dy
y

(
y

2

)β
Kα(y) = 1

4Γ
(
β + α

2

)
Γ
(
β − α

2

)
+ O(v

β−α
2 ), β > α, (2.43)

we reduce the leading order terms of the crossing symmetry equation to

1 + · · · = c0v
∆φ−β2 + . . .⇒ N LSC2

φφO = 8J2∆φ−1

Γ(∆φ)2
(
1 + O(J−τ )

)
. (2.44)

This is the same as the large spin limit of the OPE coefficients of double-twist operators in
a GFF theory [54], obtained for a more general conformal field theory using the lightcone
bootstrap.

Moving on to the next-to-leading order in the crossing equation, we have

1 +
C2
φφO

B(h̄?)
vh?

(
log u−1+ O(u0)

)
+ O(vh>h?) =

v∆φ

∫ ∞
O(1)

dJ
J

2J2∆φ

Γ(∆φ)2u
h[φφ]0,J−∆φK0(2J

√
v)(1 + O(J−τ )).

(2.45)

Here we once again discarded the finite spin contributions with O(log v) divergence at most.
To reproduce vh? log u asymptotics, one makes the following ansatz for leading anomalous
dimension corrections to double-twist operators at large spin:

h[φφ]0,J = ∆φ + γ

2J2h? + O
(
J−τ

)
, τ > 2h?. (2.46)

Expanding vh? in the t-channel, we obtain

C2
φφO?
Bh̄?

= −γ2
Γ(∆φ − h?)2

Γ(∆φ)2 . (2.47)

Note that the anomalous dimension correction vanishes when h? = ∆φ. This is the sig-
nature of GFF: the leading-twist operators are [φφ]0,J , and their scaling dimensions are
not anomalous. Analogous results for the n > 0 families in eq. (2.37) can be obtained by
focusing on higher powers of u in eqs. (2.41) and (2.45) [8, 9].

In the previous analysis, we have seen that we can only reproduce the leading terms on
the left-hand side of the crossing symmetry equations by summing over large spin double-
twist operators on the right-hand side, i.e. with the help of crossed channel lightcone
blocks (2.32) for which the Casimir eigenvalue λ scales as λ ∼ ε−1

14 . In [22], Simmons-
Duffin gave a simple proof of this fact. The argument is based on the observation that the
Casimir operator D2

12 has a stable action on any finite spin subspace in the (12) channel,
whereas its action on v−∆φ produces higher-order divergences in v. To see this in more
detail, let us first define the vector space

VL := Span
{
ψ

(12)(34)
O : hO = ∆φ, h̄O < L

}
, L <∞. (2.48)

We rewrite the crossing equation as

u∆φv−∆φ + · · · =
∑
O
C2
φφOψ

(12)(34)
O (u, v). (2.49)
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Acting repeatedly with D2
12 on the identity contribution, we find

D2
12u

∆φv−∆φ = ∆φ(∆φ + 1)u∆φv−(∆φ+1) + O(v−∆φ)
−→ D2

12u
∆φv−(∆φ+1) = (∆φ + 1)(∆φ + 2)u∆φv−(∆φ+1) + O(v−(∆φ+1))

−→ . . .

As long as ∆φ /∈ Z<0, this series never truncates and D2
14 stabilizes only on an infinite

dimensional vector space Span(u∆φv−(∆φ+n))n∈Z>≥0 —we say that (u/v)∆φ is D2
12-singular.

It follows that the expansion of (u/v)∆φ in eigenvectors of D2
12 has infinite support. In

short,
(u/v)∆φ /∈ VL, ∀L <∞. (2.50)

In general, a direct channel contribution is reproduced by large spin operators in the crossed
channel if and only if it is D-singular for some Casimir differential operator D in the crossed
channel. In five- and six-point crossing equations, where we obtain more unconventional
asymptotics in the lightcone limit of the direct channel, we will demonstrate that they yield
large spin conformal field theory data by virtue of being Casimir-singular.

3 Lightcone blocks for five points

The aim of this section is to develop the technology that is needed to determine the lightcone
limits of multipoint conformal blocks from the differential equations they satisfy. Our
constructions are carried out in the case of N = 5, for which lightcone blocks have been
studied through the lightcone OPE, so that we can compare many of our findings with
previous results, most notably those obtained in [26]. On the other hand, the approach we
follow here can be carried out for arbitrary topology of the OPE channel, and in particular
for comb channels where no other approach exists. Even for N = 5 insertion points, our
approach adds to the study of [26] in two respects. On the one hand, for any exchanged
twists h1, h2, we are able to construct lightcone blocks explicitly in a limit where only four
of the five cross-ratios are taken to zero. This will give us a much higher resolution in
the bootstrap analysis later on. In addition, we can put to a stringent test and provide
evidence for one of the central assumptions of [26], namely that it is possible to compute
crossed-channel lightcone blocks by taking limits of an integral formula that is valid only
in the direct channel.

In the first subsection, we review some basic notations that are needed in dealing with
five-point functions and their blocks. We will also introduce the crossing symmetry equation
to be studied in the next section. This equation provides us with a precise understanding
of the relevant limit and a list of blocks whose lightcone behavior we need to determine.
The relevant lightcone blocks are then computed in the remainder of the section, first
for the direct channel and then for the crossed one. The special case of three-dimensional
lightcone blocks with parity-odd tensor structures is treated in appendix E, and is based on
the results present in the main text. As we already saw in our discussion of four insertions,
the differential equations are a powerful tool to determine the dependence of the lightcone
blocks on the cross-ratios, but they leave an overall normalization undetermined. To find
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the normalizations, we need to connect the lightcone limit to the OPE limit. In order to
do so, we shall use a strategy that is closely modeled after the strategy we explained for
four-point blocks in the previous section.

3.1 Preliminaries on blocks and lightcone limits

Five-point functions in d ≥ 3 are parametrized by five cross-ratios. The following polyno-
mial cross-ratios for five-point functions were first constructed in [42],

u1 = X12X34
X13X24

, v1 = X14X23
X13X24

,

u2 = X23X45
X24X35

, v2 = X25X34
X24X35

,

U
(5)
1 = X15X23X34

X24X13X35
. (3.1)

It will often be convenient to use the “snowflake” cross-ratios usi, i = 1, . . . , 5 used in [24,
26]. In terms of our polynomial cross-ratios, the cross-ratios usi read

us1 = u1/v2 = X12X35
X13X25

, us2 = v1 = X14X23
X13X24

, (3.2)

us3 = v2 = X25X34
X24X35

, us4 = u2/v1 = X45X13
X35X14

, (3.3)

us5 = U5

v1v2
= X15X24
X14X25

. (3.4)

These cross-ratios have the simple shift properties us(i+1) = usi|Xi→Xi+1 as we shift the
label i of the external scalar fields by one unit.

While we shall mostly work with the snowflake cross-ratios, there is one more set
of cross-ratios that will play some role below, namely the so-called OPE cross-ratios
z1, z2, z̄1, z̄2 and X := 1 − w that were introduced in [42]. These are the five-point analog
of the cross-ratios z and z̄ that Dolan and Osborn introduced to study the OPE limit. In
the case of five-point functions, the OPE limit corresponds to the regime

OPE(12)3(45) : z̄1, z̄2 � z1, z2 � 1, (3.5)

For the purposes of this paper, it suffices to record the map from the snowflake cross ratios
to the OPE cross-ratios near the region where z̄1,2 are small,

us1 = z̄1z1
1− z2

(1 + O(z̄2)), us2 = 1− z1 + O(z̄1), (3.6)

us4 = z̄2z2
1− z1

(1 + O(z̄1)), us3 = 1− z2 + O(z̄2), (3.7)

us5 = 1− z1z2(1− w)
(1− z1)(1− z2) + O(z̄1, z̄2). (3.8)

The behavior of conformal blocks in this OPE limit provides boundary conditions that are
used to select a particular solution of the differential equations.

For five points there exist a total number of 15 different channels which are all of a
unique (comb-channel) topology. Here we shall look at one particular pair of channels that
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Figure 1. Graphical representation of the planar five-point crossing symmetry equation studied
in this paper. The crossed channel is obtained from the direct channel by cyclic permutation of
points, i→ i+ 1 mod 5.

is obtained by shifting the label of the external fields i 7→ 1 + imod 5 by one unit, see
figure 1. Let us stress that in the case of five points, this duality can be used to generate
all others by iterated application since all OPE channels have the same topology, as in the
case of four points. We will fix the cyclic enumeration of external points to be such that

DC = (51)2(34) and CC = (12)3(45) (3.9)

as shown in figure 1. To fix our conventions for the conformal blocks let us display the
expansion in the crossed channel

〈φ(X1) . . . φ(X5)〉 =
(
X12X45

√
X23X34
X24

)−∆φ ∑
O1,O2,n

P
(n)
O1O2

ψCC
O1O2;n(usi), (3.10)

where the coefficients P are determined by the coefficients C of the involved operator
products as

P
(n)
O1O2

:= CφφO1C
(n)
O1φO2

CφφO2 , (3.11)

Here Oa, a = 1, 2, denote two STT primary fields of weight ∆a = ha + h̄a and spin Ja =
h̄a − ha. Given the two spin labels J1 and J2, the parameter n = 0, . . . ,min(J1, J2) labels
the basis of tensor structures of the three-point function in the expansion

〈O1(X1, Z1)φ(X3)O2(X2, Z2)〉=
min(J1,J2)∑

n=0
C

(n)
O1φO2

∏
i<j

X
nij
ij J

J1
1,32J

J2
2,31X

n, X := H12X13X23
J1,32J2,31

,

(3.12)
where X is a three-point cross-ratio that corresponds precisely to the OPE limit reduction of
the five-point cross-ratio (1−w) when projecting to exchanged STT primaries. The objects
Hij and Ji,jk ≡ Vi,jkXjk are tensor structures used to parametrize three-point functions,
see [55]. This choice of basis in the space of three-point tensor structures implies that the
five-point blocks in eq. (3.10) with expansion coefficients (3.11) satisfy the normalization
condition

lim
z1,z2→0

lim
z̄1,z̄2→0

ψ
(12)3(45)
O1O2;n (za, z̄a, w)∏2
a=1 z̄

ha
a zh̄aa (1− w)n

= 1, (3.13)
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see [42] for notations and the derivation. With all our conventions fixed, the crossing
equation we want to analyze takes the form

∑
O1,O2,n

P
(n)
O1O2

ψDC
O1O2;n =

(
us5
√
us3

us4
√
us1

)∆φ ∑
O1,O2,n

P
(n)
O1O2

ψCC
O1O2;n. (3.14)

Up to relabeling, this is the same planar crossing equation as in [26, section (3.1)]. To
evaluate the constraints that arise from this crossing symmetry equation we shall consider
a regime in which

X15 � X34 � X12 � X45 � X23 � 1 (3.15)

i.e. we make pairs of neighboring points light-like separated in the order that is given
by reading the previous line from left to right. While the first two limits favor internal
leading-twist exchanges in the direct channel, the following two have the same effect on
crossed-channel exchanges. The last limit in which we place x3 on the lightcone of x2 is
not that fundamental and in fact it will be important for some of our results to include
corrections to limiting behavior as we send X23 to zero. The limit we consider here amounts
to introducing the following order, see previous section,

~ε = (ε15, ε34, ε12, ε45, ε23)

With respect to this prescription, the cross-ratios usi are of order O(εi,i+1). At the same
time, the transition between direct and crossed channel is also easily expressed in terms of
these cross-ratios usi.

ψ(12)3(45)(usi) = ψ(51)2(34)(us,i−1) (3.16)

We conclude that for the crossing equation we are about to study, the cross-ratios usi
are the perfect generalization of the cross-ratios u, v we used in the discussion of four-
point functions. Once again, the duality between the two channels corresponds to a cyclic
permutation of the cross-ratios and each of the cross-ratios has unit order with respect
to exactly one of the order parameters εij we are taking to zero. On the other hand, the
cross-ratios usi are simple rational functions of our polynomial cross-ratios (3.1). Hence,
when expressed in terms of the usi, all terms in the Casimir differential operators possess
some definite ~ε-order.

3.2 Lightcone blocks in the direct channel

As in the four-point case that began this discussion, we shall perform the lightcone limit
of the five-point blocks for the direct channel in two stages, starting with only that part of
the limit that exposes leading-twist contributions in the direct channel

X15 � X34 � 1 . (3.17)

As we shall discuss in the first subsection, going to the partial lightcone regime is sufficient
for the blocks to possess a relatively simple integral representation that is amenable to
further evaluation. Since the OPE-limit point at which we normalize our blocks lies within
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the regime (3.17), see discussion in the previous subsection, the limiting blocks are also
easy to normalize. For our bootstrap analysis we will only need the lightcone blocks in the
(almost) full lightcone limit (3.15). These are derived in the second and third subsections
by sending the remaining three cross-ratios to zero one by one.

3.2.1 Partial lightcone limit

In terms of the cross-ratios usi, the partial lightcone limit (3.17) amounts to considering
the order ~ε (2) = (ε15, ε34). In terms of cross-ratios, the associated regime is given by

LCL(2)
~ε : us5 � us3 � 1 .

Here, we use the superscript (2) to signal that we perform only the first two limits. The
following analysis and in particular the normalization of the limiting blocks turn out to be
simplest when written in terms of OPE cross-ratios. In general, the relation between the
snowflake and OPE cross-ratios is somewhat complicated, but in the regime LCL(2), i.e.
after sending us5 and us3 to zero, the relation simplifies. We had seen this for the crossed
channel already in the eqs. (3.8). In order to treat the direct channel we recall that after
the shift of the index i that brings us from the crossed to the direct channel, the snowflake
cross-ratios are related to the OPE cross-ratios of the direct channel via the relation

(us5, us1, us2, us3, us4) =
(

z1
1− z2

z̄1, 1− z1, 1− z2,
z2

1− z1
z̄2, 1−

(1− w)z1z2
(1− z1)(1− z2)

)
+ O(z̄a).

(3.18)
The inverse map is

(z̄1, z̄2,z1,z2,w) =
(
us5us2

(1−us1) ,
us3us1

(1−us2) ,1−us1,1−us2,1−
us1us2(1−us4)

(1−us1)(1−us2)

)
+O(us5,3).

(3.19)
In comparison to the OPE cross-ratios we have discussed in the previous subsection, the
index of the snowflake cross-ratios is now shifted by one unit, i.e. the OPE cross-ratios in
this subsection are the ones relevant for the OPE limit in the direct channel.

After these brief comments on coordinates, we are now ready to display and study
the Casimir differential equations in the lightcone regime LCL(2). If we use the OPE
cross-ratios, the Casimir operators take the form

D2,~ε(1)

15 = ε015ε
0
34

(
z1 D2 1

(
Â1, 0; 0; z1, ∂z1

)
+ z̄1∂z̄1(z̄1∂z̄1 − d+ 1)

)
+ O(ε15), (3.20)

Â1 = ϑz2 − hφ + w(ϑz̄2 − ϑz2 + ϑw) (3.21)

D2,~ε(1)

34 = ε015ε
0
34

(
z2 D2 1

(
Â2, 0; 0; z2, ∂z2

)
+ z̄2∂z̄2(z̄2∂z̄2 − d+ 1)

)
+ O(ε34), (3.22)

Â2 = ϑz1 − hφ + w(ϑz̄1 − ϑz1 + ϑw), (3.23)

where the operator 2D1 was defined in eq. (2.11). We will now study the associated Casimir
eigenvalue equations and determine their solutions in order to show that

ψDC
(ha,h̄a;n)(usi(z̄a, za, w)) LCL(2)

∼
2∏

a=1
z̄haa zh̄aa (1− w)nF̃(ha,h̄a;n)(z1, z2, w), (3.24)
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where F̃ is given by the following double integral over two integration variables t1 and t2

F̃(ha,h̄a;n)(z1, z2, w) =
∏
a 6=b

∫ 1

0

dta
Bh̄a

(ta(1− ta))h̄a−1(1− wzata)Jb−n

(1− z1t1 − z2t2 + wz1z2t1t2)h̄12;φ
. (3.25)

Recall that the cross-ratios zi, w can be considered as functions of the snowflake cross-ratios
us1, us2 and us4 that are not sent to zero in the lightcone regime we consider. Let us note
that indeed the right hand side of eq. (3.24) is correctly normalized since one infers from
eq. (3.25) that

lim
z1,z2→0

F̃(ha,h̄a;n)(z1, z2, w) = 1 (3.26)

and the factor in front of F̃ gives the usual behavior of the block in the OPE limit. The
remainder of this subsection is devoted to the derivation of eqs. (3.24), (3.25).

Intuitively, it is rather clear that the two second-order Casimir equations suffice to
reconstruct the dependence of the blocks on z1, z2 from the behavior in the OPE limit
where the za are sent to zero. In order to give a formal proof, we first note that our
second-order Casimir equations for the lightcone blocks imply(
D2~ε

15 − h̄1(h̄1 − 1)− h1(h1 − d+ 1)
)
ψ(ha,h̄a;n)(usi)∝D1 · F̃(ha,h̄a;n)(z1, z2, w) = 0 (3.27)(

D2~ε
45 − h̄2(h̄2 − 1)− h2(h2 − d+ 1)

)
ψ(ha,h̄a;n)(usi)∝D2 · F̃(ha,h̄a;n)(z1, z2, w) = 0, (3.28)

where ∝ means that we dropped some non-vanishing overall prefactor. The operators
Da, a = 1, 2 that act on the function F̃ are given by

Da =ϑza(2h̄a + ϑza − 1)− za(h̄a + ϑza)(h̄12;φ + ϑz1 + ϑz2 − ϑw)
− wza(h̄a + ϑza)(n− Jb − ϑzb + ϑw), (3.29)

where b ∈ {1, 2} is chosen such that b 6= a. We will now determine a unique solution to
this system of differential equations subject to the OPE limit boundary condition (3.26).

Our strategy will be to solve these differential equations for some special 2-dimensional
submanifolds first and then to reconstruct the whole function using the various solutions
as boundary condition. Let us first note that the two differential equations can be solved
very explicitly if we set either w = 0 or w = 1. For w = 1, the solution can easily be
obtained in terms of Gauss’ hypergeometric functions as

F̃(ha,h̄a;n)(z1, z2, w = 1) =
∏
a 6=b

F2 1

[
h̄a, h̄a + hbφ + n

2h̄a

]
(za). (3.30)

When we set w = 0, the set of differential equations may be seen to coincide with the
equations that characterize Appell’s hypergeometric function F2. After matching all the
parameters we find

F̃(ha,h̄a;n)(z1, z2, w = 0) = F2
(
h̄12;φ; h̄1, h̄2; 2h̄1, 2h̄2; z1, z2

)
. (3.31)
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Similarly, we can solve our system of differential equations if we set one of the variables
zb = 0. Once again, we can construct the solution in terms of Appell’s hypergeometric
functions, only this time it is in terms of F1,

F̃(ha,h̄a;n)(za, w)|zb=0 = F1
(
h̄c; h̄12;φ, n− Jb; 2h̄c; zc, wzc

)
. (3.32)

Here c ∈ {1, 2} with c 6= b. In order to be completely explicit about our conventions
concerning the Appell functions F1 and F2 we used in the last two formulas, let us state
their series expansions,

F1(b; a1, a2; c; z1, z2) :=
∞∑

m1,m2=0

zm1
1
m1!

zm2
2
m2! (a1)m1(a2)m2

(b)m1+m2

(c)m1+m2
(3.33)

F2(a; b1, b2; c1, c2; z1, z2) :=
∞∑

m1,m2=0

zm1
1
m1!

zm2
2
m2! (a)m1+m2

(b1)m1

(c1)m1

(b1)m1

(c1)m1
. (3.34)

Note that all of these solutions may be obtained by rewriting the action of the Casimir
operators on a power series in z and/or wz as a recursion relation with initial condition
governed by the OPE limit.

To find a general expansion of F̃(ha,h̄a;n) outside of the zb = 0 limit, we can make use
of the relations

Dcϑzb = ϑzbDc, Dc(wzb)k = (wzb)kDc, Dczkb = zkbDc|Jb→Jb+k, (3.35)

where we assumed c 6= b and in the last relation we take h̄b = hb+Jb while keeping hb fixed.
In the vicinity of zb = 0 we can conclude that the general solution admits an expansion of
the form

F̃(ha,h̄a;n)(z1, z2, w) =
∞∑
m=0

fb,m(wzb)zmb F1
(
h̄c; h̄12;φ +m,n− Jb −m; 2h̄c; zc, wzc

)
(3.36)

with some coefficients fb,m that need to be determined. Note that we have introduced two
different expansions here which depend on which of the two variables zb, b = 1, 2 we set
to zero in the leading term. Each of the two distinct expansions for b = 1, 2 are explicitly
in the kernel of Dc. At this stage, the functions fb,m(wzb) can be solved explicitly by
recasting Dbf = 0 as a recursion relation in m. However, we can find the general solution
more efficiently by making use of the integral representation of the Appell F1:

F1
(
h̄c; h̄12;φ +m,n− Jb −m; 2h̄c; zc, wzc

)
=
∫ 1

0

dtc
Bh̄c

(tc(1− tc))h̄c−1

(1− zatc)h̄12;φ+m
(1− wzctc)m+Jb−n,

(3.37)
which is equivalent to the convergent power series (3.33) for 0 ≤ zc, wzc < 1. Assuming we
can commute the sum overm and the integral over tc, we can rewrite the expansion (3.36) as

F̃(ha,h̄a;n)(z1, z2, w) =
∫ 1

0

dtc
Bh̄c

(tc(1− tc))h̄c−1

(1− zctc)h̄12;φ
(1− wzctc)Jb−nfb

(1− wzctc
1− zctc

zb, wzb

)
,

(3.38)

– 27 –



J
H
E
P
0
8
(
2
0
2
3
)
0
1
1

where fb(x, y) = ∑
m fb,m(y)xm is a power series in each variable. At zc = 0, where we

know that F̃(ha,h̄;n) is an Appell F1, the above integral simplifies to fb(zb, wzb), such that

fb(x, y) = F1(h̄b; h̄12;φ, n− Jc; 2h̄b;x, y) .

Plugging this in the integral representation for the Appell function F1 we obtain the for-
mula (3.25). We have thus established that in the lightcone regime LCL(2), the direct
channel blocks are given by eqs. (3.24) and (3.25). Note that all we used were the limiting
expressions (3.27) and (3.28) for the Casimir operators.

Generalized Euler transformation. In our derivation, the double integral of eq. (3.25)
appeared merely as a tool to make the power series in z1, z2, w that solves the Casimir
equations more compact. To write the latter, one can expand the integrand explicitly into
a power series in za, wza in the domain 0 ≤ za, wza < 1 before integrating each summand to
a product of Euler Beta functions. However, in our applications to the lightcone bootstrap,
we must analyze the asymptotics of blocks near certain edges za, w → 1 of this domain,
where the formal hypergeometric series need not converge. Here, the integral provides a
useful tool to analyze the convergence properties near the singular regions, as is well-known
from the classical theory of hypergeometric functions. In particular, two singular regions
relevant to lightcone bootstrap take the form of a double scaling limit in OPE cross-ratios:

za = 1 + O(εa), w = 1 + O(εa), εa → 0, (3.39)

for a = 1 or 2. When restricted to two-dimensional submanifolds zb = 0 or w = 1, the
asymptotics of the blocks ( F2 1 or Appell F1) in the above limit depend on the parameters
hb, hφ, n. In particular, on the w = 1 submanifold, the parameter dependence of za → 1
asymptotics is captured by the Euler transformation of the Gauss hypergeometric function,

F2 1

[
h̄a + hbφ + n, h̄a

2h̄a

]
(za) = (1− za)−(hbφ+n) F2 1

[
h̄a − hbφ − n, h̄a

2h̄a

]
(za). (3.40)

The series on the left-hand side diverges while the series on the right-hand side converges
if hbφ+n > 0, and vice versa when hbφ + n < 0.4 In the integral representation (3.25)
evaluated at w = 1, this relation is obtained from the change of variables

t̃a = 1− ta
1− zata

.

We would now like to find an appropriate generalization of the Euler transformation (3.40)
away from the w = 1 submanifold that controls the parameter-dependence of the lightcone
limits (za, w) = (1, 1)+O(εa), a = 1, 2. To this end, we first introduce a new set of variables
(va(za), x(z1, z2, w)) defined as

va(za) := 1− za, x(z1, z2, w) := z1z2(1− w)
(1− z1)(1− z2) . (3.41)

4In the case where hbφ+n = 0 we saw in section 2 that the hypergeometric function admits a logarithmic
divergence at za = 1.
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In v, x cross-ratios, the double scaling limit of OPE cross-ratios defined in eq. (3.39) is
equivalent to the limit va → 0 at vb, x fixed. The change of variables is simple to invert,

za(va) = 1− va, w(v1, v2, x) = 1− v1v2x

(1− v1)(1− v2) . (3.42)

Now, if we apply the same change of variables t̃a = (1 − zata)−1(1 − ta) to the double
integral in eq. (3.25) and express za, w in terms of va, x using eq. (3.42), then we obtain
the desired “generalized Euler transformation” of the form

F̃(ha,h̄a;n)(1− v1, 1− v2, w(v1, v2, x)) =
2∏

a=1
v
−(hbφ+n)
a F(ha,h̄a;n)(v1, v2, x), (3.43)

where the function F on the right-hand side is given by the integral

F(ha,h̄a;n)(v1, v2, x) =
∏
b 6=c

∫ 1

0

dtb
Bh̄b

(tb(1− tb))h̄b−1(1− (1− vb)tb)hcφ+n−h̄b

(1 + vbx
1−vb (1− tc))

n−Jb(1− x(1− t1)(1− t2))h̄12;φ
. (3.44)

For hbφ +n > 0 and 0 ≤ x < 1, this expression evaluates at va = 0 to a convergent integral
that can be expanded into a power series in x.

