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Abstract The double differential cross sections of the
Drell-Yan lepton pair (£+£~, dielectron or dimuon) produc-
tion are measured as functions of the invariant mass mgy,
transverse momentum pt(£¢), and ¢} The ¢} observable,
derived from angular measurements of the leptons and highly
correlated with pr(££), is used to probe the low-pr(££)
region in a complementary way. Dilepton masses up to 1 TeV
are investigated. Additionally, a measurement is performed
requiring at least one jet in the final state. To benefit from
partial cancellation of the systematic uncertainty, the ratios
of the differential cross sections for various my, ranges to
those in the Z mass peak interval are presented. The collected
data correspond to an integrated luminosity of 36.3 fb—! of
proton—proton collisions recorded with the CMS detector at
the LHC ata centre-of-mass energy of 13 TeV. Measurements
are compared with predictions based on perturbative quan-
tum chromodynamics, including soft-gluon resummation.

1 Introduction

The Drell-Yan (DY) production of charged-lepton pairs in
hadronic collisions [1] provides important insights into the
partonic structure of hadrons and the evolution of the parton
distribution functions (PDFs). At leading order (LO) in per-
turbative quantum chromodynamics (pQCD), the DY process
is described in terms of an s-channel Z/y* exchange process
convolved with collinear quark and antiquark parton distribu-
tion functions of the proton. At LO, the lepton pair transverse
momentum pr(££), corresponding to the exchanged boson
transverse momentum, is equal to zero. At higher orders,
initial-state QCD radiation gives rise to a sizable pt(€f).
Whereas the spectrum for large pt(€f) values is expected
to be described through fixed-order calculations in pQCD,
at small values (pr < O(mygg)), where myg is the invari-
ant mass of the lepton pair, soft-gluon resummation to all
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orders is required [2,3]. In addition, the low-pt(££) region
also includes the effects of the intrinsic transverse motion of
the partons in the colliding hadrons that has to be extracted
from data and parameterized. The resummation functions
are universal and obey renormalisation group equations, pre-
dicting a simple scale dependence in the leading logarithmic
approximation, where the scale is given by my,. Therefore,
measuring the pt(££) spectrum in a wide mgp range tests
the validity of the resummation approach and the precision
of different predictions. Calculations for inclusive DY pro-
duction as a function of m¢, and pt(€€) are available up to
next-to-next-to-leading order (NNLO) in pQCD [4-7]. Soft-
gluon resummation can be computed analytically, either in
transverse momentum dependent parton distributions (TMD)
or in parton showers of Monte Carlo (MC) event generators
matched with matrix element calculations [8—15].

The pr(££) resolution is dominated by the uncertainties
in the magnitude of the transverse momenta of the leptons,
whereas the measurement precision of the lepton angle does
not contribute significantly. The kinematic quantity ¢, [16—
18], derived from these lepton angles, is defined by the equa-
tion:

T — Ag
(p;;ztan( 5

The variable Ag is the opening angle between the leptons
in the plane transverse to the beam axis. The variable 9,;‘
is the scattering angle of the dileptons with respect to the
beam in the longitudinally boosted frame where the lep-
tons are back to back. It is related to the pseudorapidities
of the oppositely charged leptons by the relation cos(6,) =
tanh [(n~ — n*)/2]. The variable ¢}, by construction greater
than zero, is closely related to the normalized transverse
momentum pt(£€)/mge [16]. Since (p;‘ depends only on
angular variables, its resolution is significantly better than
that of the transverse momentum, especially at low-pt(€£)
values, but its interpretation in terms of initial-state radiation
(ISR) is not as direct as that of p(££).

) Sin(0?). ()
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The DY process in the presence of one jet is a comple-
mentary way to investigate the initial-state QCD radiations.
The requirement of a minimal transverse momentum asso-
ciated with this jet is reflected in the pt(££) distribution by
momentum conservation. When more hadronic activity than
a single jet is present in the events, the transverse momen-
tum balance between the leading jet and the lepton pair has
a broad distribution. As a consequence, the full pt(€€) spec-
trum in the presence of jets brings additional information,
since at small values it is sensitive to numerous hard QCD
radiations. Furthermore, DY production in association with
at least one jet also brings up contributions where virtual
partons acquire transverse momentum, whose collinear radi-
ations will have a significant angle with respect to the beam,
which contributes as a component of the final pt(££).

This paper presents a DY differential cross section mea-
surement in bins of m ¢y, over the range of 50 GeV to 1 TeV, as
functions of pt(¢£) and (p;; for inclusive DY production, and
in events with at least one jet as a function of pt(££). The data
were collected in 2016 with the CMS detector at the CERN
LHC, corresponding to an integrated luminosity of 36.3 fb~!
of proton—proton (pp) collisions at a centre-of-mass energy
of /s = 13 TeV. To reduce the uncertainties, the measured
cross sections combine measurements of separately extracted
cross sections for the electron and the muon channels. The
measurements presented in this paper are extensively dis-
cussed in Ref. [19].

Complementary measurements of the DY process have
been performed recently by the CMS, ATLAS, and LHCb
Collaborations at the CERN LHC [20-38] and by the CDF
and DO Collaborations at the Fermilab Tevatron [39—45]. The
cross section measurements presented in this paper extend
the mass range below and above the Z boson resonance with
respect to the previous CMS measurements of pt(€£) depen-
dence.

The outline of this paper is the following: in Sect.2 a
brief description of the CMS detector is given. In Sect.3
the selection criteria of the measurement are described. The
simulation samples used in the measurement are described
in Sect. 4. Section 5 explains the details of the unfolding pro-
cedure and the systematic uncertainties are given in Sect. 6.
Theory predictions used for comparison with the measure-
ments are described in Sect.7. The results are presented in
Sect. 8 and a summary of the paper is given in Sect. 9.

