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1 Introduction

The experimental characterization of the Higgs boson discovered by the ATLAS and CMS
experiments [1, 2] is not only crucial for our understanding of the mechanism of electroweak
symmetry breaking [3–5] but also for providing insight into physics beyond the Standard
Model (SM). Despite a small Higgs boson to diphoton (H → γγ) branching ratio of
(0.227± 0.007)% [6] in the SM, measurements in the diphoton final state have yielded some
of the most precise determinations of Higgs boson properties [7–11], thanks to the excellent
performance of photon reconstruction and identification with the ATLAS detector.

The signature of the Higgs boson in the diphoton final state is a narrow peak in the
diphoton invariant mass (mγγ) distribution with a width consistent with detector resolution,
rising above a smoothly falling background. The diphoton mass resolution for such a
resonance is typically between 1 GeV and 2 GeV, depending on the event kinematics. The
mass and event yield of the Higgs boson signal can be extracted through fits of the mγγ

distribution. Properties of the Higgs boson have been studied extensively in the diphoton
final state by the ATLAS and CMS experiments [10–19]. This paper reports measurements
of Higgs boson production cross-sections in the diphoton decay channel, using a data set of
proton-proton collisions at

√
s = 13 TeV collected by the ATLAS experiment from 2015

to 2018, a period known as Run 2 of the Large Hadron Collider (LHC). Its integrated
luminosity is 139 fb−1 [20, 21], a roughly fourfold increase compared to the previous ATLAS
publication of such measurements in the diphoton channel [10]. Apart from the increased
data set size, the most significant improvement in the sensitivity is due to redesigned and
refined event selection and categorization techniques compared to ref. [10]. Uncertainties on
the modeling of continuum background have been reduced through the use of a smoothing
procedure based on a Gaussian kernel [22]. The performance of the reconstruction and
selection of the physics objects used in these measurements has also been generally improved.
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The analysis is optimized to measure production cross-sections in the Simplified Tem-
plate Cross-Section (STXS) framework [6, 23–25], in which the Higgs boson production
phase space is partitioned by production process as well as by kinematic and event properties.
Thanks to the increased integrated luminosity and an improved analysis method, a total of
28 STXS regions are measured in this analysis, compared to 10 in ref. [10]. By combining
several STXS regions, the analysis provides strong sensitivity to the cross-sections of the
main Higgs boson production modes, gluon-gluon fusion (ggF), vector-boson fusion (VBF),
and associated production with a vector boson (V H where V = W or Z), or a top quark
pair (ttH). The analysis is furthermore specifically optimized for the detection of single-top
associated production of the Higgs boson (tH), which has a unique sensitivity to the sign
of the top-quark Yukawa coupling. While the analysis does not reach sensitivity to the
small tH event yield predicted by the SM, it can set constraints on enhanced tH rates due
to potential effects from physics beyond the Standard Model (BSM) [26]. A measurement
of the inclusive Higgs boson production yield within |yH | < 2.5 in the diphoton channel is
also reported. Uncertainties and correlations of the production mode cross-section measure-
ments are reduced, and in particular, the uncertainties in the measurements of V H and
top-associated production modes are reduced by more than a factor of four.

Two sets of interpretations of these measurements are also performed to provide
constraints on potential effects arising from BSM physics: one in terms of Higgs boson
coupling strengths within the κ-framework [6], and the other in terms of Wilson coefficients
describing potential BSM interactions in the context of a Standard Model effective field
theory (SMEFT) model [27–29].

This paper is organized as follows. Section 2 describes the ATLAS detector, section 3
details the data and Monte Carlo simulation samples used in this analysis, section 4 explains
the object reconstruction and event selection. The design of the measurement is discussed
in section 5, and the modelling of the diphoton mass distribution is discussed in section 6.
Systematic uncertainties are described in section 7, and section 8 presents the measurement
results. Sections 9 and 10 respectively report the results of interpretations in the context of
the κ-framework and the SMEFT model. Conclusions are presented in section 11.

2 ATLAS detector

The ATLAS detector [30] at the LHC covers nearly the entire solid angle around the collision
point.1 It consists of an inner tracking detector surrounded by a thin superconducting
solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer incorporating
three large superconducting toroidal magnets.

The inner-detector system (ID) is immersed in a 2 T axial magnetic field and provides
charged-particle tracking in the range |η| < 2.5. The high-granularity silicon pixel detector

1ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in

the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre

of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, φ) are used in the transverse

plane, φ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar

angle θ as η = − ln tan(θ/2). Angular distance is measured in units of ∆R ≡
√

(∆η)2 + (∆φ)2.
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covers the vertex region and typically provides four measurements per track, the first hit
normally being in the insertable B-layer installed before Run 2 [31, 32]. It is followed by
the silicon microstrip tracker, which usually provides eight measurements per track. These
silicon detectors are complemented by the transition radiation tracker (TRT), which enables
radially extended track reconstruction up to |η| = 2.0. The TRT also provides electron
identification information based on the fraction of hits (typically 30 in total) above a higher
energy-deposit threshold corresponding to transition radiation.

The calorimeter system covers the pseudorapidity range |η| < 4.9. Within the region
|η| < 3.2, electromagnetic calorimetry is provided by barrel and endcap high-granularity
lead/liquid-argon (LAr) calorimeters, with an additional thin LAr presampler covering
|η| < 1.8 to correct for energy loss in material upstream of the calorimeters. Hadronic
calorimetry is provided by the steel/scintillator-tile calorimeter, segmented into three barrel
structures within |η| < 1.7, and two copper/LAr hadronic endcap calorimeters. The
solid angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter
modules optimized for electromagnetic and hadronic measurements respectively.

The muon spectrometer (MS) comprises separate trigger and high-precision tracking
chambers measuring the deflection of muons in a magnetic field generated by superconducting
air-core toroids. The field integral of the toroids ranges between 2.0 and 6.0 T ·m across
most of the detector. A set of precision chambers covers the region |η| < 2.7 with three
layers of monitored drift tubes, complemented by cathode-strip chambers in the forward
region, where the background is highest. The muon trigger system covers the range |η| < 2.4

with resistive-plate chambers in the barrel, and thin-gap chambers in the endcap regions.
Interesting events are selected to be recorded by the first-level trigger system imple-

mented in custom hardware, followed by selections made by algorithms implemented in
software in the high-level trigger [33]. The first-level trigger accepts events from the 40 MHz

bunch crossings at a rate below 100 kHz, which the high-level trigger reduces to about
1 kHz in order to record events to disk. An extensive software suite [34] is used in the
reconstruction and analysis of real and simulated data, in detector operations, and in the
trigger and data acquisition systems of the experiment.

3 Data and simulation samples

3.1 Data

This study uses a data set of
√
s = 13 TeV proton-proton collisions recorded by the

ATLAS detector during a period ranging from 2015 to 2018, corresponding to Run 2 of
the LHC. After data quality requirements [35] are applied to ensure that all detector
components are in good working condition, the data set amounts to an integrated luminosity
of 139.0± 2.4 fb−1 [20, 21]. The mean number of interactions per bunch crossing, averaged
over all colliding bunch pairs, was 〈µ〉 = 33.7 for this data set.

Events are selected if they pass either a diphoton or single-photon trigger. The
diphoton trigger has transverse energy thresholds of 35 GeV and 25 GeV for the leading
and subleading photon candidates, respectively [36], with photon identification selections
based on calorimeter shower shape variables. In 2015–2016, a loose photon identification
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requirement was used in the trigger, while in 2017–2018, a tighter requirement was used to
cope with higher instantaneous luminosity. The single-photon trigger requires the transverse
energy of the leading photon be greater than 120 GeV in data collected between 2015 and
2017, with the threshold rising to 140 GeV for data collected in 2018. The photon candidate
used in the trigger decision is required to pass the loose photon identification requirement
mentioned above. On average, the trigger efficiency is greater than 98% for events that
pass the diphoton event selection described in section 4, with no substantial variations over
the data-taking period. The addition of the single-photon trigger improves the selection
efficiency by 1% overall, and by up to 2% for high-pT Higgs boson candidates.

3.2 Simulation samples

Major Higgs boson production processes, including ggF, VBF, V H , ttH , and associated pro-
duction with a pair of bottom quarks (bb̄H) were generated using Powheg Box v2 [37–40].
The ggF simulation achieves next-to-next-to-leading-order (NNLO) accuracy for inclusive
ggF observables by reweighting the Higgs boson rapidity spectrum in Hj-MiNLO [41–43]
to that of HNNLO [44]. The Higgs boson transverse momentum spectrum obtained with
this sample is found to be compatible with the fixed-order HNNLO calculation and the
Hres 2.3 calculation [45, 46] performing resummation at next-to-next-to-leading-logarithm
accuracy matched to a NNLO fixed-order calculation (NNLL+NNLO). The VBF process
was simulated at next-to-leading-order (NLO) accuracy in QCD. The simulation of the
WH and qq/qg → ZH processes is accurate to NLO in QCD with up to one extra jet in
the event, while the simulation for the gg → ZH process was performed at leading order in
QCD. The ttH and bb̄H processes were simulated at NLO in the strong coupling constant
αs in the five-flavour scheme. The PDF4LHC15 sets [47] of parton distribution functions
(PDFs) were used for all the processes listed above. The NNLO set was used for ggF, and
the NLO set for other processes.

The tHqb (tHW ) samples were produced with MadGraph5_aMC@NLO 2.6 [48] in
the four-flavour (five-flavour) scheme with the NNPDF3.0nnlo PDF. The same flavour
scheme was used in the matrix element calculation and the PDF. The top quark and W

boson decays were handled by MadSpin [49] to account for spin correlations in the decay
products. The overlap of the tHW process with ttH at NLO was removed by using a
diagram removal technique [50, 51] The pp → tHb process has a small cross-section and
was not considered in the modelling of tH production.

All generated events for the processes listed above were interfaced to Pythia 8.2 [52, 53]
to model parton showering, hadronization and the underlying event using the AZNLO set
of parameter values tuned to data [54]. The decays of bottom and charm hadrons were
simulated using the EvtGen 1.6.0 program [55]. Systematic uncertainties related to the
signal modeling are estimated using a set of samples where Herwig7 [56, 57] is used for
parton showering.

Major Higgs boson production processes were also simulated using alternative generator
programs, in order to check the signal model and associated uncertainties (see section 7.2).
The ggF process was also generated with MadGraph5_aMC@NLO, using an NLO-
accurate matrix element for up to two additional partons and applying the FxFx merging

– 4 –



J
H
E
P
0
7
(
2
0
2
3
)
0
8
8

scheme to obtain an inclusive sample [48, 58]. The generation used an effective vertex with
a point-like coupling between the Higgs boson and gluons in the infinite top-mass limit. The
events were showered using Pythia 8.2 with the A14 set of tuned parameters [59]. The VBF
alternative sample was generated with MadGraph5_aMC@NLO at NLO accuracy in the
matrix element. It was then showered with Herwig 7.1.6. The V H alternative sample was
simulated with MadGraph5_aMC@NLO, and the simulation is accurate to NLO in QCD
for zero or one additional parton merged with the FxFx merging scheme. The gg → ZH

process was also simulated at LO with MadGraph5_aMC@NLO and showered with
Pythia 8.2. The ttH alternative sample was simulated with MadGraph5_aMC@NLO

at NLO and the parton showering was performed with Pythia 8.2.
All Higgs boson signal events were generated with a Higgs boson mass (mH) of 125 GeV

and an intrinsic width (ΓH) of 4.07 MeV [60]. The cross-sections of Higgs production
processes are reported for a centre-of-mass energy of

√
s = 13 TeV and a Higgs boson with

mass mH = 125.09 GeV [61]. These cross-sections [6, 51, 62–94], shown in table 1, are
used together with the Higgs boson branching ratio to diphotons [6, 95–100] to scale the
simulated signal samples to their SM predictions.

Prompt diphoton production (γγ) was simulated with the Sherpa 2.2.4 [101] generator.
In this set-up, NLO-accurate matrix elements for up to one parton, and LO-accurate
matrix elements for up to three partons were calculated with the Comix [102] and Open-

Loops [103–105] libraries. They were matched with the Sherpa parton shower [106]
using the MEPS@NLO prescription [107–110] with a dynamic merging cut [111] of 10 GeV.
Photons were required to be isolated according to a smooth-cone isolation criterion [112].
Samples were generated using the NNPDF3.0nnlo PDF set [113], along with the dedicated
set of tuned parton-shower parameters developed by the Sherpa authors.

The production of V γγ events was simulated with the Sherpa 2.2.4 [101] generator.
QCD LO-accurate matrix elements for up to one additional parton emission were matched
and merged with the Sherpa parton shower based on the Catani-Seymour dipole factoriza-
tion [102, 106] using the MEPS@LO prescription [107–110]. Samples were generated using
the same PDF set and parton-shower parameters as the γγ sample. The production of tt̄γγ
events was modelled using the MadGraph5_aMC@NLO 2.3.3 generator at LO with the
NNPDF2.3lo [114] PDF. The parton-showering and underlying-event simulation were
performed using Pythia 8.2.

The effect of multiple interactions in the same and neighbouring bunch crossings (pile-
up) was modelled by overlaying the original hard-scattering event with simulated inelastic
proton-proton (pp) events generated with Pythia 8.1 using the NNPDF2.3lo PDF set
and the A3 tune [115]. The generated signal and background events were passed through a
simulation of the ATLAS detector [116] using the Geant4 toolkit [117]. The only exception
is the prompt diphoton sample: due to the large size of the sample, the generated events
were instead processed using a fast simulation of the ATLAS detector [118] where the full
simulation of the calorimeter is replaced with a parameterization of the calorimeter response.

A summary of the simulated signal and background samples is shown in table 1.
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Process Generator Showering PDF set
σ [pb]

Order of σ calculation√
s = 13 TeV

ggF NNLOPS Pythia 8.2 PDF4LHC15 48.5 N3LO(QCD)+NLO(EW)
VBF Powheg Box Pythia 8.2 PDF4LHC15 3.78 approximate-NNLO(QCD)+NLO(EW)
WH Powheg Box Pythia 8.2 PDF4LHC15 1.37 NNLO(QCD)+NLO(EW)
qq/qg → ZH Powheg Box Pythia 8.2 PDF4LHC15 0.76 NNLO(QCD)+NLO(EW)
gg → ZH Powheg Box Pythia 8.2 PDF4LHC15 0.12 NLO(QCD)
ttH Powheg Box Pythia 8.2 PDF4LHC15 0.51 NLO(QCD)+NLO(EW)
bb̄H Powheg Box Pythia 8.2 PDF4LHC15 0.49 NNLO(QCD)
tHqb MadGraph5_aMC@NLO Pythia 8.2 NNPDF3.0nnlo 0.074 NLO(QCD)
tHW MadGraph5_aMC@NLO Pythia 8.2 NNPDF3.0nnlo 0.015 NLO(QCD)

γγ Sherpa Sherpa NNPDF3.0nnlo

V γγ Sherpa Sherpa NNPDF3.0nnlo

tt̄γγ MadGraph5_aMC@NLO Pythia 8 NNPDF2.3lo

Table 1. Event generators and PDF sets used to model signal and background processes. The
cross-sections of Higgs boson production processes [6, 62, 63, 69, 76–78, 81, 83, 87–94, 119, 120] are
reported for a centre-of-mass energy of

√
s = 13 TeV and a Higgs boson mass of mH = 125.09 GeV.

The order of the calculated cross-section is reported in each case. The cross-sections for the
background processes are omitted, since the background normalization is determined in fits to
the data.

4 Event reconstruction and selection

Events in this analysis are selected using the following procedure. Reconstructed photon
candidates are first required to satisfy a set of preselection-level identification criteria. The
two highest-pT preselected photons are then used to define the diphoton system, and an
algorithm is used to identify the event primary vertex. Finally, the photons are required to
satisfy isolation criteria and additional identification criteria. Jets (including b-tagged jets),
muons, electrons, and missing transverse energy (Emiss

T ) are used in the analysis in order to
categorize diphoton events and measure Higgs boson properties.

4.1 Photon reconstruction and identification

Photons are reconstructed from energy deposits in the calorimeter that are formed using a
dynamical, topological cell-clustering algorithm [121]. The photon candidate is classified as
converted if it is matched to either two tracks forming a conversion vertex, or one track
with the signature of an electron track without hits in the innermost pixel layer; otherwise,
it is classified as unconverted. The fraction of converted photons varies from about 25% in
the central region to about 50% in the forward region. The photon candidate’s energy is
calibrated using a procedure described in ref. [121].

Reconstructed photon candidates must satisfy |η| < 2.37 in order to fall inside the
region of the electromagnetic (EM) calorimeter with a finely segmented first layer, and
outside the range 1.37 < |η| < 1.52 corresponding to the transition region between the barrel
and endcap EM calorimeters. Photon candidates are distinguished from jet backgrounds
using identification criteria based on calorimeter shower shape variables [121]. A loose

working point is used for preselection, and the final selection of photon candidates is made
using a tight selection. The efficiency of the tight identification for reconstructed photon
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candidates ranges from about 84% (85%) at pT = 25 GeV to 94% (98%) for unconverted
(converted) photons with pT > 100 GeV.

The final selection of photons includes both calorimeter- and track-based isolation
requirements to further suppress jets misidentified as photons. The calorimeter isolation
variable is defined as the total energy of calorimeter clusters in a cone of size ∆R = 0.2

around the photon candidate, excluding the energy in a fixed-size window containing the
photon shower; a correction is applied for leakage of photon energy from this window
into the surrounding cone [121]. Contributions from pile-up and the underlying event are
subtracted [121–125]. The calorimeter-based isolation must be less than 6.5% of the photon
transverse energy for each photon candidate. The track-based isolation variable is defined
as the scalar sum of the transverse momenta of tracks within a ∆R = 0.2 cone around the
photon candidate. The tracks considered in the isolation variable are restricted to those
with pT > 1 GeV that are matched to the selected diphoton primary vertex described below
and not associated with the photon conversion vertex, if present. Each photon must have a
track isolation less than 5% of the photon transverse energy.

4.2 Event selection and selection of the diphoton primary vertex

Events are selected by first requiring at least two photons satisfying the loose identification
preselection criteria. The two highest-pT preselected photons are designated as the can-
didates for the diphoton system. The diphoton primary vertex of the event is determined
using a neural-network algorithm [7]. Information about the reconstructed vertices in the
event and the trajectories of the two photons, measured using the depth segmentation of
the calorimeter and completed by photon conversion information if present, is used as input
to the network. [7]. The algorithm is trained on simulation and leads to an 8% improvement
in the mass resolution for inclusive Higgs boson production, relative to the default primary
vertex selection [126], and results in better analysis sensitivity. The improvement is the
largest for the gg → H production process, which has the lowest vertex selection efficiency
among the main production modes. The algorithm performance was validated using studies
of Z→ee events in data and simulation, in which the electrons were treated as photon
candidates and their track information ignored. This performance is weakly dependent on
the event pile-up, and its residual dependence is well described by simulation.

The two preselected photon candidates are required to satisfy the tight identification
criteria and the isolation selection described above. Finally, the highest-pT and second-
highest-pT photon candidates are required to satisfy pT/mγγ > 0.35 and 0.25, respectively.
As discussed in sections 5 and 6, events that fail the tight identification or the isolation
selection are used as a control sample for background estimation and modelling purposes.

The trigger, photon and event selections described above are used to define the events
that are selected for further analysis for Higgs boson properties. In total, about 1.2 million
events are selected in this data set with a diphoton invariant mass between 105 and 160 GeV.
The total selection efficiency for a SM Higgs boson signal with |yH | < 2.5 obtained from
simulation is 39%.
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4.3 Reconstruction and selection of hadronic jets, b-jets, leptons, top quarks

and missing transverse momentum

Jets are reconstructed using a particle-flow algorithm [127] from noise-suppressed positive-
energy topological clusters [128] in the calorimeter using the anti-kt algorithm [129, 130]
with a radius parameter R = 0.4. Energy deposited in the calorimeter by charged particles
is subtracted and replaced by the momenta of tracks that are matched to those topological
clusters. The jet four-momentum is corrected for the non-compensating calorimeter response,
signal losses due to noise threshold effects, energy lost in non-instrumented regions, and
contributions from pile-up [131]. Jets are required to have pT > 25 GeV and an absolute
value of rapidity y less than 4.4. A jet-vertex-tagger (JVT) multivariate discriminant [132]
is applied to jets with pT < 60 GeV and |η| < 2.4, to suppress jets from pile-up; in the |η|
range beyond 2.5, a forward version of the JVT [133] is applied to jets with pT < 120 GeV.
Jets with |η| < 2.5 containing b-hadrons are identified using the DL1r b-tagging algorithm
and its 60%, 70%, 77% and 85% efficiency working points, which are combined into a
pseudo-continuous b-tagging score [134].