We conclude this subsection with a couple of important comments. One nice feature of
the integral formulas (3.25) and (3.44) we have derived is that the two integrations decouple
in the limit in which we send w to one (see eq. (3.30) for the function F̃ ) or, equivalently,
x to zero. For the function F , one has

lim
x→0

F(ha,h̄a;n)(v1, v2, x) = fdec
1 (v1)fdec

2 (v2) (3.45)

where each factor fdec
a depends only on a single cross-ratio and is given by

fdec
a (v) = F2 1

[
h̄a, h̄a − hbφ − n

2h̄a

]
(1− v) a 6= b = 1, 2. (3.46)

Finally, recall that we derived these integrals with the help of the Casimir equations. It is
actually possible to obtain the same integral formulas through the lightcone OPE, in close
analogy to what we explained in our discussion of the four-point lightcone blocks. The
details for five external points can be found in appendix A.1. In order to obtain the first
integral representation (3.25) one needs to choose the gauge,

(s1, s2, s4, s5) = (r1t1, r1(1− t1), r2(1− t2), r2t2), r1, r2 ∈ R×, (3.47)

see appendix A.1 for notations. The derivation of the second integral formula (3.44) from
the lightcone OPE is carried out in some detail in the same appendix.

3.2.2 The full lightcone limit

From the integral formulas for blocks in the regime LCL(2) that we obtained in the previous
subsection, we now want to move towards the full lightcone limit by sending the remaining
cross-ratios to zero, one by one.
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Sending us1 to zero. Let us start with the cross ratio us1 so that we pass from LCL(2)

to the new regime
LCL(3)

~ε : us5 � us3 � us1 � 1. (3.48)

Our plan is to derive the asymptotics of the blocks by evaluating the integral expressions
in eqs. (3.25) or (3.44) at us1 = 0. In the case of the expression (3.24), the blocks formally
evaluate to

ψDC
(ha,h̄a;n)(usi)

uh1
s5u

h1+n
s2 (1− us2)J2−n

LCL(3)
∼ uh2+n

s1 uh2
s3 (1− us4)nF̃(ha,h̄a;n)(1, 1− us2, 1)

= uh2+n
s1 uh2

s3 (1− us4)n F2 1

[
h̄1, h̄1 + h2φ + n

2h̄1

]
(1) F2 1

[
h̄2, h̄2 + h1φ + n

2h̄1

]
(1− us2).

(3.49)

Note, however, that the first Gauss hypergeometric series with argument z1 = 1− us1 = 1
does not converge when hφ ≤ h2 +n. On the other hand, it evaluates to the following finite
combination of Γ functions in the complementary case:

F2 1

[
h̄1, h̄1 + h2φ + n

2h̄1

]
(1) = Γ(2h̄1)Γ(hφ − h2 − n)

Γ(h̄1 − h2φ − n)Γ(h̄1)
for hφ > h2 + n . (3.50)

Let us now look at the second integral formula (3.43). Evaluating the limit us1 = 0 yields

ψDC
(ha,h̄a;n)(usi)

uh1
s5u

hφ
s2 (1− us2)J2−n

LCL(3)
∼ u

hφ
s1 u

h2
s3 (1− us4)nF(ha,h̄a;n)(0, us2, 1− us4). (3.51)

In this case, one can show that F(ha,h̄a;n)(0, us2, x) evaluates to a convergent power series in
1−us2 and x = 1−us4 only if h2 +n > hφ, see eq. (A.41) in appendix A.3. This is precisely
the regime in which the functions F̃ from the first integral expression were singular. We
can understand this parameter dependence of the us1 → 0 asymptotics in terms of the
Casimir differential operators. More specifically, for the second-order Casimir D2

15 we find

D2,~ε(3)

15 = ε015

{
ε−1
12 D

(0,0,−1)
15 + O(ε012)

}
+ O(ε15), (3.52)

D(0,0,−1)
15 =

(
∂us1 −

ϑus3 + ϑ1−us4
us1

)
(ϑus1 − hφ). (3.53)

Note that the operator contains a single singular term. As long as we are interested in direct
channel contributions that arise from fields with finite weight and spin, the eigenvalues of
the quadratic Casimir operators do not scale and hence, the leading term of the relevant
lightcone blocks must lie in the kernel of the singular term. At the same time, any second-
order differential equation admits two independent solutions to the kernel condition. But
our equation is second order only in the derivative ∂us1 with respect to the variable that
we are sending to zero. Hence, depending on the parameter hφ in the right factor the
operator (3.53), there is a unique solution that dominates the behavior at small us1. For
hφ > h2 + n we see that the function in the second line of eq. (3.49) is indeed annihilated
by the linear operator in the left factor of the Casimir operator (3.53) (after commuting
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it to the right) and hence it lies in the kernel. On the other hand, the function on the
right-hand side of equation (3.51) lies in the kernel of ϑus1−hφ and hence also in the kernel
of the Casimir operator.

It remains to discuss the case hφ = h2 + n. When this equality holds, F̃(ha,h̄a;n)(1 −
us1, 1−us2, 1−us4) = F(ha,h̄a;n)(us1, us2, 1−us4) and we expect both expressions to diverge
as us1 is sent to zero. More specifically, in the case where ϑus3ψ = h2ψ and ϑ1−us4ψ = nψ,
the Casimir equation admits a logarithmic solution(

∂us1 −
ϑus3 + ϑ1−us4

us1

)
(ϑus1 − h2 − n)uh2

s3 (1− us4)nuh2+n
s1 log us1 = 0. (3.54)

In accordance with this solution, a power series expansion of FO1O2;n(us1, us2, x) around
x = 0 shows that only the x0 term exhibits a logarithmic divergence, while all higher order
terms xm are O(1) at most, i.e.

FO1O2;n(us1, us2, 0) = log u−1
s1

Bh̄1

fdec
2 (us2) + O(u0

s1), ∂mx FO1O2;n(us1, us2, x)|x=0 = O(u0
s1),

(3.55)

for all integers m > 0. Here we have used the symbol fdec
2 as a shorthand for the hypergeo-

metric function (3.46) that we introduced above. A more detailed derivation of this result
can be found in appendix A.3. In summary, we obtain the following asymptotics in the
us1 � 1 limit of our partial lightcone blocks,

ψDC
(ha,h̄a;n)(usi)

uh1
s5u

h2
s3 (1−us4)nuhφs2 (1−us2)J2−n

LCL(3)
∼


B−1
h̄1

Bh̄1,|h2φ+n|u
h2+n
s1 fdec

2 (us2), h2+n<hφ,

B−1
h̄1
u
hφ
s1 logus1fdec

2 (us2), h2+n=hφ,

F(ha,h̄a;n)(0,us2,1−us4), h2+n>hφ.
(3.56)

Sending us4 to zero. We can now move on the next level by sending the cross-ratio us4
to zero, i.e. we study lightcone blocks in the regime

LCL(4)
~ε : us5 � us3 � us1 � us4 � 1 . (3.57)

Unlike the us1 → 0 limit, there is no sign of a divergence when evaluating each expression
in our formula (3.56) at us4 = 0. Once again, this convergent behavior is corroborated by
the analysis of Casimir differential operators. Indeed, in the regime LCL(4)

~ε , we find the
leading order singular terms to be

D(0,0,−1,−1)
15 =

(
∂us1 −

hφ
us1

)
∂us4 , D(0,0,0,−1)

34 = ∂us4

(
ϑus4 − ϑus1 − ϑ1−us2 −

1− us2
us2

hφ

)
.

(3.58)

The lightcone block in our regime LCL(4)
~ε must lie in the kernel of both operators. As one

can immediately notice, any function that is independent of us4 lies in the common kernel
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of the two leading order singular terms. We conclude that the asymptotics of blocks in the
lightcone limit is given by

ψDC
(ha,h̄a;n)(usi)

uh1
s5u

h2
s3 (1−us4)nuhφs2 (1−us2)J2−n

LCL(4)
~ε∼


B−1
h̄1

Bh̄1,|h2φ+n|u
h2+n
s1 fdec

2 (us2), h2+n<hφ,

B−1
h̄1
u
hφ
s1 logu−1

s1 f
dec
2 (us2), h2+n=hφ,

(1−us2)n−J2gfin
(ha,h̄a;n)(1−us2), h2+n>hφ,

(3.59)
where the new functions gfin(z) can be written as the following double integral

gfin
(ha,h̄a;n)(z) := zJ2−nF(ha,h̄a;n)(0, 1− z, 1) =

∫ 1

0

dt2
t2(1− t2)

(t2(1− t2))h̄2

Bh̄2

(1− zt2)h1φ+n−h̄2 ·

∫ 1

0

dt1
t1(1− t1)

th̄1
1 (1− t1)h2φ+n

Bh̄1

(1− (1− z)t1)J2−n(1− (1− t1)(1− t2))−h̄12;φ .

(3.60)

While the convergence of this integral is not immediately clear, note that it converges at
z = 0, 1 to the following quantities:

gfin
(ha,h̄a;n)(0) = Γ(2h̄1)Γ(2h̄2)Γ(h̄2 − hφ)Γ(hφ)

Γ(h̄1)Γ(h̄2)Γ(h̄2 + hφ)Γ(h̄12;φ)
,

gfin
(ha,h̄a;n)(1) =

2∏
a 6=b=1

Γ(2h̄a)Γ(hbφ + n)
Γ(h̄a)Γ(h̄a + hbφ + n)

F3 2

(
h̄12;φ, h1φ + n, h2φ + n;h1φ + n+ h̄2, h2φ + n+ h̄1; 1

)
.

Consequently, we can expand the integrand of eq. (3.60) and integrate each term to obtain
a convergent power series for 0 ≤ z ≤ 1 of the form

gfin
(ha,h̄a;n)(z) = Γ(2h̄2)Γ(h1φ + n)

Γ(h̄2)Γ(h̄2 + h1φ + n)

∞∑
k=0

(h̄12;φ)k
k!

(h̄1)k
(2h̄1)k

(h1φ + n)k
(h1φ + n+ h̄2)k

F2 1

[
h̄1 − h2φ − n, h̄1

2h̄1 + k

]
(z) F2 1

[
n− J1, h̄2

h̄2 + h1φ + n+ k

]
(1− z). (3.61)

Sending us2 to zero. Finally, to reach the full lightcone regime LCL~ε, we take the
leading us2 → 0 asymptotics of eq. (3.59) and the expansion (3.61) of gfin. Before we spell
out the final result, let us introduce the following family of functions

fβ(v) =


vβ , if β < 0,
− log v, if β = 0,
1, if β > 0.

(3.62)

It is defined such that we are able to write the dependence of the direct channel blocks on
the cross-ratios us1, us2 in a single line

ψ
DC (0)
(ha,h̄a;n)(usi)

LCL~ε∼ NDC (0)
(ha,h̄a;n) (us1us2)hφuh1

s5u
h2
s3 fn+h2φ(us2)fn+h1φ(us1). (3.63)
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Note that fβ depends on whether β is negative, zero, or positive and hence the single line
we have displayed is indeed capable of summarizing the limiting behavior of the three lines
in eq. (3.59). It remains to work out the normalization N . From the normalizations we
listed in eq. (3.59) as well as the evaluation of gfin

(ha,h̄a;n)(1) we obtain

NDC (0)
(ha,h̄a;n) =


∏
a 6=b

Γ(2h̄a)
Γ(h̄a)Γ(h̄a+|hbφ+n|) Γ̊(|haφ + n|), iff h1φ + n ≤ 0 or h2φ + n ≤ 0

∏
a 6=b

Γ(2h̄a)Γ(hbφ+n)
Γ(h̄a)Γ(h̄a+hbφ+n) F3 2

h̄12;φ, h1φ + n, h2φ + n

h̄1 + h2φ + n, h̄2 + h1φ + n

 (1) .

(3.64)

The second line applies whenever the conditions in the first line are not satisfied, i.e. if
h1φ+n and h2φ+n are both positive. There, note that the 3F2(1) converges for any hφ > 0.
In the first line, we used the ‘regularized’ Γ function Γ̊ which coincides with Γ(x) = Γ̊(x)
for x > 0 but is defined as Γ̊(0) := Resx=0Γ(x) = 1 at x = 0 where Γ(x) has a pole.
As a final comment, we would like to emphasize the improved analytical control we have
built through the differential equations in comparison with previous works on five-point
lightcone bootstrap [24, 26]. First, we extend the asymptotics of leading-twist blocks to
the regime of twists h1, h2 ≥ hφ on the second line of eq. (3.64). Second, we are granted
access to less restrictive limits such as LCL(4)

~ε in eq. (3.59). The latter will allow us to
bootstrap double-twist OPE coefficients with finite tensor structure labels in section 5.3.
This concludes our discussion of the direct channel lightcone blocks.

3.3 Lightcone blocks in the crossed channel

Our goal in the remainder of this section is to compute those crossed channel blocks that
we will later need for the analysis of the crossing symmetry equation. In order to do so,
we shall study the crossed-channel Casimir equations in the lightcone limit. As we have
seen before, however, these equations cannot fully determine the lightcone blocks since
they are linear second-order equations with multiple independent solutions. So some work
is required to select solutions that describe the lightcone limit of actual conformal blocks,
which are uniquely determined by their behavior in the OPE limit. In the first subsection,
we will take a first look at the leading terms in the Casimir equations and sketch the
strategy we use in order to find the relevant solution that describes the limiting behavior
of blocks. This strategy is then implemented in detail in the two subsequent subsections.
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3.3.1 Crossed channel Casimir equations

Let us now use the Casimir operators D2
12 and D2

45 to study the behavior of crossed channel
blocks in the lightcone limit. To leading ~ε-order these operators read

D2,~ε
12 = 1

ε15

(
ε034

( 1
ε23

(
ε012ε

0
45D

(−1,0,−1)
12 + O(ε12)

)
+ O(ε023)

)
+ O(ε015)

)
, (3.65)

D(−1,0,−1)
12 =

(
∂us2 −

hφ
us2

)
∂us5 , (3.66)

D2,~ε
45 = 1

ε15

( 1
ε34

ε023

(
ε012ε

0
45D

(−1,−1,0)
12 + O(ε56)

)
+ O(ε034)

)
+ O(ε015), (3.67)

D(−1,−1,0)
45 =

(
∂us3 −

hφ
us3

)
∂us5 . (3.68)

Since all the terms we spelled out have vanishing grade with respect to the formal variables
ε12, ε45 we shortened the label (~k) and only displayed three entries, i.e. the superscript on
the right-hand side only gives the grades with respect to (ε15, ε34, ε23).

We are going to analyze the Casimir eigenvalue equations for the crossed channel in
two different cases that will turn out to be relevant below. But as we explained in the
introduction, the analysis depends crucially on whether the eigenvalue of the operator
scales in the same way as the most singular term or not. Correspondingly, we are going
to study two very different cases that will turn out to be relevant for the discussion of the
bootstrap constraints. We call these case I and case II respectively.

Case I. In this case, we assume the eigenvalues λ1 and λ2 to scale such that the products
λ1us2uus5 and λ1us3us5 stay finite in the lightcone limit. This means that

LSI : λ~ε1 = ε−1
15 ε
−1
23 λ1, λ~ε2 = ε−1

15 ε
−1
34 λ2, (3.69)

i.e. both eigenvalues scale in the same way as the most singular term of the associated
Casimir operator.

Case II. In this case, we assume that only one of the eigenvalues scales like the singular
term. For definiteness, let this be the eigenvalue λ2 and assume that we scale λ1 such
that λ1us5 remains finite, i.e.

LSII : λ~ε1 = ε−1
15 λ1, λ~ε2 = ε−1

15 ε
−1
34 λ2. (3.70)

This list is by no means complete. Clearly, we could also consider the case in which the
scaling behavior of both eigenvalues λ1 and λ2 is subleading. Of course, we could change
the scaling behavior of the subleading eigenvalue, e.g. keep them finite, etc. But fortunately,
case I and case II are (almost) all we need.

Before we dive into the computation of these wave functions, first for case I and then
for case II, we want to explain our general strategy for how to select and normalize solutions
of the Casimir equations to describe the lightcone limit of the actual blocks. The procedure
we shall use mimics to a certain extent the strategy we outlined for four points, but the
additional fifth variable us5 (or w in terms of OPE cross-ratios) that arises from the need to
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(0, 1, 0) (0, v, 0) (0, 0, 0)

(0, 1, x = O(1− v)) (0, v, x) (0, 0, x)

(u, v, x)∗

(0, v, 1) (0, 0, 1)∗

(u, v, 1) (u, 0, 1)

OPE12,45

dec

ε15

ε34

ε12,45

Figure 2. Diagrammatic representation of the space of five-point cross-ratios. To make this plot
3-dimensional, we have combined us1 and us4 into a single letter u and we omitted us2. The variable
v = us3 increases from right to left, while x = 1 − us5 increases from top to bottom. Our letter u
corresponds to the direction that leaves the plane of the paper. From the generic point (u, v, x)∗ in
the center of the diagram we can reach the lightcone limit (0, 0, 1)∗ in the bottom right corner in
the direct (green) and the crossed (red) channel. The top half of the figure contains the OPE limit
(0, 1, x) on the left which provides boundary conditions for blocks.

parametrize the choice of tensor structures at the middle vertex causes some new challenges,
in particular when it comes to normalizing our lightcone blocks.

In order for the discussion to apply to both case I and case II blocks, we will keep the
variable us2 separate and group the remaining four variables into three groups u, v, x, where
u denotes the pair u = {us1, us4} while v = us3 and x = 1 − us5. Once we have formed
these three groups, we can draw a three-dimensional map for the space of cross-ratios, see
figure 2. The black vertices in this diagram label points in the u = 0 plane while the
blue vertices have u 6= 0. Moreover, v varies along the horizontal direction while x varies
along the vertical direction. We have marked the generic point with cross-ratios (u, v, x)
by an index ∗. The lightcone limit we explore below corresponds to the vertex (0, 0, 1)∗ in
the figure. In the crossed channel, we reach this point from generic cross-ratios by going
along the red arrows. We want to compute the lightcone blocks by studying the Casimir
differential equations at the limit point. As we shall see, it is actually not that difficult to
solve the limiting differential equations. The only issue is, however, that we have to pick
the solution that satisfies the OPE boundary conditions. Now, the OPE limit is actually
the point with coordinates (0, 1, 0) in the upper left corner of figure 2, very far away from
the lightcone limit. The only thing the two points have in common is that they both lie in
the u = 0 plane.

Fortunately, within this u = 0 plane, the blocks are under relatively good control — one
can infer this from our discussion of the direct channel blocks in the previous subsection. It
implies that we can actually write down an integral representation that is quite amenable
to evaluation. By adapting our formulas (3.24) and (3.43) to the crossed-channel setup,
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we have

ψCC
(ha,h̄a;n)(usi)

u=0∼ uh1
s1u

h2
s4 (us2us3)hφ−nzh̄1−h1

1 zh̄2−h2
2 (1− w)nF(ha,h̄a;n)(us2, us3, 1− us5),

(3.71)
where the function F is given by the integral (3.44), only that now the arguments are
v1 = us2, v2 = us3 and x = 1−us5. In our regime u = {us1, us4} = 0 the variables zi, w are
computed from the non-zero snowflake cross-ratios through

z1 = 1− us2 , z2 = 1− us3 , 1− w = us2us3(1− us5)
(1− us2)(1− us3) (3.72)

Compared to the previous formula, we have just shifted the index of the snowflake cross-
ratios by one to account for the different labeling of external points we use in the crossed
channel.

As we have seen before, we can write a closed-form expression for the function F all
along the upper edge x = 0 of figure 2:

lim
x→u

lim
u→0

F(ha,h̄a;n)(usi) = fdec
1 (us2)fdec

2 (us3) (3.73)

where
fdec
a (v) = F2 1

[
h̄a, h̄a − hbφ − n

2h̄a

]
(1− v), a 6= b = 1, 2. (3.74)

In some sense, this formula is the analog of eq. (2.31) in our discussion of four-point blocks,
only that now it holds merely for x = 0. In order to move from the upper edge of figure 2
down to the lightcone limit, we can start from the decoupling limit in the region where v is
small (upper right corner) and then expand the integral formula in the variable x. Up to
subleading corrections in the small us3, large J2 limit (see appendix A.4), this expansion
can be written in the form

F(ha,h̄a;n)(usi) ∼ Q
(
(1− xS1(ϑus2)S2(ϑus3))hφ−h̄1−h̄2

)
fdec

1 (us2)fdec
2 (us3), (3.75)

where Q
(
Sa(ϑ)k

)
:= (hbφ + n+ ϑ)k

(hbφ + n+ h̄a)k
, a 6= b = 1, 2. (3.76)

and ϑu = u∂u is the Euler operator, as before. In order to evaluate the first line we first
evaluate the argument of Q as a power series in xS1S2 and then apply the ‘quantization
map’ Q defined in the second line in order to express powers of the commuting objects S1
and S2 as differential operators that act on functions of v1 = us2 and v2 = us3. It is this
formula that will allow us to determine the normalization of the crossed channel lightcone
blocks below.

3.3.2 Lightcone blocks for case I

We will begin our analysis of crossed channel lightcone blocks with the case in which the
eigenvalues scale as in eq. (3.69). Looking back at the expressions (3.66) and (3.68), we note
that both leading terms commute with the Euler operators ϑus1 and ϑus4 . Consequently, we
can expand the lightcone blocks in eigenfunctions of these two Euler operators. But there is
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another simple differential operator that commutes with the operators (3.66) and (3.68) as
well as the two Casimir operators ϑus1 and ϑus4 : the operator ∂us5 . Hence we can expand
the lightcone limit of the crossed channel blocks as5

ψCC,I
(ha,h̄a;n)(usi)

LCL~ε∼ uh1
s1u

h2
s4 (us2us3)hφ

∑
η

〈η|n〉 e−ηus5gha,h̄a;η(us2, us3). (3.77)

Here 〈η|n〉 is just a symbol for the unknown expansion coefficients. As in our discussion of
the direct channel blocks, the OPE boundary condition

ψCC
(h̄a,ha;n)(usi)

OPE∝ uh1
s1u

h2
s4 + . . .

implies that the eigenvalues of the Euler operators ϑus1 and ϑus4 are fixed and coincide with
the quantum numbers h1 and h2 of the exchanged fields in the crossed channel. Giving an
interpretation of the eigenvalue η and finding the precise coefficients 〈η|n〉 is however a bit
more difficult.

Before we go into the details of this, let us provide a rather suggestive argument. To
begin with, let us recall that the operator that measures the quantum number n that labels
tensor structures in the decoupling limit is given by the Euler operator

ϑx = ϑ1−us5 = (us5 − 1)∂us5
LCL~ε∼ −∂us5 .

this may lead us to suspect that the eigenvalue η of the operator ∂us5 in the lightcone
limit is directly related to the quantum number n. In addition, let us also observe that the
argument ηus5 of the exponential can only be finite when us5 goes to zero if the eigenvalue
η scales as

η~ε = ε−1
15 η (3.78)

If we combine this fact with the expectation that η = n, then we are led to conclude that
the lightcone limit of our blocks can only have a nontrivial dependence on the cross-ratio
us5 if we scale n such that nus5 remains finite. Note that this scaling ansatz n = O(ε−1

15 ) is
consistent with the scaling of the vertex operator at leading order in the lightcone limit, see
section 4 and the argument after equation (5.9). As an attentive reader may have noticed,
the regime we are probing here is such that the tensor structure label n = O(ε−1

15 ) scales
faster than the spins Ji =

√
λi = O

(
ε
− 1

2
15 ε

− 1
2

(i+1)(i+2)

)
. This seemingly unphysical regime can

nonetheless be defined in the continuum limit for the spins Ji that is used when replacing
the sum over large spins with an integral, see appendix C for its construction based on the
vertex differential operator.

Let us now turn to discuss the non-trivial functions g(us2, us3) of the two remaining
cross-ratios v1 = us2 and v2 = us3. For these functions, the two Casimir equations reduce
to the following set of linear differential equations

η∂us2,3gha,h̄a;η(us2, us3) = −λ1,2gha,h̄a;η(us2, us3) . (3.79)
5The summation over η is symbolic. Of course, in general one might expect a continuum of eigenvalues

η to contribute in which case one would replace the sum with an integral. As we shall see, however, in this
case the leading contribution arises from a single term, namely η = n.
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These equations are solved by

gha,h̄a;η(us2, us3) = e
−λ1us2+λ2us3

η . (3.80)

Let us stress that, by our assumption on the scaling behavior (3.69) of the eigenvalues λa,
the argument of the exponential function is finite as we send the cross-ratios us5, us2 and
us3 to zero.

Putting things together we can now conclude that the lightcone limit of our crossed
channel blocks in case I is given by

ψCC,I
(ha,h̄a;n)(usi)

LCL~ε∼ NCC,I
(ha,h̄a;n)u

h1
s1u

h2
s4 (us2us3)hφe−nus5−

h̄2
1us2+h̄2

2us3
n . (3.81)

Let us stress again that the validity of this formula requires scaling the quantum numbers
h̄a and n such that h̄2

1us2/n, h̄
2
2us3/n and nus5 stay finite as we sent the cross-ratios into

the regime LCL~ε.
We still need to determine the normalization NCC,I and to justify the expectation

η = n. In order to do so we note that the exponential term in the crossed channel lightcone
blocks (3.81) drops out in the limit in which h̄2

1us2, h̄
2
2us3 � n � u−1

s5 . After taking the
limit, the remaining dependence on cross-ratios coincides with that of the direct channel
blocks (3.63) in case haφ+n > 0 for both a = 1, 2, of course up to the obvious replacement
usi → us,i−1. This suggests that we can simply compute the normalization of our crossed
channel lightcone blocks by taking an appropriate limit of the direct channel normaliza-
tion, i.e.