2 The CMS detector

The central feature of the CMS apparatus is a supercon-
ducting solenoid of 6 m internal diameter, providing a mag-
netic field of 3.8 T. Within the solenoid volume are a sili-
con pixel and strip tracker, a lead tungstate crystal electro-
magnetic calorimeter (ECAL), and a brass and scintillator
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hadron calorimeter (HCAL), each composed of a barrel and
two endcap sections. Forward calorimeters extend the 7 cov-
erage provided by the barrel and endcap detectors. Muons
are detected in gas-ionization chambers made of detection
planes using three technologies: drift tubes, cathode strip
chambers, and resistive plate chambers, embedded in the
steel flux-return yoke outside the solenoid.

The global event reconstruction (also called particle-flow
event reconstruction [46]) reconstructs and identifies each
individual particle in an event, with an optimized combina-
tion of all subdetector information. In this process, the identi-
fication of the particle type (photon, electron, muon, charged
or neutral hadron) plays an important role in the determina-
tion of the particle direction and energy.

Electrons are identified as a primary charged particle track
and potentially many ECAL energy clusters correspond-
ing to this track extrapolation to the ECAL and to possible
bremsstrahlung photons emitted along the way. The elec-
tron momenta are estimated by combining energy measure-
ments in the ECAL with momentum measurements in the
tracker [47]. The momentum resolution for electrons with
pt ~ 45 GeV from Z — ee decays ranges from 1.7 to 4.5%.
It is better in the barrel region than in the endcaps, and also
depends on the bremsstrahlung energy emitted by the elec-
tron as it traverses the material in front of the ECAL.

Muons are identified as tracks in the central tracker con-
sistent with either a track or several hits in the muon system,
and associated with calorimeter deposits compatible with the
muon hypothesis. The reconstructed muon global track, for
muons with 20 < pt < 100 GeV, has a relative transverse
momentum resolution of 1.3-2.0% in the barrel and better
than 6% in the endcaps. The pr resolution in the barrel is
better than 10% for muons with pt up to 1TeV [48]. The
resolution is further improved with corrections derived from
the Z mass distribution [49].

Charged hadrons are identified as charged particle tracks
not identified as electrons or as muons. Finally, neutral
hadrons are identified as HCAL energy clusters not linked to
any charged-hadron trajectory, or as a combined ECAL and
HCAL energy excess with respect to the expected charged-
hadron energy deposit. For each event, hadronic jets are clus-
tered from these reconstructed particles using the infrared-
and collinear-safe anti-kt algorithm [50,51] with a distance
parameter of 0.4. Jet momentum is determined as the vecto-
rial sum of all particle momenta in the jet, typically within
5-10% of the true momentum over the entire pt spectrum
and detector acceptance.

The primary vertex (PV) is taken to be the vertex cor-
responding to the hardest scattering in the event, evaluated
using tracking information alone, as described in Section
9.4.1 of Ref. [52].

Events of interest are selected using a two-tiered trigger
system. The first level (L1), composed of custom hardware
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processors, uses information from the calorimeters and muon
detectors to select events at a rate of around 100 kHz within
a fixed latency of about 4 s [53]. The second level, known
as the high-level trigger, consists of a farm of processors
running a version of the full event reconstruction software
optimized for fast processing, and reduces the event rate to
around 1 kHz before data storage [54].

A more detailed description of the CMS detector is
reported in Ref. [55], together with a definition of the coor-
dinate system used and the relevant kinematic variables.

3 Event selection

The initial event selection requires a dielectron trigger with a
pr threshold of 23 and 12 GeV on the two leading electrons
in the electron channel. In the muon channel we require a
dimuon trigger with prt thresholds of 18 and 7GeV or a
single-muon trigger with a pr threshold of 24 GeV. The final
selection is restricted to the region where the triggers are fully
efficient: pr > 25 GeV for the leading lepton, pt > 20 GeV
for the subleading lepton and |n| < 2.4 for both channels.

An event must contain exactly two isolated leptons of the
same flavour (with the isolation criteria as detailed in Ref.
[26]). In addition the two leptons must have opposite charges.
Events with a third lepton with pt greater than 10 GeV and
[n] < 2.4 are vetoed.

Due to the high instantaneous luminosity of the LHC,
additional proton—proton interactions occur during the same
bunch crossing (pileup) that contribute additional overlap-
ping tracks and energy deposits in the event, and result
in an apparent increase of jet momenta. To mitigate this
effect, tracks identified as originating from pileup vertices
are discarded and an offset correction is applied to cor-
rect for the remaining neutral pileup contributions [56].
The two identified leptons can be reconstructed as jets.

Those jets are disregarded by requiring a separation, AR =

\/ (An)? + (A¢)?, between the reconstructed jets and
these lepton candidates to be larger than 0.4.

To suppress the contamination of jets coming from pileup,
amultivariate discriminant is used. The pileup contamination
is also reduced by the choice of the final selection: jets are
required to have a minimum transverse momentum of 30 GeV
and, to ensure high-quality track information, they are limited
to a rapidity range of |y| < 2.4.

To reduce the tt background, events containing one or
more b tagged jets are vetoed. The medium discrimination
working point of the combined secondary vertex b tagging
algorithm [57] is used. The effect on the signal is small and
is corrected for in the unfolding procedure.

The effects of finite detector resolution and selection
efficiency are corrected by using the unfolding procedure

described in Sect.5. Scale factors are applied to the simula-
tion used for the unfolding, to correct for differences with
respect to the data in the efficiencies of the different selec-
tions: trigger, lepton identification, lepton isolation, and b-
tagged jet veto. For the trigger, the factor is given as a function
of |n| of the two leptons and is applied once per lepton pair.
The value of the scale factor is close to one. When dealing
with the identification and isolation efficiencies, the scale
factor is given per lepton as a function of its pt and ||, and
applied to each of the two selected leptons [26].

4 Simulated samples and backgrounds

For the simulation of the Z/y* process (including the
tt1~ background), a sample is generated with
MADGRAPHS_aMC@NLO[58] version 5.2.2.2 (shortened to
MG5_aMC) using the FxFx jet merging scheme [59]. The
parton shower, hadronization, and QED final-state radia-
tion (FSR) are calculated with PYTHIA 8.212 [60] using
the CUETP8MI1 tune [61]. The matrix element calcula-
tions include Z/y* 4 0, 1,2 jets at next-to-leading order
(NLO), giving an LO accuracy for Z/y* + 3 jets. The NLO
NNPDF 3.0 [62] is used for the matrix element calculation.
In control plots and when comparing to the measurement,
this prediction is normalized to the cross section obtained
directly from the generator, 1977 pb per lepton channel (for
Myp > 50 GeV).