Electrons are reconstructed by matching tracks in the ID to topological clusters
formed using the same dynamical, topological cell-clustering algorithm as in the photon
reconstruction [121]. Electron candidates are required to have pT > 10 GeV and |η| < 2.47,
excluding the EM calorimeter transition region of 1.37 < |η| < 1.52, and must satisfy
the medium identification selection based on a likelihood discriminant using calorimeter
shower shapes and track parameters [121]. Isolation criteria are applied to electrons, using
calorimeter- and track-based information. The reconstructed track matched to the electron
candidate must be consistent with the diphoton vertex, which is ensured by requiring its
longitudinal impact parameter z0 relative to the vertex to satisfy |z0 sin θ| < 0.5 mm. In
addition, the electron track’s transverse impact parameter with respect to the beam axis
divided by its uncertainty, |d0|/σd0 , must be less than 5.

Muons are reconstructed by matching tracks from the MS and ID subsystems. In the
pseudorapidity range of 2.5 < |η| < 2.7, muons without an ID track but whose MS track is
compatible with originating from the interaction point are also considered. Muon candidates
are required to have pT > 10 GeV and |η| < 2.7, and must satisfy the medium identification
requirements [135]. Muons are required to satisfy calorimeter- and track-based isolation
requirements that are 95%–97% efficient for muons with 10 ≤ pT ≤ 60 GeV and 99%
efficient for pT > 60 GeV. Muon tracks must satisfy |z0 sin θ| < 0.5 mm and |d0|/σd0 < 3.

Top quark candidates are reconstructed and identified using a boosted decision tree
(BDT) discriminant, using the same procedure as in ref. [14] applied to the particle-flow jets
described above. The BDT targets both leptonic top quark signatures, in which the top
quark decays to a W boson that decays promptly to an electron or a muon, and hadronic
signatures in which the W boson decays to hadrons or to a τ -lepton.

An overlap removal procedure is performed in order to avoid double-counting objects.
First, electrons overlapping with any photons (∆R < 0.4) that pass the isolation and
identification requirements are removed. Jets overlapping with the selected photons (∆R <

0.4) and electrons (∆R < 0.2) are removed. In the calculation of the ∆R between a jet and
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another object, the jet rapidity is used. Electrons overlapping with the remaining jets (∆R <

0.4) are removed to match the requirements imposed when measuring isolated electron
efficiencies. Finally, muons overlapping with photons or jets (∆R < 0.4) are removed.

The missing transverse momentum is defined as the negative vector sum of the transverse
momenta of the selected photon, electron, muon and jet objects, plus the transverse momenta
of remaining low-pT particles, estimated using tracks matched to the diphoton primary
vertex but not assigned to any of the selected objects [136]. Its magnitude is denoted
by Emiss

T .

Finally, an event veto is applied to suppress the overlap between the selection described
here and that of the search for Higgs boson pair production in the bb̄γγ final state [137], to
facilitate the statistical combination of the two results at a later stage. Most of the vetoed
events would enter the ttH and tH classes defined in section 5. This veto has a negligible
impact on the analysis results.

5 Design of the measurement

5.1 Overview

The analysis is designed to measure the production cross-sections in the STXS framework [24].
The regions considered in this paper are based on the Stage 1.2 STXS binning. They are
defined in the Higgs boson rapidity range of |yH | < 2.5, separately for mutually exclusive
Higgs boson production processes: the gg → H process, which includes both ggF production
and gg → ZH production followed by a hadronic decay of the Z boson; the electroweak
qq′ → Hqq′ process, encompassing both VBF production and qq̄′ → V H production followed
by a hadronic decay of the vector boson; the V (→ leptons)H process, corresponding to
pp→ V H production followed by a leptonic decay of the vector boson (in the case of ZH,
including both decays to charged leptons and to neutrinos); and top-associated ttH and
tH production. The Higgs boson decay information is not used in the definition of STXS
regions. For each process, non-overlapping fiducial regions are defined. These are based on
the kinematics of the Higgs boson and of the associated jets and W and Z bosons, as well
as the numbers of jets, leptons and top quarks. Jets are reconstructed at the particle level
from all stable particles with a lifetime greater than 10 ps, excluding the decay products of
the Higgs boson and leptons from W and Z boson decays, using the anti-kt algorithm with
a jet radius parameter R = 0.4, and must have a transverse momentum larger than 30 GeV.

Compared to the Stage 1.2 STXS definition, two sets of modified STXS regions are
defined at the particle level: a set of analysis regions which is used in the design of the
analysis strategy, and is defined below; and a set of measurement regions, in which some
analysis regions are merged, which are used to present the measurement results and are
defined at the beginning of section 8.4. The 45 STXS analysis regions are listed in figure 1.
They follow the Stage 1.2 definitions with the following modifications:

• The bb̄H production mode is experimentally difficult to separate from gg → H, and
these two production modes have similar selection efficiencies. The two modes are
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therefore measured as a single process, with each STXS region of the combined process
corresponding to the sum of gg → H and bb̄H contributions.

• For gg → H and qq′ → Hqq′ processes, STXS regions requiring two or more jets are
not split by the transverse momentum of the system consisting of the Higgs boson and
two highest-pT jets, pHjj

T , since the measurement does not provide sufficient sensitivity
to this split. In addition, the STXS region defined by mjj ≥ 700 GeV, where mjj

is the invariant mass of the two highest-pT jets, is split into two bins corresponding
to mjj above or below 1 TeV. An additional splitting at mjj = 700 GeV is also
introduced in the pH

T ≥ 200 GeV region of the qq′ → Hqq′ process.

• The gg → ZH and qq̄ → ZH production modes with a leptonic Z boson decay similarly
cannot be distinguished by the analysis selections, and are therefore considered as a
single pp→ ZH process. In addition, each region of this process is split into separate
regions for charged (pp→ Hℓℓ) and neutral (pp→ Hνν̄) dileptons.

• Production of tH is split into separate pp → tHW and pp → tHqb contributions,
since the two processes have different acceptances for the analysis selections. The
s-channel pp→ tHb process is neglected due to its small cross-section.

• The V (→ leptons)H regions are not separated according to the number of jets in
the event.

5.2 Categorization

The events passing the selection described in section 4 are classified into mutually exclusive
event categories, each targeted towards a particular STXS analysis region.2 This follows
a technique similar to the one used in ref. [10], but the definition of the categories has
been improved significantly. The categorization in ref. [10] was implemented sequentially
over production modes, in order of increasing cross-section. In the present analysis, the
categories are instead defined using a unified technique covering all processes simultaneously,
and are designed to maximize a global criterion of sensitivity in the measurement of the
cross-sections in all STXS regions.

The technique proceeds in several steps. First, simulated Higgs boson production event
samples are used to train a multiclass BDT to separate signal events coming from different
STXS analysis regions. This multiclass BDT classifier outputs one discriminant value for
each of the 45 STXS analysis region. The output discriminant values are then used to
assign signal events to 45 STXS classes. Each of these detector-level classes targets events
from a particular STXS analysis region defined at the particle level. Finally, each class is
further divided into multiple categories using a binary multivariate classifier. This classifier
is trained to separate signal from continuum background and Higgs boson events from other
STXS regions in each class.

2In this paper, categories refers to event groupings defined from reconstructed quantities, while regions

refers to the particle-level selections defined in the STXS framework. Classes refers to groups of categories

targeting the same STXS region.
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|yH | < 2.5

gg → H +

gg → Z(→ qq̄)H +

bb̄H

pH
T < 200GeV

0-jet
pH

T < 10 GeV gg → H, 0-jet, pH
T < 10 GeV

pH
T ≥ 10 GeV gg → H, 0-jet, 10 ≤ pH

T < 200 GeV

1-jet

pH
T < 60 GeV gg → H, 1-jet, pH

T < 60 GeV

60 ≤ pH
T < 120 GeV gg → H, 1-jet, 60 ≤ pH

T < 120 GeV

120 ≤ pH
T < 200 GeV gg → H, 1-jet, 120 ≤ pH

T < 200 GeV

≥ 2-jet

mjj < 350 GeV

pH
T < 60 GeV gg → H, ≥ 2-jets, mjj < 350 GeV, pH

T < 60 GeV

60 ≤ pH
T < 120 GeV gg → H, ≥ 2-jets, mjj < 350 GeV, 60 ≤ pH

T < 120 GeV

120 ≤ pH
T < 200 GeV gg → H, ≥ 2-jets, mjj < 350 GeV, 120 ≤ pH

T < 200 GeV

350 ≤ mjj < 700 GeV gg → H, ≥ 2-jets, 350 ≤ mjj < 700 GeV, pH
T < 200 GeV

700 ≤ mjj < 1000 GeV gg → H, ≥ 2-jets, 700 ≤ mjj < 1000 GeV, pH
T < 200 GeV

mjj ≥ 1000 GeV gg → H, ≥ 2-jets, mjj ≥ 1000 GeV, pH
T < 200 GeV

200 ≤ pH
T < 300 GeV gg → H, 200 ≤ pH

T < 300 GeV

300 ≤ pH
T < 450 GeV gg → H, 300 ≤ pH

T < 450 GeV

450 ≤ pH
T < 650 GeV gg → H, 450 ≤ pH

T < 650 GeV

pH
T ≥ 650 GeV gg → H, pH

T ≥ 650 GeV

qq′ → Hqq′

(VBF + V (→ hadrons)H)

0-jet qq′ → Hqq′, 0-jet

1-jet qq′ → Hqq′, 1-jet

≥ 2-jet

mjj < 350 GeV

mjj < 60 GeV qq′ → Hqq′, ≥ 2-jets, mjj < 60 GeV

60 ≤ mjj < 120 GeV qq′ → Hqq′, ≥ 2-jets, 60 ≤ mjj < 120 GeV

120 ≤ mjj < 350 GeV qq′ → Hqq′, ≥ 2-jets, 120 ≤ mjj < 350 GeV

350 ≤ mjj < 700 GeV
pH

T < 200 GeV qq′ → Hqq′, ≥ 2-jets, 350 ≤ mjj < 700 GeV, pH
T < 200 GeV

pH
T ≥ 200 GeV qq′ → Hqq′, ≥ 2-jets, 350 ≤ mjj < 700 GeV, pH

T ≥ 200 GeV

700 GeV ≤ mjj < 1000 GeV
pH

T < 200 GeV qq′ → Hqq′, ≥ 2-jets, 700 ≤ mjj < 1000 GeV, pH
T < 200 GeV

pH
T ≥ 200 GeV qq′ → Hqq′, ≥ 2-jets, 700 ≤ mjj < 1000 GeV, pH

T ≥ 200 GeV

mjj ≥ 1000 GeV
pH

T < 200 GeV qq′ → Hqq′, ≥ 2-jets, mjj ≥ 1000 GeV, pH
T < 200 GeV

pH
T ≥ 200 GeV qq′ → Hqq′, ≥ 2-jets, mjj ≥ 1000 GeV, pH

T ≥ 200 GeV

V (→ leptons)H

qq̄′ →WH

pW
T < 75 GeV qq → Hℓν, pV

T < 75 GeV

75 ≤ pW
T < 150 GeV qq → Hℓν, 75 ≤ pV

T < 150 GeV

150 ≤ pW
T < 250 GeV qq → Hℓν, 150 ≤ pV

T < 250 GeV

pW
T ≥ 250 GeV qq → Hℓν, pV

T ≥ 250 GeV

pp→ ZH

pZ
T < 75 GeV

Z → ℓ+ℓ− pp→ Hℓℓ, pV
T < 75 GeV

Z → νν̄ pp→ Hνν̄, pV
T < 75 GeV

75 ≤ pZ
T < 150 GeV

Z → ℓ+ℓ− pp→ Hℓℓ, 75 ≤ pV
T < 150 GeV

Z → νν̄ pp→ Hνν̄, 75 ≤ pV
T < 150 GeV

150 ≤ pZ
T < 250 GeV

Z → ℓ+ℓ− pp→ Hℓℓ, 150 ≤ pV
T < 250 GeV

Z → νν̄ pp→ Hνν̄, 150 ≤ pV
T < 250 GeV

pZ
T ≥ 250 GeV

Z → ℓ+ℓ− pp→ Hℓℓ, pV
T ≥ 250 GeV

Z → νν̄ pp→ Hνν̄, pV
T ≥ 250 GeV

ttH+tH

ttH

pH
T < 60 GeV ttH, pH

T < 60 GeV

60 ≤ pH
T < 120 GeV ttH, 60 ≤ pH

T < 120 GeV

120 ≤ pH
T < 200 GeV ttH, 120 ≤ pH

T < 200 GeV

200 ≤ pH
T < 300 GeV ttH, 200 ≤ pH

T < 300 GeV

pH
T ≥ 300 GeV ttH, pH

T ≥ 300 GeV

tHW tHW

tHqb tHqb

Region nameParticle-level selections

|yH| < 2.5

gg →H +gg →Z (→ qq̄)H +bb̄H pHT < 200GeV 0-jet pHT < 10 GeV gg →H , 0-jet, pHT < 10 GeVpHT ≥ 10 GeV gg →H , 0-jet, 10≤ pHT < 200GeV1-jet pHT < 60 GeV gg →H , 1-jet, pHT < 60 GeV60 ≤ pHT < 120GeV gg →H , 1-jet, 60≤ pHT < 120GeV120 ≤ pHT < 200GeV gg →H , 1-jet, 120 ≤ pHT < 200GeV≥ 2-jet mjj < 350GeV pHT < 60 GeV gg →H , ≥ 2-jets, mjj < 350GeV, pHT < 60 GeV60 ≤ pHT < 120GeV gg →H , ≥ 2-jets, m jj < 350GeV, 60 ≤ pHT < 120GeV120 ≤ pHT < 200GeV gg →H , ≥ 2-jets, mjj < 350GeV, 120 ≤ pHT < 200GeV350 ≤m jj < 700GeV gg →H , ≥ 2-jets, 350 ≤mjj < 700GeV, pHT < 200GeV700 ≤m jj < 1000GeV gg →H , ≥ 2-jets, 700 ≤mjj < 1000GeV, pHT < 200GeVmjj ≥ 1000GeV gg →H , ≥ 2-jets, m jj ≥ 1000GeV, pHT < 200GeV200≤ pHT < 300GeV gg →H , 200 ≤ pHT < 300GeV300≤ pHT < 450GeV gg →H , 300 ≤ pHT < 450GeV450≤ pHT < 650GeV gg →H , 450 ≤ pHT < 650GeVpHT ≥ 650GeV gg →H , pHT ≥ 650GeVqq′ → Hqq′(VBF + V (→ hadrons)H) 0-jet qq′ → Hqq ′, 0-jet1-jet qq′ → Hqq ′, 1-jet≥ 2-jet mjj < 350GeV mjj < 60 GeV qq ′ → Hqq ′, ≥ 2-jets, mjj < 60 GeV60 ≤m jj < 120GeV qq′ → Hqq ′, ≥ 2-jets, 60 ≤ mjj < 120GeV120 ≤m jj < 350GeV qq′ → Hqq ′, ≥ 2-jets, 120 ≤ mjj < 350GeV350 ≤mjj < 700GeV pHT < 200GeV qq′ → Hqq ′, ≥ 2-jets, 350 ≤ mjj < 700GeV, pHT < 200GeVpHT ≥ 200GeV qq′ → Hqq ′, ≥ 2-jets, 350 ≤ mjj < 700GeV, pHT ≥ 200GeV700GeV ≤mjj < 1000GeV pHT < 200GeV qq′ → Hqq ′, ≥ 2-jets, 700 ≤ mjj < 1000GeV, pHT < 200GeVpHT ≥ 200GeV qq′ → Hqq ′, ≥ 2-jets, 700 ≤ mjj < 1000GeV, pHT ≥ 200GeVmjj ≥ 1000GeV pHT < 200GeV qq′ → Hqq ′, ≥ 2-jets, mjj ≥ 1000GeV, pHT < 200GeVpHT ≥ 200GeV qq′ → Hqq ′, ≥ 2-jets, mjj ≥ 1000GeV, pHT ≥ 200GeVV (→ leptons)H qq̄′ → WH pWT < 75 GeV qq → Hℓν, pVT < 75 GeV75 ≤ pWT < 150GeV qq → Hℓν, 75≤ pVT < 150GeV150 ≤ pWT < 250GeV qq → Hℓν, 150 ≤ pVT < 250GeVpWT ≥ 250GeV qq → Hℓν, pVT ≥ 250GeVpp → ZH p ZT< 75 GeV Z → ℓ+ℓ− pp → Hℓℓ, pVT < 75 GeVZ → νν̄ pp → Hνν̄, pVT < 75 GeV75 ≤ pZT < 150GeV Z → ℓ+ℓ− pp→ Hℓℓ, 75≤ pVT < 150GeVZ → νν̄ pp→ Hνν̄, 75≤ pVT < 150GeV150 ≤ pZT < 250GeV Z → ℓ+ℓ− pp→ Hℓℓ, 150 ≤ pVT < 250GeVZ → νν̄ pp→ Hνν̄, 150 ≤ pVT < 250GeVpZT≥ 250GeV Z → ℓ+ℓ− pp→ Hℓℓ, pVT ≥ 250GeVZ → νν̄ pp→ Hνν̄, pVT ≥ 250GeVtt̄H+tH tt̄H p HT < 60 GeV tt̄H , pHT < 60 GeV60 ≤ pHT < 120GeV tt̄H , 60 ≤ pHT < 120GeV120 ≤ pHT < 200GeV tt̄H , 120 ≤ pHT < 200GeV200 ≤ pHT < 300GeV tt̄H , 200 ≤ pHT < 300GeVp HT ≥ 300GeV tt̄H , pHT ≥ 300GeVtHW tHWtHqb tHqb

Region nameParticle-level selections

Figure 1. Summary of the STXS regions considered in the analysis design. The left part of the plot
shows the selections applied to particle-level quantities in simulated signal events, with the selections
applied sequentially along the branches of the graph. The final selection for each region is indicated
by a box, and the name of each region, used in the rest of this paper, is shown on the right.
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The inputs to all the classifiers are variables describing the kinematic and identification
properties of the reconstructed particles presented in section 4:

• the kinematics of the diphoton system;

• the numbers of reconstructed jets, b-jets, electrons, muons and top quarks;

• the kinematics of the system composed of the two photons and one or more jets, if
jets are present, and of the system composed of the two highest-pT jets in the event,
if at least two jets are present;

• the kinematics of the reconstructed leptons and top quarks;

• the reconstruction score of the top quarks, computed from the kinematics of the top
quark decay products as described in ref. [14];

• other event quantities such as the missing transverse momentum.

Among the top-associated production processes, the tHqb mode can be separated from
both ttH and tHW due to differences in kinematics and event topology, in particular the
presence of a forward jet and the absence of a second well reconstructed top quark candidate
in the event.

In order to avoid distorting the smoothly falling shapes of the background mγγ distri-
butions, any variable found to have a linear correlation coefficient of 5% or more with mγγ

in the signal or background training samples is removed from the list of inputs to the binary
classifiers. The training variables used in the analysis are summarized in tables 2 and 3.

The multiclass BDT used in the initial step of the classification is trained on a data set
obtained by merging the ggF, VBF, V H , ttH and tH signal samples described in section 3.2.
A weight is applied to the events in each STXS analysis region so that the regions have
equal event yields in the training sample. This configuration improves the performance
of the discrimination. For each event, the output of the BDT consists of a set of class
discriminants yi, where the index i runs over the 45 STXS regions defined in table 1. This
output is then normalized into the parameters zi = exp(yi)/

∑
j exp(yj), a procedure also

known as a softmax layer. The training is performed by minimizing the cross-entropy of
the zi with respect to the true STXS analysis region assignments3 using the LightGBM
package [138].

A second training phase is then performed to optimize the classification procedure in
terms of the analysis sensitivity itself. The sensitivity is estimated as the inverse determinant
|C|−1 of the covariance matrix of the measurement of the signal event yields in each analysis
region. This D-optimality (determinant) criterion leads in particular to a reduction of the
expected statistical uncertainty of the measurement, and is suggested by the fact that |C|−1

is a known measure of the information provided by the measurement [139]. The classification

3The cross-entropy loss function is computed as −

n∑
k=1

ωk

45∑
i=1

δi,k ln(zi), where k runs over the n events in

the training sample, ωk are event weights applied to balance the class yields as described in the text, i runs

over the classes, and δk,i has a value of 1 if class i is the correct assignment for event k, and 0 otherwise.
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ηγ1 , ηγ2 , pγγ
T , yγγ ,

p†
T,jj , mjj , and ∆y, ∆φ, ∆η between j1 and j2,

pT,γγj1 , mγγj1 , pT,γγjj†, mγγjj

∆y, ∆φ between the γγ and jj systems,
minimum ∆R between jets and photons,

invariant mass of the system comprising all jets in the event,
dilepton pT, di-e or di-µ invariant mass (leptons are required to be oppositely charged),

Emiss
T , pT and transverse mass of the lepton + Emiss

T system,
pT, η, φ of top-quark candidates, mt1t2

Number of jets†, of central jets (|η| < 2.5)†, of b-jets† and of leptons,
pT of the highest-pT jet, scalar sum of the pT of all jets,

scalar sum of the transverse energies of all particles (
∑
ET), Emiss

T significance,∣∣∣Emiss
T − Emiss

T (primary vertex with the highest
∑
p2

T,track)
∣∣∣ > 30 GeV

Top reconstruction BDT of the top-quark candidates,
∆R(W, b) of t2,
ηjF

, mγγjF

Average number of interactions per bunch crossing.

