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Ultralight bosons can grow substantially in the vicinity of a black hole, through superradiant
energy extraction. Consequently, such bosons can potentially reach field values close to the Planck
scale, making black holes powerful transducers of such fields. If a scalar field couples to neutrino, it
can trigger parametric production of neutrinos, and potentially quench their superradiant growth.
During this saturation phase, scalar clouds can accelerate neutrinos to the TeV energy scale, gener-
ating fluxes that surpass those produced by atmospheric neutrinos.

Introduction. Hypothetical bosons with ultralight
masses are promising candidates for beyond-the-
standard-model particle physics. They are motivated by
their potential to explain the smallness of the neutron
electric dipole moment [1], and they are natural out-
comes of fundamental theories with extra dimensions [2–
5]. When these bosons comprise dark matter [6–9] and
possess masses lower than O(1) eV, they behave as co-
herent waves due to their substantial occupation num-
bers [10].

The signals associated with ultralight bosons are typ-
ically proportional to their energy density or field value.
When the Compton wavelength of these bosons is com-
parable to the gravitational radius of a rapidly rotating
black hole (BH), a bound state can form through the
superradiance mechanism, which involves the extraction
of the BH rotational energy [11–13]. The process then
leads to the condensation of a bosonic structure – a bo-
son cloud – in the BH exterior [14–16]. Superradiant
clouds can reach a total mass of approximately O(10)%
of the BH mass [17–19], corresponding to a field value
approaching the Planck scale [20]. Thus, Kerr BHs can
serve as powerful transducers for ultralight bosons [13].
Detection based on superradiance does not necessarily re-
quire ultralight bosons to constitute the majority of dark
matter. It can be achieved, for example, through the
spin-down of BHs [17, 21–30], gravitational-wave signals
from boson clouds [20–24, 27, 31–44], and axion cloud-
induced birefringence [45–48].

The couplings between ultralight bosons and stan-
dard model neutrinos are prevalent in various beyond-
standard-model theories, which are motivated by neu-
trino mass generation [49–51] and grand unification the-
ories [52–56]. Nevertheless, investigating these couplings
presents significant challenges due to the inherent diffi-
culties associated with neutrino production and detec-
tion. The constraints on these couplings primarily arise
from neutrino self-interactions mediated by ultralight
bosons [57–62], and distortions in neutrino oscillations
caused by ultralight dark matter [63–82].

In this work, we demonstrate that scalar clouds sur-
rounding BHs can generate substantial neutrino emis-
sions through parametric production [83, 84]. Moreover,
the spatial gradient of scalar clouds can efficiently ac-
celerate the produced neutrinos to TeV-level energies.
Given the significant field values achievable through su-
perradiant production, a deeper range of coupling con-
stants can be explored by comparing the anticipated
fluxes with those observed in diffusive atmospheric neu-
trinos [85].

Superradiant Clouds. An ultralight boson field can
form (quasi-)bound states outside a BH due to gravi-
tational attraction. These bound states exhibit discrete
quantum numbers and are influenced by the gravitational
fine-structure constant, denoted as α ≡ GNMBHµ [13,
14]. Here, GN is Newton’s constant, while MBH and
µ represent the BH mass and the boson mass, respec-
tively. Superradiance occurs when the BH rotates at a
sufficient velocity for its angular velocity to surpass the
angular phase velocity of specific boson states, leading
to exponential transfer of rotational energy into these
states [12, 13].
We focus on the superradiant ground state of a massive

scalar φ, whose orbital angular momentum corotates with
the BH. Its wave function can be approximated as [14]

φ(~x, t) =Ψ0(t)Rα(r) sin θ cos(µt− ϕ), (1)

in the Newtonian, α ≪ 1 limit. Here, Ψ0 repre-
sents the peak field value of the scalar cloud, Rα(r) =
Exp[1−α2r/(2rg)]α

2r/(2rg) denotes the normalized ra-
dial potential. We adopt Boyer-Lindquist coordinates
(t, r, θ, ϕ), and rg ≡ GNMBH represents the gravitational
radius. It is worth noting that the total mass of the
cloud, Mcloud, should not exceed approximately 10% of
the BH mass. Beyond this threshold, the BH spin de-
creases to a value that no longer satisfies the superradi-
ant condition, unless there is an external input of angular
momentum to the BH. By considering the relationship
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Mcloud ≈ 186Ψ2
0/(α

