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1 Introduction

A large number of physics models that extend the Standard Model (SM) predict the exis-
tence of new, massive, long-lived particles (LLPs) which have a decay length long enough
to be observed using particle detectors. These particles appear in proposed solutions to
the gauge hierarchy problem, including supersymmetric (SUSY) models [1–7] that either
conserve or violate R-parity.1 Within SUSY models, supersymmetric particles (sparticles)
may have lifetimes that depend on the mass-hierarchy parameters or on the size of any
R-parity-violating coupling.

SUSY models are theoretical extensions of the SM which relate fermions and bosons.
They postulate that each SM particle has a SUSY partner (a sparticle) that is a boson if
the corresponding particle is a fermion, and vice-versa. The sparticles are named so as to

1R-parity is a quantum number defined as (−1)3(B−L)+2S where S is the particle spin and L and B are,

respectively, its lepton and baryon number.
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recall their SM partner: the gluino, stau, wino and higgsino are the SUSY partners of the
gluon, τ -lepton, W boson and Higgs boson. The chargino is a linear combination of the
charged wino and the charged higgsinos, while the neutralino is a linear combination of
the bino, the neutral wino and the neutral higgsino, where the bino is the SUSY partner
of the SM U(1) weak hypercharge gauge field.

This study is sensitive to SUSY along with many other models of new physics beyond
the Standard Model (BSM physics models), particularly those that predict the production
of massive particles with lifetimes exceeding O(1) ns at LHC energies. In this paper, the
results of the search are interpreted in the context of pair production, from proton–proton
(pp) collisions at

√
s = 13 TeV, of several different long-lived sparticles of charge |q| = 1.

Within the SUSY framework, several different processes yielding LLPs are present, and
the production diagrams of the processes covered by this search are shown in figure 1.
Gluinos (g̃) can be long-lived if R-parity is conserved and the squark mass scale is very
high, as proposed by mini-split SUSY scenarios [8, 9]. Although the gluino itself is neutral,
a long-lived gluino is predicted to hadronise, involving SM quarks or gluons with its QCD
interaction and forming a colour-neutral state referred to as an R-hadron [10], which can be
electrically charged. Charginos (χ̃

±

1 ) can be long-lived when they and the counterpart neu-
tralino (χ̃0

1) are almost mass-degenerate, for instance in anomaly-mediated SUSY-breaking
(AMSB) models predicting a ‘pure wino’ scenario [11, 12]. Staus (τ̃) can also be long-lived
when a quasi-massless gravitino (G̃) is assumed as the lightest neutral sparticle and the
coupling between the stau and gravitino is very weak [13–15].

Extensive searches for charged or neutral LLPs have been carried out in the ATLAS
and CMS experiments. Limits on gluino R-hadrons have been set by various complemen-
tary search techniques, including an explicit requirement of decay-vertex or displaced jet
reconstruction [16–18], and time-of-flight (ToF) and its optional combination with pixel
dE/dx [19–21]. Very long-lived R-hadrons, eventually trapped within the calorimeters,
were searched for by looking for decays during empty beam bunch-crossings [22, 23]. The
search presented here is agnostic with regard to decay activity, and is therefore also sensi-
tive when the mass difference between the gluino and the neutralino is small, a situation
in which displaced decay detection becomes more challenging.

Limits on long-lived charginos, for pure-wino (AMSB, [11, 12]) as well as pure-
higgsino [24] scenarios, have also been set using a disappearing-track signature [25–29]
and using the ToF technique [19, 20]. Masses up to 660 (210) GeV are excluded in scenar-
ios where the chargino is a pure wino (higgsino) for theoretically preferred lifetimes of each,
and the largest excluded mass is 860 (720) GeV at lifetimes of 1–1.3 ns [30]. For a stable
chargino, masses up to 1.09 TeV are excluded using the ToF technique [19]. Long-lived
sleptons in the context of gauge-mediated SUSY-breaking (GMSB) [13–15] were searched
for by a dedicated displaced-leptons search for stau (τ̃), smuon (µ̃) and selectron (ẽ) cases
separately, and masses up to 340 GeV, 680 GeV and 720 GeV, respectively, are excluded
for lifetimes of 0.1 ns [30]. For a stable τ̃ , masses up to 430 GeV are excluded using the
ToF technique [19, 21]. The search presented in this paper is more sensitive than previous
ATLAS searches for most of the lifetime range of τ & 1 ns and is complementary to the
other search strategies mentioned above.