NCC,I
(ha,h̄a;n) = lim

n→∞
lim

h̄a→∞
NDC (0)

(ha,h̄a;n) = lim
n→∞

lim
h̄a→∞

∏
a 6=b

Γ(2h̄a)Γ(hbφ + n)
Γ(h̄a)Γ(h̄a + hbφ + n)

. (3.82)

The direct channel normalizations can be found in eq. (3.64), and lim is a shorthand for
taking the leading term in the Stirling formula for the Gamma functions6. The evaluation
with the help of Stirling’s formula gives

NCC,I
(ha,h̄a;n) = 1

2n

(
n

e

)2n
nh1+h2−2hφ

∏
a 6=b

4h̄a h̄
1
2−(hbφ+n)
a . (3.83)

The two formulas (3.81) with the normalization (3.83) are indeed correct, even though our
derivation was based on the identification that we did not derive rigorously yet.

In order to establish eqs. (3.81) and (3.83) rigorously, we go back to the expansion (3.77)
and note that the formula (3.80) completely determines the dependence of each term in
the expansion on the cross-ratios us2 and us3. Hence, in order to determine the coefficients
〈η|n〉 and thereby the relation between η and n, it suffices to look at the limit where us2
and us3 tend to zero. In this limit, we now want to compare with the formula (3.75).
Recall, that this formula computes the lightcone behavior from the decoupling limit in the
direct channel.

6In particular, one can check that F3 2 (1) ∼ 1 in the large h̄1, h̄2 limit of the normalization formula (3.64).
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In the case of four-point functions, we pointed out that the leading terms of the
crossed channel Casimir operators in the limit where u � v coincide with the leading
terms of the direct channel Casimir operators with u and v exchanged. A closely related
statement holds true for five-point Casimirs. More specifically, the leading terms in the
differential equations are the same regardless of whether we use the usual ordering pre-
scription with ~ε = (ε15, ε34, ε12, ε45, ε23) or the one that is obtained by shifting all indices,
~ε ′ = (ε12, ε45, ε23, ε15, ε34),

lim
~ε→0

ε15ε23,34
(
D2,~ε

12,45 − λ
~ε
1,2

)
= lim
~ε ′→0

ε15ε23,34
(
D2,~ε

12,45 − λ
~ε
1,2

)
. (3.84)

The left-hand side of this equation represents the red path in the diagram 2, while the
right-hand side represents the green path, with the same scaling of λ1, λ2, n in both cases.

This suggests that we can indeed determine the matrix elements 〈η|n〉 in the expan-
sion (3.77) from the formula (3.75). After re-instating the factor that was removed in order
to pass from ψ to F , eq. (3.75) reads

ψCC
(ha,h̄a;n)(usi) ∼ u

h1
s1u

h2
s2 (us2us3)hφ(1− us5)nQ

(
(1− xS1(ϑus2)S2(ϑus3))hφ−h̄1−h̄2

)
fdec

1 (us2)fdec
2 (us3),

For definitions of the various objects, see eqs. (3.74), (3.76). In the limit where us2,3 → 0,
we see that the only x-dependence comes from the factor xn = (1 − us5)n. In fact, since
in case I the eigenvalues λa are sent to infinity with a scaling law (3.69), the operators
Ska ∼ h̄−ka vanish in this regime. Hence, our task is to reproduce the factor exp(−ηus5) in
eq. (3.77) from xn. This requires that we scale n such that nus5 remains finite. Then, in
the limit of large n, we find

lim
n→∞

xn = lim
n→∞

(
1− nus5

n

)n
= e−nus5 .

Comparing with the expansion (3.77) we obtain agreement provided that

〈η|n〉 = δηnNCC,I
(ha,h̄a;n).

In addition, we can compute the normalization N from the limiting behavior of the func-
tions fdec(v) as we send v to zero. The result coincides with our formula (3.83). This
concludes our rigorous derivation of formulas (3.81) and (3.83).

3.3.3 Lightcone blocks for case II

In case II, one of the two eigenvalues is subleading and hence, in order to find eigenfunc-
tions depending on the subleading eigenvalues, we must expand the corresponding Casimir
operator to the desired order at least. Let us recall from eq. (3.70) that the eigenvalue λ1
of the Casimir D2

12 is subleading in the last entry ε23 of our order ~ε and we should include
the next-to-leading order term in u23 which reads

D(−1,0,0)
12 = ∂us5 (ϑus5 − ϑus2 − ϑus3 + hφ) (3.85)
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Once again, our notation suppresses the entries ε12, ε45 = 0 in the superscript so that we
only have three entries (ε15, ε34, ε23). We notice that this term still commutes with the
Euler operators ϑus1 and ϑus4 for the cross-ratios us1 and us4. As we explained before,
when acting on lightcone blocks the value of these two Euler operators is fixed to h1 and
h2, respectively. Hence, the lightcone blocks have the form

ψCC,II
(ha,h̄a;n)(usi) = uh1

s1u
h2
s4g(us2, us3, us5) . (3.86)

Before we continue our discussion of differential equations, let us pass from the blocks ψ
to the functions F by splitting off the simple prefactor

ωCC,II
(ha,h̄a;n) = uh1

s1u
h2
s4 (us2us3)hφ(1− us2)J1−n . (3.87)

In passing from ψ to F , the simple dependence of the lightcone block on us1 and us4 is
removed and one find

FCC,II
(ha,h̄a;n)(usi) = FCC,II

(ha,h̄a;n)(us2, us3, us5). (3.88)

To fix the dependence of the functions on the remaining variables we need to consider the
eigenvalue equations

D(−1,0,∗)
12 : ∂us5 (ϑus5 − ϑ1−us2 − ϑus3 − J1 + n− hφ)F(ha,h̄a;n) = λ1F(ha,h̄a;n) (3.89)

D(−1,−1,0)
45 : ∂us5∂us3F(ha,h̄a;n) = λ2F(ha,h̄a;n). (3.90)

The ∗ in the label of the first Casimir operator reminds us that the equation includes
the term that is subleading in us2. Note that we have written these terms as differential
operators for the function F , i.e. after removing ω. This needs to be taken into account
when comparing with our expressions (3.66), (3.85) and (3.68) which were written for the
action on ψ.

We observe that the two operators on the left-hand side of the differential equa-
tions (3.89) and (3.90) commute with the Euler operator ϑ1−us2 = (1 − us2)∂us2 . This
suggests to expand the functions F as

F(ha,h̄a;n)(us2, us3, us5) =
∑
µ

〈µ|n〉 (1− us2)µFµ(ha,h̄a;n)(us3, us5) . (3.91)

Inserting this Ansatz into our eigenvalue equations and using the notation J1−n := δn we
obtain the following differential equations

D(−1,0,∗)
12 : ∂us5 (ϑus5 − ϑus3 − hφ − δn− µ)Fµ(ha,h̄a;n)(us3, us5) = λ1F

µ

(ha,h̄a;n)(us3, us5)
(3.92)

D(−1,−1,0)
45 : ∂us5∂us3F

µ

(ha,h̄a;n)(us3, us5)(us3, us5) = λ2F
µ

(ha,h̄a;n)(us3, us5). (3.93)

The solution can be derived by expanding Fµ into a basis of common eigenfunctions of
D(−1,−1,0)

45 and ∂us5 ,

Fµ(ha,h̄a;n)(us3, us5) =
∫ ∞

0
dk fµ(ha,h̄a;n)(k) e−(kus5+k−1λ2us3).
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Here, we assume that only the positive part of the ∂us5 spectrum contributes to the super-
position and that said spectrum is continuous. Acting with the Casimir operator D(−1,0,∗)

12
on the integral and integrating by parts (assuming appropriate falloff at large k), we ob-
tain a first-order differential equation for the function fµ(ha,h̄a;n)(k) that fixes it up to a
multiplicative constant f0:

fµ(ha,h̄a;n)(k) = f0
2

e−λ1/k

k1+hφ+δn+µ . (3.94)

Plugging this back into eq. (3.93) yields the integral representation (B.4) of the modified
Bessel-Clifford function Kα(x), see appendix B.1 for its definition and properties. Thus,
up to a multiplicative constant, the solution with boundary conditions suitable for our
problem is given by

Fµ(ha,h̄a;n)(us3, us5) = u
hφ+δn+µ
s5 Khφ+δn+µ(λ1us5 + λ2us3us5). (3.95)

Inserting the solution (3.95) into the ansatz (3.91), we obtain

F(ha,h̄a;n)(us2, us3, us5) =
∑
µ

〈µ|n〉 (1−us2)µuhφ+δn+µ
s5 Khφ+δn+µ(λ1us5 +λ2us3us5). (3.96)

To summarize, we have shown that any function of the form (3.96) satisfies our two Casimir
equations to the desired order, regardless of the coefficients 〈µ|n〉.

To determine the domain of the summation index µ, the scaling of the tensor structure
label n and the coefficients 〈µ|n〉, we follow the strategy we outlined in section 3.3.1 and
executed in our discussion of case I blocks already. The procedure rests on the observation
that the relevant terms of the two Casimir operators are the same if we take the limits
with the ordering ~ε (red path in figure 2) or choose the direct channel ordering ~ε ′ instead
(green path in figure 2),

lim
~ε→0

ε15
(
D2,~ε

12 − λ
~ε
1

)
= lim
~ε ′→0

ε15
(
D2,~ε

45 − λ
~ε
1

)
,

lim
~ε→0

ε15ε34
(
D2,~ε

45 − λ
~ε
2

)
= lim
~ε ′→0

ε15ε34
(
D2,~ε

45 − λ
~ε
2

)
.

Thus, in direct analogy to case I blocks, we should retrieve the form (3.96) from the
expansion (3.75) of blocks around the decoupling limit which is defined here at the (0, 0, x)
node of figure 2 for v = us3.

Our first goal is to show that the only contribution to the sum (3.96) comes from
µ = 0. In order to do this, we start by observing that the sum runs over µ ≥ 0 only. This
can be shown by writing the leading contribution to FO1O2;n in eq. (3.75) as a power series
in 1− us2. Now, to deduce the scaling of n, we make the simple observation

D(−1,0,∗)
12 − J2

1 = ∂us5ϑ1−us2 + O(ε−1
15 ). (3.97)

On the left-hand side, the Casimir operator and its eigenvalue J2
1 +O(J1) scale like O(ε−1

15 )
at leading order, while on the right-hand side, ∂us5 also scales like O(ε−1

15 ) and ϑ1−us2 has
eigenvalues δn+µ, µ ≥ 0. Assuming n < min(J1, J2) = J1, there is only one way to ensure
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that the right-hand side does not scale faster than the ε−1
15 to infinity, namely to keep δn

finite,
δn = J1 − n = O(1). (3.98)

More specifically, we will assume from now on that δn = 0, 1, 2, . . . is a positive integer.
In section 4, we will further demonstrate that this discrete tensor structure labeling is
consistent with the spectrum and eigenbasis of the vertex operator.

Let us now analyze the scaling behavior of the coefficients 〈µ|n〉. Looking at eq. (3.96),
we see that the function multiplied by 〈µ|n〉 scales like εµ15 at order (1−us2)µ. As a result,
the µ-th term in the sum can only contribute to the leading behavior if its coefficient
compensates for the aforementioned suppression, i.e. 〈µ|n〉 ∼ ε−µ15 〈µ = 0|n〉. Whether this
is the case or not can be deduced from our formula (3.75). Upon expansion of the x-
dependent part into a binomial sum, we find

(1− (1− us5)S1S2)−h̄12;φ =
∞∑
k=0

(1− us5)k
k! (h̄12;φ)kSk1Sk2 . (3.99)

In the limit where us5 is of order O(ε15), the region in which k is of order O(ε−1
15 ) dominates

this sum7. Now, we can expand each contribution S1(ϑus2)kfdec
1 (us2) explicitly as a hyper-

geometric in 1− us2 by equating it with the right-hand side of eq. (A.29) in appendix A.4
for ν = k, a = 1, v1 = us2. In this case, we find:

S1(ϑus2)kfdec
1 (us2) = (h̄1)k

(2h̄1)k

(
1 + (δn+ hφ − h1 − h2)h̄1

1− us2
k

+ O
(
h̄2

1k
−2(1− us2)2

))
.

(3.100)
Given h̄2

1, k = O(ε−1
15 ), we can read off from this equation that 〈µ|n〉 ∼ ε

µ/2
15 〈µ = 0|n〉.

Consequently, the coefficients in the sum (3.96) do not diverge fast enough in the us5 → 0
limit for µ 6= 0 terms to compete with the µ = 0 term, such that only the µ = 0 term
survives. Putting all this together, we finally arrive at the following expression for the
lightcone blocks

ψCC,II
(ha,h̄a;J1−δn)(usi)

LCL(4)
~ε∼ NCC,II

(ha,h̄a;n)u
h1
s1u

h2
s4 (us2us3)hφ(1− us2)δnuhφ+δn

s5

Khφ+δn
(
h̄2

1us5 + h̄2
2us3us5

)
.

(3.101)

Here, the superscript (4) on the LCL reminds us that we keep the cross-ratios us2 finite,
i,e, we only send four of the five cross-ratios to zero. As we shall demonstrate below, the
normalization is given by

NCC,II
(ha,h̄a;J1−δn) = 4h̄1+h̄2

√
h̄2
2π e

−h̄1 h̄h̄1
1 h̄

h̄1−hφ−δn
2 . (3.102)

The derivation of the normalization here is less intuitive than in case I — this is because
even at all orders in us2, only the first term of the power series in (1−us2) survives the case II

7In analogy to the crossed channel of a crossing equation, one can think of k as the “spin” and (us5−1)∂us5

as the “crossed channel Casimir”.
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limit. In analogy with a derivative expansion, the sum over descendants µ > 0 truncates,
and this sum is precisely what is counted by the second factor in the normalization (3.64)
coming from fdec

1 (0). At the same time, the descendants η > 0 coming from higher powers
of (1 − us5) counted in the F3 2 (1) in eq. (3.64) is modified, because it depends itself the
contribution of µ ≥ 0 descendants. With a more careful tracking of the sum over (µ, η)
descendants, that is to say, powers of 1 − us2 and x in eq. (3.75), we can obtain the
normalization via the limit

F(ha,h̄a;n)
h̄2

2us2us5�h̄
2
1us5�1

∼ NCC,II
(ha,h̄a;n)h̄

−2(hφ+δn)
1

Γ(hφ + δn)
2 . (3.103)

In the formula (3.75), this is equivalent to setting

(us2, us3) = (1, 0), Sk1 = (h̄1)k
(2h̄1)k

, Sk2 (ϑ) = Sk2 (0). (3.104)

From this we obtain
1
2N

CC,II
(ha,h̄a;J1−δn) = lim

h̄1→∞
h̄

2(hφ+δn)
1

Γ(2h̄1)
Γ(h̄1)Γ(h̄1 + hφ + δn)

lim
h̄2→∞

Γ(2h̄2)Γ(h̄1 − hφ − δn)
Γ(h̄2)Γ(h̄2 + h̄1 − hφ − δn)

.

(3.105)
The evaluation of the limits using Stirling’s formula gives the explicit simple expression
for the normalization of the case II lightcone blocks that we anticipated in eq. (3.102).
We have thus completed all the goals we set ourselves for this section: computing all the
lightcone blocks we need for our analysis of the crossing symmetry equation. We will not
go there right away, however, but instead pause for a moment to comment on the behavior
of vertex differential operators in the lightcone limit.

4 Interlude: lightcone limit of vertex operators

In the last few sections, we have analyzed second-order Casimir equations in the lightcone
limit. But these are not the only differential equations that are needed to characterize
conformal blocks. On the one hand, there are also higher-order Casimir operators. For
the scalar four- and five-point functions we considered here, only the fourth-order Casimir
equations are needed to characterize the blocks. It is clear from our discussion that in
the lightcone limit, these can be expressed in terms of the second-order Casimir and Euler
operators. So, there was no need to include them in our discussion. On the other hand,
starting from N = 5 external scalars, Casimir operators no longer provide a complete set of
differential equations. As was explained in [41, 44], additional vertex differential operators
are needed in order to fully characterize multipoint conformal blocks. These have to do
with the appearance of non-trivial tensor structures at the vertices. Just as the eigenvalues
of the Casimir operators measure the weight and spin of exchanged fields in a given OPE
channel, the eigenvalues of the vertex operators can be used to measure the choice of tensor
structures. In the case of five-point blocks, a single such vertex operator needs to be taken
into account.

As we have emphasized in the introduction already, vertex differential operators are
relevant for the lightcone bootstrap in that they can be used to determine the scaling of
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tensor structures much in the same way as Casimir operators allow to extract the scaling
of spin labels. The main obstacle to overcome in setting up a theory of vertex singular
behavior is to understand how the eigenvalues of vertex operators are actually related to
more conventional tensor structure labels. In general, very little is known. But in the
lightcone limit, we can now add some significant new insight based on the results of the
previous section. This new insight will suffice to determine the scaling of tensor structures
in the next section.

Below we shall analyze the vertex differential operator for five-point functions, both for
the case I and the case II lightcone regimes studied in the previous section. The resulting
expressions for the vertex differential operator are remarkably simple. This simplicity will
enable us to construct their eigenfunctions from a linear combination/integral transform
of the lightcone blocks ψn we constructed in the previous section.

4.1 Vertex operator for case I

To begin with, let us first recall that in [44], the vertex operator was constructed out of
generators T of the conformal Lie algebra as follows:

V ≡ D4,3
ρ,(12)3 = 1

2str
[
(T1 + T2)3 (T3)

]
. (4.1)

All relevant notations can be found in [44] along with a Mathematica notebook that ex-
presses V as a differential operator acting on the five cross-ratios of a five-point function.
Starting from these expressions, we can now go to the lightcone limit LCL, see eq. (3.15).
In doing so, it is straightforward to notice that the leading divergences of the operator V
can be expressed in terms of the second-order Casimir operators D12 and D45. The precise
relation is

V~ε = −ε−2
15 ε
−2
23

(
D(−1,0,−1)

12

)2
+ ε−2

15 ε
−1
23 ε
−1
34 D

(−1,0,−1)
12 D(−1,−1,0)

45 + O
(
ε−1
15

)
. (4.2)

As in our discussion in section 3, we have suppressed the components ε12, ε45 = 0 from the
superscript on the right-hand side. In other words, the superscript only lists (ε15, ε34, ε23).
To expose those terms in the vertex operator that are actually independent of the quadratic
Casimir operators we have already studied, we propose to subtract (D12D45 − D2

12)/4.
Indeed, after this subtraction one finds[
V +D2

12 −D12D45
]~ε

=ε−1
15

(
ε−1
34

(
ε−1
23 V

(−1,−1,−1) + O
(
ε023

))
+O

(
ε034

))
+O

(
ε015

)
, (4.3)

where

V(−1,−1,−1) =2
(
∂us2 −

hφ
us2

)(
∂us3 −

hφ
us3

)
∂us5

(
ϑus2 + ϑus3 − ϑus5 − ϑu1 − ϑu4 + d− 2

2

)
.

(4.4)
In this form, the operator V(−1,−1,−1) cannot be expressed entirely in terms of the second-
order Casimir operators, i.e. it is an independent operator. On the other hand, it is also
worth noticing that we can factor out the lightcone limit (3.66) or (3.68) of the second-
order Casimir operator D12 or D45 from the lightcone limit of the fourth-order vertex
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operator. Hence, when applied to eigenfunctions of the lightcone Casimir operators, the
lightcone vertex operator gives effectively a second order eigenvalue equation. This makes
it rather easy to solve the combined system of Casimir and vertex differential equations in
the lightcone limit.

In order to construct the eigenfunctions of the vertex operator in the lightcone limit
explicitly, we note that it also commutes with the Euler operators ϑus1 and ϑus4 , which
implies we can diagonalize these and work in a basis of functions of the form

ψCC
(ha,h̄a;t)(usi) = uh1

s1u
h2
s4 (us2us3)hφ g(ha,h̄a;t)(us2, us3, us5) . (4.5)

Here we have also extracted a prefactor (us2us3)hφ as suggested by previous experience and
the explicit form of V. Note that we have also denoted the tensor structure label by t in
place of the label n we used above. This label t, that is to say the eigenvalue of the vertex
operator, is now used to label eigenfunctions of the vertex operator. After conjugation
with the prefactor in eq. (4.5) the relevant leading contribution of the subtracted vertex
differential operator becomes

Ṽ(−1,−1,−1) = 2 ∂us2∂us3∂us5
(
ϑus2 + ϑus3 − ϑus5 + 2hφ − h1 − h2 + d− 2

2

)
. (4.6)

By definition, the functions g in eq. (4.5) are eigenfunctions of Ṽ with an eigenvalue that is
determined by t. To diagonalize Ṽ, let us start from the basis of functions that diagonalize
the leading Casimirs as well as ∂us5 , see section 3,

ψCC
(ha,h̄a;η)(usi) ∼ N

CC,I
(ha,h̄a;n)u

h1
s1u

h2
s4 (us2us3)hφ e−ηus5−

λ1us2+λ2us3
η . (4.7)

Here ∼ implies that we display the leading term in the lightcone limit up to some nu-
merical prefactor. As we outlined in the introductory paragraphs to this section, a joint
eigenfunction of the Casimir operators and the vertex operator (4.6) is a superposition of
the blocks (4.7), and can be thus written as

ψCC
(ha,h̄a;t)(usi) ∼ u

h1
s1u

h2
s4 (us2us3)hφ

∫ ∞
0

f(η)e−ηus5−
λ1us2+λ2us3

η dη . (4.8)

Here we assumed that only the positive part of the η spectrum contributes to the physical
blocks and that said spectrum is continuous. Acting with the vertex differential operator
V on the integral (4.8) and integrating by parts (assuming appropriate falloff at large η),
we obtain a differential equation for the function f(η),

− 2λ1λ2

[
f ′(η) + p+ 1

η
f(η)

]
= tf(η), p := 2hφ − h1 − h2 + d− 2

2 . (4.9)

This equation is easy to solve. As one can see immediately, the solution is determined up
to a multiplicative constant f0 by

f(η) = f0
2 e
−η t

2λ1λ2 η−(1+p). (4.10)
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In writing this solution, we assumed that the eigenvalue t of the vertex operator V scales
with ε−1

15 ε
−1
23 ε
−1
34 , just as the leading term of the vertex operator itself. Plugging this form

of the function f(η) into eq. (4.8) provides us with the blocks

ψCC,I
(ha,h̄a;t)(usi)

LCL~ε= f0u
h1
s1u

h2
s4 (us2us3)hφ

(
us5+ t

2λ1λ2

)p
Kp
[
(us2λ1+us3λ2)

(
us5+ t

2λ1λ2

)]
,

(4.11)
where we used the integral representation of the modified Bessel-Clifford function Kp(x) in
eq. (B.4). Thereby we have indeed obtained an explicit expression for the lightcone limit
of the joint eigenfunctions of Casimir and vertex differential operators. The formula (4.10)
for the coefficients of the eigenfunctions (4.7) in the η basis has a simple interpretation: in
order to go from the η basis we used in section 3 to the t basis in which the vertex differential
operator is diagonal, we apply a Laplace transform, after multiplying the argument of the
Laplace transform with η−1−p. Recall from our discussion in section 3 that the variable
η coincides with the usual tensor structure label n in the lightcone limit. Hence, in the
limit, the tensor structure label t that was introduced in [44] within the integrable systems
approach to conformal blocks is essentially the Laplace transform of the standard basis
labeled by n.

4.2 Vertex operator for case II

In our analysis of the eigenfunctions of Casimir operators, we have actually gone a little
further and evaluated the eigenfunctions to all orders in us2. Quite remarkably, we can also
include all these finite-order contributions in the analysis of the vertex operator. Once we
consider all orders in ε23, we obtain a more complicated expression for the vertex operator
which reads

Ṽ(−1,−1,∗) = 2
[

(1− z1) z2
1∂

2
z1 + z1 (hφ + h1 − h2) (ϑus5 − ϑus3)

−
(
z1 (2hφ + h1 − h2 + 1 + ϑus3 − ϑus5)− 2h1 + d− 2

2

)
ϑz1

− (hφ + h1 − h2)hφz1 + h2
1 + d2

12 −
d

4 (2h1 + 1)
]
∂us3∂us5 ,

(4.12)

where we introduced z1 := 1− us2. In our discussion of the leading order, we constructed
eigenfunctions of the vertex operators as linear combinations of case I blocks in eq. (4.7).
Now we need to work with the case II blocks (3.101) instead, i.e. we write the eigenfunctions
ψt of the vertex operators as a superposition of case II blocks,

gCC,II
(ha,h̄a;t)(us2, us3, us5) =

∑
m≥0

ctmg
CC,II
(ha,h̄a;m)(us2, us3, us5)

=
∑
m≥0

ctmu
hφ+m
s5 zm1 Khφ+m(h̄2

1us5 + h̄2
2us3us5) . (4.13)

In writing this expansion, we have not explicitly displayed the dependence of the expansion
coefficients ctm on the quantum numbers (ha, h̄a) of the exchanged fields. The eigenvalue
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equation for the vertex operator acting on these blocks can be recast as a recurrence relation
for the coefficients c,

λ2c
t
m

(
d2 − 3d (2h1 + 2m+ 1) + 12 (h1 +m) 2

)
− 6t ctm

−12λ1λ2c
t
m−1 (hφ + h1 − h2 +m− 1) = 0 ,

where λi = O(h̄2
i ), as usual. We can solve this case II lightcone recursion relation through

the following explicit expression involving Pochhammer symbols (·)m−1,

ctm = N
λm−1

1 (h1 − h2 + hφ + 1)m−1(
−d

4 + h1 −
√

8tλ2− 1
3d(d−12)λ2

2
4λ2

+ 2
)
m−1

(
−d

4 + h1 +
√

8tλ2− 1
3d(d−12)λ2

2
4λ2

+ 2
)
m−1

.