Table 2. Training variables used as input to the multiclass BDT. The dagger symbol † denotes
variables that have two versions with different jet pT requirements. One version of such a variable is
defined using jets with pT > 25 GeV, and the other version is defined using jets with pT > 30 GeV.
Both versions are used in the training of the multiclass BDT. The two highest-pT photons are
denoted as γ1 and γ2, the two highest-pT jets as j1 and j2, the two highest-pT top quarks as t1 and
t2 and the most forward jet as jF . ∆R(W, b) is the ∆R between the W and b components of a
top-quark candidate.

procedure is performed so that events are assigned to the STXS class i corresponding to
the maximum value of wizi, where the wi are a set of per-class weights. These weights are
initially set to 1, and then iteratively updated so as to maximize |C|−1: for each value of
the wi, a simulated data set is generated for each analysis region by mixing events from
each signal sample in proportion to their SM production cross-sections, together with a
sample of simulated continuum background events normalized to data in the control region
95 ≤ mγγ < 105 GeV. A simplified statistical model approximating the full model described
in section 6 is then used to estimate |C|−1, and the procedure is iterated until a maximum
is found for |C|−1.

Figure 2 shows distributions of the weighted multiclass discriminant output wizi for
four representative STXS classes, illustrating the discrimination provided by the multiclass
BDT. While events with high BDT output values for a given analysis region tend to be
selected in the corresponding class, this does not manifest itself as a sharp cut, due to the
interplay between the selections for the different classes. Compared to the simple selection
based only on the zi, the selection based on the wizi provides both higher purity and higher
selection efficiency for classes associated with rare processes such as tH, ttH, V H and
VBF, as well as production at high values of pH

T or mjj . This leads to measurements with
generally smaller uncertainties and lower correlations.

– 13 –



J
H
E
P
0
7
(
2
0
2
3
)
0
8
8

STXS classes Variables

Individual
STXS classes from

gg → H

qq′ → Hqq′

qq → Hℓν

pp→ Hℓℓ

pp→ Hνν̄

All multiclass BDT variables,
p

γγ
T projected to the thrust axis of the γγ system (pγγ

Tt),
∆ηγγ , ηZepp =

ηγγ−ηjj

2 ,

φ∗
γγ = tan

(
π−|∆φγγ |

2

)√
1− tanh2

(
∆ηγγ

2

)
,

cos θ∗
γγ =

∣∣∣∣
(Eγ1 +p

γ1
z )·(Eγ2 −p

γ2
z )−(Eγ1 −p

γ1
z )·(Eγ2 +p

γ2
z )

mγγ+
√

m2
γγ+(pγγ

T )2

∣∣∣∣
Number of electrons and muons.

all ttH and tHW

STXS classes
combined

pT, η, φ of γ1 and γ2,
pT, η, φ and b-tagging scores of the six highest-pT jets,

Emiss
T , Emiss

T significance, Emiss
T azimuthal angle,

Top reconstruction BDT scores of the top-quark candidates,
pT, η, φ of the two highest-pT leptons.

tHqb

pγγ
T /mγγ , ηγγ ,

pT, invariant mass, BDT score and ∆R(W, b) of t1,
pT, η of t2,
pT, η of jF ,

Angular variables: ∆ηγγt1 , ∆θγγt2 , ∆θt1jF
, ∆θt2jF

, ∆θγγjF

Invariant mass variables: mγγjF
, mt1jF

, mt2jF
, mγγt1

Number of jets with pT > 25 GeV, Number of b-jets with pT > 25 GeV∗;
Number of leptons∗, Emiss

T significance∗

Table 3. Training variables used for the binary classifiers. The sets of classes to which the classifiers
are applied are specified in the first column, and the corresponding variables in each case are listed
in the second column. The asterisk symbol ∗ denotes tH training variables that are only used for the
classifiers suppressing the continuum background. Other tH training variables are used in all three
tH classifiers. The γγ and jj notations refer to the systems composed of the two highest-pT photons
and jets, respectively. The two highest-pT photons are denoted as γ1 and γ2, the two highest-pT top
quarks as t1 and t2, and the most forward jet as jF . The differences in η and φ between γ1 and γ2

are denoted respectively as ∆φγγ and ∆ηγγ . ∆R(W, b) is the ∆R between the W and b components
of a top-quark candidate.

This multiclass training allows the selection of target process events that otherwise
would fail a requirement based on detector-level quantities corresponding to the STXS region
definition. For example, in the STXS region gg → H, 1-jet, pH

T < 60 GeV, detector-level
events that originate from the target process but have no reconstructed jets would fail
requirements defined by the number of jets and pH

T ; however, those events could be selected
by the multiclass discriminant. For this STXS region, 20% of events from the target process
have no reconstructed jets. The recovery of these events leads to a reduction of about 6%

in the measurement uncertainty. It is also robust against pile-up in the determination of jet
multiplicity in gg → H.

After the classes are defined, binary classifiers are then trained and used to further
divide each class into multiple categories, to improve the measurement sensitivity. For each
of the classes targeting gg → H, qq′ → Hqq′ and V (→ leptons)H processes, a binary BDT
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scanning over all possible values and finding the set that maximizes the sum in quadrature of
the expected significance values in these categories. The expected significance is computed
as Z =

√
2((S +B) ln(1 + S/B)− S) [140], where S and B are the expected signal yield

and background yield in the targeted STXS analysis region in the smallest range of mγγ

around the signal peak position that contains 90% of signal events. The background B

includes contributions from continuum background and Higgs boson events from other
STXS analysis regions. The continuum background is computed from the mγγ distribution
in simulation, normalized to the data control region 95 ≤ mγγ < 105 GeV. A class is
split into two categories if this leads to an improvement of more than 5% in the expected
significance, and into three categories if a further improvement of at least 5% relative to the
two-category configuration can be achieved. The categories are referred to as High-purity,
Med-purity and, in the case of a 3-category split, Low-purity in order of decreasing BDT
output values. No events are removed at the categorization stage, since the lower-purity
categories bring non-negligible contributions to the analysis sensitivity. Figure 3 shows
binary BDT discriminant distributions as well as category boundaries for four representative
STXS classes.

The categorization for the tHqb class follows a different procedure, which aims to
maximize both the sensitivity to a tHqb signal and the sensitivity to the sign of κt. A
boundary is placed in the NN classifier that separates the tHqb signal with κt = 1 from
the tHqb signal with κt = −1. Different boundaries are also placed in the two binary
NN classifiers that separate tHqb signals from continuum background. These boundaries
are determined simultaneously. Finally, a low-purity top category is formed by grouping
together the events with the lowest binary classifier output values in both the ttH and
tH classes.

The entire categorization procedure results in the definition of 101 categories in total.
The expected signal and background yields in these categories are summarized in table 4.
The expected signal purity, defined as the expected signal yield divided by the expected
yield from both the signal and background processes, in the smallest mγγ window containing
90% of signal events, ranges from 0.03% to 78%. Figure 4 shows the contributions to the
expected event yields from each of the 28 STXS measurement regions defined in section 8.4.
The contributions are shown as fractions of events originating from each STXS analysis
region, in groups of analysis categories targeting the same region. They are obtained as a
weighted sum of the fractions for each category in the group, with weights given by the
signal-over-background ratio f in each category as defined in table 4.
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Category S B
σ f

Z
[GeV] [%]

gg → H

0-jet, pH
T < 10 GeV 695 26 000 3.43 2.6 4.3

0-jet, pH
T ≥ 10 GeV 1440 47 000 3.41 3.0 6.6

1-jet, pH
T < 60 GeV, High-purity 168 4250 3.20 3.8 2.6

1-jet, pH
T < 60 GeV, Med-purity 197 11 500 3.38 1.7 1.8

1-jet, 60 ≤ pH
T < 120 GeV, High-purity 186 3310 3.10 5.3 3.2

1-jet, 60 ≤ pH
T < 120 GeV, Med-purity 180 7780 3.37 2.3 2.0

1-jet, 120 ≤ pH
T < 200 GeV, High-purity 23.0 182 2.61 11 1.7

1-jet, 120 ≤ pH
T < 200 GeV, Med-purity 40.7 717 3.00 5.4 1.5

≥ 2-jets, mjj < 350 GeV, pH
T < 60 GeV, High-purity 23.5 1050 3.08 2.2 0.72

≥ 2-jets, mjj < 350 GeV, pH
T < 60 GeV, Med-purity 43.1 4360 3.39 0.98 0.65

≥ 2-jets, mjj < 350 GeV, pH
T < 60 GeV, Low-purity 47.5 16 800 3.51 0.28 0.37

≥ 2-jets, mjj < 350 GeV, 60 ≤ pH
T < 120 GeV, High-purity 49.1 901 3.03 5.2 1.6

≥ 2-jets, mjj < 350 GeV, 60 ≤ pH
T < 120 GeV, Med-purity 93.9 6440 3.30 1.4 1.2

≥ 2-jets, mjj < 350 GeV, 120 ≤ pH
T < 200 GeV, High-purity 15.5 74.8 2.64 17 1.7

≥ 2-jets, mjj < 350 GeV, 120 ≤ pH
T < 200 GeV, Med-purity 22.7 343 2.97 6.2 1.2

≥ 2-jets, 350 ≤ mjj < 700 GeV, pH
T < 200 GeV, High-purity 4.31 47.5 2.72 8.3 0.62

≥ 2-jets, 350 ≤ mjj < 700 GeV, pH
T < 200 GeV, Med-purity 15.4 380 3.02 3.9 0.78

≥ 2-jets, 350 ≤ mjj < 700 GeV, pH
T < 200 GeV, Low-purity 10.5 1080 3.31 0.97 0.32

≥ 2-jets, 700 ≤ mjj < 1000 GeV, pH
T < 200 GeV, High-purity 2.34 33.3 2.84 6.6 0.40

≥ 2-jets, 700 ≤ mjj < 1000 GeV, pH
T < 200 GeV, Med-purity 4.23 136 3.07 3.0 0.36

≥ 2-jets, 700 ≤ mjj < 1000 GeV, pH
T < 200 GeV, Low-purity 3.34 429 3.26 0.77 0.16

≥ 2-jets, mjj ≥ 1000 GeV, pH
T < 200 GeV, High-purity 1.14 14.5 2.97 7.3 0.30

≥ 2-jets, mjj ≥ 1000 GeV, pH
T < 200 GeV, Med-purity 2.52 47.5 3.10 5.0 0.36

≥ 2-jets, mjj ≥ 1000 GeV, pH
T < 200 GeV, Low-purity 2.49 142 3.37 1.7 0.21

200 ≤ pH
T < 300 GeV, High-purity 15.3 38.0 2.28 29 2.3

200 ≤ pH
T < 300 GeV, Med-purity 29.4 236 2.64 11 1.9

300 ≤ pH
T < 450 GeV, High-purity 1.52 2.13 2.02 42 0.95

300 ≤ pH
T < 450 GeV, Med-purity 6.75 17.7 2.16 28 1.5

300 ≤ pH
T < 450 GeV, Low-purity 4.66 43.1 2.46 9.8 0.70

450 ≤ pH
T < 650 GeV, High-purity 1.00 1.25 1.85 45 0.81

450 ≤ pH
T < 650 GeV, Med-purity 0.800 2.00 1.98 29 0.53

450 ≤ pH
T < 650 GeV, Low-purity 0.830 10.7 2.19 7.2 0.25

pH
T ≥ 650 GeV 0.220 1.08 1.73 17 0.20

qq′ → Hqq′

0-jet, High-purity 0.330 25.0 3.33 1.3 0.07

0-jet, Med-purity 1.27 471 3.35 0.27 0.06

0-jet, Low-purity 10.7 18 800 3.48 0.06 0.08

1-jet, High-purity 1.08 2.78 2.99 28 0.61

1-jet, Med-purity 3.50 26.1 3.11 12 0.67

1-jet, Low-purity 2.88 145 3.24 2.0 0.24

≥ 2-jets, mjj < 60 GeV, High-purity 0.350 2.10 2.71 14 0.24

≥ 2-jets, mjj < 60 GeV, Med-purity 0.670 19.0 2.79 3.4 0.15

≥ 2-jets, mjj < 60 GeV, Low-purity 1.92 243 2.93 0.78 0.12

≥ 2-jets, 60 ≤ mjj < 120 GeV, High-purity 3.45 6.34 2.65 35 1.3

≥ 2-jets, 60 ≤ mjj < 120 GeV, Med-purity 4.99 43.0 2.85 10 0.75

≥ 2-jets, 60 ≤ mjj < 120 GeV, Low-purity 2.99 87.3 3.01 3.3 0.32

≥ 2-jets, 120 ≤ mjj < 350 GeV, High-purity 2.98 24.4 2.93 11 0.59

≥ 2-jets, 120 ≤ mjj < 350 GeV, Med-purity 6.73 204 2.94 3.2 0.47

≥ 2-jets, 120 ≤ mjj < 350 GeV, Low-purity 8.78 1360 2.99 0.64 0.24

≥ 2-jets, 350 ≤ mjj < 700 GeV, pH
T < 200 GeV, High-purity 2.52 2.75 2.96 48 1.4

≥ 2-jets, 350 ≤ mjj < 700 GeV, pH
T < 200 GeV, Med-purity 9.15 34.7 3.06 21 1.5

≥ 2-jets, 350 ≤ mjj < 700 GeV, pH
T < 200 GeV, Low-purity 5.97 106 3.27 5.3 0.57

≥ 2-jets, 700 ≤ mjj < 1000 GeV, pH
T < 200 GeV, High-purity 2.91 3.00 2.90 49 1.5

≥ 2-jets, 700 ≤ mjj < 1000 GeV, pH
T < 200 GeV, Med-purity 5.60 22.7 3.11 20 1.1

≥ 2-jets, mjj ≥ 1000 GeV, pH
T < 200 GeV, High-purity 10.8 3.89 3.01 74 4.2

≥ 2-jets, mjj ≥ 1000 GeV, pH
T < 200 GeV, Med-purity 10.7 19.0 3.23 36 2.3

Category S B
σ f

Z
[GeV] [%]

≥ 2-jets, 350 ≤ mjj < 700 GeV, pH
T ≥ 200 GeV, High-purity 1.31 2.19 2.48 37 0.81

≥ 2-jets, 350 ≤ mjj < 700 GeV, pH
T ≥ 200 GeV, Med-purity 1.40 9.22 2.49 13 0.45

≥ 2-jets, 350 ≤ mjj < 700 GeV, pH
T ≥ 200 GeV, Low-purity 1.16 65.5 2.54 1.7 0.14

≥ 2-jets, 700 ≤ mjj < 1000 GeV, pH
T ≥ 200 GeV, High-purity 2.51 3.02 2.43 45 1.3

≥ 2-jets, 700 ≤ mjj < 1000 GeV, pH
T ≥ 200 GeV, Med-purity 1.49 47.4 2.54 3.0 0.22

≥ 2-jets, mjj ≥ 1000 GeV, pH
T ≥ 200 GeV, High-purity 5.65 1.57 2.39 78 3.3

≥ 2-jets, mjj ≥ 1000 GeV, pH
T ≥ 200 GeV, Med-purity 2.96 6.31 2.55 32 1.1

qq → Hℓν

pV
T < 75 GeV, High-purity 1.91 4.91 3.17 28 0.81

pV
T < 75 GeV, Med-purity 2.59 20.2 3.28 11 0.57

75 ≤ pV
T < 150 GeV, High-purity 2.62 2.05 3.02 56 1.6

75 ≤ pV
T < 150 GeV, Med-purity 2.08 12.4 3.23 14 0.58

150 ≤ pV
T < 250 GeV, High-purity 1.74 2.06 2.78 46 1.1

150 ≤ pV
T < 250 GeV, Med-purity 0.16 2.90 3.17 5.2 0.09

pV
T ≥ 250 GeV, High-purity 1.36 1.79 2.41 43 0.91

pV
T ≥ 250 GeV, Med-purity 0.02 3.12 3.15 0.78 0.01

pp→ Hℓℓ

pV
T < 75 GeV, High-purity 1.14 1.82 3.25 39 0.78

pV
T < 75 GeV, Med-purity 1.06 215 3.29 0.49 0.07

75 ≤ pV
T < 150 GeV, High-purity 1.07 1.58 3.08 40 0.77

75 ≤ pV
T < 150 GeV, Med-purity 0.02 1.81 3.06 1.2 0.02

150 ≤ pV
T < 250 GeV, High-purity 0.71 1.79 2.78 28 0.50

150 ≤ pV
T < 250 GeV, Med-purity 0.10 16.5 2.88 0.62 0.03

pV
T ≥ 250 GeV 0.27 2.06 2.48 12 0.18

pp→ Hνν̄

pV
T < 75 GeV, High-purity 0.60 170 3.50 0.35 0.05

pV
T < 75 GeV, Med-purity 1.15 1020 3.57 0.11 0.04

pV
T < 75 GeV, Low-purity 0.87 2630 3.67 0.03 0.02

75 ≤ pV
T < 150 GeV, High-purity 0.58 2.30 2.97 20 0.37

75 ≤ pV
T < 150 GeV, Med-purity 1.83 17.8 3.26 9.3 0.43

75 ≤ pV
T < 150 GeV, Low-purity 2.18 288 3.44 0.75 0.13

150 ≤ pV
T < 250 GeV, High-purity 0.92 2.00 2.75 32 0.61

150 ≤ pV
T < 250 GeV, Med-purity 0.75 2.54 2.94 23 0.45

150 ≤ pV
T < 250 GeV, Low-purity 0.26 11.7 3.28 2.2 0.08

pV
T ≥ 250 GeV, High-purity 0.67 1.55 2.46 30 0.50

pV
T ≥ 250 GeV, Med-purity 0.05 1.97 3.05 2.6 0.04

ttH

pH
T < 60 GeV, High-purity 3.04 4.01 3.18 43 1.4

pH
T < 60 GeV, Med-purity 2.78 13.3 3.37 17 0.74

60 ≤ pH
T < 120 GeV, High-purity 4.30 4.09 3.06 51 1.9

60 ≤ pH
T < 120 GeV, Med-purity 2.99 8.61 3.31 26 0.97

120 ≤ pH
T < 200 GeV, High-purity 4.65 3.52 2.73 57 2.1

120 ≤ pH
T < 200 GeV, Med-purity 1.66 4.16 2.93 29 0.77

200 ≤ pH
T < 300 GeV 3.39 2.26 2.46 60 1.9

pH
T ≥ 300 GeV 2.73 1.66 2.12 62 1.8

tH

tHqb, High-purity 0.55 2.16 3.04 20 0.36

tHqb, Med-purity 0.14 2.78 3.45 4.9 0.09

tHqb, BSM (κt = −1) 0.12 1.86 3.25 6.0 0.09

tHW 0.16 6.91 2.74 2.3 0.06

Low-purity top 5.18 65.8 3.32 7.3 0.63

Table 4. Expected signal (S) and background (B) yields in each category within the smallest mass
window containing 90% of signal events. The half-width of this window is given by σ. The signal
purity f = S/(S +B) and expected significance Z =

√
2((S +B) ln(1 + S/B)− S) are also shown.

Only the signal process corresponding to the targeted STXS region is considered in the signal yield.
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Figure 4. Contributions of STXS measurement regions to the expected event yields in groups of analysis categories. The vertical axis lists the 28
STXS measurement regions defined in section 8.4, while the horizontal axis lists groups of analysis categories that target the same STXS measurement
region, weighted by their f value as given in table 4. Entries correspond to the percentage of the signal yield in each group of analysis categories (on
the x-axis) that is contributed by a given STXS measurement region (on the y-axis). Entries with a value below 1% are not shown. The entries in
each column, corresponding to the same group of analysis categories, add up to 100 (%), except for rounding effects and values below 1%.
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6 Modelling of diphoton mass distributions

The mγγ distribution in each category is described by an extended probability density
function (pdf) in which the signal and background shapes are analytic functions of mγγ .
As in the previous measurement [10], the analytic functions are defined over the range of
105 ≤ mγγ < 160 GeV. The analysis results are obtained by a simultaneous fit of these pdfs
to the mγγ distributions in the categories defined in section 5.2. Systematic uncertainties
related to signal yield, signal shape and background modelling are incorporated into the
likelihood model as nuisance parameters. For each of these nuisance parameters, a Gaussian
or log-normal constraint pdf is included in the likelihood function. Gaussian constraints
are used for uncertainties related to the background modelling, the peak position of the
signal mγγ distribution, and the Higgs boson mass. Log-normal constraints are used for
other uncertainties, including multiplicative uncertainties in expected signal yields and in
the mγγ mass resolution. Asymmetric log-normal forms are used when the corresponding
uncertainties are themselves asymmetric. The Higgs boson mass mH is assumed to be
125.09± 0.24 GeV, as measured in ref. [61].