– 2 –
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A charged particle produced by a collision propagates outwards in space until its decay,
and specific ionisation losses (dE/dx) along its path produce hit records on the detector
layers. Appropriate fitting of these hits reconstructs the trajectory of the particle, referred
to as a track. Charged LLPs with masses greater than O(100) GeV produced at the LHC
are expected to be significantly slower than the speed of light, and therefore should have
dE/dx significantly higher than any SM particle of the same momentum, following the
Bethe–Bloch relation. The pixel detector [31–33] at the core of the ATLAS detector2 [34]
is able to measure dE/dx within a radius of about 13 cm from the pp collisions, and
therefore can be used to identify LLPs with lifetime in excess of O(1) ns. To a good
approximation, this identification method does not depend on the way the LLP interacts
in the ATLAS calorimeters [35, 36] or on the LLP decay mode. Consequently, this search
can capture a broad range of possible signals in BSM models predicting charged LLPs,
without heavily depending on the specific features of these models.

This analysis uses the full Run 2 dataset, corresponding to an integrated luminosity
of 139 fb−1, and is an update of previous ATLAS searches performed in both Run 1
and Run 2 [37–40]. Similar searches were performed by the CMS experiment [21, 41].
In the last ATLAS search targeting the same signature, with 36 fb−1 of Run 2 data,
no significant deviation from SM background expectations was observed. Results were
interpreted assuming the pair production of R-hadrons. R-hadrons with lifetimes above
1 ns were excluded at the 95% confidence level (CL) of the CLs prescription [42], with lower
limits on the gluino mass ranging between 1.29 TeV and 2.06 TeV. In the case of R-hadrons
stable enough to leave the detector (detector-stable), the lower limit on the gluino mass at
the 95% CL is 1.89 TeV. In the previous ATLAS search [40], a mild excess of data events
over the background prediction was observed with a local significance of 2.4σ in the mass
range between 500 GeV and 800 GeV for the stable-particle selection. This has motivated
an effort to improve the analysis sensitivity over a wide mass range from around several
hundred GeV to a few TeV, as explained further in section 3. Accordingly, this search aims
to cover a wide range of production cross-sections, including both electroweak and strong
production of charged LLPs.

This paper is organised as follows. Section 2 describes the ATLAS experiment and,
in more detail, its pixel detector. Section 3 presents the search strategy and emphasises
the model-independence of the method used. Section 4 describes the dataset used in the
analysis and the simulation models used in interpreting the results. Section 5 explains
the various corrections and calibrations applied to the pixel dE/dx measurement in order
to make optimal use of this variable. It also explains and characterises the mass recon-
struction obtained through the Bethe–Bloch relation. Section 6 describes the selection
criteria applied to the events and candidate LLP tracks in this search, and the studies to
optimise these criteria. Section 7 focuses on the data-driven background estimation, while

2ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the

centre of the detector and the z-axis coinciding with the axis of the beam pipe. The x-axis points from the

interaction point to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r,

φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The pseudorapidity is

defined in terms of the polar angle θ as η = −ln tan(θ/2).
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Figure 1. Production diagrams for (a) pair-produced gluinos which form R-hadrons, (b) pair-
produced charginos, and (c) pair-produced sleptons.

section 8 examines systematic uncertainties in the background estimation and signal effi-
ciency. Finally, section 9 discusses the combined signal significance and its interpretation,
and section 10 summarises the most important results of this search.

2 ATLAS detector and dE/dx measurement

The ATLAS detector is a general-purpose detector with a forward–backward-symmetric
cylindrical layout covering nearly 4π in solid angle [34]. It consists of an inner detector
(ID) tracking system, to measure the trajectories of charged particles, surrounded by a
2 T solenoid, followed by calorimeters to measure the energy of particles that interact
electromagnetically or hadronically, and a muon spectrometer (MS) inside toroidal magnets
to provide additional tracking for muons. The detector is hermetic within its η acceptance
and can therefore measure the missing transverse momentum (~p miss

T , with magnitude Emiss
T )

associated with each event. A two-level trigger system is used to select events [43]. The
first-level trigger selects events from a bunch crossing (the LHC bunch crossings have
a separation of 25 ns), is implemented in hardware and uses a subset of the detector
information. This is followed by a software-based high-level trigger, which runs calibration
and prompt reconstruction algorithms, reducing the event recording rate to about 1 kHz.
An extensive software suite [44] is used in the reconstruction and analysis of real and
simulated data, in detector operations, and in the trigger and data acquisition systems of
the experiment.