Other processes that can give a final state with two oppo-
sitely charged same-flavour leptons are WW, WZ, ZZ, y y, tt
pairs, and single top quark production. The tt and single top
backgrounds are generated at NLO using the POWHEG ver-
sion 2 [63-66] interfaced to PYTHIA 8. Background samples
corresponding to diboson electroweak production (denoted
VV in the figure legends) [67] are generated at NLO with
POWHEG interfaced to PYTHIA 8 (WW) or at LO with PYTHIA
8 alone (WZ and ZZ). These samples are generated using
NLO NNPDF 3.0 for the matrix element calculation. The
y ¥y background process leading to two charged leptons in the
final state, yy — £, is simulated using LPAIR [68,69]
interfaced with PYTHIA 6 and using the default y-PDF of
Suri—Yennie [70]. This contribution is split into three com-
ponents, since the interaction at each proton vertex process
can be elastic or inelastic.

The total cross sections of WZ and ZZ diboson samples are
normalized to the NLO prediction calculated with MCFM v6.6
[71], whereas the cross sections of the WW samples are nor-
malized to the NNLO prediction [72]. The total cross sec-
tion of the tt production is normalized to the prediction with
NNLO accuracy in QCD and next-to-next-to-leading loga-
rithmic (NNLL) accuracy in soft gluon resummation calcu-
lated with ToP++ 2.0 [73]. The single top and y y background
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distributions are normalized to the cross sections calculated
by their respective event generators.

It is possible for hadrons to mimic the signature of an
electron in the detector. The main processes that contribute
to this background are W + jet production, when the W decays
leptonically, and QCD multijet events. Such backgrounds are
nonnegligible only in the electron channel.

The contamination of the signal region by events con-
taining hadrons misidentified as electrons is estimated using
a control region where two electrons of the same sign are
required. This control region mainly contains events with
hadrons misidentified as electrons and events originating
from the DY process when the charge of one electron is incor-
rectly attributed. The probability of charge misidentification
is obtained as a function of pr and 7 of each electron in the
Z peak region (81 < mygy < 101 GeV), where the hadron
contamination is negligible even in the control region. These
probabilities are then used to estimate the charge misidenti-
fication rate for other values of my,. The difference between
the observed number of events in the control region and the
estimated charge misidentification rate is assumed to be the
contamination from hadron background. We observe that the
numbers of misidentified-lepton events in the same-sign elec-
tron sample and in the signal (opposite-sign electron) sample
are compatible.

The number of events at the reconstructed level is com-
pared with the sum of the contributions from signal and back-
grounds. In Fig. 1, the dilepton mass spectrum is shown for
both the electron and and the muon channels, whereas Fig. 2
shows the pr(££) distributions in various mge bins for the
electron channel only. Globally, the background contamina-
tion is lower than 1%. The background becomes around 10%
for my¢ outside of the Z boson mass peak and up to 30% in
some bins. The simulated samples are processed through a
GEANT4 [74] based simulation of the CMS detector, with the
same reconstruction algorithms as of data. They also include
a pileup profile that is reweighed to match the profile of the
data.

5 Measured observables and unfolding procedure

The measurement of the DY cross section is carried out with
respect to the pt and (pj; of the dilepton pairs produced inclu-
sively, and with respect to pr for pairs produced in associ-
ation with at least one jet. For the inclusive case, the mea-
surement is divided into five invariant mass bins: 50-76, 76—
106, 106-170, 170-350, 350-1000 GeV; the last bin is not
included when requiring at least one jet because of the small
number of events available. The measurement of the ratio of
cross section in mass bins 50-76, 106-170, 170-350, 350—
1000 GeV to the cross section around the Z mass peak(76—
106 GeV) is also performed. The bin widths are chosen to be
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Fig. 1 Distributions of events passing the selection requirements in the
muon (left) and electron channels (right). Each plot also presents in the
lower part a ratio of simulation over data. Only statistical uncertainties
are shown as error bars on the data points, whereas the ratio presents the
statistical uncertainty in the simulation and the data. The plots show the
number of events without normalization to the bin width. The different
background contributions are discussed in the text

as small as possible, based on the detector resolution and the
number of events.

To correct for the detector resolution and the efficiency of
the selection, an unfolding procedure is applied to the mea-
sured distributions one dimensionally in each mass bin. To
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Fig. 2 Distributions of events
passing the selection
requirements in the electron
channel as a function of the
dilepton pr in five ranges of
invariant mass: 50-76 GeV
(upper left), 76-106 GeV (upper
right), 106170 GeV (middle
left), 170-350 GeV (middle
right), and 350-1000 GeV
(lower). More details are given
in Fig. 1
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obtain the particle-level distributions from the reconstructed
distributions, the unfolding uses a response matrix based on
the simulated signal sample. To unfold, the D’ Agostini iter-
ative method with early stopping is used as implemented in
ROOUNFOLD [75]. The result, converging towards the maxi-
mum likelihood estimate, is affected by fluctuations increas-
ing with the number of iterations. The fluctuations are stud-
ied using pseudo-experiments for each number of iterations
following the method used in Ref. [76]. The procedure is
stopped just before the fluctuations become significant with
respect to the statistical uncertainty. The number of iterations
ranges between 4 and 25.

The particle level refers to stable particles (ct > 1cm),
other than neutrinos, in the final state. To correct for energy
losses due to QED FSR, leptons are “dressed”, i.e., all the
prompt photons with a distance smaller than AR = 0.1 to
the lepton axis are added to the lepton momentum. The cross
section is extracted in the following phase space: leading and
subleading dressed leptons satisfying pt > 25 and 20 GeV
and |n| < 2.4. When at least one additional jet is required,
it must satisfy pt > 30GeV, |y| < 2.4, and be spatially
separated from the dressed leptons by AR > 0.4.