The effects of interference between the H → γγ signal process and continuum γγ

production lead to a small change in the expected Higgs boson production rate (a 2%
reduction in the inclusive rate [141]) as well as a shift in the signal peak position that is
small compared to the uncertainty in mH [142]. Both effects are neglected.

In each category i, the normalization of the background pdf is a free parameter in the
fit, as well as the parameters describing the shapes of the background pdfs, as discussed in
section 6.2 below. The normalization of the signal pdf is expressed as

Ni =
∑

t

(σt ×Bγγ) ǫit LKi(θyield) +Nspur,i θspur,i (6.1)

where the sum runs over all regions defined in the Stage 1.2 STXS scheme, (σt×Bγγ) is the
measurement parameter for region t, ǫit describes the efficiency for events from region t to
be reconstructed in category i, and L is the integrated luminosity of the fitted sample. The
factor Ki(θyield) corresponds to multiplicative corrections to the signal yields from systematic
uncertainty effects detailed in section 7, as a function of nuisance parameters collectively
denoted by θyield; Nspur,i is the value of the background modelling uncertainty described in
section 6.2, implemented as an additive correction to the signal yield proportional to the
nuisance parameter θspur,i. The values of the measurement parameters are obtained from a
maximum-likelihood fit to the data.

6.1 Modelling of the signal shape

The signal component in each category corresponds to the sum of the contributions from
each STXS analysis region, which are all assumed to follow the same mγγ distribution in this
category. The shape is described using a double-sided Crystal Ball (DSCB) function [143,
144], consisting of a Gaussian distribution in the region around the peak position, continued
by power-law tails at lower and higher mγγ values. An intrinsic shape difference between
the DSCB function and signal mγγ distribution is found to cause only a negligible bias in
the estimated signal yield [10].
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Figure 5. Shape of the signal mγγ distribution for two groups of categories. Panel 5a compares the
signal mγγ shapes for the two categories targeting the gg → H, 1-jet, 120 ≤ pH

T
< 200 GeV region.

Panel 5b compares the signal mγγ shapes for three High-purity categories targeting different pH
T

regions of the ttH process. The markers represent distributions in MC samples with mH = 125 GeV,
while the solid lines represent the corresponding fitted DSCB functions.

The parameters of the Crystal Ball function in each category are obtained by a fit to a
mixture of the ggF, VBF, V H , ttH and tH samples, described in section 3.2, in proportion
to their SM cross-sections. A shift of 0.09 GeV is applied to the position of the signal peak
to account for the difference between the reference Higgs boson mass used in this analysis
(mH = 125.09 GeV) and the mass for which the samples were generated (mH = 125 GeV).
Simulated signal mγγ distributions and their corresponding DSCB functions are shown for
two groups of categories in figure 5.

6.2 Modelling of the continuum background shape

The background in the selected diphoton sample mainly consists of continuum γγ production,
γj and jj production where one or more jets in the event are misidentified as photons.
In the categories targeting V (→ leptons)H production, the main contribution is from the
V γγ processs, while in categories targeting ttH and tH production the main contributions
are from tt̄γγ and other processes involving top quarks. The modelling of this continuum
background follows the same procedure as in previous analyses [10]. This procedure involves
two main steps: first, a background mγγ template is constructed from a combination of
simulation samples and data control samples; secondly, a background function is selected
from a number of candidate functions, using the spurious-signal test, with the goal of
identifying an analytic function that is flexible enough to fit the mγγ distribution in data
and results in a sufficiently small potential bias compared to the statistical uncertainty.

In categories targeting the gg → H and qq′ → Hqq′ processes, the template is defined
as a combination of γγ, γj, and jj processes, each of which is weighted according to its
fraction in the selected analysis category. The fractions of these processes are determined
by a data-driven method, known as the double two-dimensional sideband method [145],
which uses three control regions in data in which one (for the γj process) or both (for the jj

– 21 –



J
H
E
P
0
7
(
2
0
2
3
)
0
8
8

process) photons fail to satisfy the identification and/or isolation criteria, respectively. The
fraction of the total background that is from the γγ process ranges between 75% and 95%,
the fraction from the γj process is between 2% and 25%, and the jj process contributes
less than 6%.

While a simulation sample is used to model the γγ process in this study, it is com-
putationally prohibitive to generate sufficiently large samples of γj and jj production
events passing analysis selections due to their large cross-sections and the high jet-rejection
performance of the ATLAS photon identification algorithms. To avoid this issue, the mγγ

shapes of the γj or jj components are obtained from data control samples defined by
inverting the identification requirement of one or both photons as described above. The
ratio of the mγγ distribution of the γj and jj components to that of the simulated γγ sample
is well described by a linear function of mγγ . A linear fit to the ratio of these distributions
is therefore used to provide an mγγ-dependent weight that is applied to the γγ sample to
obtain a final template that also accounts for the γj and jj components. Changing the
fraction of the γj and jj components within the uncertainties of their determination is
found to have a negligible impact on the spurious-signal test described below.

For categories targeting the V (→ leptons)H STXS regions, the background template is
built using simulated events of V γγ and prompt γγ production. Since the available yields
for the latter are not sufficient to build the template directly, the following procedure is
followed: first a linear function of mγγ is fitted to the ratio of the mγγ distribution of both
samples to that of the V γγ sample alone; the resulting linear function from the fit is then
applied to the mγγ distribution of the V γγ sample as an mγγ-dependent weight to obtain
the final template describing both contributions. For categories targeting the ttH and tH

processes, the diphoton events are primarily from tt̄γγ production. As such, a sample of
simulated tt̄γγ events is used to construct the background template for those categories.
Contributions from processes with jets misidentified as photons are not considered in
categories targeting V H, ttH and tH STXS regions as they do not significantly alter the
background shape. The background templates constructed for four categories targeting
the gg → H, qq′ → Hqq′, V H and ttH processes are shown as examples in figure 6. While
the background template and data mγγ distribution have slightly different shapes in some
categories, the selected background analytic functions are flexible enough to absorb these
small differences.

The background templates are defined over the range 105 ≤ mγγ < 160 GeV with 220
uniform-width bins. A template smoothing procedure based on a Gaussian kernel [22] is
applied to analysis categories where the average bin occupancy in the background template
is at least 20 entries. This procedure suppresses statistical fluctuations in the background
templates, decreasing the systematic uncertainty on the modeling of the background. A
study using pseudo-experiments generated with known template shapes was performed to
verify that the smoothing procedure does not introduce a significant bias in the estimate of
the spurious signal.

Three families of analytic functions are tested as candidates to model the mγγ dis-
tribution for a given analysis category. They include power-law functions, Bernstein
polynomials [146], and exponential functions of a polynomial. These functions and the
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Figure 6. The diphoton invariant mass mγγ distribution in data (black points) and continuum
background templates (histograms) in four representative STXS categories. The data are shown
excluding the region 120 ≤ mγγ < 130 GeV containing the signal. In panels 6a and 6b, stacked
histograms corresponding to the γγ (white), γj (green) and jj (magenta) background contributions
are shown. In panel 6c, the histogram represents contributions from V γγ and other sources of
prompt γγ production. In 6d, the histogram corresponds to simulated ttγγ events. The templates do
not represent the background shapes used in the analysis, but are used to identify flexible functions
used to model the background in each category as described in the text.

number of degrees of freedom tested are summarized in table 5. The parameters of these
functions are considered to be independent across categories and always left free to vary. The
main criterion used to select the functional form in each category is a bias test performed
by fitting the background template using a model with free parameters for both the signal
and the background event yields. In this fit, the background template is normalized to
the number of events observed in data in this category. The potential bias due to the
mis-modelling of background mγγ distribution is estimated from the fitted signal yield (the
spurious signal). This test is performed for mH values ranging from 123 GeV to 127 GeV,
in steps of 0.5 GeV. In order to avoid accidentally small bias values at the nominal Higgs
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Type Function Npars Acronym

Power law ma
γγ 1 PowerLaw

Bernstein polynomial (1− x)n + a1nx(1− x)n−1 + · · ·+ anx
n n = 1–5 Bern1–Bern5

Exponential exp(amγγ) 1 Exp

Exponential of second-order polynomial exp(a1mγγ + a2m
2
γγ) 2 ExpPoly2

Exponential of third-order polynomial exp(a1mγγ + a2m
2
γγ + a3m

3
γγ) 3 ExpPoly3

Table 5. Summary of the functions used for the modelling of the continuum background component.
The free parameters used to define the function shape are denoted as a or ai, and their total number
by Npars. For the definition of the Bernstein polynomials, x = (mγγ −mmin)/(mmax−mmin), where
mmin = 105 GeV and mmax = 160 GeV are respectively the lower and upper bounds of the fitted
mγγ range.

boson mass of mH = 125.09 GeV, the maximum absolute value of fitted signal yield |Sspur|
over the range 123 < mH < 127 GeV is considered as the potential bias. For categories
where the original background mγγ templates (before normalization to the data yields)
have at least 20 entries per bin on average, the background functions are required to yield
a value of |Sspur| that is smaller than either 10% of the total expected Higgs boson signal
yield or 20% of the statistical uncertainty of the fitted signal yield. If multiple functions
pass these requirements, the one with the smallest number of degrees of freedom is chosen.

An additional check is performed for the nine categories in which a fit of the analytic
function to the background template is found to yield a χ2 p-value that is below 1%.4 For
each of these categories, a set of samples is randomly drawn from the background template,
each with a number of events equal to the observed yield in the data sidebands. The fit of
the analytic function and the computation of the χ2 are then repeated for each sample. In
all nine categories, more than 90% of the samples yield a χ2 p-value above 5%. This shows
that the chosen functions provide a sufficiently good fit to the data in these categories,
in spite of the low p-values observed in the fit to the nominal background template. For
categories where the average number of entries per bin is less than 20, candidate background
functions are limited to Exp, ExpPoly2 and ExpPoly3 (as defined in table 5) in order to
avoid unphysical fits due to large statistical fluctuations in the sidebands. The function is
chosen using a Wald test [147]: first the quantity q12 = −2 lnL1/L2 is computed from the
maximum likelihood values L1 and L2 of background-only fits to the data sideband regions
using respectively the Exp and ExpPoly2 descriptions of the backgrounds. The ExpPoly2

model is chosen if the p-value computed from q12 is less than 0.05, assuming that q12 follows
a χ2 distribution with one degree of freedom. Similarly, the ExpPoly3 form is chosen over
ExpPoly2 if the p-value for the corresponding Wald test is 0.05 or less. For 32 out of the
101 categories, the Wald-test-based condition was used and the Exp function was selected
in each case.

4The χ2 is computed in a background template uniformly binned over 105 ≤ mγγ < 160 GeV. It has 55

bins, and the number of degrees of freedom used in the computation is 54 − Npars, where the Npars is the

number of free function parameters. The normalization of the template removes one degree of freedom. The

background mγγ templates before the smoothing procedure are used.
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Category Function Ndata Nspur Wald

gg → H

0-jet, pH
T < 10 GeV ExpPoly2 191623 64.8

0-jet, pH
T ≥ 10 GeV ExpPoly2 349266 50.4

1-jet, pH
T < 60 GeV, High-purity ExpPoly2 32644 20.7

1-jet, pH
T < 60 GeV, Med-purity ExpPoly2 85229 24.9

1-jet, 60 ≤ pH
T < 120 GeV, High-purity Exp 26236 23.7

1-jet, 60 ≤ pH
T < 120 GeV, Med-purity ExpPoly2 56669 21.3

1-jet, 120 ≤ pH
T < 200 GeV, High-purity ExpPoly2 1570 1.48

1-jet, 120 ≤ pH
T < 200 GeV, Med-purity ExpPoly2 6163 5.33

≥ 2-jets, mjj < 350 GeV, pH
T < 60 GeV, High-purity ExpPoly2 8513 1.51

≥ 2-jets, mjj < 350 GeV, pH
T < 60 GeV, Med-purity ExpPoly2 31163 13.6

≥ 2-jets, mjj < 350 GeV, pH
T < 60 GeV, Low-purity ExpPoly2 120357 15.7

≥ 2-jets, mjj < 350 GeV, 60 ≤ pH
T < 120 GeV, High-purity ExpPoly2 7582 2.26

≥ 2-jets, mjj < 350 GeV, 60 ≤ pH
T < 120 GeV, Med-purity ExpPoly2 48362 6.21

≥ 2-jets, mjj < 350 GeV, 120 ≤ pH
T < 200 GeV, High-purity ExpPoly2 728 0.004

≥ 2-jets, mjj < 350 GeV, 120 ≤ pH
T < 200 GeV, Med-purity PowerLaw 3007 0.983

≥ 2-jets, 350 ≤ mjj < 700 GeV, pH
T < 200 GeV, High-purity Exp 432 0.487

≥ 2-jets, 350 ≤ mjj < 700 GeV, pH
T < 200 GeV, Med-purity ExpPoly2 3084 1.33

≥ 2-jets, 350 ≤ mjj < 700 GeV, pH
T < 200 GeV, Low-purity Exp 7999 5.78

≥ 2-jets, 700 ≤ mjj < 1000 GeV, pH
T < 200 GeV, High-purity Exp 302 0.560

≥ 2-jets, 700 ≤ mjj < 1000 GeV, pH
T < 200 GeV, Med-purity Exp 1033 1.44

≥ 2-jets, 700 ≤ mjj < 1000 GeV, pH
T < 200 GeV, Low-purity Exp 3187 4.32

≥ 2-jets, mjj ≥ 1000 GeV, pH
T < 200 GeV, High-purity Exp 113 0.192

≥ 2-jets, mjj ≥ 1000 GeV, pH
T < 200 GeV, Med-purity Exp 332 0.804

≥ 2-jets, mjj ≥ 1000 GeV, pH
T < 200 GeV, Low-purity PowerLaw 1020 1.09

200 ≤ pH
T < 300 GeV, High-purity Exp 420 1.68

200 ≤ pH
T < 300 GeV, Med-purity Exp 2296 0.714

300 ≤ pH
T < 450 GeV, High-purity Exp 25 0.407 X

300 ≤ pH
T < 450 GeV, Med-purity Exp 186 0.259

300 ≤ pH
T < 450 GeV, Low-purity Exp 422 0.121

450 ≤ pH
T < 650 GeV, High-purity Exp 15 0.138 X

450 ≤ pH
T < 650 GeV, Med-purity Exp 25 0.391 X

450 ≤ pH
T < 650 GeV, Low-purity Exp 109 0.031

pH
T ≥ 650 GeV Exp 14 0.448 X

qq′ → Hqq′

0-jet, High-purity Exp 176 0.180

0-jet, Med-purity ExpPoly2 3238 4.73

0-jet, Low-purity ExpPoly2 133314 49.7

1-jet, High-purity Exp 19 0.125 X

1-jet, Med-purity Exp 187 0.361

1-jet, Low-purity PowerLaw 1040 1.97

≥ 2-jets, mjj < 60 GeV, High-purity Exp 17 0.499 X

≥ 2-jets, mjj < 60 GeV, Med-purity Exp 157 0.489

≥ 2-jets, mjj < 60 GeV, Low-purity PowerLaw 1978 1.29

≥ 2-jets, 60 ≤ mjj < 120 GeV, High-purity Exp 53 0.165 X

≥ 2-jets, 60 ≤ mjj < 120 GeV, Med-purity Exp 329 0.520

≥ 2-jets, 60 ≤ mjj < 120 GeV, Low-purity PowerLaw 709 1.15

≥ 2-jets, 120 ≤ mjj < 350 GeV, High-purity Exp 214 1.08

≥ 2-jets, 120 ≤ mjj < 350 GeV, Med-purity ExpPoly2 1671 1.07

≥ 2-jets, 120 ≤ mjj < 350 GeV, Low-purity PowerLaw 11195 6.34

≥ 2-jets, 350 ≤ mjj < 700 GeV, pH
T < 200 GeV, High-purity Exp 25 0.162 X

≥ 2-jets, 350 ≤ mjj < 700 GeV, pH
T < 200 GeV, Med-purity Exp 260 0.443

≥ 2-jets, 350 ≤ mjj < 700 GeV, pH
T < 200 GeV, Low-purity Exp 753 1.17

≥ 2-jets, 700 ≤ mjj < 1000 GeV, pH
T < 200 GeV, High-purity Exp 25 0.670 X

≥ 2-jets, 700 ≤ mjj < 1000 GeV, pH
T < 200 GeV, Med-purity Exp 166 0.713

≥ 2-jets, mjj ≥ 1000 GeV, pH
T < 200 GeV, High-purity Exp 48 1.47 X

≥ 2-jets, mjj ≥ 1000 GeV, pH
T < 200 GeV, Med-purity Exp 142 0.270

Category Function Ndata Nspur Wald

≥ 2-jets, 350 ≤ mjj < 700 GeV, pH
T ≥ 200 GeV, High-purity Exp 18 0.189 X

≥ 2-jets, 350 ≤ mjj < 700 GeV, pH
T ≥ 200 GeV, Med-purity Exp 84 0.513 X

≥ 2-jets, 350 ≤ mjj < 700 GeV, pH
T ≥ 200 GeV, Low-purity Exp 595 0.721

≥ 2-jets, 700 ≤ mjj < 1000 GeV, pH
T ≥ 200 GeV, High-purity Exp 19 0.110 X

≥ 2-jets, 700 ≤ mjj < 1000 GeV, pH
T ≥ 200 GeV, Med-purity Exp 411 0.193

≥ 2-jets, mjj ≥ 1000 GeV, pH
T ≥ 200 GeV, High-purity Exp 23 1.30 X

≥ 2-jets, mjj ≥ 1000 GeV, pH
T ≥ 200 GeV, Med-purity Exp 56 0.329 X

qq → Hℓν

pV
T < 75 GeV, High-purity Exp 40 0.277

pV
T < 75 GeV, Med-purity Exp 158 0.609

75 ≤ pV
T < 150 GeV, High-purity Exp 15 0.069

75 ≤ pV
T < 150 GeV, Med-purity Exp 104 0.255

150 ≤ pV
T < 250 GeV, High-purity Exp 17 0.128 X

150 ≤ pV
T < 250 GeV, Med-purity Exp 21 0.150

pV
T ≥ 250 GeV, High-purity Exp 16 0.237 X

pV
T ≥ 250 GeV, Med-purity Exp 27 0.054 X

pp→ Hℓℓ

pV
T < 75 GeV, High-purity Exp 12 0.027

pV
T < 75 GeV, Med-purity PowerLaw 1620 2.28

75 ≤ pV
T < 150 GeV, High-purity Exp 13 0.015

75 ≤ pV
T < 150 GeV, Med-purity Exp 18 0.016

150 ≤ pV
T < 250 GeV, High-purity Exp 14 0.059 X

150 ≤ pV
T < 250 GeV, Med-purity Exp 136 0.194

pV
T ≥ 250 GeV Exp 14 0.311 X

pp→ Hνν̄

pV
T < 75 GeV, High-purity Exp 1174 12.3 X

pV
T < 75 GeV, Med-purity Exp 6897 4.13

pV
T < 75 GeV, Low-purity ExpPoly3 18084 9.95

75 ≤ pV
T < 150 GeV, High-purity Exp 16 0.407 X

75 ≤ pV
T < 150 GeV, Med-purity Exp 124 1.30 X

75 ≤ pV
T < 150 GeV, Low-purity Exp 2019 1.96

150 ≤ pV
T < 250 GeV, High-purity Exp 16 0.121 X

150 ≤ pV
T < 250 GeV, Med-purity Exp 17 0.184 X

150 ≤ pV
T < 250 GeV, Low-purity Exp 87 0.644 X

pV
T ≥ 250 GeV, High-purity Exp 15 0.237 X

pV
T ≥ 250 GeV, Med-purity Exp 18 0.201 X

ttH

pH
T < 60 GeV, High-purity Exp 35 0.040

pH
T < 60 GeV, Med-purity Exp 96 0.192

60 ≤ pH
T < 120 GeV, High-purity Exp 34 0.038

60 ≤ pH
T < 120 GeV, Med-purity Exp 74 0.274

120 ≤ pH
T < 200 GeV, High-purity Exp 39 0.018

120 ≤ pH
T < 200 GeV, Med-purity Exp 37 0.057

200 ≤ pH
T < 300 GeV Exp 23 0.261

pH
T ≥ 300 GeV Exp 19 0.180 X

tH

tHqb, High-purity Exp 17 0.371 X

tHqb, Med-purity Exp 19 0.320 X

tHqb, BSM (κt = −1) Exp 14 0.496 X

tHW Exp 38 0.070

Low-purity top Exp 500 0.870

Table 6. Selected background functional form, number of observed data events in the range
105 ≤ mγγ < 160 GeV (Ndata), and modelling uncertainty (Nspur) for each of the 101 analysis
categories. The last column indicates whether the Wald test is used to determine the functional
form, as described in the text.