The ID is made of three detector systems organised in concentric regions covering
|η| < 2.5. The outermost system (TRT) [45] is made of densely packed 4-mm-diameter
cylindrical drift tubes covering |η| < 2. The TRT covers the radial region from 60 cm
to 100 cm and provides many (>30) measurements with 0.13 mm (r–φ) accuracy, thus
contributing to momentum measurement accuracy and robustness. The radial region from
30 cm to 60 cm is equipped with silicon microstrip detectors (SCT), providing at least four
layers of double-sided strip modules with a 40 mrad stereo angle along trajectories within
|η| < 2.5 [46]. The innermost region is covered by a silicon pixel detector [31–33], which,
being crucial for this measurement, is described below in some detail.

– 4 –
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The pixel detector provides, on average, four precision measurements for each track
in the region |η| < 2.5 at radial distances of 3.4 cm to 13 cm from the LHC beam line.
Compared to the other layers, the innermost pixel layer (IBL) [32, 33] has smaller-area
pixels, reduced thickness, faster electronics, and provides charge measurements with lower
resolution and dynamic range. At normal incidence and without any radiation damage,
the average charge released by a minimum-ionising particle (MIP) in a pixel sensor is
approximately 20 000 e− (16 000 e− for the IBL) and the charge threshold (i.e. the minimum
value for a charge to be recorded) is typically set to 3500 ± 40 e− (2500 ± 40 e− for the
IBL). If the charge released in a pixel exceeds the IBL dynamic range (which is set at
approximately 30 000 e−) an overflow bit (OFIBL) is set. The overflow mechanism is not
present in the outer pixel layers, and hits exceeding the dynamic range (∼200 000 e−)
are lost. The presence of an IBL overflow bit (OFIBL = 1) indicates that a high specific-
ionisation charge was deposited locally in the IBL and this is much more likely to happen
for a heavy, charged-LLP track than for a SM particle track. Tracks with an IBL overflow
bit undergo a dedicated analysis treatment, as described in section 5.

The time-over-threshold (ToT), i.e. the time interval with the signal above a preset
threshold, is digitised and recorded to 8 bits (4 bits for the IBL). The ToT is approximately
proportional to the ionisation charge [47] and allows the specific ionisation of a track to be
calculated, as explained below. The charge released by a track crossing the pixel detector
is rarely contained within just one pixel; neighbouring pixels registering hits are joined
together using a connected component analysis [48] to form clusters. The charge of a cluster
is calculated by summing the charges of all pixels belonging to the cluster after calibration
corrections. The dE/dxmeasurement assigned to each track is then calculated by averaging
the ionisation measurements (charge collected in the cluster per unit track length in the
sensor) of its individual clusters. The specific ionisation follows a Landau distribution, and
to reduce the effect of the tails of this distribution a truncated average (〈dE/dx〉trunc) is
evaluated after removing the highest dE/dx cluster, or the two highest dE/dx clusters
in the rare case of more than four pixel clusters on a track. Clusters including pixels at
the sensor edges are dropped, as part of the charge may escape detection. The OFIBL = 1

clusters are never used to calculate the 〈dE/dx〉trunc, as their dE/dx is only known to be
above a given value. A track is considered for this analysis if the 〈dE/dx〉trunc is calculated
using at least two clusters after removal of those meeting the criteria defined above. The
average number of clusters used for 〈dE/dx〉trunc calculation is ≈ 2.7 per track.

Finally, the 〈dE/dx〉trunc is corrected for variations of the pixel detector conditions
during the data-taking period (e.g. charge losses due to radiation damage) and for the
residual η-dependence, as described in detail in section 5. The output is referred to as
‘corrected dE/dx’ (〈dE/dx〉corr) and is the variable used in the signal selection for the
search. This variable, like the restricted energy loss [49], has no logarithmic rise at high
values of βγ and no sensitivity to radiative effects.