3µ), we observe that the field value
can approach the Planck scale:

Ψ0 ≈ 1.1× 1016 GeV
( α

0.2

)2
(

Mcloud

0.1MBH

)1/2

. (2)

Hereafter, we adopt Ψ10%
0 as the maximum allowable field

value by setting Mcloud/MBH = 0.1 in Eq. (2).
On the other hand, exponential growth can be halted

prior to the occurrence of a strong backreaction on the
BH if there exists an interaction between the boson cloud
and other fields. In such cases, the cloud reaches a quasi-
equilibrium state where the interaction induces a steady
outflow of energy, effectively balancing the superradiant
gain. Examples of such interactions include quartic self-
interactions [31, 86–88], axion-photon coupling [89–92],
and electron-positron pair production [86, 93, 94].

Neutrino Emission from Scalar Clouds. We in-
vestigate a neutrino-philic coupling between a scalar field
denoted as φ and the left-handed neutrino νL, which is
described using two-component spinor notation:

gφν φ νLνL. (3)

Here, gφν represents the coupling constant. The scalar
field involved in this interaction is commonly referred
to as the Majoron. Its coupling has been extensively
discussed in the context of mediating neutrino self-
interactions, a comprehensive summary can be found in
Ref. [61]. Various constraints on the value of gφν exist
when considering the case of an ultralight φ, including su-
pernova (SN) 1987A [95, 96], double beta decay [59, 97],
big bang nucleosynthesis [58], and the cosmic microwave
background [60, 62]. These studies have established an
approximate upper limit of gφν < 3× 10−7. For simplic-
ity, we assume a universal coupling to all mass eigenstates
in the following.
Given the significant field value that scalar clouds can

attain and the light neutrino masses (< 0.12 eV [98, 99]),
we expect that the coupling in Eq. (3) induces a coher-
ent oscillating mass term gφνφ for neutrinos around the
cloud. The amplitude of this oscillation gφνφ0 is more
significant than the bare mass of neutrino mν , where
φ0 ≡ Ψ0Rα(r) sin θ represents the local amplitude of the
scalar field. When the effective mass, meff = gφνφ+mν ,
crosses zero, neutrinos undergo parametric excitation.
This production mechanism was previously studied dur-
ing preheating [83, 84], and the average production rate
per unit volume is given by

Γφν ≈
g2φνφ

2
0µ

2

48π3

√

µ

gφνφ0
, (4)

see Supplemental Material for details. Relativistic neu-
trinos are produced with an initial momentum |~p i

ν | ∼

√

gφνφ0µ/2. The corresponding de Broglie wavelength
of the neutrinos, ∼ 1/|~p i

ν |, is significantly shorter than
the size of the cloud, ∼ 1/(αµ). This allows us to safely
ignore the finite-size effects when using Eq. (4).

Once produced, the neutrinos immediately experi-
ence an effective force arising from the varying mass
term [100]. The equation of motion for their worldline
is given by:

dpαν
dt

= − 1

p0ν
Γα
κβ p

κ
ν p

β
ν − 1

2p0ν
∇αm2

eff . (5)

Here, pαν represents the 4-momentum of the neutrinos,
and Γα

κβ refers the Christoffel symbols of the Kerr met-
ric. The spatial components of Eq. (5) contain the ef-

fective force −~∇m2
eff/(2p

0
ν), which accelerates the neutri-

nos after their production. The final accelerated energy,
denoted as ων

acc, can be estimated by considering the 0-
component of Eq. (5), resulting in ων

acc ∼ gφνφ0. It is
essential to emphasize that both the spatial gradient and
temporal oscillation of the cloud wave-function are nec-
essary for the acceleration process, as demonstrated in
Eq. (5). Notably, neutrinos produced during the previ-
ous crossing, having been accelerated to much higher en-
ergies than |~p i

ν |, would not influence subsequent produc-
tion, akin to the pair production of millicharged particles
from superconducting cavities [101].