In all cases, the |Sspur| value of the selected background function provides an estimate
of the possible bias in the fitted signal yield introduced by the intrinsic difference between
the background mγγ shape and the selected function. It is used to define the systematic
uncertainty for the background modelling in category i, denoted as Nspur,i in eq. (6.1). The
selected functional form for each category is shown in table 6.
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7 Systematic uncertainties

Systematic uncertainties considered in this analysis can be grouped into two categories:
uncertainties in the modelling of the mγγ distribution for the signal and background
processes, and uncertainties in the expected signal yields in each category arising from
either experimental or theory sources. These systematic uncertainties are incorporated into
the likelihood model of the measurement as nuisance parameters, as explained in section 6.
More details about the uncertainties are provided in this section.

7.1 Experimental systematic uncertainties

Experimental systematic uncertainties relevant to the modelling of the signal mγγ distribu-
tion include the uncertainties in the energy scale and energy resolution of photon candidates,
as well as in the Higgs boson mass. The photon energy scale uncertainties are propagated
to the peak position of the signal DSCB shape, with an impact that is usually less than
0.3% relative to the peak position value, depending on the category. The photon energy
resolution uncertainties are propagated to the Gaussian width of the signal DSCB shape,
with a relative impact between 1% and 15%, depending on the category. The estimation and
implementation of the photon energy scale and resolution uncertainties follow the procedure
outlined in ref. [121]. The total uncertainty in the measured Higgs boson mass, 0.24 GeV, is
considered as an additional uncertainty of the peak position of the signal DSCB shape.

The modelling of the background mγγ distribution with an analytic function can
produce a potential bias in the fitted signal yield. An uncertainty in the modelling of the
background, computed using the spurious-signal method described in section 6.2, is included
as an additive contribution to the signal yield in each category as shown in eq. (6.1). This
uncertainty is considered to be uncorrelated between different categories. Out of the 101
analysis categories, 46 categories have a background modelling uncertainty that is no more
than 10% of the background statistical uncertainty, and only two categories (qq′ → Hqq′,
≥ 2-jets, mjj ≥ 1000 GeV, pH

T ≥ 200 GeV, High-purity and pp→ Hνν̄, pV
T < 75 GeV, High-

purity) have a background modelling uncertainty that is at least 50% of the background
statistical uncertainty.

Experimental uncertainties affecting the expected signal yields include: the efficiency
of the diphoton trigger [36], the photon identification efficiencies [121], the photon isolation
efficiencies, the impact of the photon energy scale and resolution uncertainties on the selection
efficiency [121], the modelling of pile-up in the simulation, which is evaluated by varying by
±9% the value of the visible inelastic cross-section used to reweight the pile-up distribution
in the simulation to that in the data [148], the jet energy scale and resolution [131], the
efficiency of the jet vertex tagger, the efficiency of the b-tagging algorithm [134], the
electron [121] and muon [135] reconstruction, identification and isolation efficiencies, the
electron [121] and muon [135] energy and momentum scale and resolution, as well as the
contribution to Emiss

T from charged-particle tracks that are not associated with high-pT

electrons, muons, jets, or photons [136]. The uncertainty in the combined 2015–2018
integrated luminosity is 1.7% [20], obtained using the LUCID-2 detector [21] for the primary
luminosity measurements.
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7.2 Theory modelling uncertainties

The main theory uncertainties arise from missing higher-order terms in the perturbative
QCD calculations, the modelling of parton showers, the PDFs and the value of αs. For
measurements of the ttH and tH processes, the modelling of heavy-flavour jets in the ggF,
VBF, and V H processes is also important.

QCD uncertainties for each production mode are estimated by varying the renormaliza-
tion and factorization scales used in the event generation, and the resulting variations in
the predicted event yield in each STXS regions are considered as uncertainties.

For the gg → H processes, the QCD uncertainty model is implemented using four
components [6, 149–151] accounting for modelling uncertainties in the jet multiplicity, three
describing uncertainties in the modelling the pH

T distribution, one [152, 153] accounting for
the uncertainty in the distribution of the pHjj

T variable, four accounting for the uncertainty
in the distribution of the mjj variable, and six covering modelling uncertainties in STXS
regions with high pH

T (> 300 GeV). Following the principles of the Stewart-Tackmann
procedure [152], two components account for uncertainties in the inclusive gg → H event
yields, while the others describe migration uncertainties in the fraction of events passing
the selections defining the STXS regions. The model provides a full description of the
uncertainty in each STXS region, in which the uncertainty components are each assigned to
one nuisance parameter that is treated as statistically independent from the others. These
uncertainties are typically less than 22% of the expected signal yield in analysis categories
targeting the gg → H process.

For each of the WH, qq/qg → ZH, and gg → ZH processes, the QCD uncertainty
model includes four independent components to account for uncertainties in the distribution
of pV

T , and two independent components for uncertainties in the jet multiplicity distribution.
For qq′ → Hqq′ (VBF and V (→ hadrons)H) processes, the QCD uncertainty model includes
a similar set of independent components: two for the modelling of the jet multiplicity and
the pHjj

T distribution, one for migration between the pH
T < 200 GeV and pH

T ≥ 200 GeV
regions, and six for the modelling of the mjj distribution. These uncertainties are less than
10% of the expected signal yield in analysis categories targeting these processes, with the
exception of the gg → ZH process where the uncertainty can be as large as 26%.

For the ttH process, QCD uncertainties include five components covering migrations
between ttH STXS regions with different pH

T . These uncertainties are less than 10% of the
expected signal yield in the ttH STXS regions in their targeted analysis categories. In the
case of tHW , tHqb and bb̄H, an overall QCD uncertainty is used, taking the value from
ref. [6].

To check the robustness of the uncertainty model, a comparison between the efficiency
factors of the nominal Higgs signal sample and the alternative sample generated by Mad-

Graph5_aMC@NLO, as described in section 3.2, is performed for the VBF, V H, and
ttH processes. The differences between the efficiency factors of the nominal and alternative
samples are significantly larger than the uncertainties from QCD scale variations and can
reach values of up to 20% in some phase-space regions of the VBF process. The differences
between the efficiency factors of the nominal and alternative samples are therefore consid-
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ered as an additional systematic uncertainty. A similar comparison was not performed for
the gg → H process since the corresponding alternative samples are already used in the
derivation of the QCD uncertainty model described above.

The modelling of the parton shower, underlying event, and hadronization is assessed
separately for each Higgs boson production mode by comparing the efficiency factors
of simulated signal samples showered by Pythia 8 with those of samples showered by
Herwig 7. The uncertainties estimated from the differences between these factors typically
do not exceed 20%, and increase with jet multiplicity.

Uncertainties on the PDFs and the value of αs are taken from ref. [6] for the tHW , tHqb
and bb̄H processes. For other modes, the uncertainties are estimated using the PDF4LHC15
recommendations [47]. Their effects are usually small compared to the those of the two
other main sources of uncertainty mentioned at the start of this subsection.

In categories targeting the ttH and tH processes, the predicted ggF, VBF and V H

yields are each assigned a conservative 100% uncertainty (correlated between categories),
which is due to the theoretical uncertainty associated with the radiation of additional heavy-
flavour jets in these Higgs boson production modes. This is supported by measurements
using H→ZZ∗→4ℓ [154], tt̄bb̄ [155], and V b [156, 157] events. The impact of this uncertainty
on the results is generally negligible compared to the statistical uncertainties, since the
contributions from non-ttH processes are generally low.

A total uncertainty of 2.9% is assigned to the H → γγ decay branching ratio, based on
calculations from the HDECAY [95–97] and Prophecy4f [98–100] programs, which also
includes the uncertainty arising from its dependence on quark masses and αs.

Theory uncertainties, such as missing higher-order QCD corrections and PDF-induced
uncertainties, affect both the expected signal yields from each production process and the
signal efficiency factors (ǫit in eq. (6.1)) in each category. Uncertainties in signal efficiency
factors are included in all the measurements presented in this paper. Signal yield uncertain-
ties, including the uncertainty in the H → γγ branching ratio, are included only for the
measurement of the Higgs boson signal strength and interpretations within the κ-framework
and SMEFT models, which rely on comparisons between the observed event yields and their
SM predictions. Uncertainties on the parton shower, underlying event, and hadronization
effects are included in all the measurements, without a separation into yield and acceptance
components. In addition, cross-section measurements spanning multiple STXS regions re-
quire assumptions about the expected event yields in each region, as explained in section 8.4,
which introduces a weak dependence on the signal yield uncertainties.

Table 7 shows the expected experimental and theoretical systematic uncertainties of
the cross-section measurements in the SM hypothesis, computed as described in section 8.1.

8 Results

Results are presented in terms of several descriptions of Higgs boson production: the
overall signal strength of Higgs boson production measured in the diphoton decay channel
(section 8.2), separate cross-sections for the main Higgs boson production modes (section 8.3),
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ggF + bb̄H VBF WH ZH ttH tH

Uncertainty source ∆σ[%] ∆σ[%] ∆σ[%] ∆σ[%] ∆σ[%] ∆σ[%]

Theory uncertainties

Higher-order QCD terms ±1.4 ±4.1 ±4.1 ±12 ±2.8 ±16

Underlying event and parton shower ±2.5 ±16 ±2.5 ±4.0 ±3.6 ±48

PDF and αs < ±1 ±2.0 ±1.4 ±2.3 < ±1 ±5.8

Matrix element < ±1 ±3.2 < ±1 ±1.2 ±2.5 ±8.2

Heavy-flavour jet modelling in non-tt̄H processes < ±1 < ±1 < ±1 < ±1 < ±1 ±13

Experimental uncertainties

Photon energy resolution ±3.0 ±3.0 ±3.8 ±4.8 ±3.0 ±12

Photon efficiency ±2.7 ±2.7 ±3.3 ±3.6 ±2.9 ±9.3

Luminosity ±1.8 ±2.0 ±2.4 ±2.7 ±2.2 ±6.6

Pile-up ±1.4 ±2.2 ±2.0 ±2.3 ±1.4 ±7.3

Background modelling ±2.0 ±4.6 ±3.6 ±7.2 ±2.5 ±63

Photon energy scale < ±1 < ±1 < ±1 ±1.3 < ±1 ±5.6

Jet/Emiss
T < ±1 ±6.8 < ±1 ±2.2 ±3.5 ±22

Flavour tagging < ±1 < ±1 < ±1 < ±1 ±1.5 ±3.4

Leptons < ±1 < ±1 < ±1 < ±1 < ±1 ±1.8

Higgs boson mass < ±1 < ±1 < ±1 < ±1 < ±1 < ±1

Table 7. Expected contributions from the main sources of systematic uncertainty to the total
uncertainty in the measurement of the cross-section times H → γγ branching ratio for each of the
main Higgs boson production processes. The uncertainty from each source (∆σ) is shown as a
fraction of the total expected cross-section (σ).

and cross-sections in a set of merged STXS regions defined for each production process
(section 8.4).

8.1 Statistical procedure

The results for each measurement reported in this paper are obtained by expressing the signal
event yields in each analysis category in terms of the measurement parameters, and fitting
the model to the data in all categories simultaneously. Both positive and negative values
are allowed for all parameters, unless otherwise indicated. Best-fit values are reported along
with uncertainties corresponding to 68% confidence level (CL) intervals obtained from a
profile likelihood technique [140]. The endpoints of the intervals are defined by the condition
−2 ln Λ(µ) = 1, where Λ(µ) is the ratio of the profile likelihood at a value µ of the parameters
of interest to the profile likelihood at the best-fit point. Similarly, 95% CL intervals are
defined by the condition −2 ln Λ(µ) = 3.84. In some cases, uncertainties are presented as a
decomposition into separate components: the statistical component is obtained from a fit
in which the nuisance parameters associated with systematic uncertainties are fixed to their
best-fit values; the systematic component, corresponding to the combined effect of systematic
uncertainties, is computed as the square root of the difference between the squares of the
total uncertainty and the statistical uncertainty. Uncertainty components corresponding to
smaller groups of nuisance parameters are obtained by iteratively fixing the parameters in
each group, subtracting the square of the uncertainty obtained in this configuration from
that obtained when the parameters are profiled, and taking the square root.
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Expected results for the SM are obtained from a fit to an Asimov data set [140, 158]
built from the likelihood model with signal and background components. The nuisance
parameters of the likelihood model are determined in a fit to the observed data where
the STXS parameters defining the signal normalization in each category are left free.
The STXS parameters are set to their SM expectations to generate the Asimov data set.
Compatibility with the Standard Model is assessed from the value of the profile likelihood
ratio of the model in data under the SM hypothesis; a p-value for compatibility with the SM
is computed assuming that the profile likelihood follows a χ2 distribution with a number
of degrees of freedom equal to the number of parameters of interest [140]. In the case of
cross-section measurements, uncertainties in the SM predictions are not accounted for in
the p-value computation.

8.2 Overall Higgs boson signal strength

To quantify the overall size of the Higgs boson signal in the diphoton channel, the inclusive
signal strength, µ, defined as the ratio of the observed value of the product of the Higgs
boson production cross-section and the H → γγ branching ratio (σ ×Bγγ) in |yH | < 2.5 to
that of its SM prediction, is measured by simultaneously fitting the mγγ distributions of
the 101 analysis categories. The signal strength µ is treated in the likelihood function as
a single parameter of interest which scales the expected yields in all STXS regions and is
found to be

µ = 1.04+0.10
−0.09 = 1.04± 0.06 (stat.)+0.06

−0.05 (theory syst.) +0.05
−0.04 (exp. syst.).

The overall mγγ distribution of the selected diphoton sample is shown in figure 7. The
events are weighted by the value of ln(1 + S/B) of their category, where S and B are the
expected signal and background yields within the smallest mγγ window containing 90% of
the signal events, shown in table 4. This choice of event weight is designed to enhance the
contribution of events from categories with higher signal-to-background ratio in a way that
approximately matches the impact of these events in the categorized analysis of the data.

Table 8 further breaks down the impact of systematic uncertainties on the signal-
strength measurement. The leading sources of experimental systematic uncertainty are
the photon energy resolution uncertainty (2.8%) and photon efficiency uncertainty (2.6%),
while the leading sources of theoretical uncertainty are the QCD scale uncertainty (3.8%)
and H → γγ branching ratio uncertainty (3.0%).

8.3 Production cross-sections

The mechanism of Higgs boson production is probed by considering the ggF, VBF, WH,
ZH, ttH, and tH production processes separately. The measurement is reported in terms
of the (σ × Bγγ) value in each case, with the cross-sections defined in |yH | < 2.5. As in
the STXS region definition, the contribution from the bb̄H process is included in the ggF
component. Figure 8 shows the mγγ distributions for analysis categories targeting different
production modes separately. The same weighting procedure as in figure 7 is used, except
that the signal yield only includes the contributions from the targeted production process,
while other signal production processes are included in the background yield.
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Figure 7. The inclusive diphoton invariant mass distribution of events from all analysis categories.
The data events (dots) in each category are weighted by the value of ln(1 + S/B), where S and B

are the expected signal and background yields in this category within the smallest mγγ window
containing 90% of the signal events. The expected signal is considered inclusively over all STXS
regions. The fitted signal-plus-background pdfs from all categories are also weighted and summed,
shown as the solid line. The blue dotted line represents the weighted sum of the fitted background
functions from all categories. The error bars on the data points are computed following ref. [159].

The best-fit values of the production cross-sections and their uncertainties are summa-
rized in figure 9 and table 9. A negative best-fit value is observed for the cross-section of the
ZH process, which corresponds to a total observed event yield that is below the background
expectation. The p-value for compatibility of the cross-section measurement and the SM
prediction is 55%. The correlations between these measurements are shown in figure 10.
Compared to ref. [10], correlations between measurements are reduced, and in particular,
the anti-correlation between the ggF and VBF measurements is now −13%, corresponding
to a 30% reduction. This is driven by a reduction in the ggF contamination in categories
targeting the VBF process, mainly resulting from the use of the D-optimality criterion in
the categorization. An anti-correlation of −37% is observed between the WH and ZH

measurements, mainly due to contamination by qq → Hℓν events in the categories targeting
the pp → Hνν̄ process. This correlation is mitigated by the separation of the pp → Hℓℓ

and pp→ Hνν̄ processes that is introduced in the analysis categorization. Similarly, ttH
contamination in the categories targeting tH lead to an anti-correlation of −44% between
these two processes.

The largest theoretical systematic uncertainty in these measurements arises from the
modelling of the parton showering and underlying event, and its impact on the measured
cross-sections ranges from 38% for the tH process to 14% for the VBF process and to 3%–4%
for the gg → H and WH processes. For the gg → H process, the leading experimental
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Uncertainty source ∆µ [%]

Theory uncertainties

Higher-Order QCD Terms ±3.8

Branching Ratio ±3.0

Underlying Event and Parton Shower ±2.5

PDF and αs ±2.1

Matrix Element ±1.0

Modeling of Heavy Flavor Jets in non-tt̄H Processes < ±1

Experimental uncertainties

Photon energy resolution ±2.8

Photon efficiency ±2.6

Luminosity ±1.8

Pile-up ±1.5

Background modelling ±1.3

Photon energy scale < ±1

Jet/Emiss
T < ±1

Flavour tagging < ±1

Leptons < ±1

Higgs boson mass < ±1

Table 8. Summary of the leading sources of systematic uncertainty in the measurement of the
Higgs boson signal strength.

Process Value Uncertainty [fb] SM pred.

(|yH | < 2.5) [fb] Total Stat. Syst. [fb]

ggF + bb̄H 106 +10
−10

+8
−8

+6
−6 102+6

−6

VBF 9.5 +2.2
−1.9

+1.5
−1.4

+1.7
−1.4 7.9+0.2

−0.2

WH 4.2 +1.5
−1.4

+1.5
−1.4

+0.4
−0.2 2.8+0.1

−0.1

ZH −0.4 +1.1
−1.0

+1.1
−1.0

+0.2
−0.3 1.8+0.1

−0.1

ttH 1.0 +0.4
−0.3

+0.3
−0.3

+0.1
−0.1 1.1+0.1

−0.1

tH 0.5 +0.8
−0.6

+0.7
−0.6

+0.3
−0.2 0.19+0.01

−0.02

Table 9. Best-fit values and uncertainties for the production cross-sections of the Higgs boson times
the H → γγ branching ratio. The total uncertainties are decomposed into statistical (Stat.) and
systematic (Syst.) uncertainties. SM predictions are shown for the cross-section of each production
process. These are obtained from the total cross-sections and associated uncertainties reported in
ref. [6], multiplied by an acceptance factor for the region |yH | < 2.5 computed using the Higgs boson
simulation samples described in section 3.2.
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(a) ggF + bb̄H
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Figure 8. Combined diphoton invariant mass distributions for categories targeting the same
production processes. The data (black dots) are weighted by ln(1 + S/B) where S and B are
respectively the expected signal and background yields in the smallest mγγ window containing 90%
of the signal events. In this calculation, only Higgs boson events from the targeted production
processes are considered as signal events. Higgs boson events from other processes as well as the
continuum background events are considered as background. The fitted signal-plus-background
pdfs from the relevant categories are summed, and represented by a solid line. The blue dotted
line represents the weighted sum of the fitted continuum background pdfs, while the dashed line
combines the contributions of continuum background and other Higgs boson events. The error bars
on the data points are computed following ref. [159]. The weighted combination of categories with
low event counts leads in some cases to data errors that are highly asymmetric and change by large
amounts from point to point.
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Figure 10. Correlation matrix for the measurement of production cross-sections of the Higgs boson
times the H → γγ branching ratio.

corresponding to pH
T < 120 GeV. Within ≥ 2-jets, pH

T < 200 GeV, the three bins
defined in the mjj variable are merged into a single mjj > 350 GeV region. Finally,
the pH

T > 650 GeV bin is merged with the neighbouring 450 ≤ pH
T < 650 GeV bin to

form a single region corresponding to pH
T ≥ 450 GeV.

• For the qq′ → Hqq′ process, the 0-jet and 1-jet regions, as well as the regions
corresponding to mjj < 60 GeV and 120 < mjj < 350 GeV, are combined into a new
region, referred to as qq′ → Hqq′, ≤ 1-jet and V H-veto. The regions corresponding
to ≥ 2-jets, pH

T ≥ 200 GeV, 350 < mjj < 1000 GeV, are merged into a single region.

• For both the qq̄′ →WH and pp→ ZH processes, only the two regions pV
T < 150 GeV

and pV
T ≥ 150 GeV are retained, removing the intermediate splits at pV

T = 75 GeV and
pV

T = 250 GeV. For pp→ ZH processes, no distinction is made between regions with
charged leptons and regions with neutrinos.