(4.14)
The square roots that appear in the solution suggest the following parametrization of the
vertex operator eigenvalues

tN = 2λ2

((
−d4 + h1 +N

)2
− 1

4d
(

1− d

12

))
, (4.15)

for some integer N ∈ Z≥0. Once this parametrization is adopted, we can simplify the
expressions and make the coefficients c vanish for m < N , assuming N is a positive integer.
By reabsorbing some constants in the normalization factor, we are then left with

ctm = N ′
λm1 (h1 − h2 + hφ +N)m−N

(m−N)!
(
2h1 − d−2

2 + 2N
)
m−N

(4.16)

which, together with eq. (4.13), provide a representation for the vertex operator eigenfunc-
tions at all orders in ε23.

Alternative representations and consistency with previous results. There are
two ways that we can check the consistency of the case II vertex operator spectrum (4.15)
and eigenfunctions (4.13), (4.16) with other computations. First, we can reproduce the
case I vertex operator eigenfunctions starting from the following representation of the
case II eigenfunctions:

gCC,II
(ha,h̄a;tN )(us2, us3, us5) = N ′

∫ ∞
0

dk
k1+hφ

(
λ1z1
k

)N
F1 1

[
a+N

b+ 2N

](
λ1z1
k

)
e−
(
kus5+λ1

k
+λ2us3

k

)
,

(4.17)
where a := h1 + hφ − h2 and b := 2h1 − (d− 2)/2. In the scaling limit

1− z1 = us2 = O(ε23), λ1 = O(ε−1
15 ε
−1
23 ), N2 = O(ε−1

23 ), (4.18)

we can approximate the confluent hypergeometric function (see [56, eq. (13.7.1)]) by

F1 1

[
a+N

b+ 2N

](
λ1z1
k

)
=
(
λ1z1
k

)a−b−N
e
λ1
k

(1−us2)− kN
2

λ1
(
1 + O(ε1/223 )

)
. (4.19)
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In this case, the limiting form of the case II eigenfunctions is

gCC,II
(ha,h̄a;tN )(us2, us3, us5) ε23→0∼ N ′

λb−a1

(
us5 + N2

λ1

)hφ+a−b

Khφ+a−b

(
[λ1us2 + λ2us3]

(
us5 + N2

λ1

))
.

(4.20)

This expression coincides with eq. (4.11) as p = hφ + a − b and t = tN = 2λ2N
2. The

second check is the case of scalar exchange λ1 = 0+O(1), for which there is only one single
tensor structure which we expect to be at N = 0. The corresponding vertex operator
eigenfunction must agree with case II blocks in the n-basis when J1 = δn = 0. We can
check this from the following Euler integral representation of the case II vertex operator
eigenfunctions:

gCC,II
(ha,h̄a;tN )(us2, us3, us5) =

N ′(λ1us5z1)Nuhφs5
∫ 1

0

dt
t(1− t)

ta+N (1− t)b−a+N

Ba+N,b−a+N
Khφ+N (λ1us5(1− z1t) + λ2us3us5) .

(4.21)

For scalar exchange, where λ1us5 → 0, the integral over t factorizes. We are thus left with

gCC,II
(ha,h̄a;tN )(us2, us3, us5) λ1us5→0∼ N ′(λ1us5z1)Nuhφs5Khφ+N (λ2us3us5) . (4.22)

We indeed retrieve the asymptotics of blocks with scalar exchange for N = 0, see ap-
pendix A.4 for a direct computation.

This concludes our discussion of case I and II solutions of the vertex differential equa-
tions. In this work, we shall stick to the more conventional basis of tensor structures that
is labeled by the integer n, also for comparison of our bootstrap analysis in the next sec-
tion with previous work. But it is very promising that the vertex operator basis can be
calculated explicitly in the lightcone limit and that, at least in the leading order case I
lightcone blocks, is related to the n basis through a simple integral transform.

5 Five-point lightcone bootstrap

In this section, we will apply the results on five-point lightcone blocks we derived in the
previous section to the analysis of the crossing symmetry equation depicted in figure 1. In
the first subsection, we shall address the leading contributions in the direct channel. The
remaining subsections are then devoted to the crossed channel. There we shall explain how
to reproduce the various direct channel terms from the crossed channel block expansion.
Along the way we will determine various OPE coefficients involving two double-twist oper-
ators, see eqs. (5.12), (5.30) and (5.56). The first two of these are known from the work [26],
so our derivation of these results simply represents a confirmation of their validity via a
more rigorous treatment of the order of limits. Our formula (5.56), instead, is new. It
applies in particular to theories for which the leading-twist field O? that appears in the
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OPE of φ with itself has twist h? > hφ. The derivation of our new formula requires going
beyond the leading terms in the lightcone limit. This is explained in the section 5.3, where
we derive the large spin expansion of OPE coefficients at discrete tensor structures that
reproduce all leading-twist exchanges in the direct channel. Finally, in section 5.4, we go
over the applications of our results to specific models and check their validity against an
independent computation of tree-level OPE coefficients in φ3 theory.

5.1 Direct channel contributions to lightcone limit

We will expand both channels of the crossing equation (3.14) near two different sequences
of lightcone limits: first the null polygon limit Xi(i+1) = 0, with the specific hierarchy
stated in eq. (3.15), and then the limit LCL(4)

~ε in eq. (3.57), obtained by relaxing the
X23 = 0 limit. Starting with the direct channel, we observe that the hierarchy of lightcone
limits ensures an expansion whose first contributions are the leading-twist fields in the two
operator products of the direct channel. More precisely, taking both X15 � 1 and X34 � 1,
we obtain∑

O1,O2,n

P
(n)
O1O2

ψDC
O1O2;n = Cφφφ

(
(us1us3)

∆φ
2 + (us5us2)

∆φ
2

)
+

+
J?∑
n=0

P
(n)
O?O? ψO?O?;n(us1, us2, us4) + O(Xh>h?

15 ). (5.1)

Here, we have used the conventions that were stated in eq. (3.10), i.e. we multiplied the
five-point correlation function by a factor

ΩDC(Xi) =
(
X15X34

√
X12X23
X13

)∆φ

.

The three terms that appear on the right-hand side correspond to intermediate exchange
of [O1|O2] = [1|φ], [φ|1] and [O1|O2] = [O?|O?] at the top and bottom line respectively.
Note that there cannot be identity exchange in both intermediate channels simultaneously.
Furthermore, a single identity exchange forces the second intermediate exchange to coincide
with the external operators, i.e. it forces φ exchange in the other operator product. The
two terms with a single identity exchange are the first two terms on the right-hand side of
the previous equation. The third term, which may involve a sum over tensor structures n,
is associated with the leading-twist field O? in the operator product of φ with itself, under
the assumption that this field is unique. We parameterize its weight and spin by h? and
J?, and we require h? < 2hφ in order to avoid the infinite summation over the double-twist
fields [φφ]n,J . For this term, there are a few mutually exclusive cases to distinguish. The
leading-twist field O? may coincide with the external field φ itself, i.e. [O1|O2] = [O?|O?] =
[φ|φ]. But this is not always realized, especially when the appearance of φ in the operator
product of φ with itself is excluded by some selection rule. It turns out that O? 6= φ falls
again into two subcases, depending on whether h? < hφ or 2hφ > h? > hφ. Depending
on which of the three scenarios is realized, the blocks gO?O?;n(us1, us2, us4) possess the
following asymptotic behavior in the fivefold lightcone limit (3.15), see section 3.2.
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(−) in case O? 6= φ and h? < hφ, then for all 0 ≤ n < hφ − h? the blocks possess the
following power law behavior in the lightcone limit,

ψ
DC (0)
O?O?;n(usi) = NDC (0)

O?O?;n (us1us2us3us5)h? (us1us2)n (1 + O(us2)) . (5.2)

Note that even when hφ − h? > 1, such that the direct channel sum includes n > 0
contributions, the latter will be subleading of relative order (X12X23)n compared to
the n = 0 block.

(0) In case O? = φ the tensor structure is trivial, i.e. n = 0, and the blocks possess a
logarithmic divergence of the form

ψ
DC (0)
O?O?;0(usi) = NDC (0)

φφ;0 (us1us2us3us5)hφ log us1 log us2 + O(us2 log us1). (5.3)

(+) In case O? 6= φ and 2hφ > h? > hφ, then for all n = 0, 1, . . . , J?, the blocks possess
the following power law behavior in the lightcone limit,

ψ
DC (0)
O?O?;n(usi) = NDC (0)

O?O?;n (us1us2us3us5)h? (us1us2)hφ−h? (1 + O(us2)) . (5.4)

Contrary to the case (−), the n > 0 blocks are not subleading.

In the fourfold lightcone limit (3.57), the blocks present the same asymptotics in the
first four cross-ratios but acquire a non-trivial dependence in the remaining finite cross-ratio
us2 := 1− z, see eq. (3.59).

5.2 Reproducing direct channel terms from crossed channel

We will now proceed to the term-by-term analysis of the direct channel (5.1) expanded
up to order (ε15ε34)h? , reproducing it term by term in the crossed channel. Similarly to
the standard works [4, 5], in all of the following computations we assume that the direct-
channel contributions are reproduced uniquely by fields whose twist at large spin matches
the leading power of the left-hand side. This has been proven in the context of four-point
functions in [14], and is thus a natural assumption to make in a higher-point setting. The
third term that does not involve identity exchange in the direct channel will require a
separate discussion for each of the three alternative cases (−, 0,+) listed above. We shall
indeed find that all direct channel terms can be reproduced based on what is known about
the behavior of anomalous dimensions and operator product coefficients from previous work
on four- and five-point lightcone bootstrap, see in particular [4] and [26]. But there is one
notable exception. In order to reproduce the terms without identity exchange for case (+),
the operator product coefficients involving two double-twist families must satisfy a novel
sum rule that involves a summation/averaging over tensor structures. We will actually
be able to resolve this sum rule and derive the full dependence of these operator product
coefficients on the tensor structure in the next subsection, but this requires leaving the
strict lightcone limit (3.15).
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Figure 3. Lightcone bootstrap of five-point correlator (with an identity exchange).

5.2.1 Single internal identity exchange in direct channel

Let us begin with the two direct channel terms that involve a single identity exchange,
either in the operator product (15) or in the operator product (34). Let us stress again
that double identity exchange is excluded so that the terms we consider here represent the
leading contributions to the lightcone limit of the direct channel. A graphical representation
of the relevant crossing equations is given in figure 3.

[1|φ]-exchange in the direct channel. As we explained above, the first term on the
left-hand side of the direct channel decomposition (5.1) is associated with the exchange of
[O1|O2] = [O15|O34] = [1|φ] in the direct channel. Such a term can contribute non-trivially
to the direct channel whenever the field φ appears in the operator product of φ with itself.
If this is the case, the leading term in the direct channel is the first term in eq. (5.1). Taking
into account the prefactor on the right-hand side of the crossing symmetry equation (3.14)
we deduce that

Cφφφ

(
us1us4
us5

)2hφ
+ . . . =

∑
O1,O2,n

P
(n)
O1O2

ψCC
O1O2;n. (5.5)

Here, . . . denotes other (subleading) terms in the direct channel. In our lightcone
regime (3.15), we first take us5 � us3 � us2 � 1. Then, in order to match the be-
havior of the leading direct channel term on the remaining cross ratios us1 and us4, we
conclude that the limiting crossed channel blocks must obey

ψCC
O1O2;n(usi) ∼ (us1us4)2hφψ̃CC

h1h2(us2, us3, us5), (5.6)

This implies double-twist exchange in both operator products of the crossed channel, i.e.
we conclude that the direct channel terms must be reproduced from terms in the crossed
channel that involve O1,O2 = [φφ]0,J .

Next, we observe that the leading contribution u−2hφ
s5 is Casimir singular with respect

to the relevant terms of both crossed-channel Casimir operators. Indeed, using the explicit
expressions we spelled out in eqs. (3.66) and (3.68) we obtain[

D(−1,0,−1)
12

]n
u
−2hφ
s5 = (2hφ)n(hφ)nu

−2hφ−n
s5 u−ns2 , (5.7)[

D(−1,−1,0)
45

]n
u
−2hφ
s5 = (2hφ)n(hφ)nu

−2hφ−n
s5 u−ns3 . (5.8)

More specifically, the actions of the leading Casimir operators D12 and D45 increase the
singularities by an order O(ε−1

15 ε
−1
23 ) and O(ε−1

15 ε
−1
34 ) respectively. In direct analogy to the
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four-point discussion above eq. (2.50), this implies that the direct channel has infinite sup-
port when expanding in a basis of eigenvectors of the crossed-channel differential operators.
This may be understood by acting with one of the leading Casimirs (say D(−1,0,−1)

12 ) on the
crossing equation (5.5): the order of ε−1

15 ε
−1
23 only matches on both sides when the crossed

channel blocks have λ1 = O(ε−1
15 ε
−1
23 ). Similarly, acting with D(−1,−1,0)

45 yields a match only
for λ2 = O(ε−1

15 ε
−1
23 ). We can analogously understand the scaling of the tensor structure

label by acting with the vertex operator we discussed in section 4. Acting with the leading
vertex operator (4.4) on the left-hand side of eq. (5.5), we get:

V(−1,−1,−1)
(
us1us4
us5

)2hφ
=

h3
φ

us2us3us5

(
2hφ −

d− 2
2

)(
us1us4
us5

)2hφ
. (5.9)

Unless the field φ saturates the unitarity bound 2hφ = d−2
2 , which corresponds to it being a

free scalar and having a vanishing five-point function, we see that the action of V(−1,−1,−1)

increases the singularities by an order O(ε−1
15 ε
−1
23 ε
−1
34 ), which requires its eigenvalue to scale

as in eq. (4.11). For the superposition (4.8) with coefficients (4.10) to make sense, we see
that the tensor structure label η needs to scale as O(ε−1

15 ). We can thus conclude that, to
reproduce the correct behavior in the crossed channel, we must sum over the case I blocks
of eq. (3.69).

Having identified the correct regime, we can now address our goal to reproduce the
direct channel from a sum over crossed channel lightcone blocks in the case I regime.
Using the limits of blocks computed in the previous section (see eq. (3.81)), we can indeed
reproduce the correct asymptotics from a large spin and tensor structure integral

Cφφφu
−2hφ
s5 =(us2us3)hφ

∫
[O(1),∞)3

dη dλ1

4
√
λ1

dλ2

4
√
λ2
NCC,I

(ha,h̄a;η)P
(η)
[φφ]0,J1 [φφ]0,J2

e
−ηus5−

λ1us2+λ2us3
η ,

(5.10)
where λa = h̄2

a + O(h̄a) and h̄a = Ja + O(1) at leading order. In writing the crossing
equation we have divided both sides by (us1us4)2hφ . Through explicit computation of the
integrals it is not difficult to verify that the crossing equation is satisfied if the coefficients
P in the crossed channel obey

NCC,I
(ha,h̄a;η)

16
√
λ1λ2

P
(η)
[φφ]0,J1 [φφ]0,J2

= Cφφφ
(λ1λ2)∆φ/2−1

η Γ2(∆φ/2)Γ(∆φ) . (5.11)

Using our formula (3.83) for the normalization NCC,I of the case I lightcone blocks we
obtain

P
(η)
[φφ]0,J1 [φφ]0,J2

= Cφφφ4−J1−J2 32× 16−∆φ

Γ2(∆φ/2)Γ(∆φ)η
−2η−∆φe2η(J1J2)η+ 3

2 (∆φ−1) . (5.12)

Here we have used that ha = ∆φ = 2hφ, h̄a = ha + Ja and λa ∼ J2
a . Let us note that

h̄a can be replaced by h̄a → Ja except if h̄a appears in the exponent, i.e. in the factor
4h̄a of the normalization (3.83). Our result coincides with the findings of [26]. In order
to compare the two expressions one should observe that our normalization conventions for
blocks differ slightly from those used by Antunes et al., see [26, footnote 3]. This difference
of conventions gives rise to an additional factor 2J1+J2 .
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[φ|1]-exchange in the direct channel. Let us now look at the second term (us2us5)hφ
in the direct channel that arises from the exchange of an identity field in the (34) OPE.
Compared to the leading term in eq. (5.1), the second term is subleading in X15, but higher
order in X12. In the presence of this second term, the crossing equation (5.5) is modified to

Cφφφ

[(
us1us4
us5

)2hφ
+
(
us1us2u

2
s4

us3us5

)hφ ]
+ . . . =

∑
O1,O2,n

P
(n)
O1O2

ψCC
O1O2;n. (5.13)

Once again, . . . denote other (subleading) terms in the direct channel. Since we have
already reproduced the first term on the right-hand side, we would now like to see how the
second term emerges from the crossed-channel sum on the right-hand side.

As a first step, we observe that the subleading direct channel term contains uhφs1 rather
than the u2hφ

s1 that appears in the first term. Consequently, we expect to reproduce the
subleading term from an exchange of the field φ itself in the (12) OPE of the crossed
channel. For the (45) OPE the situation is unchanged with respect to the leading term, i.e.
the crossed channel must involve the exchange of double-twist operators in the (45) OPE.

At the same time, we now find that the direct channel term under consideration is
in the kernel of the crossed channel Casimir operator D12 at both leading O(ε−1

15 ε
−1
23 ) and

subleading O(ε−1
15 ε

0
23) order — these two properties are easily verified using the explicit

formulas (3.66) and (3.85) spelled out above. In fact, outside of any lightcone limit, the
Casimir operator D12 is exactly diagonalized by the direct channel power law with eigen-
value 1

2∆φ(∆φ − d). We conclude that the second term of the direct channel is associated
with φ exchange in the (12) OPE of the crossed channel. On the other hand, the action of
the second crossed-channel Casimir operator D45 is just as singular as in eq. (5.8). Hence,
we continue to have an infinite support of twist h2 = 2hφ operators in the (45) OPE with
λ2 = O(ε−1

15 ε
−1
34 ).

According to these remarks, the lightcone blocks we need on the right-hand side sat-
isfy the same differential equations as case II of our analysis in the previous section, see
eq. (3.101). But in contrast to what we discussed above, the parameters J1 is now fixed
to J1 = 0 (which also implies n = 0) and hence the normalization prescription must be
modified. In appendix A.4, we determine the correct normalization for the case at hand
and obtain

ψCC,II∗
φ,[φφ]0,J2 ;0(usi) ∼

Γ(2hφ)
Γ(hφ) 4h̄2

√
h̄2
π

(us1us2us3u2
s4us5)hφKhφ(us3us5J2

2 ). (5.14)

where the notation II∗ reminds us that J1 = 0 and hence one should not copy the normal-
ization factor from the expression (3.102). Note that the asymptotics in eq. (5.14) can also
be determined from the vertex differential operator of section 4: these blocks are in fact
eigenfunctions of the case II vertex operator with eigenvalue (4.15) for N = 0, in the limit
where λ1us5 → 0.

We now insert these results into the crossing symmetry equation. After dividing both
sides of the equation by Cφφφ(us1us2u2

s4)hφ , we conclude

(us3us5)−hφ = Γ(2hφ)
Γ(hφ)

∫ dJ2
2 C2

φφ[φφ]0,J2
42hφ+J2

√
J2
π

(us3us5)hφKhφ(us3us5J2
2 ). (5.15)
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Figure 4. Lightcone bootstrap of five-point correlator with non-identity leading-twist exchange in
the direct channel. Left: lighter exchange h? < hφ. Right: heavier exchange h? > hφ.

Here, we have also factorized the coefficients in the crossed channel as P (n)
O1O2

= Cφφφ
C2
φφ[φφ]0,J2

. This integral equation is easily verified using the following expression for the
square of the OPE coefficient:

C2
φφ[φφ]0,J = 8

Γ(2hφ)2

√
π

42hφ+J J
4hφ−3/2, (5.16)

which can be found e.g. in [4, eq. (12)], with `↔ J and ∆φ ↔ 2hφ. In conclusion, we have
determined how the second term in the direct channel can be reproduced from the crossed
channel. In this case, however, the analysis does not provide access to any new dynamical
data that goes beyond the four-point lightcone bootstrap.

5.2.2 No internal identity exchange in the direct channel

In this subsection, we address the direct channel contributions that appear in the second
line of the expansion in eq. (5.1), in which there is no internal identity operator exchanged.
As we explained in section 5.1, there are three alternatives to consider which we denoted
by (−), (0) and (+), respectively. Here we shall address case (0) first before discussing (−)
and (+).

[φ|φ]-exchange in the direct channel. Let us first consider the case in which the field
φ is exchanged in both the (15) and (34) OPE. In particular, we shall assume that the
field φ does appear in the operator product of φ with itself. The associated direct channel
contribution is given by eq. (5.1). The crossing symmetry equation is

C3
φφφN

DC (0)
φφ;0 (u2

s1us2u
2
s4u
−1
s5 )hφ log us1 log us2 + . . . =

∑
O1,O2,n

P
(n)
O1O2

ψCC
O1O2;n. (5.17)

Here, we have not shown explicitly the leading terms involving identities, which were
accounted for earlier, i.e. the . . . denote these leading terms as well as all the subleading
ones. With all the experience we have from the previous subsections, we can now skip the
arguments that are mere repetitions of previous examples.

Let us first note that the us1, us4 asymptotics impose double-twist exchange in both
intermediate exchanges of the crossed channel, i.e. Oa = [φφ]0,Ja by the same argument
as in section (5.6). Unlike the claim made in [26], however, the asymptotics of this direct
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channel contribution cannot be reproduced in every single block: the direct channel term
that results from [φ|φ]-exchange is still Casimir singular for the three variables us2, us3, us5,[

D(−1,0,−1)
12

]n
u
hφ
s2 u
−hφ
s5 log us2 = (n− 1)!(hφ)nu

hφ−n
s2 u

−hφ−n
s5 (5.18)[

D(−1,−1,0)
45

]n
u0
s3u
−hφ
s5 = (hφ)2

nu
−n
s3 u

−hφ−n
s5 . (5.19)

Therefore, as argued in section 5.2.1, the crossed channel blocks must have the eigenvalues
λ1 of order O(ε−1

15 ε
−1
23 ) and λ2 of order O(ε−1

15 ε
−1
34 ), respectively. Similarly, one can use

again the vertex operator argument of the same subsection to argue the scaling of the
tensor structure label. Acting with the operator (4.4) on the direct channel contribution,
one gets

V(−1,−1,−1)
[
(u2
s1us2u

2
s4u
−1
s5 )hφ log us1 log us2

]
= −2(u2

s1us2u
2
s4u
−1
s5 )hφ

us2us3us5
h2
φ

(
1+
(

2hφ −
d− 2

2

)
log us1

)
,

(5.20)

which implies t = O(ε−1
15 ε
−1
23 ε
−1
34 ) and η = O(ε−1

15 ). Consequently, the relevant crossing
equation is similar to eq. (5.10) studied in the previous subsection, and we can use the
case I blocks of eq. (3.81) for the crossed-channel conformal block decomposition. The
main new feature is of course the logarithmic factors in us1 and us2. The case of the log us1
factor is well known from the four-point lightcone bootstrap: it can be reproduced in the
crossed channel via an anomalous correction to the weight of double-twist families that
takes the form

h1 = h[φφ]0,J1
= 2hφ + γ

2J2hφ
1

+ . . . = 2hφ + γ

2λhφ1
+ . . . . (5.21)

Indeed, from eq. (3.81), we see that expanding the exponent h1 of the factor uh1
s1 around

2hφ gives the desired log us1 at leading order.
In order to understand the factor log us2, we now study the sum (now approximated

by an integral) on the right-hand side of the crossing symmetry equation (5.17). After
inserting the relevant lightcone blocks (3.81), we obtain∑
O1,O2,n

P
(n)
O1O2

ψCC
O1O2;n = (5.22)

= (u2
s1us2us3u

2
s4)hφ

∫
dη dλ1

4
√
λ1

dλ2

4
√
λ2

γ log us1
2λhφ1

NCC,IP
(η)
[φφ]0,J1 [φφ]0,J2

e
−ηus5−

λ1us2+λ2us3
η

= −γ2
Cφφφ

Γ(∆φ)
(
u2
s1us2u

2
s4u
−1
s5

)hφ log us1 log us2. (5.23)

In order to reach the third line, we inserted the formula (5.11) for the product NP and
performed the integration over λ1 using∫ ∞

L2
1

dλ1
λ1

e−λ1us2η−1 = − log us2 + O(1), ∀L1 = O(1). (5.24)
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Here, L1 denotes a lower limit of spins above which the large spin approximation of the
blocks is valid. This same kind of large spin integral with logarithmic asymptotics appears
in the four-point bootstrap at subleading orders — see the discussion below [21, eq. (3.5)].
The rest of the crossing equation is similar to eq. (5.10), i.e. the integrals over large λ2 and
η reproduce the correct powers law behavior on the various cross-ratios. Comparison with
the right-hand side of the crossing symmetry equation yields

Γ(∆φ)2

Γ(∆φ/2)4 C
3
φφφ = −γ2

Cφφφ
Γ(∆φ) . (5.25)

The result for the factor γ in the anomalous dimension of double-twist families is the same as
for φ exchange in the direct channel of the four-point crossing equation, see e.g. [4, eq. (41)]
after setting the quantum numbers involved to τm = ∆φ and `m = 0. In addition, one
identifies the operator product coefficients of the four-point expansion as Pm = C2

φφ[φφ]0,J1
.