The cross sections are first extracted separately for the
electron and muon channels. They are compatible for all stud-
ied distributions and the two channels are combined to reduce
the statistical uncertainties. The combined differential cross
sections are calculated bin-by-bin as the weighted mean val-
ues of the differential cross sections of the two channels. The
systematic and statistical uncertainties are obtained using the
linear combination method described in Ref. [77], consider-
ing as fully correlated the uncertainties in the jet energy scale
and resolution, the pileup, the background subtraction, b tag-
ging, and the integrated luminosity. Other uncertainties are
considered as uncorrelated.

6 Systematic uncertainties

Several sources of uncertainties in the measurement are con-
sidered. The integrated luminosity is measured with a preci-
sion of 1.2% [78], which results in a relative uncertainty of
almost the same value in the measurement. Small variations
are caused by the subtraction of the background contributions
estimated from the simulation.

The uncertainties coming from the lepton trigger efficien-
cies are estimated by varying the applied scale factors up
and down by one standard deviation. The uncertainties from
identification and reconstruction efficiencies are estimated
for various sources including QED FSR, resolution, back-
ground modeling, and the tag object selection in the tag-and-
probe procedure, as well as the statistical component treated
separately for each scale factor in p and 7 of the lepton [26].
The efficiency uncertainties include a one percent effect in
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the L1 trigger caused by a timing problem in ECAL end-
caps. The lepton energy scale uncertainties are estimated by
varying the lepton energy and pr by +1 standard deviation
(reach 0.75% (0.5%) for electrons (muons) depending on 1
and pr). Uncertainties coming from the lepton energy reso-
lution are estimated by spreading the lepton energy using the
generator-level information.

The uncertainty in the jet energy scale is estimated by
varying the jet momenta in data by 2.5-5%, depending on
the energy and pseudorapidity of the jet. The uncertainty in
the jet energy resolution is estimated by varying the smearing
factor used to match the simulated jet energy resolution to
data by +£1 standard deviation around its central value.

A systematic uncertainty is attributed to the normalisation
of the background samples estimated by Monte Carlo event
generators. The theoretical uncertainty in the cross section
of the dominant tt background is ~6%, using the TOP++ 2.0
program and including scale and PDF variations. The uncer-
tainties in the other background cross sections are smaller. In
particular, it has been verified that 6% covers the differences
of the yy — €T¢ samples generated using Suri—Yennie
and LuxQED [79,80] photon PDFs. In a conservative way,
the uncertainties in all other Monte Carlo based background
estimates are also estimated to be 6%. This uncertainty is
applied to fully-elastic, semi- and fully-inelastic cases.

The uncertainty in the misidentified electron background
estimation using same-sign events is obtained using an uncer-
tainty in the charge misidentification estimation of about 10%
per electron at pt(e) = 150 GeV, rising with pt(e). A 20%
total uncertainty in the charge misidentification is used and
propagated to the estimate of this background.

Alternative pileup profiles are generated by varying the
amount of pileup events by 5%, and the difference to the
nominal sample is propagated to the final results.

The unfolding model uncertainty is estimated by reweight-
ing the simulated sample to match the data shape for each
distribution, and using this as an alternate model for unfold-
ing. The difference with respect to the results obtained with
the simulated sample is assigned as the uncertainty. The sta-
tistical uncertainty coming from the limited sample size is
also included, provided by the ROOUNFOLD package.

The systematic uncertainties are propagated to the mea-
surement through the unfolding procedure by computing new
response matrices varying the quantities by one standard
deviation up and down. All the experimental uncertainties are
symmetrized by taking the average of the deviations from the
central value. The uncertainty sources are independent and
the resulting uncertainties are added in quadrature.

For the inclusive measurement the main sources of uncer-
tainties are the integrated luminosity measurement, the iden-
tification and trigger efficiency corrections of the leptons,
and the energy scale of the leptons. For the DY + >1 jet case,
the major uncertainties come from the jet energy scale and
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or ¢y bin, all uncertainties are taken as fully correlated 7 Theory predictions
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and Monte Carlo statistical uncertainties. The total uncer-  The measured data are compared with the MG5_aMC +

tainty corresponds to the quadratic sum of the sources. The  pyTiA 8 baseline sample described in Sect.4. The QCD
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scale uncertainties are estimated by varying the renormalisa-
tion and factorisation scales simultaneously by factors of 2
and 1/2 (omitting the variations in opposite direction and tak-
ing the envelope). The strong coupling («s) and PDF uncer-
tainties are estimated as the standard deviation of weights
from the replicas provided in the NNPDF 3.0 PDF set [62].
An event sample at NNLO with a jet merging method is
generated with MINNLOpg [81,82]. The coupling o is eval-
uated independently at each vertex at a scale that depends on
the kinematic configuration. Sudakov form factors are used
to interpolate between the scales. The NNLO version of the
NNPDF 3.1 PDF set [83] is used along with the PYTHIA ver-
sion 8 [60] for the parton showers based on the CP5 tune [84]
and multiparton interactions (MPI), but including a harder
primordial kT of 2.2 GeV obtained from tuning the kT param-
eter to describe the observed (p;; distribution of Ref. [26].
The results are also compared with a third prediction from
the parton branching (PB) TMD method [14,15] obtained
from CASCADE 3 [85]. This prediction is of particular inter-
est since the initial-state parton showers are fully determined
by TMD and their backward PB evolution, and therefore
are free of tuning parameters. The matrix element calcu-
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lation is performed at NLO for Z + 0 jet using MG5_aMC
for the inclusive distributions (labelled MG5_aMcC (0 jet at
NLO)+ PB (CASCADE)), and for Z + 1 jet for the distribu-
tions where one jet is required in the final state (labelled
MGS5_aMC (1 jet at NLO)+ PB (CASCADE)). Initial-state par-
ton showers, provided by the PB TMD method are matched
to the NLO matrix element [86], using the latest TMD PB
set: PB-NLO-HERAI+II-2018-set2 [87]. The final parton
shower, hadronization, and QED FSR steps are performed
with PYTHIA 6 [88]. This approach is equivalent to the inclu-
sion of the next-to-leading logarithmic soft-gluon resumma-
tion on top of the fixed-order NLO calculations. The theoret-
ical uncertainties in the cross section are estimated by varia-
tion of scales and from TMD uncertainties. This approach is
expected to describe the inclusive cross section at low pr(££)
(< 20 GeV) well, and to fail for larger pt(££), since higher-
order matrix element contributions are missing, as already
observed for the Z boson mass peak range [26]. Recently,
this approach has been developed to include multi-jet merg-
ing [89] at LO, which allows a larger p(€£) region to be
described as well.
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A fourth prediction is based on an independent approach
relying on TMDs obtained from fits to DY and Z boson
measurements at different energies [90,91] using an NNLO
evolution. The corresponding numerical evaluations are pro-
vided by the ARTEMIDE 2.02 code [92]. The resummation
corresponds to an N3LL approximation. The uncertainty is
obtained from scale variations. Due to the approximation of
ordering among the scales, the prediction has a limited range
of validity for the calculation of: pt(££) < 0.2 my,. Predic-
tions for the ¢} cross section dependence as well as the 1 jet
case are not provided by ARTEMIDE. The ARTEMIDE sample
does not include the QED FSR; a correction is derived from
the PYTHIA 8 shower in the MG5_aMC sample. The uncer-
tainty is derived by taking the difference with respect to
corrections derived from the POWHEG sample described in
Ref. [26]. This uncertainty is smaller than 1% for p(£f) <
0.2 myy