The βγ of a particle can be calculated from the 〈dE/dx〉corr of its track using the Bethe–
Bloch relation. A meaningful βγ value can only be estimated in the range 0.3 . βγ . 0.9

using the pixel detector. The lower limit is a consequence of the ToT dynamic range, while
the upper limit is due to the proximity of the MIP regime which begins at βγ ≈ 3 and
where 〈dE/dx〉corr becomes quasi-independent of βγ.

– 5 –
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3 Analysis overview

The search strategy consists of looking for isolated tracks with high transverse momentum,
pT, and large specific ionisation. The reconstructed mass is then calculated for each track
using a parameterisation of the Bethe–Bloch relation and depends on its momentum and
〈dE/dx〉corr. It is noteworthy that the effective βγ range of 0.3 . βγ . 0.9 matches that
of pair-produced heavy charged LLPs over wide mass ranges, as illustrated in figure 2(a).
The βγ distribution reflects the opening of relativistic phase space near the mass threshold,
and the distribution peaks at lower values for larger LLP masses. This is a common feature
of pair-production kinematics from an off-shell propagator, including the pair production
of SM particles such as top quarks, and hence is not strongly dependent on the BSM
dynamics of the LLP. Only tracks produced centrally (|η| < 1.8) are selected. This removes
background tracks at high |η| while retaining the acceptance for LLPs as shown in figure 2,
and also limits the pixel layers used in the dE/dx calculation to those within the barrel
region, thereby simplifying the measurement.

Events are selected using the lowest-threshold unprescaled calorimetric Emiss
T trigger,

which is based on the magnitude of the negative of the vectorial energy sum measured
in the calorimeters corrected to take into account the multiple pp interactions in each
event [50]. In events with metastable LLPs (i.e. LLPs which decay inside the ATLAS
detector), the measured Emiss

T originates mainly from neutralinos or gravitinos which carry
away unmeasured momentum. In events where the LLPs are detector-stable and decay
outside ATLAS, the LLPs leave only modest energy depositions in the calorimeters, even
in the R-hadron case, and only a fraction of them are reconstructed as a muon owing to
their late arrival time in the muon spectrometer. Therefore, most of the momentum of each
LLP is not accounted for in the measurement of Emiss

T , and only QCD initial-state radiation
(ISR) provides a visible contribution that results in a measured imbalance of transverse
momentum. Due to the presence of neutralinos or gravitinos, the Emiss

T trigger efficiency is
higher for metastable LLPs than for detector-stable LLPs. On the other hand, the track
reconstruction efficiency is higher for detector-stable LLPs and penalises particles with
lifetimes shorter than 10 ns, which may not have crossed enough detector layers. Further
selections are applied to triggered events and candidate tracks as detailed in section 6.

The signal can form a peak in the reconstructed mass distribution and thus be ob-
served as an excess of events over the expected background. The search takes into account
the mass resolution for the signal processes. Full-length ID tracks have a relative 1/pT

resolution of approximately 4% (40%) at pT = 100 GeV (1 TeV) for |η| < 0.5. This resolu-
tion is approximately proportional to pT in this high-momentum range and is dominated
by the intrinsic position resolution and residual misalignment of the tracker [51]. Low-
lifetime LLPs have shorter tracks, resulting in larger momentum uncertainties and larger
mass uncertainties. Reflecting this momentum resolution and the dE/dx dispersion, the
reconstructed mass distribution has a considerable width. For a predefined set of target
mass-value hypotheses, the corresponding set of mass windows is defined so that each win-
dow captures approximately 70% of the expected signal at the given target mass, but differs
slightly between lifetimes less than or equal to 1 ns and greater than 1 ns. Here, the choice

– 6 –
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Figure 2. (a) βγ distribution and (b) η distribution of various benchmark signal particles at the
generator level, with the density displayed in arbitrary units. Preselections are not applied. The
ranges 0.3 < βγ < 0.9 of (a) and |η| < 1.8 of (b) indicated by vertical dashed lines approximately
correspond to the acceptance of this search from the dE/dx and η requirements respectively. Pan-
els (c) and (d) illustrate the distribution in the η–βγ plane for the gluino and chargino samples
respectively. The area within the dashed lines corresponds to the approximate acceptance of the
search. The correlation between βγ and |η| loosely reflects the relation βγ = p/m = pT cosh(η)/m.

of mass windows for lifetimes shorter than 1 ns accounts for the poorer mass resolution
due to the shorter LLP tracks. The mass windows are common to sleptons, charginos and
R-hadrons of the same mass and are defined as explained in section 6.4.