[O?|O?]-exchange in the direct channel, h? < hφ We will now consider the case
where the two exchanged operators in the direct channel are identical and possess leading
twist h? < hφ. The direct channel blocks for this case (−) were given in eq. (5.2), and we
had already stressed that the leading contribution comes solely from one block, namely the
block with n = 0. Hence, the relevant term we need to reproduce from the crossed channel
sum is

· · ·+ P
(0)
O?O?N

DC (0)
O?O?;0u

h?+hφ
s1 uh?s2u

h?−hφ
s3 u

2hφ
s4 u

h?−2hφ
s5 + · · · =

∑
O1,O2,n

P
(n)
O1O2

ψCC
O1O2;n. (5.26)

In this case, the power law u
hφ+h?
s1 u

2hφ
s4 implies that operators O1 = [φO?]0,J1 and O2 =

[φφ]0,J2 are exchanged in the two intermediate channels of the crossed channel. Further-
more, just as for case (0), the power law prefactor is Casimir singular with respect to the
two Casimir operators D(−1,0,−1)

12 and D(−1,−1,0)
45 ,

[
D(−1,0,−1)

12
]n
uh?s2u

h?−2hφ
s5 = (hφ − h?)n(2hφ − h?)n uh?s2u

h?−2hφ
s5 ,[

D(−1,−1,0)
45

]n
u
h?−hφ
s3 u

h?−2hφ
s5 = (2hφ − h?)2

n u
h?−hφ
s3 u

h?−2hφ
s5 .

Finally, the direct channel power law is singular with respect to the vertex operator
V(−1,−1,−1) given in eq. (4.4):

V(−1,−1,−1)
(
u
h?+hφ
s1 uh?s2u

h?−hφ
s3 u

2hφ
s4 u

h?−2hφ
s5

)
u
h?+hφ
s1 uh?s2u

h?−hφ
s3 u

2hφ
s4 u

h?−2hφ
s5

= −2
(h? − hφ)(h? − 2hφ)2

(
2hφ − d−2

2

)
us2us3us5

.

(5.27)
Our standard reasoning from previous subsections implies that, in order to reproduce the
direct channel term, we need to sum over crossed channel lightcone blocks with eigenvalue
λ1 of order O(ε−1

15 ε
−1
23 ), eigenvalue λ2 of order O(ε−1

15 ε
−1
34 ), and tensor structure label η of

order O(ε−1
15 ). Consequently, we use the case I lightcone blocks that were given in eq. (3.81),
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in which case the crossed channel sum reduces to∑
O1,O2,n

P
(n)
O1O2

ψCC
O1O2;n =

u
h?+hφ
s1 u

2hφ
s4 uh?s2u

2hφ−h?
s3

∫
R3

+

dη dλ1dλ2

16
√
λ1λ2

NCC,I
(ha,h̄a;η)P

(η)
[φO?]0,J1 [φφ]0,J2

e
−ηus5−

λ1us2+λ2us3
η .

(5.28)

In order to reproduce the left hand side of the crossing equation (5.26), we must impose
the following asymptotic behavior of the product

NCC,I
(ha,h̄a;η)

16
√
λ1λ2

P
(η)
[φO?]0,J1 [φφ]0,J2

= P
(0)
O?O?N

DC (0)
O?O?;0

(η−1λ1)hφ−h?−1

Γ(hφ − h?)
(η−1λ2)2hφ−h?−1

Γ(2hφ − h?)
η2hφ−h?−3

Γ(2hφ − h?)
.

(5.29)
at large quantum numbers η, λ1, λ2. After plugging in our formulas (3.83) and (3.64) for
the relevant normalizations N , we deduce

P
(η)
[φO?]0,J1 [φφ]0,J2

= P
(0)
O?O?N

DC
O?O?;0

32× 43hφ−h?4−J1−J2e2η

Γ(hφ − h?)Γ2(2hφ − h?)
η−2η−2hφJ

η+3hφ−2h?− 3
2

1 J
η+4hφ−h?− 3

2
2 ,

(5.30)

with
NDC (0)
O?O?;0 = Γ2(2h?)Γ2(hφ − h?)

Γ2(h?)Γ2(hφ) . (5.31)

To evaluate the crossed channel quantities we have used that h1 → hφ + h?, h2 → 2hφ and
h̄a = ha+Ja →

√
λa. In the direct channel, on the other hand, we have ha = h̄a = h?. Our

result coincides with the findings of [26], see eq. (48) therein. In order to compare the two
expressions, one should observe that our normalization conventions for blocks differ slightly
from those used by Antunes et al., see [26, footnote 3]. This difference of conventions gives
rise to an additional factor 2J1+J2 . In addition, the labels J1 and J2 are exchanged.

With this result, we have reproduced all computations of [26] pertaining to the scalar
five-point function. In this context, our derivation explicitly shows that these OPE coef-
ficients lie in a case I regime where the tensor structure label n scales to infinity faster
than the spins J1, J2. In contrast, the derivation of [26] was based on a permutation of the
order of limits in the crossed channel from (ε15, ε34, ε12, ε45, ε23) to (ε12, ε45, ε23, ε34, ε15), in
which case J1, J2 → ∞ before n → ∞. In general, it is not clear that these results will
continue to predict the leading asymptotics of OPE coefficients in this permuted order of
limits. Nonetheless, in the explicit example [26, section 4.2] of φ3 theory in d = 6 − ε

dimensions, which we will review in section 5.4 in more detail, the authors show that the
case I asymptotics predicted from the lightcone bootstrap indeed coincide with the leading
J1, J2 � n � 1 behavior of the OPE coefficients. To avoid the permutation of limits, it
would be interesting to clarify the physical interpretation of this case I regime and, more
generally, to better understand the analyticity properties of OPE coefficients in the tensor
structure label.
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[O?|O?]-exchange in the direct channel, 2hφ > h? > hφ Let us now address the
last case in which the leading-twist contribution O? to the internal exchange in the crossed
channel has 2hφ > h? > hφ. As we have pointed out in the first subsection, an infinite
number of crossed channel blocks can contribute in this case at the same order, since the
leading asymptotics do not depend on the quantum number n. Using our formula (5.4) for
crossed channel lightcone blocks, the crossing equation becomes

· · ·+ u
2hφ
s1 u

hφ
s2 u

h?−hφ
s3 u

2hφ
s4 u

h?−2hφ
s5

∑
n

P
(n)
O?O?N

DC (0)
O?O?;n + · · · =

∑
O1,O2,n

P
(n)
O1O2

ψCC
O1O2;n(usi).

(5.32)
The familiar power law (us1us4)2hφ for the dependence on the cross-ratios us1 and us4
implies double-twist exchange of [φφ]0,Ji in the (12) and (45) OPE of the crossed channel.

The first interesting new feature of the case under consideration arises from the kernel
condition. In fact, using our explicit formula (3.66) for the leading term of the crossed
channel Casimir operator D12, we find

D(−1,0,−1)
12 u

hφ
s2 u

2hφ
s1 u

h?−hφ
s3 u

2hφ
s4 u

h?−2hφ
s5 = 0. (5.33)

On the other hand, when we apply the next-to-leading term (3.85) in the Casimir operator
D12 to the same power law on the left-hand side of the crossing equation (5.32), we find[
D(−1,0,0)

12
]n
u
hφ
s2 u

2hφ
s1 u

h?−hφ
s3 u

2hφ
s4 u

h?−2hφ
s5 = (2hφ − h?)n(hφ)nu

hφ
s2 u

2hφ
s1 u

h?−hφ
s3 u

2hφ
s4 u

h?−2hφ−n
s5 ,

i.e. the direct channel is D2
12-singular at order O(ε−1

15 ) but not at leading order. At the
same time, the action of the leading term (3.68) in the second crossed channel Casimir
operator D45 gives[
D(−1,0,−1)

45
]n
u
hφ
s2 u

2hφ
s1 u

h?−hφ
s3 u

2hφ
s4 u

h?−2hφ
s5 = ((2hφ − h?)n)2u

hφ
s2 u

2hφ
s1 u

h?−hφ
s3 u

2hφ
s4 u

h?−2hφ−n
s5 .

(5.34)
In comparison with the discussion in section 5.2.1, the crossed channel is now dominated by
lightcone blocks with eigenvalue λ1 of order O(ε−1

15 ) and eigenvalue λ2 of order O(ε−1
15 ε
−1
34 ).

To see the way the tensor structure label scales, we can use the case II vertex operator of
section 4. Its action on the direct channel contribution reads

V(−1,−1,0)
(
u
hφ
s2 u

2hφ
s1 u

h?−hφ
s3 u

2hφ
s4 u

h?−2hφ
s5

)
u
hφ
s2 u

2hφ
s1 u

h?−hφ
s3 u

2hφ
s4 u

h?−2hφ
s5

=
(h? − 2hφ)2

(
36h2

φ − 12dhφ + d2 − 3d
)

6us3us5
,

(5.35)
which shows that its eigenvalue scales like λ2, that is, precisely like in eq. (4.15) with N
finite. This regime corresponds precisely to the case II blocks (3.101) we studied at the
end of the previous section. Consequently, the crossed-channel sum on the right-hand side
of equation (5.32) becomes∑

O1,O2,n

P
(n)
O1O2

ψCC
O1O2;n(usi) =

(
u2
s1u

2
s4us2us3us5

)hφ∫
R2

+

dλ1dλ2

16
√
λ1λ2

(5.36)

∞∑
δn=0
NCC,II

[φφ]0,J1 [φφ]0,J2 ;J1−δnP
(J1−δn)
[φφ]0,J1 [φφ]0,J2

Khφ+δn(λ1us5+λ2us3us5).
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In order to match this crossed-channel integral with the direct-channel term on the left-
hand side of the crossing equation (5.32), we propose the following Ansatz:

NCC,II
[φφ]0,J1 [φφ]0,J2 ;J1−δn

16
√
λ1λ2

P
(J1−δn)
[φφ]0,J1 [φφ]0,J2

= bδn
2λhφ+δn−1

1
Γ(hφ + δn)Γ(2hφ − h?)

λ
2hφ−h?−1
2

Γ(2hφ − h?)
, (5.37)

where bδn is a set of constants that depend on the choice of tensor structure. As we shall
see, these constants cannot be determined by our equation (5.32). After plugging the
Ansatz (5.37) into the right-hand side of eq. (5.36), we evaluate the two integrations over
λ1 and λ2 with the help of the following integral formula:∫

R2
+

dx
x

dy
y
xαyβKα(x+ y) = 1

2Γ(α)Γ(β)2, (5.38)

for α = hφ + δn and β = 2hφ − h?. This identity is proven in appendix B. Once the
dust settles, we see that the crossing equation (5.32) is indeed satisfied, provided that the
undetermined constants bδn satisfy the following sum rule:

J?∑
n=0

P
(n)
O?O?N

DC
O?O?;n =

∞∑
δn=0

bδn (5.39)

In other words, while the crossing symmetry equation (5.32) suffices to determine the
dependence of the operator product coefficients in eq. (5.37) on the spins J1 and J2 of the
intermediate fields, it only constrains the ‘average’ over the choice δn of tensor structure.
It is clear that we could not have done better here because the lightcone blocks from
case II depend nontrivially on only two of the five cross-ratios, namely on us3 and us5.
The dependence of the other three cross-ratios is through a simple power law that matches
directly the dependence of the lightcone blocks in the direct channel and moreover does not
depend on δn. Hence, at the order we have considered here, crossing symmetry is unable to
resolve the δn dependence of the operator product coefficients beyond the sum rule (5.39).
In the next subsection, we will explain how to determine the coefficients bδn in eq. (5.37)
by solving the crossing equation at subleading orders in us2.

5.3 Solving OPE coefficients for discrete tensor structures

In the last subsection, we determined the operator product coefficients involving two
double-twist families in the limit of large tensor structure label η, see eqs. (5.12) and (5.30).
Through the analysis of the five-point crossing equation (5.32) in theories for which the
leading-twist field O? that appears in the operator product of φ with itself has weight
h? > hφ, we were able to at least constrain the operator product coefficients with finite
tensor structure label δn through the sum rule (5.39). Our goal in this subsection is to do
better and to fully determine the operator product coefficients for finite tensor structure
label δn = J1−n. Our comments in the final paragraph of the previous subsection suggest
that our goal can be reached if we manage to analyze corrections to the crossing symme-
try constraint (5.32) that are subleading in the cross-ratio us2, i.e. we should look at the
crossing equation in the regime

LCL(4)
~ε : X15 � X34 � X12 � X45 � 1, (5.40)
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which imposes no condition on X23. Fortunately, we have already determined both direct
channel and case II crossed channel blocks in this regime. For the direct channel, we
constructed the full us2 dependence of the relevant blocks in eq. (3.59), on the way from
the partial lightcone limit LCL(2) to the full lightcone limit. By relaxing the last lightcone
limit and summing over crossed channel blocks in a different scaling regime of spins, we
can also bootstrap the leading contributions with h? ≤ hφ to derive OPE coefficients in
the less stringent scaling limit J2 � J1, n� 1 with J1 − n = δn = 0, 1, 2, . . . ,∞.

5.3.1 Single internal identity exchange in the direct channel

[1|φ]-exchange in the direct channel. Relaxing the us2 → 0 limit does not change
the leading contribution:

Cφφφ

(
us1us4
us5

)2hφ
+ . . . =

∑
O1,O2,n

P
(n)
O1O2

ψCC
O1O2;n. (5.41)

We have constructed the full us2 dependence of the case II crossed channel blocks, see
eq. (3.101) in section 3.3:

ψ
(12),(45)
([φφ]0,J1 ,[φφ]0,J2 ;J1−δn)(usi) (5.42)

LCL(4)
∼ N LS,II

([φφ]0,J1 ,[φφ]0,J2 ;J1−δn)(u
2
s1us2us3u

2
s4us5)hφ(us5(1− us2))δnKhφ+δn(us3us5J2

2 ).

The normalization NCC,II
([φφ]0,J1 ,[φφ]0,J2 ;J1−δn) := NCC,II

(2hφ,2hφ,2hφ+J1,2hφ+J2;J1−δn) is given in
eq. (3.102). Hence, there is nothing that prevents us from evaluating crossing symme-
try in the regime LCL(4), without sending us2 to zero. In this case, the crossing equation
becomes

Cφφφu
−2hφ
s5 = u

hφ
s3 (1− z)hφ

×
∞∑

δn=0
zδn
∫ d2λ

16
√
λ1λ2

NCC,II
([φφ]0,J1 ,[φφ]0,J2 ;J1−δn)P

(J1−δn)
[φφ]0,J1 [φφ]0,J2

u
hφ+δn
s5 Khφ+δn(λ1us5 + λ2us3us5).

Homogeneity of the equation in ε15, ε34 imposes NP ∝ λ2hφ+δn−1/2
1 λ

hφ−1/2
2 , so without loss

of generality we can write

NCC,II
([φφ]0,J1 ,[φφ]0,J2 ;J1−δn)P

(J1−δn)
[φφ]0,J1 [φφ]0,J2

16
√
λ1λ2

= Cφφφ
2λ2hφ+δn−1

1 λ
hφ−1
2

Γ(2hφ + δn)Γ(hφ)Γ(2hφ)aδn, (5.43)

for some series of coefficients aδn. Plugging this back into the crossing equation and using
the double integral formula of appendix B yields a sum rule for the a-coefficients:

1 = (1− z)hφ
∞∑

δn=0
aδnz

δn. (5.44)

The sum rule is easily solved by imposing aδn = (hφ)δn/δn!, such that the full solution is

NCC,II
(2hφ,2hφ,2hφ+J1,2hφ+J2;J1−δn)P

(J1−δn)
[φφ]0,J1 [φφ]0,J2

16J1J2
∼ Cφφφ

2J4hφ+2δn−2
1 J

2hφ−2
2

Γ(hφ)Γ(2hφ)2
(hφ)δn

δn!(2hφ)δn
.

(5.45)
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The quantity P on the left-hand side is given by the product

P
(J1−δn)
[φφ]0,J1 [φφ]0,J2

= Cφφ[φφ]0,J1
C

(J1−δn)
[φφ]0,J2φ[φφ]0,J1

Cφφ[φφ]0,J2
. (5.46)

Since the operator product coefficients Cφφ[φφ]0,J for large J are known (see eq. (5.16)),
our new formula (5.45) allows us to compute the coefficients in the center of the expres-
sion (5.46) for large Ja but any finite integer value of the label δn. We will discuss this
formula further in the section 5.4 and test it through a non-trivial example. But before
that, we will first go through the other direct channel exchanges.

[φ|1]-exchange in the direct channel. As we saw previously, the identity exchange
in (34) forces the exchange of φ in the (12) OPE of the crossed channel. As a result,
the crossed channel block decomposition is a specific example of case II scaling where
λ1 = 0 + O(1) is fixed. The corresponding solution to the crossing equation was already
computed in the second paragraph of section 5.2.1. Hence, the [φ|1] does not provide any
new insight into OPE coefficients.

5.3.2 No internal identity exchange in the direct channel

Even in the relaxed lightcone limit LCL(4)
~ε , the exchange of O? in the (15) OPE of the

direct channel will yield differing asymptotics in the ε12 → 0 limit depending on whether
h? < hφ, h? = hφ or h? > hφ. As we determined in the previous section, these X12
asymptotics affect the twist of operators in the (12) OPE of the crossed channel: [φO?] is
exchanged when h? ≤ hφ, [φφ] is exchanged when h? ≥ hφ, and an anomalous dimension
appears when h? = hφ. Each contribution will have a non-trivial dependence on the finite
cross-ratio us2 corresponding to the lightcone blocks for O? exchange — the latter were
computed in full detail in section 3.2.

[O?|φ]-exchange in the direct channel. If there is φ exchange in the (34) OPE of
the direct channel, then for any O? exchange in the (12) OPE, the left hand side of the
crossing equation will take the form

DC = · · ·+ Cφφφ

(
us1us4
us5

)2hφ
uh?s5

C2
φφO?
Bh̄?

log us1u
hφ
s2 F2 1

[
h?, 2hφ − h?

2h?

]
(z) + . . . (5.47)

If we define γ0 := 2B−1
h̄?
C2
φφO?Γ(2hφ−h?)2Γ(2hφ)−2, then it is easy to verify that the direct

channel is reproduced by the perturbation 1
2γ0

∂
∂h1

(Pψ) = γ0 log us1(Pψ)+ . . . of the direct
channel sum computed in eq. (5.45) for [1|φ] exchange, i.e.

DC = · · ·+
∫ dJ1dJ2

4

(
log us1

γ0

2J2h?
1

)
P

(J−δn)
[φφ]0,J1 [φφ]0,J2

ψCC
(2hφ,2hφ+Ja;J1−δn) + . . . (5.48)

Hence, the direct channel contribution from [O?|φ]-exchange is nicely reproduced by crossed
channel terms, but it does not provide any new information on OPE coefficients.
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[O?|O?]-exchange in the direct channel, h? < hφ. We can now look at the direct
channel contribution given by

DC = · · ·+ P
(0)
O?O?u

h?+hφ
s1 u

h?−hφ
s3 u

2hφ
s4 u

h?−2hφ
s5 (1− z)h?zJ? F2 1

[
h̄?, h̄? + h? − hφ

2h̄?

]
(z) + . . .

(5.49)
For this contribution, the crossing equation reduces to

(u3u5)h?−2hφ(1− z)h?−hφzJ? F2 1

[
h̄?, h̄? + h? − hφ

2h̄?

]
(z) =

∞∑
δn=0

∫ dλ1dλ2

16
√
λ1λ2

NCC,II
([φO?]0,J1 ,[φφ]0,J2 ;J1−δn)P

(J1−δn)
[φO?]0,J1 [φφ]0,J2

zδnu
hφ+δn
5 Khφ+δn(λ1u5 + λ2u3u5),

where the normalization NCC,II
([φO?]0,J1 ,[φφ]0,J2 ;J1−δn) := NCC,II

(hφ+h?,2hφ,hφ+h?+J1,2hφ+J2;J1−δn) is
again to be found in eq. (3.102). Homogeneity of the crossing equation in ε15, ε34 fixes the
dependence of the OPE coefficients in λ1, λ2 up to a series in δn, which we express as

NCC,II
([φO?]0,J1 ,[φφ]0,J2 ;J1−δn)P

(J1−δn)
[φO?]0,J1 [φφ]0,J2

16
√
λ1λ2

= P
(0)
O?O?

2λhφ+δn−1
1 λ

2hφ−h?−1
2

Γ(hφ + δn)Γ(2hφ − h?)2 b
−
δn. (5.50)

Plugging this form back into the crossing equation yields the sum rule

(1− z)h?zJ? F2 1

[
h̄?, h̄? + h? − hφ

2h̄?

]
(z) =

∞∑
δn=0

b−δnz
δn. (5.51)

The solution to this sum rule is immediate: the coefficients b−δn on the right are coefficients
of the function on the left in a power series expansion around z = 0. By combining the
previous two equations we obtain the following expression for the OPE coefficients

NCC,II
(hφ+h?,2hφ,hφ+h?+J1,2hφ+J2;J1−δn)P

(J1−δn)
[φO?]0,J1 [φφ]0,J2

16
√
λ1λ2

= (5.52)

= P
(0)
O?O?

2λhφ+δn−1
1 λ

2hφ−h?−1
2

Γ(hφ + δn)Γ(2hφ − h?)2δn!
dδn
dzδn (1− z)h?zJ? F2 1

[
h̄?, h̄? + h? − hφ

2h̄?

]
(z)
∣∣∣
z=0

.

This is a genuinely new result on OPE coefficients involving the double twist families [φO?]
and [φφ]. We shall discuss its applications in the next subsection. But before we do so, let
us analyze the final case in which [O?|O?] is exchanged in the direct channel.

[O?|O?]-exchange in the direct channel, h? > hφ. When h? > hφ, the relevant
behavior of direct channel blocks is

ψ
(15),(34)
O?O?;n (usi) LCL(4)

∼ (us1us2)hφ(us3us5)h?gfin
O?O?;n(z), z := 1− us2. (5.53)

An integral representation for the function gfin was given in equation (3.60). It is also
possible to work out the following power series expansion, see eq. (3.61) in section 3.2. For
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O1 = O? = O2, it reads

gfin
O?O?;n(z) = Γ(2h̄?)Γ(h?φ + n)

Γ(h̄?)Γ(h̄? + h?φ + n)

∞∑
k=0

(2h̄? − h̄φ)k
k!

(h̄?)k
(2h̄?)k

(h?φ + n)k
(h?φ + n+ h̄?)k

(5.54)

F2 1

[
h̄? − 2hφ − n, h̄?

2h̄? + k

]
(z) F2 1

[
n− h̄? − h?, h̄?
h̄? + h?φ + n+ k

]
(1− z).

If we plug our Ansatz (5.37) for the operator product coefficients into the crossing equation,
we obtain the following constraint:

J?∑
n=0

P
(n)
O?O?g

fin
O?O?;n(z) =

∞∑
δn=0

bδnz
δn. (5.55)

This constraint now replaces the z-independent sum rule (5.39) found in the previous
subsection, the latter of which is recovered for z = 1−us2 = 1. Since the new equation (5.55)
contains a power series in z on both sides, it suffices to completely determine the coefficients
bδn. In conclusion, the operator product coefficients for two double-twist exchanges at
subleading order are given by

NCC,II
(2hφ,2hφ,2hφ+J1,2hφ+J2;J1−δn)

16
√
λ1λ2

P
(J1−δn)
[φφ]0,J1 [φφ]0,J2

∼ (5.56)

∼ 2λhφ+δn−1
1 λ

2hφ−h?−1
2

Γ(hφ + δn)Γ(2hφ − h?)2

J?∑
m=0

P
(m)
O?O?

dδngfin
O?O?;m

δn! dzδn
∣∣∣
z=0

.

It is not difficult to evaluate arbitrary derivatives of the function gfin(z) at z = 0 using
the series expansion formula (5.54). Recall that OPE coefficients on the right hand side
are given by P

(m)
O?O? = C2

φφO?C
(m)
O?φO? with a label m that enumerates non-trivial tensor

structures in case O? carries spin J? 6= 0. Assuming this data is known, one can use
our formula to compute the quantity P on the left-hand side of the equation via the
expression (3.102) for the normalization of case II lightcone blocks.

The last formula can be made even more explicit if the intermediate field O? is scalar.
In this case, the finite sum over m consists of a single term with m = 0 and the function
gfin(z) reduces to a Gauss hypergeometric series,

gfin
O?O?;0(z) =

Bh?,hφBh?,h?−hφ
B2
h?

F2 1

[
hφ, hφ
h? + hφ

]
(z). (5.57)

From this expression, it is straightforward to evaluate the derivatives of gfin that appear in
eq. (5.56). The net effect is encoded in the replacement

J?∑
m=0

P
(m)
O?O?

dδngfin
O?O?;m

δn! dzδn
∣∣∣
z=0
7→ P

(0)
O?O?

Bh?,hφBh?,h?−hφ
B2
h?