• The tHqb and tHW regions are merged into a single tH region.

This scheme is based on the expected analysis sensitivity under the SM hypothesis, inde-
pendently of the observed data, and is illustrated in figure 11. The merging reduces the
number of regions for which a measurement is reported to 28 in the scheme described above.
The 101 categories in which the measurement is performed, described in section 5.2, remain
unchanged. The efficiency factors for merged STXS regions are computed as weighted
averages of those for the original STXS regions, with the weights corresponding to the
expected cross-sections in the SM. The uncertainty on the efficiency factor of the merged
STXS region is then calculated from the uncertainties in the efficiency factors and expected
cross-sections of the original STXS regions.
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Figure 11. Summary of the 28 regions for which STXS measurements are reported.

Results are shown in table 10 and figure 12. The correlation matrix of the measurements
is shown in figure 13. The correlation between most STXS region measurements is small, and
the largest correlation is −51%, observed for the measurements of STXS regions gg → H,
≥ 2-jets, mjj ≥ 350 GeV, pH

T < 200 GeV and qq′ → Hqq′, ≥ 2-jets, 350 ≤ mjj < 700 GeV,
pH

T < 200 GeV. The Higgs boson production processes in these STXS regions have similar
event topologies and are intrinsically difficult to separate. The relative uncertainties in the
measurements range from 20% to more than 100%. Smaller uncertainties are associated
with the 0-jet and 1-jet regions of gg → H, as well as the 200 ≤ pH

T < 300 GeV region of
gg → H and the mjj ≥ 700 GeV region of qq′ → Hqq′. Larger uncertainties occur especially
in regions of high pH

T and pV
T , as well as the low-mjj regions of qq′ → Hqq′. The systematic

component of the uncertainties is everywhere smaller than the statistical component, but
reaches similar values for the 0-jet regions of gg → H. No significant deviations from the
SM expectation are observed and the p-value for compatibility of the measurements and
the SM predictions is 93%. Results in a finer set of 33 STXS measurements regions are also
presented in table 13 of appendix A. Results are not reported using the full granularity of
the 45 STXS analysis regions, since the statistical power of the H → γγ analysis alone is
currently insufficient to perform this measurement. This configuration is however used in
the H → γγ inputs to combinations with other Higgs boson processes, which allow more
granular measurements. This includes for example combinations [161] with the ATLAS V H ,
H → bb̄ analysis [162, 163], which reports STXS results in the qq̄′ → WH and pp→ ZH

processes using a finer granularity than in the present paper.
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STXS region (σi ×Bγγ)
Value Uncertainty [fb] SM prediction

[fb] Total Stat. Syst. [fb]

gg → H, 0-jet, pH
T < 10 GeV 10 +4

−4
+4
−4

+2
−1 15+2

−2

gg → H, 0-jet, pH
T ≥ 10 GeV 58 +9

−8
+7
−7

+5
−4 47+4

−4

gg → H, 1-jet, pH
T < 60 GeV 16 +5

−5
+5
−5

+2
−2 15+2

−2

gg → H, 1-jet, 60 ≤ pH
T < 120 GeV 11 +4

−3
+3
−3

+2
−2 10+1

−1

gg → H, 1-jet, 120 ≤ pH
T < 200 GeV 1.6 +0.9

−0.9
+0.9
−0.8

+0.4
−0.2 1.7+0.3

−0.3

gg → H, ≥ 2-jets, mjj < 350 GeV, pH
T < 120 GeV 4 +4

−3
+3
−3

+1
−1 7+1

−1

gg → H, ≥ 2-jets, mjj < 350 GeV, 120 ≤ pH
T < 200 GeV 2.8 +1.0

−1.0
+1.0
−1.0

+0.3
−0.2 2.1+0.5

−0.5

gg → H, ≥ 2-jets, mjj ≥ 350 GeV, pH
T < 200 GeV 2 +2

−2
+2
−2

+1
−1 2.0+0.5

−0.5

gg → H, 200 ≤ pH
T < 300 GeV 1.6 +0.4

−0.4
+0.4
−0.4

+0.2
−0.1 1.0+0.2

−0.2

gg → H, 300 ≤ pH
T < 450 GeV 0.04 +0.13

−0.11
+0.12
−0.11

+0.03
−0.03 0.24+0.06

−0.06

gg → H, pH
T ≥ 450 GeV 0.09 +0.06

−0.05
+0.06
−0.05

+0.02
−0.01 0.04+0.01

−0.01

qq′ → Hqq′, ≤ 1-jet and V H-veto 6 +6
−5

+6
−5

+2
−1 6.6+0.2

−0.2

qq′ → Hqq′, V H-had 0.19 +0.85
−0.73

+0.83
−0.71

+0.17
−0.17 1.16+0.04

−0.04

qq′ → Hqq′, ≥ 2-jets, 350 ≤ mjj < 700 GeV, pH
T < 200 GeV 1.5 +0.9

−0.7
+0.7
−0.6

+0.6
−0.3 1.22+0.04

−0.04

qq′ → Hqq′, ≥ 2-jets, 700 ≤ mjj < 1000 GeV, pH
T < 200 GeV 0.8 +0.5

−0.4
+0.4
−0.3

+0.2
−0.1 0.58+0.02

−0.02

qq′ → Hqq′, ≥ 2-jets, mjj ≥ 1000 GeV, pH
T < 200 GeV 1.2 +0.4

−0.4
+0.3
−0.3

+0.3
−0.2 1.00+0.03

−0.03

qq′ → Hqq′, ≥ 2-jets, 350 ≤ mjj < 1000 GeV, pH
T ≥ 200 GeV 0.04 +0.12

−0.10
+0.12
−0.10

+0.02
−0.02 0.167+0.005

−0.005

qq′ → Hqq′, ≥ 2-jets, mjj ≥ 1000 GeV, pH
T ≥ 200 GeV 0.27 +0.11

−0.09
+0.10
−0.08

+0.05
−0.04 0.166+0.005

−0.005

qq → Hℓν, pV
T < 150 GeV 1.4 +0.6

−0.6
+0.6
−0.6

+0.1
−0.1 0.79+0.02

−0.02

qq → Hℓν, pV
T ≥ 150 GeV 0.20 +0.13

−0.11
+0.13
−0.11

+0.02
−0.01 0.121+0.005

−0.005

pp→ Hℓℓ/νν̄, pV
T < 150 GeV −0.29 +0.40

−0.08
+0.39
−0.08

+0.07
−0.00 0.45+0.02

−0.02

pp→ Hℓℓ/νν̄, pV
T ≥ 150 GeV 0.04 +0.10

−0.08
+0.10
−0.08

+0.02
−0.02 0.09+0.01

−0.01

ttH, pH
T < 60 GeV 0.22 +0.21

−0.18
+0.21
−0.18

+0.03
−0.01 0.27+0.04

−0.04

ttH, 60 ≤ pH
T < 120 GeV 0.32 +0.23

−0.20
+0.23
−0.20

+0.04
−0.02 0.40+0.05

−0.05

ttH, 120 ≤ pH
T < 200 GeV 0.18 +0.18

−0.15
+0.17
−0.15

+0.04
−0.02 0.29+0.04

−0.04

ttH, 200 ≤ pH
T < 300 GeV 0.14 +0.09

−0.07
+0.09
−0.07

+0.01
−0.01 0.12+0.02

−0.02

ttH, pH
T ≥ 300 GeV 0.06 +0.05

−0.04
+0.05
−0.04

+0.01
−0.01 0.06+0.01

−0.01

tH 0.4 +0.8
−0.6

+0.7
−0.6

+0.2
−0.2 0.19+0.01

−0.02

Table 10. Best-fit values and uncertainties for the production cross-section times H → γγ

branching ratio (σi×Bγγ) in each STXS region. The values for the gg → H process also include the
contributions from bb̄H production. The total uncertainties are decomposed into statistical (Stat.)
and systematic (Syst.) uncertainties. The uncertainties for the pp→ Hℓℓ/νν̄, pV

T
< 150 GeV region

are truncated at the value for which the model pdf becomes negative. SM predictions [6] are also
shown for each quantity with their total uncertainties.
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Figure 13. Correlation matrix for the measurement of STXS parameters in each of the 28
regions considered.
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9 Interpretation of the results in the κ-framework

Event rates for processes involving Higgs bosons can be expressed in terms of modifiers
applied to the SM Higgs boson couplings, based on the leading-order contributions to each
process [6]. These coupling modifiers affect Higgs boson production cross-sections and
decay partial widths and therefore provide a consistent framework for Higgs boson coupling
measurements in both production and decay.

The Higgs boson production cross-section in STXS region i followed by a H→ γγ decay
is written in the narrow-width approximation as

σi ·Bγγ =
σi(κ) · Γγγ(κ)

ΓH(κ)

where the coupling modifiers are collectively denoted as κ, σi is the production cross-section
in region i, Bγγ and Γγγ are respectively the Higgs boson branching ratio and partial width
into the γγ final state, and ΓH is the total width of the Higgs boson. The parameterizations
σi(κ), Γγγ(κ) and ΓH(κ) are shown in table 14 in appendix B. They are similar to the ones
used in ref. [13], except for the parameterization of the tHW and tHqb processes. These
have been updated to reflect the fact that the efficiency factors in each analysis category
are κ-dependent due to changes in the process kinematics caused by interference effects
between the different parton-level processes contributing to tHW and tHqb. Separate
parameterizations are therefore used in each analysis category for tHW and tHqb.

Two parameterizations are considered for the gg → H and H → γγ processes: a
resolved parameterization in which they are assumed to proceed through the same loop
amplitudes as in the SM at leading order, and an effective parameterization that makes no
assumption about the internal structure of the interactions. For the latter, event rates are
expressed using modifiers to the effective couplings of the Higgs boson to the gluon and the
photon, respectively denoted by κg and κγ . The gg → ZH loop process is always described
in the resolved parameterization. Sensitivity to the sign of coupling modifiers is obtained
through interference between processes involving different combinations of modifiers. These
include, in particular, the H → γγ and gg → H loops and the gg → ZH and tH processes.

Two specific models of coupling modifications are considered in this section, and two
additional models are described in appendix B. The first model focuses on the κt modifier to
the Higgs boson coupling with the top quark. Two configurations are used for the gg → H

and H → γγ loop processes: in the first case, both are described using their resolved
parameterization as a function of κt; in the second case, both are described using the
effective couplings κg and κγ . All other Higgs boson couplings are fixed to their SM values,
in particular the coupling with the W boson which enters the resolved parameterization of
the H → γγ loop. These two models also allow the sign of κt to be probed, with sensitivity
coming from interference effects in certain amplitudes. These occur in the tH and gg → ZH

processes, as well as in the H → γγ process when its parameterization is resolved in terms
of κt and other coupling modifiers.

The negative log-likelihood scans for both configurations are shown in figure 14. In
both cases, good agreement with the SM expectation of κt = 1 is seen. When the H → γγ
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Figure 14. Negative log-likelihood scans as a function of κt in a model where other coupling
modifiers are fixed to their SM values. The H → γγ and gg → H loops are either parameterized as
a function of κt (blue) or fixed to their SM expectation (orange). In the latter case, sensitivity to
the sign of κt is provided by the tH process, and to a lesser degree by the gg → ZH process. The
solid curves correspond to observed data, and the dotted curves to an Asimov data set generated
under the SM hypothesis.

and gg → H loops are resolved, negative values of κt are excluded with a significance of
6.7σ or above.5 When effective loop couplings are used, an exclusion of 2.2σ or above is
observed through the sensitivity provided by the tH process, with a smaller contribution
from the gg → ZH process. Values of κt outside of the range 0.87 < κt < 1.20 are excluded
at 95% CL in the first case (0.85 < κt < 1.19 expected under the SM hypothesis), as are
values outside 0.65 < κt < 1.25 in the second case (0.71 < κt < 1.29 expected).

In the second model, the gg → H and H→ γγ loop processes are described using
the effective modifiers κg and κγ . Both modifiers are assumed to be positive, since the
measurement provides no sensitivity to their signs. Other modifiers are fixed to their
SM values. The measurement in the plane of (κg, κγ) is shown in figure 15. The best-fit

5Significances are computed as
√

−2 ln Λ(κt), where Λ(κt) is the profile likelihood ratio defined in

section 8.1 in terms of the parameter of interest κt.
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Figure 15. Negative log-likelihood contours at 68% (dashed line) and 95% CL (solid line) in the
(κg, κγ) plane, assuming that all other coupling-strength modifiers take their SM values. All other
κ modifiers are fixed to their SM values. The best-fit point is indicated by a cross while the SM
prediction is indicated by a star.

values are

κg = 1.01+ 0.11
− 0.09

κγ = 1.02+ 0.08
− 0.07.

A linear correlation coefficient of −79% between the parameters is observed.

10 Interpretation of the results in the Standard Model effective field

theory framework

10.1 Interpretation framework

The Standard Model effective field theory (SMEFT) framework provides a model-independent
setting to describe deviations from SM predictions. New effective interactions involving
Standard Model particles are introduced in the Lagrangian to describe the effect of physics
beyond the SM occurring above a high scale Λ. These interactions are considered order by
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order in the mass dimension d of the relevant operators, with leading-order effects occurring
at d = 6 when assuming that the lepton number L and baryon number B are conserved.

The effective Lagrangian up to dimension 6 is written as

L = LSM +
∑

k

ck

Λ2
Ok

where the sum runs over the dimension-6 operators Ok describing effective interactions in
the SMEFT. The ck are the corresponding Wilson coefficients, which are considered as the
measurement parameters of the model. Subleading contributions with dimension 8 and
above are neglected, and only operators with even CP quantum numbers that conserve B
and L are considered. The selected operators are expressed in the Warsaw basis [27, 28].
The U(3)5-symmetric model of fermion flavour [29] is considered, assuming separate global
flavour symmetries for each fermion type over the three fermion generations. In the cases
where Wilson coefficients can have complex values, only their real parts are considered. The
SM corresponds to all ck set to 0. The ck are defined for a scale Λ = 1 TeV.

The ck are determined through an interpretation of the STXS results presented in
appendix A. This is achieved by expressing as functions of the ck the signal-strength
parameters

µγγ
i =

σi ·Bγγ

σSM
i ·BSM

γγ

,

where i runs over the 33 STXS regions listed in table 13, and σSM
i and BSM

γγ are the SM
predictions for the production cross-section in STXS region i and the H → γγ branching
ratio, respectively. The 33 STXS regions used here correspond to a finer binning than the
28 regions for which results were reported in section 8.4, and provide better granularity
especially at high mjj values in the gg → H and qq′ → Hqq′ processes.

SMEFT effects are modelled as single insertions of the operators Ok in each Higgs
boson production and decay amplitude. These amplitudes are therefore linear in the ck, so
that the production cross-sections and decay widths are at most quadratic functions of the
ck. The signal strengths are thus written as

µγγ
i =

(
1 +

∑

k

Ai→H
k ck +

∑

kl

Bi→H
kl ckcl

)
(

1 +
∑
k

AH→ γγ
k ck +

∑
kl

BH→ γγ
kl ckcl

)

(
1 +

∑
k

AΓ
kck +

∑
kl

BΓ
klckcl

) (10.1)

where Ai→H
k , AH→ γγ

k and AΓ
k are respectively the coefficients describing the linear ck-

dependence of the production cross-section σi, the partial decay width Γγγ and the total
width ΓH . Similarly, the Bi→H

kl , BH→ γγ
kl and BΓ

kl coefficients describe the quadratic depen-
dence of the same quantities on the ck.

Two SMEFT parameterizations are considered in the following: a linear parameteriza-
tion including only the effect of the A coefficients and a linear+quadratic parameterization
including both the A and B terms. In the linear case, eq. (10.1) is linearized to first order
in the ck so that

µγγ
i = 1 +

∑

k

[
Ai→H

k +AH→ γγ
k −AΓ

k

]
ck. (10.2)
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Results are derived using both parameterizations, and their difference is considered to be
indicative of the impact of the neglected higher-order terms in the SMEFT expansion.

The values of the A and B coefficients are generally obtained using the SMEFTsim [29,
164] and SMEFT@NLO [165] programs. The coefficients are obtained by setting SMEFT
parameters to non-zero values (one parameter at a time to compute A coefficients, and in
pairs to compute B coefficients), and comparing the cross-sections obtained in this case with
the ones for all coefficients set to 0. Events corresponding to each STXS region are selected
using a RIVET routine [166]. SMEFT@NLO is used to obtain predictions for gg → H and
gg → ZH loop processes, while SMEFTsim is used for all other processes. The dependence
of the Higgs boson total decay width on the SMEFT parameters is computed by considering
all decays of the Higgs boson with up to four particles in the final state. The A coefficients
for the H→ γγ decay are taken from an analytic calculation [167], which includes NLO
electroweak corrections that are not implemented in the programs mentioned above. The
coefficients are obtained for the full phase space of the decay, relying on the fact that they
are only weakly dependent on acceptance, as discussed below. The B coefficients for the
H→ γγ decay are computed using SMEFTsim.

The SMEFT operators considered in the analysis are shown in table 11. Initially, 60
operators are considered but only 34 are found to have significant impact in at least one
STXS region or on the H → γγ branching ratio, defined by a value above 0.01 for the
corresponding A coefficient. Only these 34 operators are considered in the measurements
presented in this paper. The impact of the most relevant SMEFT parameter in the measured
STXS regions is summarized in figure 16. The efficiency factors which are applied to the
observed event yields to obtain the µγγ

i parameters, as shown in eq. (6.1), can depend
on the SMEFT parameters due to modifications of the Higgs signal characteristics within
each STXS bin. The effect was studied for the main Warsaw basis operators affecting
the measurement, and setting the corresponding Wilson coefficients to 1 individually is
generally found to have an impact below 10% on the efficiency factors. These changes are
therefore neglected in the analysis.

10.2 Measurements of single SMEFT parameters

In the measurements presented in this section, one SMEFT parameter at a time is left
free to vary, while the others are fixed to 0 as in the SM. This provides a measure of the
sensitivity of the analysis for individual Wilson coefficients in the Warsaw basis, but the
restrictive nature of this model limits the applicability of the measurements in probing
effects beyond the SM.