Two more predictions are obtained from the GENEVA 1.0-
RC3 program [93-95] combining higher-order resummation
with a DY calculation at NNLO. Originally, the resummation
was carried out at NNLL including partially N3LL on the 0-
jettiness variable 7y [96]. More recently it includes the gt
resummation at N>LL in the Radish formalism [97,98] for
the O jet case, whereas it keeps the 1-jettiness resummation
for the 1 jet case. Two samples are generated, one in the 0-
jettiness approach and one in the gt resummation approach.
The calculation uses the PDFALHC15 NNLO [99] PDF set
with ag(mz) = 0.118, the world average. The events are
showered using a specially modified version of PYTHIA 8§,
which is also used for nonperturbative effects and QED radi-
ation in the initial and final states using a modified tune based
on CUETP8MI. The theoretical uncertainties are estimated
by variation of scales and from the resummation as described
in Ref. [94]. No uncertainty is assigned to the jetiness resum-
mation.

8 Results and discussion
8.1 pr(£f) results

The differential cross sections in pr(¢£) are shown in
Fig. 5 for invariant mass ranges between 50 GeV and 1 TeV.
Because of the lack of precision of the muon transverse
momentum measurement at high pr, the cross section mea-
surement in the highest mass range is based on the electron
channel only. The ratio of the predictions to the data are
presented in Figs. 6, 7 and 8. The comparison with differ-
ent predictions is discussed later in the text. The ratios of
the unfolded distributions for invariant masses outside the
Z boson peak to the distribution within the Z boson peak
(76 < myy < 106 GeV) are shown in Fig. 9, and the com-
parisons to predictions in Figs. 10, 11 and 12.

The measured cross sections are presented in Fig. 13 as
a function of pt(£¢) for at least one jet, for the same mass
ranges except the highest. Ratios of the predictions to the data
are presented in Figs. 14 and 15. The ratio of these differential
cross sections for various mass ranges with respect to the
same distribution in the Z boson peak region are shown in
Fig. 16, and the comparisons to predictions in Figs. 17 and 18.

The measurements show that the differential cross sec-
tions in pr(£f) are rising from small pt(££) values up to
a maximum between 4 and 6 GeV and then falling towards
large pt(££) (Fig. 5). For these cross sections, the variation
of the dilepton invariant mass does not have a visible effect
on the peak position (around 5 GeV) or on the rising shape
for the values below the peak. However, the increase of mgy
results in a broader distribution for pt(¢£) values above the
peak. These effects are highlighted by the cross section ratios
presented in Fig. 9. It has to be noted that the rising ratio for
the lowest my¢ range (Fig. 9 top left) up to a pr(£€) value of
20 GeV is due to QED radiative effects on the final-state lep-
tons (photon radiations at AR(¢, y) > 0.1) inducing migra-
tions from the Z mass peak towards lower masses. When a
jet with a large transverse momentum is required (Fig. 13),
the peak is shifted towards larger p(££) values correspond-
ing to the jet selection threshold, here 30 GeV regardless of
the myg. As in the inclusive case, the distributions become
broader for pr(££) values larger than the peak for increasing
Myy.

A description of these measurements based on QCD
requires both multi-gluon resummation and a fixed-order
matrix element. The description of the distributions at small
pr(€€) values requires an approach taking into account
initial-state nonperturbative and perturbative multi-gluon
resummation. The falling behaviour at large pt(££) is sen-
sitive to hard QCD radiation, which is expected to be well
described by matrix element calculations including at least
NLO corrections. The size of the QCD radiation is driven by
the available kinematic phase space and the value of os. An
increase of mye extends the phase space for hard radiations,
slightly compensated by the decrease of ag with increasing
myge. The tail at large pt(€€) is dominated by jet multiplicities
above one. For the inclusive cross sections, the resummation
effects are concentrated at small pt(££). The value of the
maximum of the distributions is expected to depend weakly
on myy. In the presence of a hard jet, multiple gluon emis-
sions also affect the perturbative region located in 1 between
the jet and the vector boson. The corresponding cross sec-
tion measurements therefore provide additional constraints
on the resummation treatment in the predictions.