(hφ)2
δn

δn! (h? + hφ)δn
. (5.58)

With this substitution rule, our new result (5.56) on the contributions to double twist
OPE coefficients that stem from [O?O?]-exchange in the direct channel applies to the case
of scalar O?.
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Summary. We have now bootstrapped OPE coefficients of large-spin double-twist op-
erators in the crossed channel as a function of direct-channel leading-twist exchanges
O? and their CFT data P

(n)
O?O? . We were able to obtain asymptotics of double-twist

OPE coefficients in two regimes: either n � J1, J2 � 1 (I) or J2 � J1, n � 1 with
J1 − n = δn = 0, 1, 2, . . . ,∞ (II). The results in regime (I), derived in section 5.2, only
apply to direct-channel exchanges with h? ≤ hφ. The OPE coefficients in this regime
were computed in [26] using different methods, and we find exact agreement between their
results and ours. On the other hand, the results in regime (II), derived in section 5.3,
apply for any h? < 2hφ exchanges in the direct channel. It is actually the first time that
a discrete tensor structure dependence for the OPE coefficients C(n)

[φφ]φ[φφ], C
(n)
[φO?]φ[φφ] has

been resolved. This progress came about because we were able to control the lightcone
blocks on both sides of the crossing symmetry equation with only four, rather than the
usual five lightcone limits taken. While in principle, the relevant information on lightcone
blocks resides in the integral formula and hence in the usual lightcone OPE, the lightcone
Casimir operators played a crucial role in extracting this data.

5.4 Applications to specific models

To explore the predictions that follow from formulas (5.45), (5.52) and (5.56), we would like
to discuss possible applications, at least briefly. In the first subsection, we shall go through
each of the new formulas and list a few cases to which they apply, mostly within the context
of models in d = 3. We shall then employ one of the concrete realizations in the second
subsection to check our result (5.45) against leading order perturbative computations in
scalar φ3 theory.

5.4.1 Possible leading-twist exchanges

Our results on OPE coefficients were obtained by solving the crossing equation for specific
leading-twist exchanges in the direct channel. Which of these leading-twist exchanges
actually appear depends on the specific model under investigation and the choice of the
field φ. We will review this case-by-case:

• [1|φ]-exchange only exists if Cφφφ 6= 0 and entails P[φφ][φφ] ∝ Cφφφ in the crossed chan-
nel, see eq. (5.45). Of course, in all models with Z2 symmetry, the OPE coefficients
Cφφφ vanish if φ is Z2-charged. Hence, there are two cases where this contribution to
the OPE coefficients does not vanish. On the one hand, we can consider Z2-charged
operators in models that break the Z2 symmetry, like φ3 theory. Alternatively, our
formula (5.45) applies to any Z2-singlet operator, even in models with Z2 symmetry,
such as the field φ ≡ ε in the d = 3 Ising model or φ ≡ ϕ2 at the Wilson-Fisher
fixed-point. The first realization within scalar φ3 theory provides a nice opportunity
to check formula (5.45) against an independent perturbative calculation of the OPE
coefficients at tree level. The latter are derived in appendix D and they are compared
with our bootstrap result in section 5.4.2 below.

• [O?|O?]-exchange with 0 < h? < hφ entails P[φO?][φφ] ∝ P
(0)
O?O? in the crossed channel,

see eq. (5.52). These exchanges can of course only appear when φ is not the lowest
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dimension scalar of the theory. A typical example would be (φ,O?) = (ε, Tµν) in the
Ising model, or more generally O? = Tµν whenever ∆φ > d − 2. Since these cases
involve external composite fields, performing explicit perturbative calculations of our
formula (5.52) would be significantly more difficult than for the case we mentioned
at the end of the previous paragraph. This makes eq. (5.52) an interesting prediction
of the multipoint bootstrap.

• [O?|O?]-exchange with h? > hφ entails P[φφ][φφ] ∝ P
(n)
O?O? , as detailed in our for-

mula (5.56). When [1|φ]-exchange contributes to the direct channel — see our dis-
cussion in the first item — the contributions from [O?|O?]-exchange correspond to
subleading terms in the large spin expansion of the double-twist OPE coefficients,
such as O? = Tµν in φ3 theory or (φ,O?) = (ε, ε′) in the Ising model. On the other
hand, one can also find models in which the exchange of [O?|O?] with h? > hφ is lead-
ing, like the Gross-Neveu-Yukawa models with φ ≡ σ the pseudoscalar and O? ≡ Tµν .
In all of these cases, O? must be the unique field with twist h? in the spectrum. Such
a twist gap is characteristic of strongly interacting CFTs, making formula (5.56) a
non-trivial prediction of the five-point lightcone bootstrap that would be difficult to
reproduce with perturbative methods.

Before we conclude this short list of applications, we would like to briefly comment
on an aspect that specifically applies to five-point functions in d = 3-dimensional models.
It is well known (see e.g. [55, section 4.2.3]) that three-point tensor structures of two
STTs and one scalar can only be parity-odd in d = 3, whereas the results we have stated
above only apply to parity-even tensor structures. Fortunately, it is not difficult to derive
analogous expressions for parity-odd tensor structures. As demonstrated in appendix E, the
parity-odd five-point blocks in either channel are obtained by a simple shift of parameters
(hφ, n) → (hφ + 1/2, n + 1) .8 We can therefore perform the same analysis and bootstrap
parity-odd OPE coefficients of double-twist operators. There are only two qualitative
differences: first, odd parity excludes scalar exchange in either channel. Second, the direct
channel asymptotics now depend on the sign of h?−hφ+1/2, such that [φO?] only appears
if d−2

2 ≤ h? < hφ−1/2, which in turn requires ∆φ > d−1. In the case where formula (5.56)
applies, i.e. h? > hφ − 1/2, the shift of parameters leads to the following explicit result:

NCC,II
([σσ]0,J1 [σσ]0,J2 ;J1−δn−1/2)

16J1J2
P

(J1−δn,odd)
[σσ]0,J1 [σσ]0,J2

∼

2J2(hσ+δn−3/2)
1 J

2(2hφ−h?−1)
2

Γ(hφ + δn− 1/2)Γ(2hφ − h?)2

J?−1∑
m=0

P
(m,odd)
O?O?

dδngfin,hφ→hφ+1/2
O?O?;m+1
δn! dzδn

∣∣∣
z=0

. (5.59)

For pseudoscalar five-point functions, the comments on applications that we listed in the
final item of our list will therefore apply after replacing the parity-even result (5.56) with
the parity-odd result (5.59) above.

8Here, hφ is to be understood as the dependence of the blocks on the conformal dimension of the external
field when the quantum numbers ha, h̄a, n are kept arbitrary.
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5.4.2 Explicit checks in φ3 theory at tree level

In this subsection, we perform explicit checks for the predicted leading large spin asymp-
totics of double-twist OPE coefficients that reproduce the identity exchange in the (15)
OPE of the direct channel. This corresponds to eq. (5.11) for case I scaling and eq. (5.45)
for case II scaling. We check that these expressions can be obtained from the exact OPE co-
efficients of φ3 theory at tree-level. At this first order in perturbation theory, the five-point
correlator is disconnected and takes the form

〈φ(X1) . . . φ(X5)〉 = 〈φ(X1)φ(X5)〉〈φ(X2)φ(X3)φ(X4)〉+ perms + O(g2). (5.60)

This applies to either the ε-expansion around the six-dimensional conformal field theory,
or the holographic description of a perturbative φ3 theory in AdSd. In appendix D, we
compute the double-twist OPE coefficients in the OPE decomposition of this correlator
and obtain

P
(n)
[φφ]0,J1 [φφ]0,J2

= Cφφφ
1
n!

2∏
i=1

P[φφ]0,Ji
Ji!

(Ji − n)! (∆φ/2)Ji−nF
(n)
(∆φ;J1,J2) + O(g2), (5.61)

where P[φφ]0,J = C2
φφ[φφ]0,J are the OPE coefficients of the GFF four-point function, given.

in e.g. [4, eq. (11)], and

F (n)
(∆φ;J1,J2) =

n∑
j=0

(
n

j

)
(∆φ/2)n−j

(∆φ)j(∆φ)J1−j(∆φ)J2−j
(5.62)

= (∆φ/2)n
(∆φ)J1(∆φ)J2

F3 2

[
−n, 1−∆φ − J1, 1−∆φ − J2

1−∆φ/2− n, ∆φ

]
(1). (5.63)

Comparison with case I asymptotics. In the case I regime (J2
1 , J

2
2 , n) = O(ε−1

15 ε
−1
23 ,

ε−1
15 ε
−1
34 , ε

−1
15 ) with tensor structures larger than spin, we cannot directly compare the asymp-

totics of eq. (5.12) with the tree-level OPE coefficients in eq. (5.61) — the derivation in the
latter case requires [φφ]0,J to be local operators with integer spin, in which case n ≤ Ji.
Nevertheless, we can meaningfully compare the two results by inverting the order of limits
from (ε15, ε34, ε23) to (ε34, ε23, ε15) in eq. (5.61) to put the spins and tensor structures back
into a physical regime. Indeed, given the explicit expression for the tree-level correlator in
eq. (5.60), it is easy to compare the expansion in the two different orders of limits. While
the permutation makes the identity exchange in (15) subleading (compared to the identity
in (34)), it will instead appear at next-to-leading order in the crossing equation of the
tree-level correlator. In the limit (J2

1 , J
2
2 , n) = O(ε−1

23 , ε
−1
34 , 1) we find

F (n)
(∆φ;J1,J2) = 1

(∆φ)J1(∆φ)J2

(J1J2)n
n!(∆φ)n

[
1 + O(Jn−1

1 Jn2 , J
n
1 J

n−1
2 )

]
. (5.64)

This result coincides with the large J1, J2 asymptotics predicted in [26]. As a result,
isolating this term and taking the limit J1, J2 � n � 1 in the ratio of Γ functions indeed
reproduces the lightcone bootstrap prediction of eq. (5.12) in case I asymptotics.
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Retrieving case II asymptotics. In the case II regime (J1, J2, n) = O(ε−1
15 , ε

−1
15 ε
−1
34 , ε

−1
15 )

with J1 − n = δn = 0, 1, . . . ,∞, the spins and tensor structure label take physical values
that allow for a direct check of eq. (5.45) against eq. (5.61). In this regime, we find

F (J1−δn)
(∆φ;J1,J2) = 1 + O((J2 − J1)−1)

(∆φ)δn(∆φ)J2−J1+δn(∆φ)J1−δn
. (5.65)

After this approximation, we can again take the large J1, J2 limit in eq. (5.61) and retrieve
the solution to the crossing equation in eq. (5.45).

6 Outlook: six-point comb channel lightcone bootstrap

The goal of this final section is to provide a detailed outlook on the second part of this
work, in which we will apply the new methodology we have developed here to study triple-
twist operators. While [26] explored crossing symmetry between two OPE channels with
snowflake topology, our upcoming paper addresses the duality between a direct snowflake
channel and a crossed channel of comb topology, see figure 5. The treatment of the crossed
comb channel is made possible by the new technology we have — to a large extent —
developed above. And it is the comb channel that will give us access to triple-twist data.

6.1 Crossing a snowflake into a comb

In our forthcoming work [52], we will further extend the methods and results of this paper
to six points. Indeed, the setup of figure 1 naturally generalizes to a six-point setup with
the comb-channel expansion (12)3(4(56)) as the crossed channel, and a direct channel
containing the (16) OPE. In particular, the snowflake channel (16)(23)(45) leads to the
planar crossing equation depicted in figure 5. In the snowflake channel, all intermediate
operators are STT with twist denoted by ha, a = 1, 2, 3 and spin Ja, a = 1, 2, 3. The
tensor structures at the central vertex are parameterized by three integers `1, `2, `3. In the
comb channel, the nine degrees of freedom in the sum over conformal blocks are divided
among twists h1, h2, h3, spins J1, J2, κ2, J3, and tensor structures n1, n2, where the new
symbol κ2 represents the length of the second row of the Young tableau associated with
the mixed-symmetry tensor exchanged at the middle leg. Note that in d = 3, where the
scalar six-point function has one degree of freedom less, there is an extra relation between
the tensor structure labels `1, `2, `3 in the snowflake channel, while κ2 = 0 in the comb
channel. As in our treatment of five-point crossing, we are using the same symbols for the
twists and STT spins of the intermediate fields in the direct and crossed channel. We trust
that it will be clear from the context which set we are referring to.

The sequence of lightcone limits in which we propose to analyze the crossing symmetry
relations shown in figure 5 is given by

LCL~ε : X16 � X23, X45 � X12, X56 � X46 � X34 � 1. (6.1)

The first three limits we perform clearly expose leading-twist contributions in the direct
snowflake channel. The remaining three limits favor leading-twist terms in the crossed
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Figure 5. Graphical representation of a planar six-point crossing symmetry equation from the
snowflake channel (61)(23)(45) to the comb (12)3(4(56)). Internal legs are labeled by half-twists h
and spin labels J, κ (the lengths of the two rows of a mixed-symmetry tensor Young tableau), while
tensor structure labels are `1, `2, `3 at the central spinning vertex of the snowflake and n1, n2 at the
two innermost vertices of the comb.

channel. Note in particular that the limit X45, X56 � X46 → 0 projects to leading twist in
the (4(56)) OPE of the comb channel. Through the final limit in which X34 is sent to zero,
we reach the kinematics of a null polygon in which Xi(i+1) � 1 for all i = 1, . . . , 6, with
the additional lightcone constraint X46 = 0 imposed before we complete the null polygon.

A convenient choice of cross-ratios that generalizes the snowflake cross-ratios us1, . . . ,
us5 we used in the context of five-point functions and that additionally preserves the Z2
reflection symmetry of the comb channel is given by

u1 = u1
v2

= X12X35
X13X25

, u2 = u2
v1v3

= X13X46
X14X36

, u3 = u3
v2

= X24X56
X25X46

,

v1 = X14X23
X13X24

, v2 = X25X34
X24X35

, v3 = X36X45
X35X46

,

U1 = U
(5)
1

v1v2
= X15X24
X14X25

, U2 = U
(5)
2

v2v3
= X26X35
X25X36

, U6 = U (6)

v1v2v3
= X16X24X35
X14X25X36

.

(6.2)

In terms of these cross-ratios, the lightcone regime LCL~ε we specified in eq. (6.1) corre-
sponds to

LCL~ε : U6 � v1, v3 � u1,u3 � u2 � v2 � 1. (6.3)

Note that two cross-ratios U1,U2 do not contain any of the Xij that are sent to zero and
hence they are left unconstrained in our limit. There is one less independent cross ratio
in d = 3 kinematics, which is in encoded in the relation U1 + U2 = 1 at leading order in
the lightcone limit (6.3). Finally, to fix our conventions for snowflake and comb channel
blocks, we write down the corresponding conformal block decompositions below:

〈φ(X1) . . . φ(X6)〉 = (X16X23X45)−∆φ
∑

O1,O2,O3,`1,`1,`3

P
(`1`2`3)
O1O2O3

ψ
(16)(23)(45)
O1O2O3;`1`2`3(ua, va,Us,U6)

=
(
X12X34X56√

u2v1v3

)−∆φ ∑
O1,O2,O3,n1,n2

P
(n1n2)
O1O2O3

ψ
(12)3(4(56))
O1O2O3;n1n2

(ua, va,Us,U6).

In order to analyze the crossing symmetry constraints we start with an explicit expan-
sion of the direct channel. In the lightcone regime LCL(6)

~ε where six of the seven limits
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in eq. (6.1) are performed, i.e. the cross-ratio v2 is left unconstrained, the direct channel
expansion reads

∑
O,`

P
(`1`2`3)
O1O2O3

ψDC
O;` ∼

[
1 + C2

φφO? (u2v1v3)h? F2 1

[
h̄?, h̄?
2h̄?

]
(1− v2) (6.4)

+ C2
φφO? (v1U6

U2
)h? F2 1

[
h̄?, h̄?
2h̄?

]
(1− u1/U2)

+ C2
φφO? (v3U6

U1
)h? F2 1

[
h̄?, h̄?
2h̄?

]
(1− u3/U1)

+
(
u2v1v3 U6

)h?∑
`

P
(`1`2`3)
O?O?O? (gO?O?O?;` (0, v2U1, 0,u2,U1,U2) + O(X12,56))

+ O(Xh>h?
16 )

]
.

In writing the direct channel expansion we have dropped the prefactor (X16X23X45)−∆φ

so that we obtain functions of the cross ratios only. On the fourth line, we used the same
conventions as in [26] for six-point OPE coefficients and lightcone blocks, except that we re-
placed their label k byO. The snowflake lightcone blocks gO1O2O3;`1`2`3(u1, u3, u5,U1,U2,U3)
are given by the integral formula [26, eq. (22)]. The latter is a direct consequence of the
lightcone OPE. Therefore, the direct channel expansions are under good control.

In [26], the leading terms of the direct channel expansion were reproduced from a
crossed channel with snowflake topology. Here we address the same problem, but for a
crossed channel of comb topology, i.e. the crossing equation we analyze takes the form(u1

√
u2u3v2

U6√v1v3

)∆φ ∑
Oa;`a

P
(`1,`2,`3)
O1O2,O3

ψDC
Oa,`a =

∑
Oa;nρ

P
(n1,n2)
O1O2O3

ψCC
Oa,nρ(ui, vi,U1,U2,U6). (6.5)

The prefactor on the left-hand side is ΩDCΩ−1
CC. The twists (ha)3

a=1 of the three intermediate
operators that are exchanged at leading order in the crossed channel may be read off from
the exponents of the cross-ratios (ua)3

a=1 on the left-hand side of the crossing equation (6.5).
The scaling of the spin labels (J1, J2, J3, κ) in the crossed channel, on the other hand, can be
determined from the degree of singularity of the three second-order comb-channel Casimir
operators D2

12,D2
456,D2

56 along with the fourth-order operator D4
456 for the middle leg.

The leading contribution in the direct channel expansion (6.4), corresponding to an
exchange of three identities, does not probe any new data in the crossed channel because
it is reproduced by a sum over contributions of (O1;O2;O3) = ([φφ]0,J1 ;φ; [φφ]0,J3) at
large J1, J3. In particular, the exchange of φ at the middle leg follows from the exact
diagonalization of D2

456 by the direct channel contribution with eigenvalue 1
2∆φ(∆φ − d).

All of the remaining contributions of the direct channel expansion (6.4) are repro-
duced by exchanges of three double-twist operators [φφ]0,J1 , [φO?]0,J2,κ, [φφ]0,J3 in the
crossed channel. Therein, the leading logarithmic singularity coming from the 2F1(1− v2)
is reproduced by what we call “case I” scaling, namely

LSI : J2
1 = O(ε−1

16 ε
−1
23 ), J2

2 = O(ε−1
16 ε
−1
34 ), J2

3 = O(ε−1
16 ε
−1
45 ). (6.6)
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The remaining contributions are what we call “case II”, in that J2 scales only with X16:

LSII : J2
1 = O(ε−1

16 ε
−1
23 ), J2

2 = O(ε−1
16 ), J2

3 = O(ε−1
16 ε
−1
45 ). (6.7)

Following our analysis of case II scaling in the five-point crossing equation, we expect it
will be necessary to solve the crossing equation at all orders in X34 to completely fix the
double-twist data that appears in the crossed channel.

Explicit solution in case I. After describing the general setup, we now want to antici-
pate a few of the new results. In particular, we state the lightcone limit of the comb channel
blocks in the regime LCL~ε, see eq. (6.1), with scaling LSI as specified in eq. (6.6), and in
d = 3, where the two unconstrained cross-ratios satisfy the extra relation U1 + U2 = 1.
These lightcone blocks take the form

ψO;n(ua, va,U1,U6)∏3
a=1 u

ha
a (v1v2

2v3)hφ
LCL~ε∼
LSI

N I,3d
O;n δ(n2U1 − n1(1− U1))

exp
(
(n1 + n2)U6 + λ1v1

n1
+ λ2v2

n1+n2
+ λ3v3

n3

) , (6.8)

as we shall prove in [52]. Here, the scaling n1, n2 = O(ε−1
16 ) of the tensor structure labels

is further corroborated by the asymptotics of the vertex operators, and the normalization
is given by

N I,3d
O;n = 1√

π
4h̄1+h̄2+h̄3−1/2

(n1
e

)n1 (n2
e

)n2 (n1n2)h?

Jn1+h?
1 J

n1+n2+2hφ−1/2
2 Jn2+h?

3

(n1 + n2)2hφ−1. (6.9)

Plugging these blocks back into the crossing equation, we can reproduce the log v−1
2 term

in the first line of the direct channel expansion eq. (6.4) if the OPE coefficients are given by

P
(n1n2)
[φφ]0,J1 [φO?]0,J2 [φφ]0,J3

∼
C2
φφO?
Bh̄?

4
5
2−
∑3

a=1 h̄a

√
π

J
2∆φ−h?−n1−1
1 J

∆φ−n1−n2− 1
2

2 J
2∆φ−h?−n2−1
3

Γ(∆φ)Γ(∆φ − h?)2 en1+n2n
n1+∆φ

1 n
n2+∆φ

2
.

(6.10)
Setting J3 = J1, n1 = n2 = n and dividing both sides by C2

φφ[φφ]0,J1
in eq. (5.16), we obtain

a new result for OPE coefficients of two double-twist operators,

C
(n)
[φφ]0,J1φ[φO?]0,J2

∼
C2
φφO?
Bh̄?

41−h̄1−h̄2
√
π

Γ(∆φ)
Γ(∆φ − h?)2

J
2∆φ−2h?−2n− 1

2
1 J

∆φ−2n− 1
2

2
e2nn2n+∆φ

. (6.11)

The result holds at leading order for large spins Ja and large tensor structure label n, but
it does not assume any additional relations between these large quantum numbers.

Higher order terms and case II. On the first line of the direct channel expansion in
eq. (6.4), the remaining non-divergent terms in the expansion of the four-point lightcone
block 2F1(1 − v2) around v2 = 0, should be reproduced in the crossed channel by a large
spin sum over double-twist OPE coefficients with the case II scaling defined by eq. (6.7).
Expanding both sides of the crossing symmetry equation (6.5) in the same basis of func-
tions of the cross-ratio v2, we expect to solve the crossed channel OPE coefficients for the

– 70 –



J
H
E
P
0
8
(
2
0
2
3
)
0
1
1

Figure 6. Leading contribution to the six-point crossing equation with triple-twist exchange in the
crossed channel.

direct channel data similarly to how we solved for the OPE coefficients P (J−δn)
[φφ][φφ] with dis-

crete dependence on the tensor structure δn in section 5. Next, we expect the four-point
contributions from the second and third line to be reproduced by the OPE coefficients and
anomalous dimensions of the double-twist operators [φφ]n1,3,J1,3 at the left and right legs
of the comb channel. Moving on to the fourth line of the direct channel expansion (6.4),
we will analyze the asymptotics of the lightcone block gO?O?O?(0, v2U5

1 , 0,u2,U5
1 ,U5

1 ) in the
limit where the cross-ratio u2 � 1. In comparison to the setup of [24–26], this amounts to
taking one of the three origin limits (U1 → 0 in their notation) before taking the last null
polygon limit (u3 → 0 in their notation). Following a differential-operator-based analysis of
these asymptotics in the spirit of our analysis above, we will show that gO?O?O? = O(log u2)
at leading order in this limit. This leading contribution on the second line can only be
reproduced from a O(J−2h?

2 ) correction to the anomalous dimension of the double-twist
operators [φO?]0,J2,κ in the crossed channel.

6.2 Triple-twist data and non-planar crossing equation

In the crossing equation of figure 5, triple-twist exchanges appear in the crossed chan-
nel only if double-twist exchanges appear in the direct channel. At the same time, for
identity exchange in the (16) OPE, a four-point crossing between (23)(45) and (25)(34)
relates double-twist exchange in the (16)(23)(45) channel to three identity exchanges in the
(16)(25)(34) channel, see figure 6. This observation motivates us to study a novel crossing
equation where (16)(25)(34) is the direct channel. In this case, the relevant sequence of
lightcone limits is given by

LCL~ε ′ : X16 � X34 � X12, X56 � X23, X45, X46 � 1. (6.12)

If we only expand the direct channel explicitly in the first two limits X16 � X34 � 1, then
the non-planar crossing equation takes the form

(
u1u2

3
2u3
√
v1v3

U6

)∆φ (
1 + vh?2 F2 1

[
h̄?, h̄?
2h̄?

]
(1− v1v3u2) + O(Xh>h?

16 )
)

(6.13)

=
∑
Ξ
PΞψ

CC
Ξ (ua, va,Us,U6),
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where the crossed-channel sum is specified by

Ξ = ([φφ]0,J1 [φφφ]0,J2,κ[φφ]0,J3 ;n1n2) . (6.14)

Acting with the comb channel Casimirs at leading order in the lightcone limit (6.12), we
then find that the crossed channel sum is dominated by the large spin regime

LSII′ : J2
1 = O(ε−1

16 ), J2
2 = O(ε−1

16 ε
−1
34 ), J2

3 = O(ε−1
16 ). (6.15)

This “case II′” scaling regime is the closest analog to the five-point case II blocks computed
in section 3.3. From this point of view, one may expect that a solution to the crossing
equation at all orders in X23, X45 would further constrain the triple-twist OPE coefficients
in the crossed channel, as we saw in section 5 for double-twist OPE coefficients P (J−δn)

[φφ][φφ].
However, the direct channel contribution on the left-hand side of eq. (6.13) is exactly the
same for X23, X45 � 1 or X23, X45 = O(1), which suggests that we may not obtain any new
information by relaxing the latter limits. We will address this question in our upcoming
work [52].

The next to leading O(Xh?
34 ) contribution to the non-planar crossing equation (6.13)

in the direct channel is

vh?2 F2 1

[
h̄?, h̄?
2h̄?

]
(1− v1v3u2) = vh?2

(
log u−1

2
Bh̄?

+ O(u0
2)
)
. (6.16)

In the crossed channel, we expect this logarithm to come from a correction to the anomalous
dimension of [φφφ]0,J2,κ.