To obtain the angular distribution and spectrum of the
outgoing neutrino fluxes, we perform simulations of neu-
trino trajectories originating from various points within
scalar clouds. Details can be found in the Supplemental
Material. The top panel of Fig. 1 presents two examples
of neutrino trajectories emitted simultaneously from dis-
tances of 10 rg (shown in orange) and 100 rg (shown in
green) in a scalar cloud background with α = 0.2. No-
tably, the trajectory originating from the outer region
directly leaves the cloud in the radial direction, while
the other trajectory first curls around the BH spin axis
(shown in black). Additionally, we depict the force lines

from −~∇φ2 at the production time and density of φ2
0

in gray. The bottom panel displays the outgoing spec-
trum as a function of the observer’s inclination angle θo.
The flux is slightly higher when observed from nearly
face-on angles (| cos θo| > 3/4), forming a jet-like struc-
ture of neutrinos. This enhanced flux is primarily due to
the tendency of neutrinos produced in the inner region of
the cloud to be trapped in perpendicular directions while
maintaining acceleration along the polar axis.

Based on our simulations, we have determined the av-
erage energy of the neutrino fluxes:

ω̄ν
acc ≈ 2.7TeV

( gφν
10−8

)

(

Ψ0

1012 GeV

)

. (6)

This value is generally independent of α, as demonstrated
in the Supplemental Material. We can estimate the dif-
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which experience delayed arrival times due to superradi-
ant timescales. The correlation between these two types
of observations introduces novel prospects in the field of
multi-messenger astronomy.
The remarkable advancements in Very-Long-Baseline

Interferometry (VLBI) technology have enabled the ob-
servation of supermassive BHs. The Event Horizon Tele-
scope, with unprecedented angular resolution, has cap-
tured horizon-scale images of two nearby supermassive
BHs: M87⋆ (MBH ≃ 6.5 × 109 M⊙, d ≃ 16.4Mpc) [107],
and SgrA⋆ (MBH ≃ 4.3 × 106 M⊙, d ≃ 8.2 kpc) [108].
These results are also in favor of nearly face-on observa-
tions and high spins of the two BHs. Moreover, there
is promising potential to employ correlations between
VLBI observations and neutrino experiments to inves-
tigate additional supermassive BHs located at greater
distances [109]. An intriguing feature that can be antici-
pated from supermassive BHs is the periodic modulation
of the neutrino flux. For instance, the cloud surrounding
M87⋆ oscillates with a period of O(10) days, a time span
that is sufficiently long to be resolved.

FIG. 2. Prospects for constraining the coupling gφν of a
neutrino-philic scalar. The stellar-mass BHs considered have
masses spanning from 3M⊙ to 100M⊙ and are assumed to be
located at a distance of 1 kpc. The spin parameter is held con-
stant at aJ = 0.8. Previous exclusion from SN1987A [95, 96]
is shown for comparison.

When the interaction between φ and neutrinos is ex-
tremely weak, a steady state is not reached before the
BH spins down. Consequently, detecting a BH with
a high spin can rule out the corresponding superradi-
ant window mass, similar to the constraints imposed
on minimally coupled bosons or axions with weak self-
interaction [17, 21–30]. A quantitative criterion for this
exclusion is that Ψc

0 > Ψ10%
0 , which implies that the

cloud extracts 10% of the BH energy without reaching
the saturation phase. The blue region in Fig. 2 rep-
resents this condition. In our analysis, we consider a
fixed spin parameter aJ = 0.8 with the highest possi-
ble value of α = 0.25. The lower bound of α is set

at 0.05. For stellar-mass BHs, the corresponding scalar
mass µ ≡ α/(GNMBH), is divided into two regions. In
the low-mass region, we fix MBH = 100M⊙ and vary
α from 0.05 to 0.25. In the high-mass region, we fix
α = 0.25 and vary MBH from 100M⊙ to 3M⊙. We also
include the constraints from the two nearby supermassive
BHs.

The parameter space within the red region in Fig. 2
represents the range in which observable neutrino fluxes
from a saturating cloud are expected. In this region,
the cloud no longer exponentially extracts BH spin, thus
enabling the coexistence of a high spin BH and the
saturated cloud. Therefore, we maintain the value of
aJ = 0.8, while µ follows the same division as the one
used for spin measurement. The upper boundary of the
blue region is determined by requiring the neutrino fluxes
in Eq. (7) to be higher than 1% of the diffusive atmo-
spheric neutrino background [85] at ω̄ν

acc. The atmo-
spheric neutrino has already been well measured by Ice-
Cube [110], Super-Kamiokande [111], ANTARES [112],
and Baikal-GVD [113]. A target source with neutrino
fluxes at 1% of the diffusive background can be easily
distinguished with an angular resolution of < 10◦ [114–
119].