The measurement results are summarized in figure 17, and full results are provided in
table 16 in appendix C. The SMEFT framework used in this measurement is considered
valid only for parameter values of O(10) or less, and confidence intervals that extend outside
|ck| ≤ 20 are therefore not shown. Uncertainties in the parameter values range from below
±0.01 to above the |ck| = 20 threshold used to define the region of SMEFT validity. All
values are compatible with the SM within measurement uncertainties. For parameters
where the sensitivity mainly derives from inclusive event yields, such as cHG, the linear
and linear+quadratic parameterizations provide similar results. Conversely, operators with
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Coeff. Operator Incl. Coeff. Operator Incl.

cG fABCGAν
µ GBρ

ν GCµ
ρ X c

(3)
qq (q̄rγµτ

Iqr)(q̄sγ
µτ Iqs) X

cW ǫIJKW Iν
µ W Jρ

ν WKµ
ρ X c

(3)′
qq (q̄rγµτ

Iqs)(q̄sγ
µτ Iqr) X

cH (H†H)3 c
(1)
qq (q̄rγµqr)(q̄sγ

µqs) X

cH� (H†H)�(H†H) X c
(1)′
qq (q̄rγµqs)(q̄sγ

µqr) X

cHD

(
H†DµH

)∗ (
H†DµH

)
X c

(3)
lq (l̄rγµτ

I lr)(q̄sγ
µτ Iqs)

cHG H†H GA
µνG

Aµν X c
(1)
lq (l̄rγµlr)(q̄sγ

µqs)

cHW H†HW I
µνW

Iµν X cee (ērγµer)(ēsγ
µes)

cHB H†H BµνB
µν X ceu (ērγµer)(ūsγ

µus)

cHWB H†τ IHW I
µνB

µν X ced (ērγµer)(d̄sγ
µds)

ceH (H†H)(l̄p[Y †
e ]pqeqH) X cuu (ūrγµur)(ūsγ

µus) X

cuH (H†H)(q̄p[Y †
u ]pquqH̃) X c′

uu (ūrγµus)(ūsγ
µur) X

cdH (H†H)(q̄p[Y †
d ]pqdqH) X cdd (d̄rγµdr)(d̄sγ

µds)

ceW (l̄pσ
µν [Y †

e ]pqeq)τ IHW I
µν c′

dd (d̄rγµds)(d̄sγ
µdr)

ceB (l̄pσ
µν [Y †

e ]pqeq)H Bµν c
(1)
ud (ūrγµur)(d̄sγ

µds) X

cuG (q̄pσ
µνTA[Y †

u ]pquq)H̃ GA
µν X c

(8)
ud (ūrγµT

Aur)(d̄sγ
µTAds) X

cuW (q̄pσ
µν [Y †

u ]pquq)τ IH̃ W I
µν X cle (l̄rγµlr)(ēsγ

µes)

cuB (q̄pσ
µν [Y †

u ]pquq)H̃ Bµν X clu (l̄rγµlr)(ūsγ
µus)

cdG (q̄pσ
µνTA[Y †

d ]pqdq)H GA
µν cld (l̄rγµlr)(d̄sγ

µds)

cdW (q̄pσ
µν [Y †

d ]pqdq)τ IHW I
µν cqe (q̄rγµqr)(ēsγ

µes)

cdB (q̄pσ
µν [Y †

d ]pqdq)H Bµν c
(1)
qu (q̄rγµqr)(ūsγ

µus) X

c
(3)
Hl (H†i

←→
D I

µH)(l̄rτ
Iγµlr) X c

(8)
qu (q̄rγµT

Aqr)(ūsγ
µTAus) X

c
(1)
Hl (H†i

←→
D µH)(l̄rγ

µlr) X c
(1)
qd (q̄rγµqr)(d̄sγ

µds) X

cHe (H†i
←→
D µH)(ērγ

µer) X c
(8)
qd (q̄rγµT

Aqr)(d̄sγ
µTAds) X

c
(3)
Hq (H†i

←→
D I

µH)(q̄rτ
Iγµqr) X cledq (l̄jp[Y †

l ]pqeq)(d̄r[Yd]rsq
j
s)

c
(1)
Hq (H†i

←→
D µH)(q̄rγ

µqr) X c
(1)
quqd (q̄j

p[Y †
u ]pquq)ǫjk(q̄k

r [Y †
d ]rsds)

cHu (H†i
←→
D µH)(ūrγ

µur) X c
(1)′
quqd (q̄j

p[Y †
d ]psuq)ǫjk(q̄k

r [Y †
u ]rqds)

cHd (H†i
←→
D µH)(d̄rγ

µdr) X c
(8)
quqd (q̄j

pT
A[Y †

u ]pquq)ǫjk(q̄k
rT

A[Y †
d ]rsds)

cHud (H†iDµH)(ūpγ
µ[YuY

†
d ]pqdq) c

(8)′
quqd (q̄j

pT
A[Y †

d ]psuq)ǫjk(q̄k
rT

A[Y †
u ]rqds)

cll (l̄rγµlr)(l̄sγ
µls) c

(1)
lequ (l̄jp[Y †

e ]pqeq)ǫjk(q̄k
r [Y †

u ]rsus)

c′
ll (l̄rγµls)(l̄sγ

µlr) X c
(3)
lequ (l̄jpσ

µν [Y †
e ]pseq)ǫjk(q̄k

rσµν [Y †
u ]rqus)

Table 11. Wilson coefficients ci and corresponding dimension-6 SMEFT operators Oi used in this
analysis. The notations follow that of ref. [29]. Hermitian conjugates of non-Hermitian operators
are implicitly considered in addition to the expression shown in the table. The operators indicated
by a checkmark are the ones included in the measurement, due to having a significant impact on
STXS cross-sections or on the H → γγ branching ratio.
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Figure 16. Relative impact of the most relevant SMEFT operators on the STXS regions and
H → γγ decay mode in the linear SMEFT model. Coloured bars indicate the relative impact
of SMEFT parameters on the expected cross-section in the corresponding region. The impacts
are computed for the parameter values shown on the right, relative to the SM prediction. The
parameters are defined for a scale Λ = 1 TeV. Three sets of operators with similar impacts on the
measurement are shown in separate panels: those with impact mainly on the gg → H and ttH

processes (second from top), the H → γγ decay (third from top), and VBF and V H processes
(bottom). The expected total relative uncertainty in the measurement of the signal strength in each
STXS region is shown in the top panel, as an indication of the experimental sensitivity of each
region. The pT and mjj values in the region definitions are indicated in GeV, and the 0J, 1J and 2J
shorthands refer respectively to the 0-jet, 1-jet and ≥ 2-jets selections.

sensitivity to the high-pH
T bins of the ttH or gg → H processes and the high-pV

T regions
of qq̄′ → V H show markedly smaller confidence intervals for the linear+quadratic case
than for the linear case. The significant impact of the quadratic terms of the SMEFT
parameterization in these cases may be indicative of significant effects from missing higher-
order terms in the SMEFT expansion.

10.3 Simultaneous measurement of SMEFT parameters

In this section, multiple SMEFT parameters are left free to vary simultaneously. The
information present in the STXS measurement does not, however, allow constraints to be
placed simultaneously on all the SMEFT parameters listed in table 11. In addition, both the
constrained and the unconstrained degrees of freedom generally consist in combinations of
parameters, since predictions in each STXS region are affected by multiple SMEFT operators.
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Figure 17. Summary of the 68% CL (solid lines) and 95% CL (dashed lines) intervals for individual
measurements of SMEFT parameters observed in data. In each case, SMEFT parameters other
than the one measured are fixed to 0. Blue and green curves correspond respectively to the linear
and linear+quadratic SMEFT parameterizations. For presentation purposes, some parameters are
scaled by a factor indicated below the parameter name. Results are not shown for coefficients ck

where one or more of the intervals extend beyond the |ck| ≤ 20 region, which is considered to be the
region of validity of the SMEFT framework.

Unconstrained directions can be removed from consideration without loss of generality,
since the corresponding measurement information is in any case negligible. This allows the
number of measurement parameters to be reduced without incurring model-dependence, and
also avoids the probing of regions of parameter space beyond the bounds of SMEFT validity
that occurs when confidence intervals along unconstrained directions extend beyond these
bounds. Finally, this also avoids numerical issues in maximum-likelihood fits, since non-
linear minimization algorithms can fail in cases where the local curvature of the likelihood
function is too low.

The flat directions are identified by performing a principal component analysis of the
information matrix C−1

SMEFT of the SMEFT parameter measurement. The information matrix
is computed using the linear model with the assumption that the probability distribution
function of the STXS measurement is approximately Gaussian. It is obtained as

C−1
SMEFT = P TC−1

STXSP

where C−1
STXS is the information matrix of the STXS measurement, computed in an Asimov

data set generated under the SM hypothesis, and P is the matrix representing the linear
relation between the µγγ

i and the ck in the linear SMEFT parameterization, with components
given by Pik = Ai→H

k +AH→ γγ
k −AΓ

k in the notation of eq. (10.2).
A rotation is then performed to align the measurement parameters with the eigenvectors

EVn of C−1
SMEFT. The unconstrained degrees of freedom of the measurement are identified
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Figure 18. Components of the EVn parameters (y-axis) along each of the Warsaw-basis Wilson
coefficients (x-axis). The EVn are normalized to unit Euclidean norm. Coefficients below 0.01

are not shown. The Warsaw-basis Wilson coefficients are defined for a scale Λ = 1 TeV. The
information-matrix eigenvalues (λn) corresponding to each eigenvector are shown on the right side
of the plot.

with the eigenvectors corresponding to eigenvalues λn of C−1
SMEFT with magnitude λn < 0.005.

In the limit of a Gaussian measurement, each λn is the inverse square of the measurement
uncertainty along the direction of the corresponding EVn, so the threshold for λn corresponds
to an uncertainty of about 14, which approximately corresponds to the region of SMEFT
validity defined previously. The unconstrained EVn parameters are fixed to 0 in the
model, while the remaining 12 EVn are considered as the measurement parameters. Their
components along the ck SMEFT parameters are shown in figure 18. The full decomposition
is shown in table 17 of appendix C.

The EV1 parameter is mainly sensitive to the total event rates; EV2 and EV8 to the
difference between the rate of gg → H and of the other production modes; EV3 and EV7 to
the high-pV

T regions of the pp→ V H processes; EV4 and EV5 to the high-pH
T regions of the

ttH process; and EV6 to the rate of the qq′ → Hqq′ process. Best-fit values and confidence
intervals for each EVn parameter are shown in table 12 and illustrated in figure 19. No
significant deviation from the SM is observed. In the linear parameterization, expected
signal yields can become negative for some values of the SMEFT parameters, leading in
some cases to a negative value of the model pdf, which invalidates the profile-likelihood
computation. In these cases, the bounds of the confidence intervals are truncated at the
point at which the pdf reaches 0. Results in the linear+quadratic parameterization are not
affected since the expected signal yields are always positive by construction.

Profile likelihood scans for selected EVn parameters are shown for illustration in
figure 20. For some parameters, such as EV1, a broad shape is seen in the expected scan in
the SM hypothesis for the linear+quadratic parameterization. This is caused in part by
the presence of two degenerate minima, due to the quadratic dependence of the expected
yields on the SMEFT parameters. The degeneracy is partially lifted by the fact that the
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observed data do not exactly correspond to the SM expectation, which leads to narrower
profiles in the observed scans. Similar scans are performed for eigenvectors corresponding to
unconstrained directions with eigenvalues below 0.01, with the measured EVn also free to
vary in the fits. The scans show that the measurement sensitivity in each of these directions
is negligible.

The correlation matrix of the measurement is shown in figure 21. Non-zero values outside
the diagonal are due to differences between the observed results and their expectations,
and to the fact that the information matrix used in the principal component analysis
is not an exact representation of the measurement, due to non-Gaussian effects. In the
linear parameterization, these include in particular the effect of low expected event counts
in some categories and the non-linear impact of some systematic uncertainties. In the
linear+quadratic case, larger correlations are observed due to the effect of the quadratic
terms, which are not considered in the principal component analysis. These correlations
also contribute to the larger uncertainties reported in table 12 for some EVn parameters in
the linear+quadratic parameterization, compared to the linear parameterization, and to the
wider contours visible in figure 20 for the linear+quadratic case. Linear parameterization
results including corrections to the propagators of off-shell W and Z bosons, the Higgs
bosons and the top quarks, as implemented in the SMEFTsim generator [29] are shown in
appendix C.3.
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Parameter Linear Linear+quadratic

Value Uncertainty Value Uncertainty

EV1 −0.0008 +0.0017
−0.0018 0.0043 +0.0067

−0.0095

EV2 0.0004 +0.0059
−0.0055 −0.0061 +0.0084

−0.0086

EV3 0.039 +0.095
−0.10 0.035 +0.11

−0.081

EV4 −0.035 +0.25
−0.22 −0.079 +0.29

−0.35

EV5 −0.22 +0.59
−0.62 0.29 +0.30

−0.69

EV6 0.19 +0.81
−0.80 0.011 +0.79

−0.47

EV7 −1.7 +1.0
−0.96 −0.91 +1.2

−0.53

EV8 −0.65 +3.5
−3.2 −1.2 +2.5

−1.0

EV9 7.5 +2.5
−5.2 1.7 +1.4

−1.6

EV10 0.48 +6.7
−8.5 0.42 +0.46

−0.60

EV11 −5.6 +9.4
−9.6 0.045 +0.47

−0.21

EV12 2.6 +12

−13 1.2 +0.81
−1.0

Table 12. Summary of the EVn parameter measurements in the linear and linear+quadratic
parameterizations. The ranges correspond to 68% CL intervals. All the EVn parameters are
free to vary in the fits. The upper bound of the intervals reported for EV9 and EV12 in the
linear parameterization (shown in bold text) are truncated at the value for which the model pdf
becomes negative.
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Figure 19. Results of the EVn parameter measurement in data, in the linear (blue) and lin-
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Figure 21. Observed linear correlation coefficients of the EVn parameters in the linear (left) and
linear+quadratic (right) parameterization.
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11 Conclusion

Higgs boson production is measured in the diphoton decay channel using 139 fb−1 of 13 TeV
proton-proton collision data, corresponding to the full data set collected by ATLAS during
Run 2 of the LHC.

The overall Higgs boson signal strength relative to its SM prediction is measured to be

µ = 1.04+0.10
−0.09 = 1.04± 0.06 (stat.)+0.06

−0.05 (theory syst.) +0.05
−0.04 (exp. syst.).

in good agreement with the SM.
Cross-sections for ggF + bb̄H, VBF, WH, ZH, ttH and tH production are reported,

with relative uncertainties of 10% for ggF + bb̄H , 22% for VBF, and 35% for WH and ttH .
An upper limit of ten times the SM prediction is set for the tH process. This represents the
most stringent experimental constraint on tH production, superseding the previous ATLAS
result from Run 2. A fine-grained description of Higgs boson production is provided by
cross-section measurements in 28 phase-space regions defined within the STXS framework,
including additional measurements at high values of pH

T and mjj compared to previous
analyses. These measurements benefit from significant analysis improvements compared to
previous ATLAS results [10]. A detailed classification of selected events into 101 separate
categories based on multi-class machine learning techniques is used, and the uncertainties
relative to the modeling of the continuum have been reduced through the use of Gaussian
kernel smoothing.

Results are interpreted in models of Higgs boson coupling modifiers. All couplings are
found to be compatible with their SM values. Sensitivity to the sign of the κt modifier to
the top quark coupling in the tH process leads to an exclusion of the κt < 0 region with
a significance of 2.2σ. An interpretation in the framework of SM effective field theory is
used to set constraints on physics effects beyond the SM. Individual Wilson coefficients
are measured while fixing the others to 0. A simultaneous measurement of the linear
combinations of Wilson coefficients that the STXS measurements are sensitive to is also
performed. All results are in agreement with SM expectations.
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A Additional production mode cross-section and STXS measurement

results

Table 13 shows STXS results with a higher granularity than the baseline results presented
in section 8.4. A total of 33 regions are measured, with the following changes compared to
the 28 regions in the baseline measurement:

• For the gg → H process, within the phase space of ≥ 2-jets, mjj < 350 GeV, the
two regions with pH

T < 60 GeV and 60 ≤ pH
T < 120 GeV are kept separate. The same

also applies to the three bins in the mjj variable within the ≥ 2-jets, pH
T < 200 GeV

region, which are not merged. Compared to the STXS analysis regions defined in
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Figure 22. Correlation matrix for the measurement of STXS parameters in each of the 33
regions considered.

section 5.1, the only merging that is performed is that of the pH
T > 650 GeV bin with

the neighbouring 450 ≤ pH
T < 650 GeV bin.

• For the qq′ → Hqq′ process, the 0-jet and 1-jet regions are merged into a single ≤ 1-jet
bin, and the mjj < 60 GeV and 120 < mjj < 350 GeV regions are also combined into
a new V H-veto region, but the two sets are not merged together as in the baseline
results. The three regions in the mjj variables within ≥ 2-jets, pH

T ≥ 200 GeV, are
also not merged.

The correlation matrix of the measurement is shown in figure 22.
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−0.04

ttH, 200 ≤ pH
T < 300 GeV 0.14 +0.09

−0.07
+0.09
−0.07

+0.01
−0.01 0.12+0.02

−0.02

ttH, pH
T ≥ 300 GeV 0.06 +0.05

−0.04
+0.05
−0.04

+0.01
−0.01 0.06+0.01

−0.01

tH 0.36 +0.76
−0.60

+0.72
−0.57

+0.24
−0.17 0.19+0.01

−0.02

Table 13. Best-fit values and uncertainties for the production cross-section times H → γγ

branching ratio (σi ×Bγγ) in each STXS region. The values for the gg → H process also include
the contributions from bb̄H production. The total uncertainties are decomposed into components
for data statistics (Stat.) and systematic uncertainties (Syst.). SM predictions [6] are also shown for
each quantity with their total uncertainties.

– 56 –



J
H
E
P
0
7
(
2
0
2
3
)
0
8
8

B Additional κ-framework interpretations

B.1 Parameterization of STXS cross-section parameters and the H→ γγ

branching ratio

Multiplicative modifiers are considered for Higgs boson couplings to the W and Z bosons
(respectively κW and κZ), and for couplings to the charm (κc), bottom (κb) and top (κt)
quarks and the muon (κµ) and τ (κτ ) leptons. Couplings to other SM particles are assumed
to be equal to their SM predictions.

Table 14 presents the multiplicative corrections that are applied to the STXS cross-
section parameters σi, the partial decay widths Γγγ , Γgg and ΓZγ of the H→ γγ, H → gg

and H → Zγ decays, respectively, and the total width ΓH . The symbols ΓSM
gg and ΓSM

Zγ

denote the SM predictions for Γgg and ΓZγ respectively. The total width ΓH is expressed
as a function of the κ modifiers, assuming no contributions from Higgs boson decays other
than the ones present in the SM, except in the model in appendix B.3 in which an effective
description in terms of the κH modifier is used instead.

The SM corresponds to the case κW = κZ = κt = κb = κc = κτ = κµ = 1, and
in addition κg = κγ = 1 when effective parameterizations are used. The κZ modifier is
assumed to be positive, without loss of generality, since all predictions are invariant under a
simultaneous flip of the sign of each κ modifier. Sensitivity to κb and κτ is achieved through
the contributions of bottom quarks and τ -leptons to these loop processes in the resolved
description.

The SM predictions of Bγγ and the σi are taken from ref. [6]. These include the
highest-order available computations in both the QCD and electroweak couplings.
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Production Main Effective
Resolved modifier

cross-section interference modifier

σ(ggF) t–b κ2
g 1.040κ2

t + 0.002κ2
b − 0.038κtκb − 0.005κtκc

σ(VBF) — — 0.733κ2
W + 0.267κ2

Z

σ(qq̄ → ZH) — — κ2
Z

σ(gg → ZH) t–Z -
2.456κ2

Z + 0.456κ2
t − 1.903κZκt

− 0.011κZκb + 0.003κtκb

σ(WH) — — κ2
W

σ(ttH) — — κ2
t

σ(tHW ) t–W — Aκ2
t +B κ2

W + C κtκW , category-dependent

σ(tHqb) t–W — Aκ2
t +B κ2

W + C κtκW , category-dependent

σ(bb̄H) — — κ2
b

Partial and total decay widths

Γγγ t–W κ2
γ

1.589κ2
W + 0.072κ2

t − 0.674κWκt + 0.009κWκτ

+ 0.008κWκb − 0.002κtκb − 0.002κtκτ

Γgg t–b κ2
g 1.111κ2

t + 0.012κ2
b − 0.123κtκb

ΓZγ t–W 1.118κ2
W + 0.004κ2

t − 0.125κWκt + 0.003κWκb

ΓH - κ2
H

0.581κ2
b + 0.215κ2

W + 0.063κ2
τ

+ 0.026κ2
Z + 0.029κ2

c + 0.0023κ2
γ

+ 0.0004κ2
s + 0.00022κ2

µ

+ 0.082 (Γgg/Γ
SM
gg )

+ 0.0015 (ΓZγ/Γ
SM
Zγ )

Table 14. Parameterization of Higgs boson production cross-sections σi, the partial decay widths
Γγγ , Γgg and ΓZγ of the H→ γγ, H → gg and H → Zγ decays, respectively, and the total width ΓH ,
normalized to their SM values, as functions of the coupling-strength modifiers κ. The coefficients for
σ(tHW ) and σ(tHqb) include acceptance effects that differ between analysis categories as described
in the text. Other coefficients are derived following the methodology in refs. [6, 60].

B.2 Parameterization with universal coupling modifiers to weak gauge bosons

and fermions

In this model, two universal coupling modifiers are considered: κV = κW = κZ which
modifies Higgs boson couplings to gauge bosons, and κF = κt = κb = κc = κτ = κµ,
modifying couplings to fermions. The gg → H, H → γγ and gg → ZH loops are described
using their resolved parameterizations as a function of κV and κF . The measurement in the
plane of (κV , κF ) is shown in figure 23. Only the region κF > 0 is considered, since κF < 0
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0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

V
κ

0.6

0.8

1

1.2

1.4

1.6

1.8

F
κ

ATLAS
-1

 = 13 TeV, 139 fbs

γγ →H 

SM

Observed best fit

Observed 68 % CL

Observed 95 % CL

Figure 23. Negative log-likelihood contours at 68% CL (dashed line) and 95% CL (solid line) in
the (κV , κF ) plane of modifiers applied to Higgs boson couplings to gauge bosons (κV ) and fermions
(κF ). Loop processes and the Higgs boson total width ΓH are parameterized as a function of κV

and κF . The best-fit point is indicated by a cross, and the SM prediction by a star.

was excluded with a significance larger than 4σ in analyses of the Run 1 data set [168]. The
best-fit values in data are

κV = 1.02+ 0.06
− 0.05

κF = 1.00+ 0.16
− 0.13.

A linear correlation coefficient of 77% between the parameters is observed.