The MG5_aMC + PYTHIA 8 prediction describes the data
well globally (Fig. 6), although it predicts a too-small cross
section for pr(£€) values below 30GeV in the inclusive
case. This disagreement is more pronounced at higher m
and reaches about 20% for masses above 170 GeV. The
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low-p1(££) region is sensitive to gluon resummation. In
MGS5_aMC, the resummation effects are simulated by the par-
ton shower, modelled in PYTHIA 8 depending on parameters
tuned on previously published measurements, including DY
cross sections in the Z boson mass peak region. It has to be
noted that the low pr(££) spectrum is sensitive to the choice
of the tuned parameters [84] and that no related systematic
uncertainty is available. The large pt(€€) distributions are
well described by MG5_aMc, which relies on NLO matrix
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elements for 0, 1 and 2 partons in the final state. Nevertheless,
MG5_aMC predicts cross sections larger than those observed
for the highest pr(££) values measured in the mass ranges
106 < myy < 170 GeV for both the inclusive and 1 jet cases.
Since the theoretical uncertainty is dominant in that region,
a better agreement might be found using higher-order (e.g.,
NNLO) multiparton predictions.

The MINNLOpg prediction provides the best global
description of the data among the predictions presented in
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Fig. 6 Comparison to Monte Carlo predictions based on a matrix ele-
ment with parton shower merging. The ratio of MG5_amc (0, 1, and 2
jets at NLO) + PYTHIA 8 (left) and MINNLOpg (right) predictions to the
measured differential cross sections in pt(££) are presented for various
myy ranges. The error bars correspond to the statistical uncertainty of

this paper. This approach, based on NNLO matrix element
and PYTHIA 8 parton shower and MPI, describes well the
large pr(££) cross sections (Fig. 6) and ratios (Fig. 17),
except above 400 GeV, for my, around the Z boson peak.
The medium and low pt(££) cross sections are also well
described by MINNLOpg which relies on parton showers, a
harder primordial k1 and Sudakov form factors. The same
observation can be made in the one jet case. The inclusion
of an NNLO matrix element reduces significantly the scale
uncertainties, in particular for the inclusive cross section in
for the medium pr(££) values where the PDF uncertainty
becomes significant with respect to other model uncertain-
ties. It has to be noted that no parton shower tune uncertainty
is assigned in the case of MINNLOpg as well as in the case
of MG5_aMmc.

We see that the CASCADE predictions (MG5_aMC +
PB(CASCADE)) involving TMDs produce a better description
in the low-pT(€€) part than MG5_aMC + PYTHIA &, which is
valid for all m, bins. The predicted cross section for medium
pr(£0) valuesis 5 to 10% too low (Fig. 7). What is remarkable
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the measurement and the shaded bands to the total experimental uncer-
tainty. The light color band corresponds to the statistical uncertainty of
the simulation and the dark color band includes the scale uncertainty.
The largest bands include PDF and o uncertainties, added in quadrature

is that this prediction is based on TMDs obtained from totally
independent data, from a fit to electron-proton deep inelas-
tic scattering measurements performed at HERA. The high
p1(£L) part is not described by the Z +0,1 jet matrix element
calculations from MG5_aMC with CASCADE due to missing
higher fixed-order calculations. The range of pt(£f) values
well described extends with increasing my¢. For the one jet
case (Fig. 14), the low-pt(££) part is mainly dominated by
742 jetevents, and the CASCADE predictions are missing the
contributions from the double parton scattering. It thus fails
to describe the low pt(££) region. In the low-pT(€€) region
of the 1 jet case double parton scattering contributions play a
significant role and thus CASCADE without it cannot describe
this region. The CASCADE predictions give an overall good
description of the ratio measurements (Fig. 17). Recently
the predictions have been extended by including multi-jet
merging [89] for an improved description of the full pt(£¢)
spectrum, shown in the Appendix A.

Within its range of validity, pr(£¢) < 0.2 mye, the
ARTEMIDE prediction describes the measurements very
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Fig. 7 Comparison to TMD based predictions. The ratio of MG5_aMC
(0jetat NLO) + PB (CASCADE) (left) and ARTEMIDE (right) predictions
to the measured differential cross sections in pt(¢££) are presented for
various my, ranges. The error bars correspond to the statistical uncer-
tainty of the measurement and the shaded bands to the total experimen-
tal uncertainty. The light (dark) green band around ARTEMIDE pre-

well. For all myy, the low-pr(£€) distributions predicted
by ARTEMIDE, based on TMDs corresponding to an N3LL
approximation, are in very good agreement with the data,
except for the highest masses. Figure 7 shows the prediction
with and without QED FSR corrections. This underlines the
importance of migrations from the Z boson peak towards
lower masses, inducing the peak structure in the pr(££)
ratio distribution of Fig. 9. The remarkable agreement of the
ARTEMIDE prediction with the measurement at the Z boson
peak is expected since the prediction relies on TMDs fitted
on previous DY measurements at the Z boson peak though at
lower centre of mass energies. The excellent agreement for
higher my, confirms the validity of the approach and in par-
ticular of the TMD factorization when the mass scale largely
dominates over the transverse momentum. No prediction is
provided by ARTEMIDE for the 1 jet case nor for the ¢} cross
section dependence.

Comparisons of the inclusive cross section as a function
of pt(££) with two predictions of GENEVA are presented in
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Fig. 8 for the inclusive cross sections and in Fig. 15 for the one
jet cross sections. The original prediction combining NNLL
resummation on the O-jettiness variable 79 (GENEVA-7) and
NNLO corrections does not describe the data well for p(€£)
values below 40 GeV. This too hard pt(££) spectrum might
be related to the choice of ag, as discussed in Ref. [94]. For
the high pt(££) region, which is dominated by the fixed-order
effects, the inclusion of NNLO corrections provides a good
description of the measured cross section. The more recent
GENEVA prediction (GENEVA-¢gT), using a gt resummation
at N3LL, provides a much better description of the measured
inclusive cross sections, describing very well the data in the
full pr(€f) range except for middle pr(££) values in the
lowest mass bin. Here, as in MINNLOpg case, the inclusion
of NNLO corrections provides a significant reduction of the
scale uncertainties, leading to very small theory uncertainties
in the middle pt(¢€) range. The two GENEVA predictions
compared with the measured one jet cross sections are similar
because both use 1- jettiness in this part of the phase space.
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Fig. 8 Comparison to resummation based predictions. The ratio of
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This could explain that GENEVA predicts a too hard prt(£¢)
spectrum, similarly to the O-jettiness inclusive case.