Discussion. Various intriguing phenomena can arise
in the region of strong fields, particularly related to par-
ticle production. These phenomena have been previ-
ously examined in the preheating stage of the early uni-
verse [83, 84, 120, 121] and in the context of strong field
quantum electrodynamics [122, 123]. Rotating BHs pro-
vide an excellent platform for studying particle produc-
tion, as superradiant clouds can reach field values close
to the Planck scale.

In this study, we propose a novel approach to inves-
tigate the interaction between ultralight bosonic fields
and neutrinos through BH superradiance. Superradiant
scalar clouds play dual roles in the generation and ac-
celeration of neutrinos, necessitating both periodic oscil-
lation and spatial gradient of the cloud wave-functions.
The observation prospects can be examined from two per-
spectives. First, BH spin measurements can exclude neg-
ligible interactions with low values of gφν . Second, neu-
trino fluxes from a target BH with high spin can constrain
the region of strong interaction. Our findings demon-
strate that the emitted neutrino fluxes can significantly
surpass the diffusive background, both for stellar-mass
BHs and supermassive BHs.

Apart from interactions involving a hidden scalar, it is
also natural to consider interactions with a vector field
in the presence of new gauge groups [52–56]. The vec-
tor cloud can generate neutrinos through Schwinger pair
production [122, 123] and further accelerate them us-
ing the electric fields of the vector. However, the cou-
plings between vector fields and neutrinos are subject
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to strict constraints due to their coupling to other stan-
dard model fermions [124–130] or the non-conservation
of currents [131–137]. Thus sophisticated model build-
ing is necessary in the neutrino sector to yield observable
consequences.

Notice that the neutrino production from a bosonic
cloud can also apply to other coupled fermions in the hid-
den sector. In addition, dark matter particles around the
cloud can be directly accelerated to higher energies. Con-
sequently the superradiant cloud can serve as a source
for boosted dark matter, offering potential for detection
through direct detection experiments and neutrino detec-
tors [138–151]. The specific incoming directions of these
particles can induce a daily modulation of signals due to
scattering with Earth materials [152–157] or directional
detectors [158].
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Supplemental Material: Black Holes as Neutrino Factories

Particle Production from Time-Varying Backgrounds

We begin by considering a bosonic field χ in a time-varying background [120, 121]. The equation of motion in the
frequency domain can be expressed as

χ̈k + ωk(t)
2χk = 0. (S1)

Here, ωk(t) represents the time-varying energy, which is modulated by the background fields to which χ couples. The
solutions to Eq. (S1) in the adiabatic representation are given by [121]

χk(t) =
αk(t)√
2ωk

e−i
∫

t

0
ωkdt +

βk(t)√
2ωk

e+i
∫

t

0
ωkdt. (S2)

The coefficients αk and βk satisfy the following equations:

α̇k =
ω̇k

2ωk
e+2i

∫
t

0
ωkdtβk, β̇k =

ω̇k

2ωk
e−2i

∫
t

0
ωkdtαk, (S3)

and they adhere to the normalization condition |αk|2 − |βk|2 = 1. Initially, at t = 0, the vacuum state is defined as
αk = 1 and βk = 0. The quantities αk(t) and βk(t) correspond to the coefficients of the Bogoliubov transformation
of the creation and annihilation operators, respectively, which diagonalize the Hamiltonian at each moment in time
t. The particle occupation number for a momentum mode k is given by nk = |βk|2, which yields the particle number
density per unit volume as

nχ =
1

2π2

∫ ∞

0

dkk2 |βk|2 . (S4)

When |βk| ≪ 1 holds true, we can approximate the solution for Eq. (S3) as

βk ≃
∫ t

0

dt′
ω̇

2ω
exp

(

−2i

∫ t′

0

dt′′ω (t′′)

)

. (S5)

Consequently, efficient particle production is expected when the non-adiabatic condition is satisfied:

∣

∣

∣

∣

ω̇

ω2

∣

∣

∣

∣

≫ 1. (S6)