The background is mostly due to SM processes generating high-pT tracks with a large
dE/dx that is randomly produced according to the Landau distribution of MIPs. The
background yield and its distribution in the reconstructed mass spectrum is estimated in
a fully data-driven approach, as described in section 7. Data control samples are used
to parameterise the momentum and dE/dx distributions and their interdependence, and
then to generate pseudo-data which predict the background distribution. Potential signal
contamination is minimised in these background samples by inverting some of the selec-
tion criteria.
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4 Data and simulation samples

The analysis is conducted with 139 fb−1 of pp collision data which satisfy the ATLAS data
quality requirements [52]. The dataset was taken during Run 2 of the LHC from 2015 to
2018, at a centre-of-mass energy of 13 TeV. The average number of collisions per bunch-
crossing (pileup, 〈µ〉) is approximately 34. A dedicated 21 pb−1 low-pileup dataset with
〈µ〉 ∼ 0.4 taken in 2017 is used for the dE/dx-to-βγ calibration. In this dataset, tracks
are reconstructed if they have pT > 100 MeV, while the minimum pT requirement in the
standard dataset is 500 MeV.

To optimise the analysis selection, Monte Carlo (MC) samples were produced to sim-
ulate events containing long-lived gluinos, charginos, and staus, corresponding to the pro-
duction diagrams shown in figure 1. These three signal models are complementary in this
study. The gluino samples have large production cross-sections and are suited to probing
the high-mass frontier beyond 2 TeV. The slepton samples have production cross-sections
that are several orders of magnitude smaller than for gluinos of the same mass, and are
suited to probing the mass range from a few to several hundred GeV. The chargino sam-
ple cross-sections have intermediate values and are useful in probing the mass range from
500 GeV to 1.3 TeV.

Gluino pair production was simulated for gluino masses ranging from 400 GeV to 3 TeV
and lifetimes ranging from 1 ns to stable within a simplified model inspired by a split-SUSY
scenario [8, 9]. The events were generated by MadGraph5_aMC@NLO 2.6.2 with up to
two additional partons at leading order, and interfaced to Pythia 8.240 [53] using the A14
set of tuned parameters (‘tune’) [54] and the NNPDF2.3lo parton distribution function
(PDF) set for parton showering and hadronisation, with decays of bottom and charm
hadrons performed by EvtGen 1.6.0 [55]. The CKKW-L merging scheme [56, 57] was
applied to combine the matrix element with the parton shower. The long-lived gluino,
which carries colour charge, hadronises to form a colourless composite particle called an
R-hadron. The details of the R-hadron simulation are given in ref. [58]. The nominal
cross-section values were calculated at next-to-leading order (NLO) with resummation of
next-to-leading logarithms (NLL) and their uncertainty were taken from an envelope of
predictions using different PDF sets and factorisation and renormalisation scales [59]. Each
gluino decays into a neutralino and two quarks via a virtual squark at a very high mass
scale. To probe decays with different kinematics, two sets of samples were produced: one
with a fixed neutralino mass of m(χ̃

0
1) = 100 GeV, and the other one having a compressed

spectrum with a fixed mass-splitting of ∆m(g̃, χ̃
0
1) = 30 GeV. These two series of mass

parameters are complementary and illustrate the breadth of the search, reflecting the fact
that it does not require explicit decay properties of the charged LLP.