8.2 ¢, results

The ¢;; variable is highly correlated with pr(£€) and it offers
a complementary access to the underlying QCD dynamics.
Being based only on angle measurements of the final-state
charged leptons, the ¢ variable can be measured with greater
accuracy which allows us to include the muon channel for all
mge ranges. Figure 19 presents the inclusive differential cross
sections in ¢y for the same invariant mass ranges as above
and comparisons to models. More complete comparisons to
model predictions are presented as ratios of the prediction
divided by the measurement in Figs. 20 and 21. The results
are discussed below. The ratio of these differential cross sec-
tions for various my, ranges are computed with respect to
the same distribution in the Z peak region. They are shown
in Fig. 22 and further compared with models in Figs. 23
and 24.
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tainty. The light color bands around the predictions represents the sta-
tistical uncertainties and the middle color bands represents the scale
uncertainties. The dark outer bands of GENEVA-gt prediction represent
the resummation uncertainties

The <p,’7“ distributions are monotonic functions, in particular
they do not present a peak structure as measured in the p(££)
distributions. At small values, the go;; distributions contain
a plateau whose length decreases with increasing mg, and
more generally the ¢, distributions fall more rapidly with
increasing myy as clearly shown in Fig. 19. Because the lep-
ton direction is much less affected by QED FSR than the
energy, the effect of migrations from the Z boson mass bin
towards lower masses is relatively invisible in the <pj7‘ shape
as highlighted by the ratio distribution in Fig. 22 (upper left).

Since ¢y is highly correlated with pr(££), the compar-
ison of the ¢} distributions to theoretical predictions leads
to the same basic observations and remarks as related above.
The MG5_aMC + PYTHIA 8 prediction describes the measured
¢, distributions well globally and predicts a too small cross
section in the region sensitive to gluon resummation, i.e.,
@, < 0.1 on the Z boson mass peak, as shown in Fig. 20. The
increase of this disagreement for higher m is also observed,
clearly visible in the ratio distributions of Fig. 23.
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As for the pt(€€) distributions, the MINNLOpg prediction
provides the best global description of the data (Fig. 20). In
contrast to the disagreement for p(€£) above 400 GeV for
mye around the Z peak that appeared both in the inclusive
case (Fig. 6) and in the one jet case (Fig. 17) the large gpj;
values are well described by MINNLOps. The inclusion of
NNLO corrections reduces scale uncertainties making the
PDF uncertainty dominant for medium ¢;; values in the cen-
tral mg, bins. The PDF uncertainty is significantly reduced
in the ratio distributions (Fig. 23) leading to remarkable pre-
diction precision of the level of 1.5% in several bins.

The MG5_aMC + PB(CASCADE) prediction describes well
the measured shapes for (p,’; < 0.1 in all my, bins (Fig. 20).
This contrasts with the description of the pt(££) dependence
by the same prediction (Fig. 7), owing to the washing out
of the details of the pr(££) distribution in the (pj" distribu-
tion. The normalisation of the prediction is good for the Z
boson mass peak region but underestimates more and more
the cross section with increasing m ¢, in a way relatively close
to MG5_aMC predictions. The ratio distributions (Fig. 23) also
illustrate this, but a compensation effect leads to predictions
in agreement over the full <p;7k range.

The measured cross sections as a function of ¢ are
compared with GENEVA predictions in Fig. 21. Similar to

@ Springer

previous discussions of the pt(££) distributions, GENEVA-
gt improves significantly the description of the data with
respect to GENEVA-t. The discrepancy of GENEVA-gt for
low prt(££) values in the two lowest mg, bins is smoothed
here leading to a global agreement everywhere. The cross
section ratio distributions of the different m,, bins over the Z
boson mass peak bin, as a function of ¢} are shown in Fig. 24.
Here both GENEVA predictions provide a good description of
the measurements. This indicates that, although the precise
shape in ¢} is not well reproduced by GENEVA-T, the scale
dependence is well described over the large range covered
by the present measurement.

The differential cross section measurements are presented
in the HEPData entry [100].

9 Summary

Measurements of differential Drell-Yan cross sections in
proton—proton collisions at /s = 13TeV in the dielec-
tron and dimuon final states are presented, using data col-
lected with the CMS detector, corresponding to an integrated
luminosity of 36.3 fb~!. The measurements are corrected for
detector effects and the two leptonic channels are combined.
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Fig. 10 Comparison to Monte Carlo predictions based on a matrix ele-
ment with parton shower merging. The distributions show the ratio of
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to the cross section at the peak region 76 < mgy < 106 GeV. The pre-

Differential cross sections in the dilepton transverse momen-
tum, pr(££), and in the lepton angular variable go,’; are mea-
sured for different values of the dilepton mass, m,, between
50 GeV and 1 TeV. To highlight the evolution with the dilep-
ton mass scale, ratios of these distributions for various masses
are presented. In addition, dilepton transverse momentum
distributions are shown in the presence of at least one jet
within the detector acceptance.

The rising behaviour of the Drell-Yan inclusive cross sec-
tion at small pr(€¢) is attributed to soft QCD radiations,
whereas the tail at large pt(££) is only expected to be well
described by models relying on higher-order matrix element
calculations. Therefore, this variable provides a good sensi-
tivity to initial-state QCD radiations and can be compared
with different predictions relying on matrix element calcu-
lations at different orders and using different methods to
resum the initial-state soft QCD radiations. The measure-
ments show that the peak in the pt(££) distribution, located
around 5 GeV, is not significantly modified by changing the
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dictions are MG5_aMC (0, 1, and 2 jets at NLO) + PYTHIA 8 (left) and
MINNLOps (right). Details on the presentation of the results are given
in Fig. 6 caption

mygg value in the covered range. However, for higher values of
mye above the peak, the pr(££) distributions fall less steeply.