Using the interaction term g2φχφ
2χ2/2 as an example, we consider the following scenario: φ = φ0 cos(µt) represents

the coherently oscillating background scalar with amplitude φ0 and frequency µ, and gφχ represents the coupling
constant. The frequency relation for χ is [121]

ω2
χ = k2 +m2

χ + g2φχφ
2
0 cos

2(µt). (S7)

Here, mχ denotes the bare mass term of χ. In this context, our focus lies on the region where g2φχφ
2
0/µ

2 is substantially
greater than 1, while mχ can be considered negligible. Within a narrow region of φ during a single oscillation period,
momentum values below the typical scale k⋆ =

√

gφχφ0µ/2 satisfy the non-adiabatic condition (S6). Consequently,
the occupation number nk for k < k⋆ is exponentially produced with a time dependence of approximately exp(2µτkt),
where τk ≈ O(0.1) [121].
Fermionic fields with a Yukawa coupling gφνφνLνL and a bare mass mν exhibit a frequency relation for the mode

function given by [83, 84]

ω2
ν = k2 + (mν + gφνφ0 cos(µt))

2
. (S8)

In the near black hole region where the resonance parameter q ≡ g2φνφ
2
0/µ

2 is significantly high and gφνφ0 ≫ mν ,
the non-adiabatic condition is met when the effective mass term, meff ≡ mν + gφνφ0 cos(µt), crosses zero. During

each crossing, the background ground instantly contributes to the k−mode with a factor of |βk|2 = e−πk2/(gφνφ0µ) +
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· · · [83, 84], where · · · contains the terms related to previously produced fermions. Exponential growth is excluded due
to Pauli blocking. Instead, a fermion sphere with a radius of approximately k⋆ =

√

gφνφ0µ/2 is formed immediately
after a single kick. In cases where neutrinos are produced from a superradiant scalar background, neutrinos produced
during the previous kick are accelerated to much higher energy scales and will not obstruct subsequent production.
Consequently, the average production rate per unit volume is estimated as:

Γφν ≈ 1

2π2

k3⋆
3

µ

π
=

g2φνφ
2
0µ

2

48π3

√

µ

gφνφ0
. (S9)

Here, the factor π/µ accounts for the time between two crossings. Furthermore, the de Broglie wavelength of the
initially produced fermions, approximately 2π/k⋆, is considerably shorter than the cloud size. Thus, the finite size of
the cloud can be disregarded when considering the production rate.
The scalar cloud displays an oscillatory component in its wavefunction, which exhibits a dependency on the az-

imuthal angle, i.e., φ ∝ cos(µt−ϕ). This dependence arises from the orbital angular momentum of the cloud. Notably,
at a specific time t, the non-adiabatic condition is triggered on a plane that is approximately aligned with ϕ = µt±π/2.
As a result, the cloud oscillation induces a periodic rotation of the production plane around the spin axis of the black
hole.
One key difference between boson and fermion production is the requirement for the bare mass term. In Eq. (S8),

the effective mass is the linear sum of the bare mass and the oscillating term, so only gφνφ0 ≫ mν is necessary to
trigger the parametric excitation [84]. On the other hand, for bosons, mχ needs to be smaller than k⋆ due to their
similar roles in Eq. (S8). In our cases, due to the smallness of the neutrino mass and the significant field value of the
scalar cloud, neutrino production can be achieved for both stellar-mass black holes and supermassive black holes with
different ranges of µ.

Neutrino Trajectory

Immediately after production, neutrinos start propagating under the scalar background outside the black hole.
This is effectively equivalent to considering geodesics with a varying mass term denoted by meff = gφνφ +mν . The
worldline action for the neutrino is given by:

Sν = −
∫

dτ meff

√

−gαβuα
νu

β
ν , (S10)

where gαβ is the Kerr metric, and uα
ν is the 4-velocity of the neutrino particle. From Eq. (S10), we obtain the

corresponding Euler-Lagrange equation:

duα
ν

dτ
= −Γα

κβu
κ
νu

β
ν − (gαβ + uα

νu
β
ν )

∇βmeff

meff
, (S11)

where τ is the proper time, and Γα
κβ are the Christoffel symbols of the Kerr metric. By using the relations pαν = meffu

α
ν

and dt = u0
νdτ , we can rewrite Eq. (S11) as:

dpαν
dt

= − 1

p0ν
Γα
κβ p

κ
ν p

β
ν − 1

2p0ν
∇αm2

eff . (S12)