Samples with a combination of chargino–neutralino (χ̃
±

1 χ̃
0
1) and chargino–chargino

(χ̃
+
1 χ̃

−

1 ) events were generated with nearly degenerate chargino and neutralino masses,
motivated by the ‘pure wino’ AMSB scenario [11, 12]. Each long-lived chargino decays
into a neutralino and a pion, where the mass-splitting between the chargino and neutralino
is set to approximately 160 MeV, with tan β = 5 and a positive sign of the higgsino
mass parameter. Although the AMSB model has a specific preference for the chargino’s

– 8 –
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lifetime (O(0.2) ns) and mass relation via the loop dynamics, this theoretical constraint
was artificially loosened for experimental benchmarking, and lifetimes ranging from 1 ns
to stable and chargino masses ranging from 400 GeV to 1.6 TeV were examined. Samples
were produced using MadGraph5_aMC@NLO 2.6.2 with up to two additional partons at
leading order in the matrix element, and interfaced to Pythia 8.230 using the A14 tune and
the NNPDF2.3lo PDF set for parton showering and hadronisation, with decays of bottom
and charm hadrons performed by EvtGen 1.6.0. The CKKW-L merging scheme [56, 57]
was applied to combine the matrix element with the parton shower. A 100% branching ratio
for χ̃

±

1 → π±χ̃0
1 is assumed. The cross-sections for the electroweak and strong production

models are calculated at NLO in the strong coupling constant αs using Prospino2 [60].
Events with pair-produced staus, each of which decays into a τ -lepton and a gravitino,

were produced in the GMSB scenario [13–15]. The stau masses range from 100 GeV to
1 TeV and the gravitino is massless. Samples with stau lifetimes ranging from 1 ns to stable
were produced. Events were simulated with up to two additional partons at leading order
using MadGraph5_aMC@NLO 2.6.1 with the NNPDF2.3lo PDF set, and interfaced
to Pythia 8.230 using the A14 tune. The mixed states τ̃1,2 of the left- and right-handed
staus (τ̃L,R) were generated with a mixing angle sin θτ̃ = 0.95. Signal cross-sections were
calculated at next-to-leading order in αs, with soft-gluon emission effects added at next-
to-leading-logarithm accuracy [61–65].

Inelastic pp interactions were generated using Pythia 8.186 and EvtGen 1.6.0 with
the NNPDF2.3lo PDF set and the A3 tune [66]. The inelastic collisions were overlaid
onto the hard-scattering process to simulate the effect of multiple pp interactions. MC
samples were reweighted to match the distribution of the average number of interactions
per bunch crossing observed in data.

The MC events were passed through a full detector simulation [67] based on
Geant4 [68]. The propagation and decays of charginos and staus were simulated within
Geant4, taking into account ionisation loss and interactions with detector material. The
propagation of R-hadrons and their interactions were handled by Geant4 until their decay,
at which point the decay chains and subsequent hadronisation were simulated by Pythia 8,
and then information about the outgoing particles was transferred back to Geant4.

The dE/dx response of the pixel detector is also simulated in the Geant4 framework.
It is based on a realistic charge-deposition model [69], but due to the sensitivity of the
dE/dx measurement to detector conditions, including radiation damage, the simulated
track dE/dx and especially the probability that a track has a hit in the IBL overflow
do not follow the data accurately enough for this analysis. Hence, the dE/dx response
for simulated events was customised in this analysis by replacing it with values from a
data-driven template which was derived from a study described in the following section.

5 dE/dx corrections and mass calibration

The most probable value (MPV) of the track 〈dE/dx〉trunc as a function of delivered in-
tegrated luminosity is shown in figure 3 for p > 10 GeV tracks, with and without a hit in
the IBL overflow. As expected, the charge collection efficiency decreases with increasing
integrated luminosity because of the damage induced in the silicon by the particle flux,
and a decrease in the measured 〈dE/dx〉trunc is therefore visible across the dataset. Large
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Figure 3. The drift of MIP-MPV 〈dE/dx〉trunc as a function of the delivered integrated luminosity
in Run 2, divided into different pseudorapidity ranges, for MIP tracks of p > 10 GeV (a) without
an IBL overflow (OF0) or (b) with an IBL overflow (OF1). The lower 〈dE/dx〉trunc in (a) is due to
the contribution of the IBL clusters which are restricted by the overflow to be under ≈ 2 MIPs.

occasional jumps in the trend (e.g. at around 92 fb−1) indicate changes to the pixel detec-
tor’s charge calibration scheme, while smaller fluctuations correspond to regular updates
of the charge and threshold calibrations during machine development periods or technical
shutdowns. The effect of the radiation damage can be seen to depend on |η|, reflect-
ing differences in the fluence over |η|. In addition, the fluence is higher in pixel sensors at
smaller radii. However, the analysis does not compensate for the effect in each pixel sensor,
since the 〈dE/dx〉trunc of a track is calculated before such compensation can be made, and
each pixel cluster’s information is practically inaccessible in the data flow of the analysis.
Corrections are therefore applied only to 〈dE/dx〉trunc in this analysis.