6.3 Concluding remarks

This work can be seen as a proof of concept for the multipoint lightcone bootstrap. In
particular, the notions of Casimir and vertex singularity of the direct channel provide an
efficient criterion for the presence of universal data in the crossed channel. The variation in
the degree of Casimir/vertex singularity, which first appears non-trivially at N > 4 points,
translates into different scaling regimes in the spin and tensor structures of the multipoint
data. While subleading scaling limits raise the difficulty in computing the blocks (cf. case I
and case II blocks in this paper), the payoff is a higher resolution in the conformal field
theory data.

As we briefly discussed in this section, the triple-twist data of the six-point comb
channel appears only in subleading regimes, where the spins and tensor structures do not
all scale independently. Solving in the full lightcone limit, we expect the crossing equation
to fix only certain averages of this data over a subset of spins and tensor structures. It
would be interesting to better understand how far these averages can be resolved by relaxing
certain lightcone limits and, if not, to find a natural physical interpretation.

We believe that our integrability-based approach to lightcone blocks can be generalized
to a wide class of OPE channels and lightcone limits. In this approach, the blocks in the
relevant regime are computed by interpolating the OPE limit and the lightcone limit with
the differential equations of the integrable system. From this point of view, the computa-
tion is analogous to an integrable scattering problem for a basis of many-body quantum
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mechanical wave functions. While its technical implementation may seem daunting, we
are motivated by the simplicity of the differential equations in lightcone limits. It would
be interesting to investigate how the standard integrability machinery may adapt to and
simplify in such limits, particularly in determining the spectra of the vertex differential
operators and relations between different bases of tensor structures.
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A Five point lightcone blocks

A.1 Integral representation from lightcone OPE

The lightcone OPE for two scalars can be written as

φ1(X1)φ2(X2) X12→0∼
∑
O3

Xh3−h1−h2
12 Cφ1φ2O3

R×Bh̄3+h12,h̄3+h21

∫
R2

+

ds1
s1
sh̄3+h21

1
ds2
s2
sh̄3+h12

2 O3(X,Z), (A.1)

with X := s1X1 + s2X2, X ∧ Z := X1 ∧X2. We write the Euler Beta function as Ba,b :=
Γ(a+b)−1Γ(a)Γ(b) and use the shorthand notation “R× :=

∫∞
0 r−1dr” to denote the volume

of the dilation group, which acts on the integration variables as (s1, s2)→ (rs1, rs2). Since
the integrand is invariant under any such dilation, we may factorize R× via a change
of variables or by using the Faddeev-Popov method. In particular, the more familiar
formula of Ferrara et al. is obtained by the change of variables (s1, s2) = (rt, r(1− t)), for
(r, t) ∈ R>0 × [0, 1],

φ1(X1)φ2(X2) X12→0∼
∑
O3

Xh3−h1−h2
12 Cφ1φ2O3

Bh̄3+h12,h̄3+h21∫ 1

0

dt
(t(1− t))1−h̄3

(1/t− 1)h12O3(X2 − t(X2 −X1), X2 −X1).

Applying this OPE twice in a five-point function of identical scalars yields an integral
formula for lightcone blocks,

ψ
(12),(45)
O1O2;n (usi)

us1,4→0∼ Xh1
12X

h2
45 (X15X24 −X14X25)n

∫
R4

+

d4 log s (s1s2)h̄1(s4s5)h̄2

(R×)2 Bh̄1
Bh̄2

(A.2)

X
h2−h̄1−hφ+n
a3 X

h1−h̄2−hφ+n
b3 X

−h̄12;φ
ab JJ1−n

a,3b JJ2−n
b,3a , (A.3)
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where Xa = s1X1 + s2X2, Xb = s4X4 + s5X5 and Xa ∧Za = X1 ∧X2, Xb ∧Zb = X5 ∧X4,
such that e.g. Xa3 = s1X13 + s2X23. To efficiently reduce this formula to cross-ratio space,
we fix the gauge Xi = X?

i , with

X?
2 = (1, 0,0), X?

3 = (0, 1,0), X4 = (1, 1,n), (A.4)

in lightcone coordinates dX2 = −dX+dX−+dX2 and for some unit vector n ∈ Sd−1, such
that

X?
15 = us2us3us5, X?

14 = us2, X?
13 = 1, X?

12 = us1us3 (A.5)
X?

25 = us3, X?
24 = 1, X?

23 = 1, (A.6)
X?

35 = 1, X?
34 = 1, (A.7)

X?
45 = us2us4. (A.8)

We then evaluate the integrand at X?
ij = X?

i ·X?
j to obtain a function of the cross-ratios.

A.1.1 Equivalence with solution to Casimir equations

In section 3.2, we derived an Euler integral representation of five point blocks directly
from the second-order Casimir equations of blocks with OPE limit boundary conditions.
This representation can also be retrieved directly from the above lightcone integral after
expressing the X?

ij(usi) in terms of OPE cross-ratios z̄a, za, w, where

(usi)5
i=1 =

(
z1

1− z2
z̄1, 1− z1, 1− z2,

z2
1− z1

z̄2, 1−
(1− w)z1z2

(1− z1)(1− z2)

)
+ O(z̄a). (A.9)

The inverse map is

(z̄1, z̄2, z1, z2, w)=
(
us1us3

(1− us2) ,
us2us4

(1− us3) , 1− us2, 1− us3, 1−
us2us3(1− us5)

(1− us2)(1− us3)

)
+O(us1,4).

(A.10)
We then obtain

X?
a3 = s1 + s2, X?

3b = s4 + s5, (A.11)
X?
ab = (s1 + s2)(s4 + s5)(1− z1S1 − z2S5 + wz1z2S1S5), (A.12)

J?a,b3 = z1(s4 + s5)(1− wz2S5), J?b,a3 = z2(s1 + s2)(1− wz1S1), (A.13)

where S1 := s1/(s1 + s2) and S5 := s5/(s4 + s5). If we plug this formula into eq. (A.3)
and change variables to (s1, s2; s4, s5) = (r1t1, r1(1 − t1); r2(1 − t2), r2t2), r1, r2 ∈ R>0,
t1, t2 ∈ [0, 1], then we obtain

ψO1O2;n(usi(z̄a, za, w)) z̄a→0∼
2∏

a=1
z̄haa zh̄aa (1− w)nF̃(ha,h̄a;n)(z1, z2, w), (A.14)

where F̃ corresponds precisely to the integral formula (3.25) derived from the Casimir
equations.

– 74 –



J
H
E
P
0
8
(
2
0
2
3
)
0
1
1

A.1.2 Euler transformation and alternative representation

When ha > hφ, the Euler integral formula (3.25) does not converge in the limitX(a+1)(a+2)→
0, i.e. when us(a+1) → 0 at us(b+1), us5 fixed. In this case, it will be convenient to analyze
the integral in the cross-ratios (ua, va, x), where

(usi)5
i=1 =

(
u1
v2
, v1, v2,

u2
v1
, 1− x

)
. (A.15)

The inverse map is

(u1, u2, v1, v2, x) = (us1us3, us2us4, us2, us3, 1− us5). (A.16)

After the change of variables s̃1 = s1v1, s̃5 = s5v2, we may rewrite the tensor structures in
the integrand as

X?
ab = (s̃1 + s2)(s̃5 + s4)

(
1− xS̃1S̃5

)
,

J?a,3b = (1− v1)(s̃5 + s4)
(

1 + v1x

1− v1
S̃5

)
, J?b,a3 = (1− v2)(s̃1 + s2)

(
1 + v2x

1− v2
S̃1

)
,

where S̃1 = s̃1/(s̃1 + s2) and S̃5 = s̃5/(s4 + s̃5). Plugging this into eq. (A.3) then yields the
result

ψO1O2;n(usi(ua, va, x)) ua→0∼
2∏

a=1
uhaa (1− va)Ja−nv

−hbφ
a xnFO1O2;n(va, x), (A.17)

where FO1O2;n is the integral defined in eq. (3.44). The two integral representations are
related by a generalized Euler transformation,

F̃O1O2;n(1− v1, 1− v2, w(v1, v2, x)) =
∏
a 6=b

v
−(hbφ+n)
a FO1O2;n(v1, v2, x). (A.18)

where the change of variables w ↔ x is given by

x(za, w) = z1z2(1− w)
(1− z1)(1− z2) , w(va, x) = 1− v1v2x

(1− v1)(1− v2) . (A.19)

For a 6= b and hbφ+n 6= 0, this relation ensures that F converges at va = 0 when f diverges
and vice versa.

A.2 Expansion of lightcone blocks around decoupling limit

The goal of this section is to expand blocks as a power series in x around the decoupling limit
x = 0. With applications to crossed channel blocks in mind, we will assume h1, h2 > hφ
such that FO1O2;n(va, x) converges at va = 0. Setting s̃1,5 ≡ s1,5 for simplicity, such that
Xa = s1

v2
X1 + s2X2 and Xb = s4X4 + s5

v2
X5, we can express the integral as

FO1O2;n(va, x) =
∫
R2

+

d2 log(s1, s2) (S1S2)h̄1

R×Bh̄1
(1− (1− v1)S1)h̄1−h2φ−n

∫
R2

+

d2 log(s4, s5) (S4S5)h̄2

R×Bh̄2
(1− (1− v2)S4)h̄2−h1φ−n(

1 + v1x

1− v1
S5

)J1−n (
1 + v2x

1− v2
S1

)J2−n
(1− xS1S5)−h̄12;φ . (A.20)

To obtain a power series in x, we first expand the integrand and then express each coefficient
as a differential operator acting on FO1O2;n(va, 0).
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A.2.1 Factorization in the decoupling limit

Evaluating eq. (A.20) at x = 0, we find a factorization into a product of two integrals,

FO1O2;n(v1, v2, 0)

=
∫
R2

+

d2 log(s1, s2) (S1S2)h̄1

R×Bh̄1
(1− (1− v1)S1)h̄1−h2φ−n

∫
R2

+

d2 log(s4, s5) (S4S5)h̄2

R×Bh̄2
(1− (1− v2)S4)h̄2−h1φ−n

.
(A.21)

Each integral is equal to one of the Gauss hypergeometric functions in eq. (3.74). More
generally, the three-parameter Gauss hypergeometric function admits an integral represen-
tation

F2 1

[
a, b

c

]
(1− v) =

∫
R2

+

ds1
s1

ds2
s2

1
R×

f2 1

[
a, b

c

]
(1− v; s1, s2), (A.22)

f2 1

[
a, b

c

]
(1− v; s1, s2) = sc−b1 sb2

Bb,c−b

(s1 + s2)a−c
(s1 + s2v)a , (A.23)

which reduces to the Euler Beta integral representation after the change of variables
(s1, s2) = (r(1 − t), rt), (r, t) ∈ R>0 × [0, 1]. In this homogeneous integral representation,
the Euler transformation of the Gauss hypergeometric follows from

f2 1

[
a, b

c

]
(1− v; s1v, s2) = vc−a−b f2 1

[
c− a, c− b

c

]
(1− v; s2, s1). (A.24)

A.2.2 Expansion around the decoupling limit

We can now rewrite the integral in eq. (A.20) as

FO1O2;n(va, x) =
∫
R4

+

d4 log s
(R×)2 f2 1

[
h̄1 − h2φ − n, h̄1

2h̄1

]
(1− v; s1, s2)

f2 1

[
h̄2 − h1φ − n, h̄2

2h̄2

]
(1− v; s5, s4)

(
1 + v1x

1− v1
S5

)J1−n (
1 + v2x

1− v2
S1

)J2−n
(1− xS1S5)−h̄12;φ (A.25)

Since 0 ≤ S1, S5 ≤ 1 for si ∈ R+ we can expand each factor into a binomial series when
0 ≤ x ≤ 1 and 0 ≤ (1 − va)−1vax ≤ 1. In this case, we observe that all higher-order
corrections to the integrand in x are proportional to

xk+m1+m2Sk+m2
1 f2 1

[
h̄1 − h2φ − n, h̄1

2h̄1

]
(1− v1; s1, s2)

Sk+m2
5 f2 1

[
h̄2 − h1φ − n, h̄2

2h̄2

]
(1− v2; s5, s4),

for some triplets of positive integers k,m1,m2. At the same time, these integrand shifts
Sνi are equivalent to

Sν1 f2 1

[
a, b

c

]
(1− v; s1, s2) = (c− b)ν

(c)ν
f2 1

[
a, b

c+ k

]
(1− v; s1, s2) (A.26)
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The right-hand side lifts to the integral itself, and to express it in a simple way we define
an operator Sν1 that realizes this integrand transformation,

Sν1 · F2 1

[
a, b

c

]
(1− v) := (c− b)ν

(c)ν
F2 1

[
a, b

c+ ν

]
(1− v). (A.27)

The operator Sν1 obviously depends on the parameters a, b, c and the variable v, but we
will not need to make this dependence explicit in future uses. Using the explicit form of
the integrand f2 1 (z; s1, s2), it is not difficult to write this transformation as a differential
operator,

(c− b)ν
(c)ν

F2 1

[
a, b

c+ ν

]
(1− v) = vc+ν−a−b

(c− b)ν
(c)ν

F2 1

[
c− a+ ν, c− b+ ν

c+ ν

]
(1− v)

= vc+ν−a−b
(−∂v)ν
(c− a)ν

F2 1

[
c− a, c− b

c

]
(1− v)

= vc−a−b
vν(−∂v)ν
(c− a)ν

va+b−c F2 1

[
a, b

c

]
(1− v).

Since the differential operator acting on the F2 1 is homogeneous of degree zero in v, it can
be written as a function of ϑv := v∂v. By inspecting its action on the eigenbasis of ϑv, we
find

vν(−∂v)ν · vn = (−n)(−n+ 1) . . . (−n+ ν)vn ⇒ vν(−∂v)ν = (−ϑv)ν .

Altogether, we obtain two useful representations of Sν1 , defined in eq. (A.27), as a differential
operator.

Acting on F2 1

[
a, b

c

]
(1− v), Sν1 = vc−a−b

vν(−∂v)ν
(c− a)ν

va+b−c = (c− a− b− ϑv)ν
(c− a)ν

. (A.28)

Here, for the all orders expansion of lightcone blocks in x, we will use two such shift
operators,

Sνa · F2 1

[
h̄a − hbφ − n, h̄a

2h̄a

]
(1−va) := (h̄a)ν

(2h̄a)ν
F2 1

[
h̄a − hbφ − n, h̄a

2h̄a + ν

]
(1−va), a 6= b = 1, 2.

(A.29)
The resulting formulas for Sν1 ,Sν2 as differential operators can then be read from eq. (A.28)
by inserting the corresponding values of (a, b, c) in the F2 1 ’s. We will also adopt the
notation of eq. (3.74) for the product of hypergeometrics at x = 0, that is

fdec
a (va) := F2 1

[
h̄a − hbφ − n, h̄a

2h̄a

]
(1− va), a 6= b = 1, 2. (A.30)

Finally, with all of the necessary conventions listed in eq. (A.28)—(A.30), the all-orders ex-
pansion of five-point lightcone blocks around the decoupling limit x = 0 can be expressed as

FO1O2;n(va, x) = (1− xS1S2)−h̄12;φ

(
1 + x

v1
z1
S2

)J1−n (
1 + xS1

v2
z2

)J2−n
fdec

1 (v1)fdec
2 (v2).
(A.31)
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In this formula, one should understand the three factors on the right-hand side as a binomial
power series of the form (1 − xλ)−∆ = ∑∞

k=0
xk

k! (∆)kλk. This culminates in a triple-sum
power series expansion in x,

FO1O2;n(va, x) =
∞∑
k=0

(h̄12;φ)k
k!

2∏
b 6=a=1

Ja−n∑
ma=0

(
Ja − n
ma

)(
va
za

)ma
Sk+mb
a fdec

a (va)xk+m1+m2 .

(A.32)

A.2.3 Dual expansion

While less useful for our purposes, note that an analogous expansion around the decoupling
limit X := 1 − w = 0 can be defined from the dual integral formula F̃O1O2;n(za, w) of
eq. (3.44), which can be rewritten as

F̃O1O2;n(za, 1−X )

=
∫
R4

+

d4 log s
(R×)2 f2 1

[
h̄1 + h2φ + n, h̄1

2h̄1

]
(z1; s2, s1) f2 1

[
h̄2 + h1φ + n, h̄2

2h̄2

]
(z2; s4, s5)

(
1 + X z1S5

1− z1S5

)J1−n (
1 + X z2S1

1− z2S1

)J2−n (
1− X z1z2S1S5

(1− z1S5)(1− z2S1)

)−h̄12;φ
. (A.33)

If we now define

f̃dec
a (za) := (1− za)−(hbφ+n)fdec

a (1− za) = F2 1

[
h̄a + hbφ + n, h̄a

2h̄a

]
(za), (A.34)

then all higher X corrections can be expressed in terms of the differential operators

S̃νa · f̃dec
a (za) :=

zνa∂
ν
za f̃

dec
a (za)

(h̄a + hbφ + n)ν
, a 6= b = 1, 2. (A.35)

In this case, we may express the expansion of F̃ around the decoupling limit as

F̃O1O2;n(za, 1−X ) =
(
1−XS̃1S̃2

)−h̄12;φ
(
1 + XS̃2

)J1−n (1 + XS̃1
)J2−n

f̃dec
1 (z1)f̃dec

2 (z2).
(A.36)

A.3 Application to direct channel blocks

In our analysis of the direct channel, we will be interested in lightcone limits of the form

(za, w) = (1, 1) + O(εa) ⇐⇒ (va, x) = (O(εa),O(1)), εa → 0. (A.37)

The asymptotics of blocks in this limit depend on the sign of hbφ + n: for hbφ + n ≥ 0,
these are easiest to derive from the expansion of FO1O2;n(va, x) in eq. (A.32), while for
hbφ + n ≤ 0, these are easiest to derive from the expansion of F̃O1O2;n(za, w) in eq. (A.36).
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Asymptotics of blocks with hbφ + n < 0. Consider first the lightcone limit za =
1 + O(εa), X = 1 − w = O(εa), in the case where hbφ + n < 0. In this case, f̃dec

a (za)
converges at za = 1 and

XmS̃ma · f̃dec
a (za) = O

(
ε
min(|hbφ+n|,m)
a

)
, Xmf̃dec

a (za) = O (εma ) , ∀m ∈ Z>0. (A.38)

As a result, the whole function F̃ converges in this double scaling limit, which coincides
with the evaluation of F̃ at za = 1, w = 1. Taking a = 2 without loss of generality, we may
thus write

lim
ε2→0

F̃O1O2;n(z1, 1 + O(ε2), 1 + O(ε2)) = f̃dec
1 (z1). (A.39)

Asymptotics of blocks with hbφ + n < 0. In this case, we know that f̃dec
a (1− εa) =

fdec
a (εa) = B−1

h̄2
log ε−1

a + O(ε0a) admits a logarithmic divergence. At the same time, it is
easy to check from the differential operator expression for S̃νa in eq. (A.35) (respectively
Sνa in eq. (A.28)) that all higher powers in 1− w = X (respectively x) in the expansion of
F̃ (respectively F ) around the decoupling limit are subleading, i.e. for any m ∈ Z>0

XmS̃ma f̃dec
a = O(ε0a), Xmf̃dec

a = O(εma log εa),

xmSma fdec
a = O(ε0a),

(
xva

1− va

)m
f̃dec
a = O(εma log εa).

It follows that the leading asymptotics in the double scaling limit coincides with the leading
asymptotics when za → 1 in the decoupling limit X = 0. In concrete terms, for z1 = 1−v1,

lim
v2→0

F̃O1O2;n(z1, 1− v2, 1 + O(v2))
log v−1

2
= f̃dec

1 (z1) lim
v2→0

f̃dec
2 (1− v2)

log v−1
2

= f̃dec
1 (z1)
Bh̄2

= lim
v2→0

FO1O2;n(v1, v2, x)
log v−1

2
= fdec

1 (v1) lim
v2→0

f̃dec
2 (v2)
log v−1

2
= fdec

1 (v1)
Bh̄2

.

Asymptotics of blocks with hbφ+n > 0. In this case, not only does fdec
a (va) converge

at va = 0, but

Sνa · fdec
a (va) =

Bh̄a,hbφ+n

Bh̄a

(2h̄a)ν(hbφ + n)ν
(h̄a + hbφ)ν(h̄a)ν

+ O(va). (A.40)

We can thus write

lim
va→0

FO1O2;n(v1, v2, x) = (A.41)

=
Bh̄a,hbφ+n

Bh̄a

∞∑
k=0

(h̄12;φ)k
k!

Jb−n∑
mb=0

(
Jb − n
mb

)(
vb
zb

)ma (2h̄a)k+mb(hbφ + n)k+mb
(h̄a + hbφ)k+mb(h̄a)k+mb

Skb fdec
b (vb)xk+mb .

A.4 Application to crossed channel blocks

In regimes relevant to the crossed channel OPE decomposition, the quantum numbers
h̄1, h̄2, n diverge by a specified ε-scaling with the limits v1,2 = O(ε23,34) and 1−x = O(ε15).
The spins h̄1, h̄2 are large numbers in all of these cases, and the tensor structure n may
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also scale with ε15. Using the differential operator representation (A.28) of the S-operators
and their powers, we find

Ska (ϑ) = h̄−ka (hbφ + n− ϑ)k
(
1 + O(h̄−1

a )
)
. (A.42)

Consequently, the two last factors in eq. (A.31) lead to corrections that scale non-trivially
with J, v, (

1 + x
va
za
Sb
)Ja−n

= 1 + O

((Ja − n)va
h̄b

)
, a 6= b = 1, 2. (A.43)

These corrections will be subleading in any regime where

h̄−2
2 , v2 = O(ε34), h̄1 � h̄2. (A.44)

This approximation applies consistently to all large spin limits considered in the crossed
channel (12)3(45) that are relevant to the bootstrap analysis of section 5.

External scalar exchange in the crossed channel. Consider the special case

O1 = φ, n = 0, O2 = [φφ]0,J2 , J2
2 = O(ε−1

15 ε
−1
34 ). (A.45)

In this case, blocks satisfy the same Casimir equations (3.89), (3.90) as case II blocks, but
with λ1us5 → 09 and δn = 0. We can thus write their asymptotics as

Fφ[φφ]0,J2 ;0(us2, us3, 1− us5) ∼ N φ
φ[φφ]0,J2

u
hφ
s5Khφ(J2

2us3us5). (A.46)

In this case, however, the normalization N φ cannot be computed in the same way as case II
blocks because we now have h1 = hφ− n instead of h1 > hφ− n, meaning that the limit of
the block at us3J2

2 � u−1
s5 has different asymptotics than (v, x)→ (0, 1) at finite J2. More

specifically, the hypergeometrics in the decoupling limit simplify to

fdec
1 (v1) = 1, fdec

2 (v2) = F2 1

[
h̄2, h̄2
2h̄2

]
(1− v2). (A.47)

We can recognize on the right-hand side a four-point lightcone block, with logarithmic
divergence as v2 → 0. Instead, we will determine the normalization N φ by direct compu-
tation, taking the lightcone blocks at the (0, v2, x) node10 along the two green arrows in
figure 2 to the (0, 0, 1) node where eq. (A.46) applies. In this specific case, the expansion
around the decoupling limit takes the form

Fφ[φφ]0,J2 ;0(va, x) = B−1
h̄2

∞∑
k=0

xk

k!
(hφ)k
(2hφ)k

Γ(h̄2 + k)2

Γ(2h̄2 + k)
F2 1

[
h̄2, h̄2

2h̄2 + k

]
(1− v2). (A.48)

We begin with the first limit

LS34 : J−2
2 , v2 = O(ε34), ε34 → 0. (A.49)

9This implies that the blocks are in the kernel of both D(−1,0,−1)
12 and D(−1,0,0)

12 .
10Since fdec

1 (v1) = 1, the function F is independent of v1 in this case.
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In this regime, the Gauss hypergeometric functions reduce to modified Bessel functions
following the identity

lim
h̄→∞

Γ(h̄+ k)2

Γ(2h̄+ k)
F2 1

[
h̄, h̄

2h̄+ k

]
(1− h̄−2y) = 2K−k(y). (A.50)

We thus obtain

Fφ[φφ]0,J2 ;0(va, x) LS34∼ 2B−1
h̄2

∞∑
k=0

xk

k!
(hφ)k
(2hφ)k

K−k(v2J
2
2 ). (A.51)

At this stage, we refrained from applying the Stirling formula to the Beta function Bh̄ =
Γ(2h̄)−1Γ(h̄)2 in order to keep the above expression more compact. Now, to reach the
limiting form of eq. (A.46), we take the second large spin limit to the (0, 0, 1) node,

LS34,15 : v2J
2
2 , 1− x = O(ε−1

15 ), ε15 → 0. (A.52)

In this limit, the sum (A.51) is dominated by the regime k = O(ε−1
15 ). Approximating the

sum over k = O(ε−1
15 ) by an integral and using the large k formulas

(∆)k =
√
π

k

(
k

e

)k+∆
Γ(∆)−1

(
1 + O(k−1)

)
, xk = e−k(1−x)

(
1 + O(k−1)

)
, (A.53)

Kk(kx) = 1
2

√
π

k

(
k

e

)k
e−x

(
1 + O(k−

1
2 )
)
, (A.54)

we find
F

(12),(45)
φ[φφ]0,J2 ;0

LS34,51∼ 2Γ(2hφ)
Bh̄2

Γ(hφ)
1
2

∫ ∞
O(1)

dk
k1+hφ

e−k(1−x)−
v2J

2
2

k . (A.55)

After a change of variables t = k(1− x), we can identify the integral representation (B.4)
of the Bessel-Clifford function, with the ratio of Gamma functions on the left providing
the desired normalization of eq. (A.46):

N φ
φ[φφ]0,J2

= 2Γ(2hφ)
Γ(hφ) lim

h̄2→∞
Γ(2h̄2)Γ(h̄2)−2 = Γ(2hφ)

Γ(hφ) 4h̄2

√
h̄2
π
. (A.56)

B Double integral of a Bessel Function

B.1 Modified Bessel-Clifford function

For any α ∈ R, the modified Bessel-Clifford function x 7→ Kα(x) is defined as the solution
to the differential equation

∂x(x∂x + α)Kα(x) = Kα(x), (B.1)

with x→ 0 asymptotics depending on the sign of α,

Kα(x) x→0∼


1
2Γ(−α), α < 0,
−1

2 log x, α = 0
1
2Γ(α)x−α, α > 0.