The <p;7k variable, highly correlated with pt(££), offers a
complementary access to the underlying QCD dynamics.
Since it is based only on angle measurements of the final-
state charged leptons, it offers, a priori, measurements with
greater accuracy. However, these measurements demonstrate
that the <p,*7‘ distributions discriminate between the models less
than the pt(££) distributions, since they wash out the peak
structure of the pt(££) distributions, which reflect the initial-
state QCD radiation effects in a more detailed way.

This publication presents comparisons of the measure-
ments to six predictions using different treatments of soft
initial-state QCD radiations. Two of them, MG5_aMC +
PYTHIA 8 and MINNLOpg, are based on a matrix ele-
ment calculation merged with parton showers. Two others,
ARTEMIDE and CASCADE use transverse momentum depen-
dent parton distributions (TMD). Finally, GENEVA combines
a higher-order resummation with a Drell-Yan calculation at
next-to-next-to-leading order (NNLO), in two different ways.
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Fig. 11 Comparison to TMD based predictions. The distributions
show the ratio of differential cross sections as a function of pt(£¢)
for a given myy range to the cross section at the peak region 76 <

One carries out the resummation at next-to-next-to-leading
logarithm in the O-jettiness variable 7o, the other at N3LL in
the g variable.

The comparison of the measurement with the MG5_aMC
+ PYTHIA 8 Monte Carlo predictions using matrix element
calculations including Z + 0, 1, 2 partons at next-to-leading
order (NLO) merged with a parton shower, shows generally
good agreement, except at pt(££) values below 10 GeV both
for the inclusive and one jet cross sections. This disagreement
is enhanced for masses away from the Z mass peak and is
more pronounced for the higher dilepton masses, reaching
20% for the highest mass bin.

The MINNLOpg prediction provides the best global
description of the data among the predictions presented in
this paper, both for the inclusive and the one jet cross sec-
tions. This approach, based on NNLO matrix element and
PYTHIA 8 parton shower and MPI, describes well the large
pT(€L) cross sections and ratios, except for pr(££) values
above 400 GeV for dilepton masses around the Z mass peak.
A good description of the medium and low pt(££) cross sec-
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tions is obtained using a modified primordial k1 parameter
of the CP5 parton shower tune.

MGS5_aMC + PB(CASCADE) predictions are based on Par-
ton Branching TMDs obtained only from a fit to electron-
proton deep inelastic scattering measurements performed at
HERA. These TMDs are merged with NLO matrix element
calculations. Low pr(££) values are globally well described
but with too low cross sections at medium pr(££) values. This
discrepancy increases with increasing mgy in a way similar
to the MG5_aMC + PYTHIA 8 predictions. The high part of
the pt(€¢) distribution is not described by CASCADE due to
missing higher fixed-order terms. The model can not describe
the low prt(££) region of the cross section in the presence of
one jet due to the missing double parton scattering contri-
butions. The recent inclusion of multi-jet merging allows a
larger pt(££) region to be described as well.

ARTEMIDE provides predictions based on TMDs extracted
from previous measurements including the Drell-Yan trans-
verse momentum cross section at the LHC at the Z mass peak.
By construction, the validity of ARTEMIDE predictions are
limited to the range pt(¢€) < 0.2 mye. In that range, they
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describe well the present measurements up to the highest
dilepton masses.

The GENEVA prediction, combining resummation in the
0-jettiness variable 79 (GENEVA-7) and NNLO matrix ele-
ment does not describe the measurement well for pr(€£)
values below 40 GeV. For the high pt(££) region the inclu-
sion of NNLO in the matrix element provides a good descrip-
tion of the measured cross section. The recent GENEVA pre-
diction (GENEVA-¢gT), using a gt resummation, provides a
much better description of the measured inclusive cross sec-
tions, describing very well the data in the full pt(£¢) range
except for middle pt(€£) values in the lowest mass bin. Both
GENEVA approaches predict too hard pt(¢£) spectra for the
one jet cross sections.

The ratio distributions presented in this paper confirm
most of the observations based on the comparison between
the measurement and the predictions at the cross section
level. The observed scale dependence is well described by
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the different models. Furthermore the partial cancellation of
the uncertainties in the cross section ratios allows a higher
level of precision to be reached for both the measurement
and the predictions.

The present analysis shows the relevance of measuring the
Drell-Yan cross section in a wide range in dilepton masses
to probe the interplay between the transverse momentum
and the mass scales of the process. Important theoretical
efforts have been made during the last decade to improve
the detailed description of high energy processes involving
multiple scales and partonic final states. The understand-
ing of the Drell-Yan process directly benefited from these
developments. The present paper shows that they individu-
ally describe the measurements well in the regions they were
designed for. Nevertheless, no model is able to reproduce
all dependencies over the complete covered range. Further
progress might come from combining these approaches.
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Fig. 22 Ratios of differential
cross sections in ¢y (£€) for
invariant mass ranges with
respect to the peak region

76 < mye < 106 GeV:

50 < mye < 76 GeV (upper
left), 106 < mygp < 170 GeV
(upper right),

170 < mye < 350 GeV (lower
left), and

350 < myge < 1000 GeV (lower
right). The measurement is
compared with MG5_amc (0, 1,
and 2 jets at NLO) + PYTHIA 8
(blue dots), MINNLOpg (green
diamonds) and MG5_aMcC (0 jet
at NLO)+ PB (CASCADE) (red
triangles). Details on the
presentation of the results are
given in Fig. 5 caption
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Appendix A: Comparisons to other models

In this section, comparisons of the obtained measurement
results with predictions from a more recent parton branch-
ing (PB) TMD method from CASCADE are presented. The
predictions are based on MG5_aMC ME up to three partons
at LO in QCD with multi-jet merging [89]. The ratio of the
predictions over the data are presented in Fig. 25. The com-
parisons to predictions for the ratio of the cross sections for
invariant masses outside the Z boson peak to the distribution
within the Z boson peak (76 < myy < 106 GeV) are shown
in Fig. 26.
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error bars correspond to the statistical uncertainty of the measurement
and the shaded bands to the total experimental uncertainty. The light
color band around CASCADE prediction corresponds to the statistical
uncertainty of the simulation
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