Here, p0ν satisfies the on-shell condition p0ν =
√

m2
eff + |~pν |2. The time-component of Eq. (S12) shows that p0ν will be

accelerated to the same order as meff after a time-scale of approximately 1/µ.
The two terms on the right-hand side of Eq. (S12) correspond to gravitational lensing and scalar force [100], respec-

tively. We compare their relative contributions using Cartesian coordinates (t, x, y, z):

−
Γα
κβ p

κ
ν p

β
ν

m2
eff/rg

≈ −
r2g
r2

(

O(1) +O(
rg
r
)
)

, (S13)

−
~∇m2

eff

m2
eff/rg

= α2 r̂ − 2 rg
r cos(αt− φ) sin θ

n̂⊥ + · · · . (S14)

Here, · · · represents the influence of the neutrino bare term mν , which is negligible in the region where gφνφ0 ≫ mν .
n̂⊥ ≡ (cos(αt), sin(αt), 0) is a unit directional vector rotating on the x − y plane. It is clear that the scalar force
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dominates over gravitational lensing in the majority part of the cloud. Thus, in the simulation, we neglect the effect
of the latter.
When neutrinos are produced at larger radii, the first term on the right-hand side of Eq. (S14) dominates, acceler-

ating neutrinos along the radial direction. This causes the nearly isotropic distribution of fluxes in Fig. 1 of the main
text for | cos θo| < 3/4. On the other hand, the second term on the right-hand side of Eq. (S14) is non-negligible in the
inner region of the cloud. It traps the trajectories in regions with small inclination angles (| cos θo| > 3/4), causing
an excess of neutrino flux.

Trajectory and Flux Simulation

In this section, we will discuss the simulation of neutrino trajectories and the recording of the flux at infinity. For
convenience, we introduce dimensionless quantities:

(t̃, x̃, ỹ, z̃) ≡ (t/rg, x/rg, y/rg, z/rg), p̃αν ≡ pαν
gφνΨ0

, m̃eff ≡ meff

gφνΨ0
. (S15)

The trajectories with these new definitions become:

dx̃α

dt̃
=

p̃αν
p̃0ν

,
dp̃αν
dt̃

= −∇αm̃2
eff

2p̃0ν
, p̃0ν =

√

m̃2
eff + |~̃pν |2. (S16)

We employ a Monte-Carlo simulation to generate neutrino events, where the initial positions of events are distributed
within 2 < r/rg < 40/α2. The upper range is chosen to be much higher than the cloud size. We use the generalized

acceptance-rejection method [159] for the distribution weighted by the production rate Γφν ∝ φ
3/2
0 . Without loss of

generality, we set the initial time of each event at t̃ = 0. We relocate the azimuthal angle ϕ to either π/2 or −π/2,
depending on the initial sign of ϕ.
To solve the trajectory of each event using Eq. (S16), we need to specify the initial momentum and the neutrino

bare mass. The oscillatory part of the mass takes a value to cancel the bare mass, resulting in a vanishing m̃eff . Both
the initial momentum with a value below k̃⋆ =

√

φ0µ/(gφνΨ2
0)/2 and the dimensionless neutrino mass mν/(gφνΨ0)

are several orders of magnitude lower than 1 in the relevant parameter space of this work. We test the convergence
of the trajectories, which demonstrates independence of the initial momentum value and directions. This is because
the scalar background immediately contributes to O(1) values for both m̃eff and |~̃pν |. Hence, in practice, we choose
a small enough value of momentum with random directions and vanishing m̃eff as the initial condition.

The end of each trajectory is set to be at t̃ = 400/α2, where both the momentum and outgoing direction (θ, ϕ)
converge to nearly constant values. We assume that the observation takes a time longer than the oscillation period
2π/µ, allowing us to neglect the azimuthal angle ϕ dependence of the event. The final momentum and polar angle
information are then recorded as

ων
acc/(gφνΨ0) = p̃0ν , cos θo = p̃zν/p̃

0
ν , (S17)

respectively. In Fig. 1 of the main text, we show the results for α = 0.2, while in Fig. S1, we present the results for
α = 0.05 and 0.4 for comparison. The average momentum turns out to be universal for different α.

FIG. S1. Same as Fig. 1 of the maintext with α = 0.05 and 0.4.