(B.2)
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It is related to the modified Bessel function Kα(y) by the relation

Kα(x) = x−α/2Kα(2
√
x) ⇐⇒ Kα(y) =

(
y

2

)α
Kα

(
y2

4

)
. (B.3)

This solution admits an integral representation,

Kα(x) = 1
2

∫ ∞
0

dt
t1+α e

−(t+t−1x). (B.4)

Applying the change of variables t′ = t−1x in this formula then implies the Euler transfor-
mation

Kα(x) = x−αK−α(x). (B.5)

This Bessel-Clifford function controls the asymptotics of a class of Gauss hypergeometric
functions by virtue of the identity

lim
h̄→∞

Γ(h̄+ c− a)Γ(h̄+ c− b)
2 Γ(2h̄+ c)

F2 1

[
h̄+ a, h̄+ b

2h̄+ c

] (
1− h̄−2x

)
= Ka+b−c(x). (B.6)

B.2 The double integral

In this appendix, we will prove the identity (5.38) by direct computation of a generalization
of the integral on its left-hand side, namely

I(α, β) :=
∫
R2

+

dxdy
xy

xαyβKγ(x+ y). (B.7)

Since x, y ≥ 0, it is natural to intuit the argument of the Bessel-Clifford function Kγ as the
square radius of a circle in the plane. To substantiate this intuition, we make the change
of variables

x = r2 cos2 θ, y = r2 sin2 θ, (r, θ) ∈ R+ × [0, π/2). (B.8)

The variables (r, θ) can be understood as polar coordinates on the plane, and the domain
of θ ensures a bijection with the upper right quadrant (

√
x,
√
y) ∈ R2

+. The measure
transforms as

dxdy
xy

= 4
d(
√
x) d

(√
y
)

√
xy

= 4 rdrdθ
r2 cos θ sin θ = 2d

(
r2)
r2

dθ
cos θ sin θ .

The double integral thereby factorizes in polar coordinates and takes the form

I(α, β) = 2
∫ ∞

0

d
(
r2)
r2 (r2)α+βKγ(r2)

∫ π/2

0
dθ cos2α−1 θ sin2β−1 θ. (B.9)

Using Kγ(r2) = r−γKγ(2r), we retrieve two known integrals of special functions for z = 2r
and θ, namely

2
∫ ∞

0

dz
z

(
z

2

)2α+2β−γ
Kγ(z) = 1

2Γ(α+ β)Γ(α+ β − γ), Re(2α+ 2β − γ) > |Re(γ)|∫ π/2

0
dθ cos2α−1 θ sin2β−1 θ = 1

2
Γ(α)Γ(β)
Γ(α+ β) , Re(α),Re(β) > 0.
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Putting everything together, this gives us∫
R2

+

dxdy
xy

xαyβKγ(x+ y) = 1
2Γ(α)Γ(β)Γ(α+ β − γ). (B.10)

When applied to the bootstrap analysis around eq. (5.38), we have α = γ = hφ + δn and
β = 2hφ−h?, while in the case II bootstrap analysis of section 5.3.1 we have α = 2hφ+ δn,
β = hφ, and γ = hφ + δn, with parameters always satisfying 0 < hφ < h? < 2hφ and
δn > 0. We conclude that in both cases the integral converges, and our ansätze for the
OPE coefficients in eqs. (5.37) and (5.45) are consistent.

C Comments on tensor structure larger than spin

In our construction of crossed channel five-point lightcone blocks we re-scaled the spins J1
and J2 of the exchanged fields as well as the tensor structure n. For case II blocks the
scaling behavior was consistent with the usual condition n ≤ min(J1, J2). But in the study
of case I blocks, n was sent to ∞ faster than J1, J2. Here we want to explain why this
can make sense when the spins become continuous. Let us consider the STT-STT-scalar
three-point vertex operator we introduced in [43]. Using the same notations as in the main
text, this operator is given by

1
2str

[
T 3

1 T3
]
, (C.1)

where we are considering legs 1 and 2 to be associated with STTs with spin J1, J2, and
leg 3 to be associated with a scalar field. We know that the eigenfunctions of this vertex
operator are a basis of the space of tensor structures that can also be spanned by simple
powers of the cross-ratio X defined in eq. (3.12). This means that we can recast the action
of the vertex operator in terms of the basis X n, which acquires the following form:

VX n = c−1X n−1 + c0X n + c1X n+1 + c2X n+2 . (C.2)

In particular, we have

c−1 = −n
(
n+ d− 4

2

)
(2n+ ∆1 −∆2 −∆3 − J1 − J2) (2n−∆1 + ∆2 −∆3 − J1 − J2) ,

(C.3)

c1 = 4 (n− J1) (n− J2)
[
d

2 (∆1 + ∆2 + ∆3 − n+ 1− d) + n(2J1 + 2J2 − 3n+ ∆3 − 2)

−∆1∆2 −∆3 + J1 − J1J2 + J2 − 1
]
, (C.4)

c2 = 4 (n− J1) (n− J1 + 1) (n− J2) (n− J2 + 1) . (C.5)

From here it is easy to understand the usual dimension of the space of tensor structures
for integer spins. In fact, the space of powers X n with 0 ≤ n ≤ min(J1, J2) is closed under
the action of the vertex operator: c−1 stops lowering the order of X n at n = 0, while c2
and c1 will stop raising powers respectively at n = min(J1, J2)− 1 and n = min(J1, J2).
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When taking large spin limits, however, we are often replacing the summation over
spins in the OPE with integrals. In other words, a continuum limit is taken for the spins,
which implies on the other hand that the space of tensor structures ceases to be finite.
In fact, if we assume the tensor structure X 0 to be part of the space of allowed tensor
structures, repeated action of V on it will always produce higher powers of X , as the zeros
of the power raising coefficients, n = Ji, n = Ji − 1, will never be reached for non-integer
spins. Conversely, if assume the tensor structure Xmin(J1,J2) to be allowed in our space, the
vertex operator action shows us that the n spectrum is not bounded from below, allowing
for the label n to scale faster (in absolute value) than the spins Ji. With this argument, we
can conclude that as long as the continuum limit for the spins Ji can be taken, the tensor
structure n is allowed to scale faster than the spin Ji.

D First-order computation of OPE coefficients in φ3 theory

In this appendix, we will determine the OPE coefficients of φ3 theory at first order in
perturbation theory in the cubic coupling g, i.e. at tree level. This can be thought of as
being either the d = 6 − ε expansion or the holographic description of a perturbative φ3

theory in AdSd. To obtain these OPE coefficients, we perform a direct computation of the
following three-point function:

〈[φφ]0,J1(P1, Z1)φ(X3)[φφ]0,J2(P2, Z2)〉 = ΩJ1J2

min(J1,J2)∑
n=0

C
(n)
[φφ]0,J1φ[φφ]0,J2

X n, (D.1)

where we define

ΩJ1J2 := X
−hφ
13 X

−hφ
23 X

−3hφ
12

JJ1
1,23J

J2
2,13

(X13X23X12)J1+J2
, X = H12X13X23

J1,23J2,13
. (D.2)

Since the double-twist operators [φφ]0,J are not renormalized at leading order, we can make
use of explicit formulas relating them to bilinear forms of the field φ. As a result, we can
relate the above three-point function to the tree-level five-point function of the field φ,
which takes the form

〈φ(X1) . . . φ(X5)〉 = CφφφX
−2hφ
15 (X23X34X24)−hφ + perms + O(g2), (D.3)

where Cφφφ = O(g). Using an efficient expression for the bilinear forms derived in
section D.1, we compute the three-point function and the resulting OPE coefficients of
eq. (5.61) in section D.2.

D.1 Parameterization and normalization of GFF double-twist operators

The extensive literature on perturbative conformal field theories contains many different
(but physically equivalent) expressions for double-twist operators [φφ]n,J in generalized
free field theory. Our approach, which applies to leading-twist operators [φφ]0,J , is similar
to previous works of Derkachov and Manashov — see e.g. [57] for the original paper or [58]
for a more recent review.
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Generating function of double-twist operators. Double-twist operators and their
descendants can always be expressed as linear combinations of products of derivatives of
φ. In the leading-twist sector ∆− J = 2∆φ, these linear combinations can be expressed as

(Z∂P )M [φφ]0,J(P,Z) = ψJ,M (∂α1 , ∂α2)φ(P + α1Z)φ(P + α2Z)|αi=0, (D.4)

where ψJ,M (α1, α2) is a homogeneous polynomial of degree J +M . The right hand side of
this formula is to be understood as the result of a limiting procedure. Indeed, the operator
product φ(X1)φ(X2) is divergent when X12 → 0 due to the identity contribution in the
GFF OPE:

φ(X1)φ(X2) = X
−∆φ

12 1 + O(X0
12).

Instead, we define the operator product in eq. (D.4) as the lightcone limit of the OPE with
the identity contribution subtracted. More specifically, if X1, X2 are generic and P1, P2
are two lightlike separated points, then we define the GFF operator product at lightlike
separation by

φ(P1)φ(P2) := lim
X1,X2→0

(
φ(X1 + P1)φ(X2 + P2)−X−∆φ

12 1
)
. (D.5)

In this case, the derivative ∂αi acts as the operator Z∂P on the i’th insertion of the field φ,
which increases both the spin and the conformal dimension by one. Similarly, the action of
(Z∂P )M on the primary [φφ]0,J does not change the twist, so the corresponding descendants
remain at leading twist.

Given the definition (D.5), the product in eq. (D.4) is finite and can therefore be
expanded as a power series around α1, α2 = 0. We can organize this power series into
leading-twist primaries and descendants:

φ(P + α1Z)φ(P + α2Z) =
∞∑

J,M=0
ψ̂J,M (α1, α2)(Z∂P )M [φφ]0,J(P,Z), (D.6)

where ψ̂J,M (α1, α2) is a homogeneous polynomial of degree J + M . The above expansion
agrees with eq. (D.4) if

(ψJ,M , ψ̂J ′,M ′) := ψJ,M (∂α1 , ∂α2)ψ̂J ′,M ′(α1, α2)|αi=0 = δJJ ′δMM ′ , (D.7)

which defines a duality relation between the two spaces of polynomials. The polynomi-
als ψ, ψ̂ are further constrained by the action of the conformal subalgebra that preserves
leading-twist fields. The latter is isomorphic to sl(2), and its representation on the space of
fields spanned by {(Z∂P )M [φφ]0,J}∞M=0 is given by the generators Z∂P , Z∂Z − P∂P , P∂Z .
By virtue of the relation (D.6), (D.7), the spaces spanned by {ψJ,M}M and {ψ̂J,M}M also
transform in a representation of sl(2). These representations are all isomorphic to lowest
or highest weight representations, and the explicit action of the raising/lowering operators
on the polynomials ψ, ψ̂ is

2∑
i=1

(α2
i ∂αi + 2αi∆φ)ψJ,0(α1, α2) = 0, ψJ,M+1(α1, α2) = (α1 + α2)ψJ,M (α1, α2),

2∑
i=1

∂αiψ̂J,0(α1, α2) = 0, ψ̂J,M+1(α1, α2) =
2∑
i=1

(α2
i ∂αi + 2αi∆φ)ψ̂J,M (α1, α2).
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The same relations can be found in [58, section 5]. The second-order differential equa-
tion satisfied by ψJ,0 has a unique polynomial solution, which specifies [φφ]0,J up to a
multiplicative constant (by plugging the solution into eq. (D.4)). However, the correspond-
ing expression is tedious to manipulate when computing correlation functions of [φφ]0,J .
Instead, we will exploit the simple functional form of ψ̂J,0:

ψ̂J,0(λα1, λα2) = λJ ψ̂J,0(α1, α2),
(∂α1 + ∂α2)ψ̂J,0(α1, α2) = 0 =⇒ ψ̂J,0(α1, α2) = CJ(α1 − α2)J .

(D.8)

Next, we use an integral transform to relate ψ to ψ̂:

ψJ,0(∂α1 , ∂α2) =
2∏
i=1

∫
C

dti
2πi

Γ(∆φ)
t
∆φ

i

etiψ̂J,0
(
t−1
1 ∂α1 , t

−1
2 ∂α2

)
. (D.9)

Here, C is a Hankel contour going from ti = −∞− iε to ti = −∞+ iε after winding once
around ti = 0. The Hankel contour is commonly used to study the Gamma function away
from Re(z) > 0. In fact, for any non-integer z (see [56, eq. (5.9.2)]):

1
Γ(z) =

∫
C

dt
2πi

et

tz
. (D.10)

Note that the inverse transform can be found in [57, eq. (2.14)]:

ψ̂J,0(α1, α2) =
2∏
i=1

∫ ∞
0

dti
ti

t
∆φ

i

Γ(∆φ)e
−tiψJ,0(t1α1, t2α2). (D.11)

Assuming ∆φ non-integer, we can expand ψ̂J,0 in eq. (D.9) into monomials to obtain

ψJ,0(∂α1 , ∂α2) = CJ

J∑
k=0

(
J

k

)
(−1)k

∂kα1

(∆φ)k
∂J−kα2

(∆φ)J−k
. (D.12)

This combination of derivatives indeed reproduces a well-known form of double-twist op-
erators that is commonly used in the literature. In this appendix, with applications to
three-point functions of double-twist operators in mind, we instead introduce a generating
function

∞∑
J=0

sJ

J !
ψJ,0(∂α1 , ∂α2)

CJ
=

2∏
i=1

∫
C

dt
2πi

Γ(∆φ)
t
∆φ

i

etie
s

(
∂α1
t1
− ∂α2

t2

)
. (D.13)

To equate the left and right hand sides, we of course needed to permute the sum over spins
with the integration over t1, t2 — this applies as long as the sum over spins converges.
Plugging the above generating function of ψJ,0’s back into eq. (D.4), we obtain a generating
function of [φφ]0,J ’s:

∞∑
J=0

sJ

J !C
−1
J [φφ]0,J(P,Z) = Γ(∆φ)2

(2πi)2

∫
C×C

dt1dt2 et1+t2φ(t1P + sZ)φ(t2P − sZ). (D.14)

In this expression, the invariance of the primaries under gauge transformations Z → Z+βP
on the left hand side translates to the invariance of the integral under shifts (t1, t2) →
(t1 + sβ, t2 − sβ) on the right hand side — this is the main benefit of introducing the
generating function.
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Fixing the normalization. To derive normalized three-point functions of [φφ]0,J from
the generating function in eq. (D.14), we first need to fix the undetermined constant CJ .
We can derive this constant from the normalized three-point function

〈[φφ]0,J(P1, Z1)φ(X3)φ(X4)〉 = Cφφ[φφ]0,J (X13X14)−∆φ

(
J1,34

X13X14

)J
, (D.15)

where

C2
φφ[φφ]0,J = (1 + (−)J)

J !
(∆φ)2

J

(2∆φ + J − 1)J
= (1 + (−)J)

J !
Γ(∆φ + J)2

Γ(∆φ)2
Γ(2∆φ − 1 + J)
Γ(2∆φ − 1 + 2J) .

(D.16)
Inserting the generating function, we obtain

∞∑
J=0

sJ

J !CJ
〈[φφ]0,J(P1, Z1)φ(X3)φ(X4)〉 =

Γ(∆φ)2

(2πi)2

∫
C

dt1dt2et1+t2〈φ(t1P1 + sZ1)φ(t2P1 − sZ1)φ(X3)φ(X4)〉.
(D.17)

Now, given the definition of the GFF operator product in eq. (D.5), the four-point function
on the right hand side will only involve two Wick contractions, namely

〈φ(t1P1 + sZ1)φ(t2P1 − sZ1)φ(X3)φ(X4)〉
=

∑
3≤i 6=j≤4

(t1X1i + sZ1 ·Xi)−∆φ (t2X1j − sZ1 ·Xj)−∆φ .

After the gauge transformation/change of variables

(t′1, t′2) =
(
t1 + s

Z1 ·X3
X13

, t2 − s
Z1 ·X3
X13

)
,

we obtain
〈φ(t1P1 + sZ1)φ(t2P1 − sZ1)φ(X3)φ(X4)〉 =

(X13X14)−∆φ

[
t
′−∆φ

1

(
t′2 + s

J1,34
X13X14

)−∆φ

+ t
′−∆φ

2

(
t′1 − s

J1,34
X13X14

)−∆φ
]
.

The integrand can be expanded into a power series in s, and after integrating over t′1, t′2
we obtain

〈[φφ]0,J(P1, Z1)φ(X3)φ(X4)〉 = CJ(1 + (−1)J)(X13X14)−∆φ

(
J1,34

X13X14

)J
. (D.18)

To retrieve the normalization of eq. (D.15), we must set CJ = 1
2Cφφ[φφ]0,J .

D.2 Application to OPE coefficients of two double-twist operators

The computation of 〈[φφ]0,J1(P1, Z1)φ(X3)[φφ]0,J2(P2, Z2)〉 can be done similarly to the
computation of 〈[φφ]0,J1(P1, Z1)φ(X3)φ(X4)〉 in section D.1. First of all, we have
∞∑

J1,J2=0

4sJ1
1 s

J2
2

J1!J2!
〈[φφ]0,J1(P1, Z1)φ(X3)[φφ]0,J2(P2, Z2)〉

Cφφ[φφ]0,J1
Cφφ[φφ]0,J2

=

∏
i=1,2,4,5

Γ(∆φ)
2πi

∫
C

dti eti〈φ(t1P1 + s1Z1)φ(t2P1 − s1Z1)φ(X3)φ(t4P2 − s2Z2)φ(t5P2 + s2Z2)〉.
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We can now insert the tree-level form of the five-point function in eq. (D.3), with all
Wick contractions of the first two and last two fields subtracted following eq. (D.5). The
correlator simplifies after the gauge transformation/change of variables

(t′1, t′2, t′4, t′5) =
(
t1 + s1

Z1 · P1
X12

, t2 − s1
Z1 · P1
X12

, t4 − s2
Z2 · P1
X12

, t5 + s2
Z2 · P1
X12

)
,

in terms of which the five-point correlator takes the form

〈φ(t1P1 + s1Z1)φ(t2P1 − s1Z1)φ(X3)φ(t4P2 − s2Z2)φ(t5P2 + s2Z2)〉

= Cφφφ(X3
12X13X23)−hφ

(
t′1t
′
5+s1s2

H12
X2

12

)−2hφ(
t′2t
′
4+s1s2

H12
X2

12

)−hφ
(
t′2+s1

J1,23
X12X13

)− 1
2 ∆φ

(
t′4+s2

J2,13
X12X23

)−hφ
+ perms,

where hφ := ∆φ/2 and

perms = [t′1 ↔ t′2, s1 → −s1]+[t′4 ↔ t′5, s2 → −s2]+[t′1 ↔ t′2, s1 → −s1, t
′
4 ↔ t′5, s2 → −s2].

(D.19)
Since the integral is symmetric under the above permutations of t′i, the four terms differ
only by the signs of s1, s2. Therefore, in a power series expansion in s1, s2, the three
permutations will be related to the first one by multiplicative factors of (−1)J1 , (−1)J2 and
(−1)J1+J2 respectively, such that the total three-point function is the integral of the first
term multiplied by (1 + (−1)J1)(1 + (−1)J2).

Note that H12 always appears with a factor of s1s2 in these expressions — this ensures
that we are within the physical range n ≤ min(J1, J2) when expanding a three-point
function in the n-basis. The OPE coefficients C(n)

[φφ]0,J1φ[φφ]0,J2
in this basis can therefore

be obtained from the coefficient of sJ1−n
1 sJ2−n

2 (s1s2H12)n in a series expansion around
s1, s2, H12 = 0. After dividing out by the kinematical prefactor, we can write this coefficient
for even J1, J2 as

∂J1−n
s1 ∂J2−n

s2 ∂nH12
〈φφφφφ〉|s1,s2,H12=0

4n!ΩJ1J2(X/H12)n =
2∏
i=1

(hφ)Ji−n
n∑
j=0

(2hφ)j(hφ)n−j
j!(n− j)!

(t′1t′5)−2hφ−j

t
′2hφ+J1−j
2 t

′2hφ+J2−j
4

.

Each of the j = 0, . . . , n summands is proportional to a product of powers t′−(2hφ+M)
i ,

where M is a non-negative integer, each of which integrates to 1/(2hφ)M . We therefore
obtain

2∏
i=1

(Ji − n)!
Ji!

C
(n)
[φφ]0,J1φ[φφ]0,J2

Cφφ[φφ]0,J1
Cφφ[φφ]0,J2

=
2∏
i=1

(hφ)Ji−n
n∑
j=0

(hφ)n−j
j!(n− j)!

1
(2hφ)j(2hφ)J1−j(2hφ)J2−j

.

(D.20)
Multiplying the left hand side by P[φφ]0,J1

P[φφ]0,J2
reproduces the product of OPE coeffi-

cients entering the five-point function, and we retrieve the formula in eq. (5.61).
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E Lightcone blocks with parity-odd tensor structures

In section 3, our derivation of the lightcone blocks for the direct and crossed channels has
been operated under the implicit assumption that the tensor structures at the central vertex
of the OPE channel are even under parity transformations. While this is certainly true for
CFTs in d ≥ 4, in the special case of three-dimensional CFTs one can also have tensor struc-
tures that are odd under parity transformations. As reviewed in [43, section 3.2], these ten-
sor structures arise because of the possibility of constructing three-point invariants using the
totally-antisymmetric symbol ε. For a three-point function 〈O1(X1, Z1)O2(X2, Z2)φ(X3)〉
expressed in embedding space coordinates and polarizations, one can see that

(
εABCDEX

A
1 X

B
2 X

C
3 Z

D
1 Z

E
2

)2
= 2X (1−X )

J2
1,23J

2
2,31

X12X23X13
(E.1)

which implies that the presence of the parity-odd tensor structures εABCDEXA
1 X

B
2 X

C
3 Z

D
1 Z

E
2

manifests in cross-ratio space as the presence of the factor
√
X (1−X ).

With this in mind, we can aim to understand what changes does the presence of these
tensor structures imply for the expressions of five-point lightcone blocks we derived in
section 3. In the OPE limit, we have that

√
X (1−X ) =

√
w(1− w), so the presence of

parity-odd can be imposed as a correction to the OPE-limit asymptotics of the five-point
blocks. For the direct channel, this tells us that the expression of blocks for odd tensor
structures will change from eq. (3.24) to

ψDC−odd
(ha,h̄a;n)(usi(z̄a, za, w)) LCL(2)

∼
2∏

a=1
z̄haa zh̄aa (1− w)n

√
w(1− w)F̃ (odd)

(ha,h̄a;n)(z1, z2, w) , (E.2)

where the yet to be specified function F̃ (odd)
(ha,h̄a;n) must asymptote to a constant in the OPE

limit.
To compute the form of F̃ (odd)

(ha,h̄a;n), we can use the Casimir differential equations to
express this object in terms of the parity-even solution F̃ . In fact, denoting the differential
operators (3.29) that act on F̃ as Da(hφ;ha, h̄a;n), one can directly check that the operators
acting on F̃ (odd) correspond to

Dodd
a = Da

(
hφ + 1

2;ha, h̄a;n+ 1
)

(E.3)

which implies that their eigenfunctions must be equal once one performs the same shift
in parameters. The same result applies to the crossed channel once a prefactor analogous
to that in eq. (E.2) is extracted, so this constitutes for both cases a simple recipe that
we can use to avoid computing from scratch the conformal blocks with parity-odd tensor
structures.

For the direct channel, following this recipe means we just need to correct eq. (3.63) to

ψ
DC−odd (0)
(ha,h̄a;n) (usi)

LCL~ε∼ NDC (0)
(hφ+ 1

2 ;ha,h̄a;n+1) (us1us2)hφuh1
s5u

h2
s3 fn+h2φ+ 1

2
(us2)fn+h1φ+ 1

2
(us1).

(E.4)
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For the crossed channel, we can once more the distinguish the solutions for two types
of scaling of eigenvalues: the case I blocks with scaling (3.69) are such that the correction
to eq. (3.81)

ψCC−odd,I
(ha,h̄a;n) (usi)

LCL~ε∼ NCC,I
(hφ+ 1

2 ;ha,h̄a;n+1)u
h1
s1u

h2
s4 (us2us3)hφe−(n+1)us5−

h̄2
1us2+h̄2

2us3
n+1 (E.5)

is negligible due to n + 1 ∼ n + O(ε015), while the case II solution (3.101) becomes in the
presence of odd tensor structures

ψCC−odd,II
(ha,h̄a;J1−δn)(usi)

LCL(4)
~ε∼ NCC,II

(hφ+ 1
2 ;ha,h̄a;n+1)u

h1
s1u

h2
s4 (us2us3)hφ

(1− us2)δn−
1
2u

hφ+δn− 1
2

s5 Khφ+δn− 1
2

(
h̄2

1us5 + h̄2
2us3us5

)
. (E.6)
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