B.3 Generic parameterization using ratios of coupling modifiers

In this model, the effective parameterization of the gg → H and H→ γγ processes is used,
and a common coupling modifier κV = κW = κZ is introduced for couplings to both W and
Z bosons. The κτ parameter is fixed to 1 and κb = κt is assumed. The total width of the
Higgs boson is expressed using the effective parameterization ΓH = κ2

HΓSM
H , where ΓSM

H is
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Parameter
Definition in terms

of κ modifiers
Result

κgγ κgκγ/κH 1.02± 0.06

λV g κV /κg 1.01± 0.11

λtg κt/κg 0.95 + 0.15
− 0.16

Table 15. Best-fit values and uncertainties in the coupling-modifier ratio model. The second
column expresses the measured parameters in terms of the coupling modifiers. The SM corresponds
to κgγ = λtg = λV g = 1.

the SM value of the width and κH is a coupling modifier. The measurement parameters are

κgγ = κgκγ/κH

λV g = κV /κg

λtg = κt/κg,

the first corresponding to the modifier for the gg → H→ γγ process, which is taken as a
reference, and the others two to ratios of coupling modifiers that can be measured without
assumptions about the total width of the Higgs boson. The λtg parameter is allowed to take
positive or negative values, while the other two parameters are positive by construction.
Results are shown in table 15. The negative log-likelihood scan of the λtg parameter is
shown in figure 24. Sensitivity to the sign of λtg is provided by the tH and gg → ZH

processes, and leads to exclusion of the region λtg < 0 with a significance of 2.1σ.
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Expected

Observed

Figure 24. Negative log-likelihood scan as a function of λtg = κt/κg in the coupling-modifier ratio
model described in the text. The solid curve corresponds to observed data, and the dotted curve to
an Asimov data set generated under the SM hypothesis.

C Effective field theory interpretation

C.1 Measurement of single SMEFT parameters

This appendix presents the complete results of the single-parameter SMEFT measurements
described in section 10.2, and illustrated in figure 17. The SMEFT parameters corresponding
to each operator in table 11 are individually measured, in each case while fixing the other
SMEFT parameters to 0 as in the SM. Confidence intervals at 68% and 95% CL are
computed both in observed data and in an Asimov data set generated under the SM
hypothesis. Results for the parameters ck are reported in table 16, except those where the
confidence intervals extend beyond the region |ck| ≤ 20 where the SMEFT framework is
considered valid.
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Parameter

Observed Expected

linear linear+quadratic linear linear+quadratic

Value
Uncertainty

Value
Uncertainty Uncertainty Uncertainty

68% CL 95% CL 68% CL 95% CL 68% CL 95% CL 68% CL 95% CL

cHW −0.0035 +0.0071
−0.0077

+0.014
−0.016 −0.0034 +0.0071

−0.0073
+0.014
−0.014

+0.0070
−0.0075

+0.013
−0.015

+0.0072
−0.0072

+0.014
−0.014

cHB −0.0011 +0.0023
−0.0025

+0.0044
−0.0050 −0.0011 +0.0023

−0.0023
+0.0046
−0.0046

+0.0022
−0.0024

+0.0043
−0.0049

+0.0023
−0.0023

+0.0046
−0.0046

cHWB 0.0020 +0.0044
−0.0042

+0.0090
−0.0079 0.0019 +0.0042

−0.0041
+0.0083
−0.0081

+0.0043
−0.0041

+0.0088
−0.0077

+0.0042
−0.0042

+0.0083
−0.0082

cHG 0.0011 +0.0030
−0.0028

+0.0062
−0.0053 0.0011 +0.0029

−0.0028
+0.0059
−0.0055

+0.0030
−0.0027

+0.0061
−0.0052

+0.0029
−0.0028

+0.0059
−0.0054

cW −0.047 +0.098
−0.11

+0.19
−0.21 −0.047 +0.098

−0.11
+0.19
−0.21

+0.096
−0.10

+0.18
−0.21

+0.096
−0.10

+0.18
−0.21

cG 0.32 +1.5
−1.2

+3.4
−2.0 0.077 +0.13

−0.30
+0.22
−0.40

+1.5
−1.1

+3.4
−1.9

+0.18
−0.20

+0.28
−0.30

cuW −0.039 +0.080
−0.087

+0.15
−0.18 −0.039 +0.080

−0.087
+0.15
−0.18

+0.079
−0.083

+0.15
−0.17

+0.079
−0.083

+0.15
−0.17

cuB −0.021 +0.043
−0.046

+0.082
−0.094 −0.021 +0.043

−0.046
+0.082
−0.094

+0.042
−0.045

+0.080
−0.092

+0.042
−0.045

+0.080
−0.092

cuG 0.030 +0.078
−0.078

+0.16
−0.14 0.030 +0.077

−0.078
+0.16
−0.15

+0.079
−0.074

+0.16
−0.14

+0.078
−0.075

+0.16
−0.14

cuH −0.29 +1.4
−1.5

+2.7
−3.0 −0.30 +1.4

−1.6
+2.6
−3.3

+1.4
−1.5

+2.7
−3.0

+1.4
−1.5

+2.5
−3.3

cdH 0.63 +1.4
−1.3

+2.9
−2.5 0.61 +1.3

−1.3
+2.5
−2.7

+1.4
−1.3

+2.8
−2.4

+1.3
−1.4

+2.5
−2.7

ceH 5.8 +13
−12 – 1.9 +5.6

−5.7
+8.9
−8.9

+13
−12 – +9.1

−5.2
+12
−8.4

c
(3)
Hq −0.027 +0.091

−0.081
+0.19
−0.15 −0.037 +0.096

−0.21
+0.17
−0.34

+0.10
−0.089

+0.20
−0.17

+0.085
−0.12

+0.16
−0.29

c
(1)
Hq 1.9 +1.7

−2.0
+3.1
−4.1 0.029 +0.20

−0.22
+0.35
−0.37

+2.0
−2.3

+3.6
−4.8

+0.30
−0.28

+0.44
−0.41

c
(3)
Hl −0.15 +0.28

−0.28
+0.52
−0.58 −0.15 +0.28

−0.28
+0.52
−0.58

+0.26
−0.28

+0.50
−0.57

+0.26
−0.28

+0.50
−0.57

c
(1)
Hl – – – 4.4 +6.8

−6.9
+12
−12

+13
−15 – +16

−7.8 –

cHu −0.97 +0.79
−0.67

+1.7
−1.2 −0.14 +0.30

−0.24
+0.51
−0.41

+0.96
−0.82

+2.0
−1.5

+0.32
−0.43

+0.49
−0.61

cHd 3.4 +2.2
−2.6

+4.0
−5.4 0.070 +0.33

−0.36
+0.55
−0.60

+2.7
−3.1

+4.9
−6.5

+0.51
−0.44

+0.73
−0.67

cHe – – – 7.3 +10
−11 – – – – –

cH� 0.68 +1.5
−1.4

+3.1
−2.7 0.63 +1.4

−1.4
+2.7
−2.7

+1.5
−1.4

+3.0
−2.6

+1.4
−1.4

+2.8
−2.9

cHD −0.21 +0.42
−0.44

+0.79
−0.91 −0.21 +0.42

−0.45
+0.79
−0.93

+0.41
−0.43

+0.77
−0.88

+0.40
−0.43

+0.76
−0.89

c
(3)
qq 0.72 +3.4

−2.8
+7.3
−5.0 −0.20 +0.55

−0.18
+0.69
−0.32

+3.2
−2.6

+6.8
−4.7

+0.29
−0.31

+0.43
−0.46

c
(3)′
qq 0.042 +0.37

−0.28
+0.83
−0.50 −0.30 +0.52

−0.19
+0.67
−0.34

+0.38
−0.29

+0.84
−0.49

+0.21
−0.44

+0.36
−0.60

c
(1)
qq 2.0 +14

−11 – −0.20 +0.69
−0.30

+0.90
−0.52

+14
−11 – +0.44

−0.45
+0.67
−0.68

c
(1)′
qq 0.097 +0.79

−0.60
+1.7
−1.0 −0.50 +0.92

−0.31
+1.2
−0.57

+0.79
−0.61

+1.8
−1.0

+0.39
−0.73

+0.66
−1.0

c′
ll 0.30 +0.53

−0.56
+1.1
−1.0 0.30 +0.52

−0.56
+1.1
−1.0

+0.55
−0.51

+1.1
−0.98

+0.54
−0.51

+1.1
−0.99

cuu 1.4 +13
−9.9 – −0.25 +0.85

−0.37
+1.1
−0.64

+13
−9.9 – +0.53

−0.56
+0.81
−0.84

c′
uu 0.098 +0.80

−0.61
+1.8
−1.1 −0.50 +0.92

−0.31
+1.2
−0.57

+0.81
−0.61

+1.8
−1.1

+0.39
−0.72

+0.66
−1.0

c
(1)
qu – – – −0.30 +1.1

−0.48
+1.4
−0.81 – – +0.68

−0.70
+1.0
−1.0

c
(8)
qu 0.15 +1.3

−0.97
+2.8
−1.7 −1.8 +2.6

−0.82
+3.3
−1.5

+1.3
−0.97

+2.8
−1.7

+0.84
−2.3

+1.5
−3.0

c
(1)
qd – – – 0.75 +0.94

−2.4
+1.7
−3.2 – – +1.5

−1.5
+2.3
−2.3

c
(8)
qd 0.53 +5.5

−4.3
+12
−7.5 −2.3 +4.8

−2.3
+6.4
−3.9

+5.6
−4.3

+12
−7.5

+2.4
−4.1

+4.0
−5.8

c
(1)
ud – – – 0.75 +0.93

−2.4
+1.7
−3.1 – – +1.5

−1.5
+2.3
−2.3

c
(8)
ud 0.53 +5.5

−4.3
+12
−7.5 −2.5 +5.1

−2.0
+6.7
−3.6

+5.6
−4.4

+12
−7.6

+2.4
−4.1

+4.0
−5.7

Table 16. Measurement results for each SMEFT parameter individually, obtained from profile-
likelihood scans in which other SMEFT parameters are fixed to 0. Confidence intervals at 68%
and 95% CL are reported in data (observed) and in an Asimov dataset generated under the SM
hypothesis (expected). Results in the linear and linear+quadratic SMEFT parameterizations are
shown, for a scale Λ = 1 TeV. Confidence intervals for each parameter ck are reported, except if
they extend beyond the |ck| ≤ 20 region where the SMEFT framework is considered valid.
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C.2 Simultaneous measurement of SMEFT parameters

This appendix presents the complete results of the simultaneous measurement of SMEFT
parameters described in section 10.3, shown in part in table 12 and illustrated in figure 19.
The measurement parameters EVn are shown in table 17. Confidence intervals at 68% and
95% CL for the EVn parameters defined in table 17 are computed both in observed data and
in an Asimov data set generated under the SM hypothesis. Results for the linear SMEFT
parameterization are shown in table 18 and for the linear+quadratic parameterization in
table 19.
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Eigenvalue Eigenvector

350000 −0.53cHG−0.02cuG +0.23cHW +0.71cHB−0.4cHWB +0.02cW +0.02cuW +0.04cuB

34000 −0.85cHG−0.02cuG−0.14cHW−0.44cHB +0.25cHWB−0.01cW−0.01cuW−0.02cuB +

0.01c
(3)
Hq

110 −0.01cHG+0.05cuG−0.17cHW +0.03cHB−0.04cHWB−0.01c
(3)
Hl−0.98c

(3)
Hq−0.07cHu+

0.02cHd + 0.03c
(1)
Hq + 0.01c

(1)′
qq + 0.03c

(3)′
qq + 0.01c′

uu

20 −0.01cHG +0.68cuG−0.06cuH−0.08cHW +0.01cHB−0.04cHWB +0.13c
(3)
Hl−0.07c′

ll−
0.01cHD + 0.08c

(3)
Hq + 0.14cG + 0.01c

(1)
qq + 0.27c

(1)′
qq + 0.06c

(3)
qq + 0.56c

(3)′
qq + 0.02cuu +

0.26c′
uu + 0.04c

(8)
ud + 0.17c

(8)
qu + 0.04c

(8)
qd

2.9 −0.02cHG +0.64cuG−0.09cuH−0.24cHW +0.04cHB−0.06cHWB +0.15c
(3)
Hl−0.09c′

ll−
0.01cHD + 0.05c

(3)
Hq + 0.02cHu − 0.02c

(1)
Hq − 0.19cG − 0.02c

(1)
qq − 0.28c

(1)′
qq − 0.04c

(3)
qq −

0.52c
(3)′
qq − 0.01cuu − 0.27c′

uu − 0.03c
(8)
ud − 0.16c

(8)
qu − 0.03c

(8)
qd

1.8 −0.24cuG +0.01cuH−0.9cHW +0.21cHB−0.14cHWB +0.01cuB−0.11c
(3)
Hl +0.01cHD +

0.15c
(3)
Hq+0.1cHu−0.03cHd−0.08c

(1)
Hq+0.03cG+0.05c

(1)′
qq +0.08c

(3)′
qq +0.05c′

uu+0.03c
(8)
qu

0.89 +0.03cuG +0.03cuH +0.09cHW +0.15cHB +0.32cHWB +0.02c
(3)
Hl +0.01c′

ll +0.05cHD−
0.1c

(3)
Hq + 0.83cHu − 0.25cHd − 0.31c

(1)
Hq − 0.04cHe − 0.05c

(1)
Hl

0.075 +0.27cuG +0.38cuH +0.02cHW +0.06cHB +0.1cHWB +0.02cuW −0.78c
(3)
Hl +0.37c′

ll +

0.07cHD + 0.01c
(3)
Hq − 0.04cHu + 0.09c

(1)
Hq + 0.09cG − 0.03c

(1)′
qq − 0.06c

(3)
qq − 0.04c

(3)′
qq −

0.03c′
uu − 0.02c

(8)
qu

0.038 +0.01cuG+0.03cuH +0.09cHW−0.38cHB−0.65cHWB−0.08cuW−0.17c
(3)
Hl +0.03c′

ll−
0.08cHD − 0.02c

(3)
Hq + 0.13cHu + 0.04cHd − 0.56c

(1)
Hq + 0.09cHe + 0.12c

(1)
Hl + 0.02cG +

0.18c
(3)
qq − 0.02c

(3)′
qq

0.027 +0.06cuH +0.02cHW−0.09cHB−0.13cHWB +0.37cuW +0.05c
(3)
Hl−0.02c′

ll +0.02cHd−
0.14c

(1)
Hq+0.02cHe+0.03c

(1)
Hl−0.05cG+0.04c

(1)′
qq −0.89c

(3)
qq +0.06c

(3)′
qq +0.03c′

uu+0.02c
(8)
qu

0.011 +0.04cuH−0.03cHB−0.05cHWB−0.02cuW −0.1c
(3)
Hl +0.03c′

ll +0.06cHu−0.05cHd +

0.11c
(1)
Hq + 0.01cHe + 0.02c

(1)
Hl − 0.95cG + 0.15c

(1)′
qq + 0.05c

(3)
qq + 0.11c

(3)′
qq + 0.13c′

uu −
0.01c

(1)
qu + 0.09c

(8)
qu

0.0067 −0.01cuG−0.15cuH +0.01cHW −0.2cHB−0.36cHWB +0.02cuW −0.13c
(3)
Hl−0.16c′

ll−
0.06cHD + 0.37cHu − 0.3cHd + 0.69c

(1)
Hq + 0.1cHe + 0.14c

(1)
Hl + 0.14cG − 0.02c

(1)′
qq −

0.05c
(3)
qq − 0.01c

(3)′
qq − 0.02c′

uu − 0.01c
(8)
qu

Table 17. Measurement directions corresponding to the 12 largest eigenvalues of the Fisher
information matrix of the SMEFT interpretation of the STXS measurement, shown as a decomposition
in terms of Wilson coefficients in the Warsaw basis. The information matrix is obtained from the
covariance matrix C−1

STXS of the STXS measurement, computed using an Asimov data set generated
in the SM hypothesis, propagated to the SMEFT measurement using the linear parameterization.
Each linear combination is normalized to unit Euclidean norm. Only Wilson coefficients with a
coefficient larger than 0.01 are shown.
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Model parameter Observed Expected

Value
Uncertainty Uncertainty

68% CL 95% CL 68% CL 95% CL

EV1 −0.0008 +0.0017
−0.0018

+0.0032
−0.0037

+0.0016
−0.0018

+0.0031
−0.0036

EV2 0.000 ±0.006 +0.012
−0.010

+0.006
−0.005

+0.011
−0.010

EV3 0.04 ±0.10 +0.18
−0.21

+0.09
−0.10

+0.18
−0.20

EV4 −0.04 +0.25
−0.22

+0.5
−0.4

+0.24
−0.21

+0.5
−0.4

EV5 −0.2 ±0.6 +1.2
−1.3 ±0.6 +1.1

−1.3

EV6 0.2 ±0.8 +1.7
−1.6

+0.8
−0.7 ±1.5

EV7 −1.7 ±1.0 +2.0
−1.3

+1.1
−1.0

+2.2
−2.1

EV8 −0.7 +3.5
−3.2

+7
−6

+3.9
−3.4

+8
−7

EV9 7.5 +2.5
−5.2

+2.5
−11

+5
−5

+10
−11

EV10 0 +7
−9

+8

−19
+5
−7

+9
−16

EV11 −6 +9
−10

+18
−19 ±10 ±19

EV12 3 +12

−13
+12

−25 ±12 ±24

Table 18. Measured values of the EVn parameters in data (observed) and in an Asimov data
set generated under the SM hypothesis (expected). The linear SMEFT parameterization is used.
Numbers in bold script indicate that the uncertainty band is truncated at the value for which the
model pdf becomes negative.
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Model parameter Observed Expected

Value
Uncertainty Uncertainty

68% CL 95% CL 68% CL 95% CL

EV1 0.004 +0.007
−0.010

+0.014
−0.049

+0.14
−0.01

+0.20
−0.03

EV2 −0.006 +0.008
−0.009

+0.017
−0.030

+0.006
−0.095

+0.014
−0.16

EV3 0.04 +0.11
−0.08

+0.37
−0.21

+0.14
−0.11

+0.40
−0.27

EV4 −0.08 +0.29
−0.35

+0.5
−1.2

+0.23
−0.48

+0.5
−1.1

EV5 0.29 +0.30
−0.69

+0.7
−2.2

+0.5
−0.6

+0.9
−1.7

EV6 0.0 +0.8
−0.5

+1.7
−1.0

+0.9
−0.7

+2.2
−1.2

EV7 −0.9 +1.2
−0.5

+1.4
−1.5

+0.7
−1.7

+1.2
−3.3

EV8 −1.2 +2.5
−1.0

+10
−1.8

+3.1
−1.7

+9.0
−2.4

EV9 1.7 +1.4
−1.6

+4.8
−3.3

+3.9
−1.8

+8.4
−2.9

EV10 0.4 +0.5
−0.6 ±1.2 +0.9

−0.5
+1.8
−0.8

EV11 0.05 +0.47
−0.21

+1.6
−0.5

+0.7
−0.4

+1.8
−0.6

EV12 1.2 +0.8
−1.0

+2.3
−2.1

+2.4
−1.1

+4.8
−1.8

Table 19. Measured values of the EVn parameters in data (observed) and in an Asimov data set
generated under the SM hypothesis (expected). The linear+quadratic SMEFT parameterization
is used.
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C.3 Results including SMEFT propagator corrections

This appendix presents results similar to those in section 10, but with SMEFT corrections
applied to the mass and width parameters of off-shell SM particles, as implemented in the
SMEFTsim generator [29]. These corrections are applied to the propagators of the W and
Z boson, the Higgs boson and the top quark in each process, at first order in the SMEFT.
These corrections are only available for the linear SMEFT parameterization.

Table 20 shows the observed results with the propagator corrections included, for
comparison with the ones in table 18. The EVn parameters are defined in the same way as
for the baseline linear parameterization. Differences from the baseline results are visible
in the measurement of EV3, due to the impact of W and Z propagator corrections on the
qq̄′ → V H processes. Small changes in the principal components of the measurements due
to the propagator corrections also lead to changes in the uncertainties in other parameters,
in particular EV1. This also leads to generally larger correlations between the measurements
than in the baseline linear parameterization, as shown in figure 25.
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Model parameter Value
Uncertainty

68% CL 95% CL

EV1 0.0001 +0.0031
−0.0038

+0.006
−0.007

EV2 0.000 ±0.006 +0.012
−0.010

EV3 0.05 ±0.12 +0.22
−0.26

EV4 −0.03 +0.25
−0.23

+0.5
−0.4

EV5 −0.2 ±0.6 +1.2
−1.3

EV6 0.2 ±0.8 +1.7
−1.6

EV7 −2.0 +1.1
−0.9

+2.2
−0.9

EV8 −0.5 +3.4
−3.2

+7
−6

EV9 8.2 +2.5
−5.8

+2.5
−12

EV10 1 +7
−9

+8

−19

EV11 −5 +9
−10

+18
−19

EV12 4 +12
−13

+13

−25

Table 20. Observed values of the EVn parameters in data together with their 68% CL and 95% CL
intervals in data for the linear SMEFT parameterization including corrections to the W , Z, Higgs
boson and top quark propagators as described in the text. Numbers in bold script indicate than the
uncertainty band is truncated at the value for which the probability distribution function of the fit
becomes negative.
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Figure 25. Observed linear correlation coefficients of the EVn parameters in the linear SMEFT
parameterization including corrections to W , Z, Higgs boson and top quark propagators.
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