To minimise these dependences, run-dependent corrections are calculated and applied.
The run-dependent corrections are calculated separately for tracks in bins of |η| and OFIBL.
In each run with sufficient data, an estimate of the 〈dE/dx〉trunc peak for each (|η|, OFIBL)
bin is used to normalise the most probable 〈dE/dx〉trunc to that of a reference run.3 If a
run does not have sufficient data, the correction from the closest run with sufficient data
is applied. After the run-dependent corrections are applied, |η|-dependent corrections are
applied separately in bins of OFIBL so that the MPV for MIPs is equalised over |η|. The
resulting corrected dE/dx measurement is referred to as 〈dE/dx〉corr and is normalised
for MIP-like tracks to peak at ∼1 MeV g−1cm2, the value for unirradiated silicon of the
thickness used in the ATLAS pixel detector. Hereafter, the symbol ‘dE/dx’ stands for
〈dE/dx〉corr.

The dE/dx measurement provides a measurement of the particle βγ through a cal-
ibrated relation between dE/dx and βγ. The calibration is performed in the range
0.3 < βγ < 5, using a special low-pileup dataset in which it is feasible to reconstruct

3The reference run has been chosen in the middle of total integrated luminosity and close to the low

luminosity run used for the calibration of 〈dE/dx〉trunc into βγ.
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tracks with pT as low as 100 MeV (see section 4). In a narrow low momentum slice, the
contributions to the dE/dx spectrum from individual particle species can be resolved, as
shown in figure 4(a). The dE/dx distribution of the tracks in the special dataset, sliced
into bins of momentum, |η|, and OFIBL, is fitted with a superposition of Crystal Ball func-
tions [70, 71] modified to have double-sided Gaussian cores to extract the most probable
value of dE/dx for pions, kaons, and protons. These values trace out the dE/dx–βγ rela-
tionship, as shown in figure 4(b). In the ID, charged particles are assumed to be charged
pions by default, and the reconstructed momentum is unbiased for charged pions. For other
particle species, however, the reconstructed momentum at the low-pT end below 300 MeV
is biased. This momentum bias was derived using the same low-pT track reconstruction
for a minimum-bias Monte Carlo simulation sample and removed by applying a correction.
This correction is already included in figure 4(b). The fitted peaks as a function of βγ
are then fitted with the following empirical function inspired by the original Bethe–Bloch
formula

MPVdE/dx(βγ) =
1 + (βγ)2

(βγ)2

(

c0 + c1 log10(βγ) + c2 [log10(βγ)]2
)

(5.1)

where c0, c1, and c2 are free parameters of the fit. Inversion of the above function provides
an estimate of the charged-particle βγ from the measured dE/dx. Combined with the
momentum measurement, the mass of the particle associated with the track can be cal-
culated as mdE/dx ≡ preco/βγ(〈dE/dx〉corr). This reconstructed mass is hereafter simply
denoted by ‘m’.

The fraction of OFIBL = 1 tracks as a function of βγ, shown in figure 4(c) for |η| < 0.4,
is also monitored in the same low-pileup dataset. Here, the power of OFIBL as a key discrim-
inant of the search is clearly illustrated: the fraction of MIP tracks with an IBL overflow
is highly suppressed by more than two orders of magnitude, but a substantial fraction of
tracks with smaller βγ have an IBL overflow. The dE/dx–βγ calibration and the fraction of
OFIBL = 1 tracks versus track βγ form the basis of the data-driven template used to replace
the simulated dE/dx and OFIBL values in Monte Carlo samples: when the track associated
with the signal particle is reconstructed, first the label OFIBL is reassigned according to a
binomial probability depending on the particle (βγ, |η|), and then the 〈dE/dx〉corr value is
determined from the probability density distribution template corresponding to the OFIBL

label of the (βγ, |η|) slice.
It is worth mentioning that the |η|-dependence of 〈dE/dx〉trunc is not uniform over

βγ, as illustrated in figure 5. Even after the equalisation of the MPV over |η| described
above, the 〈dE/dx〉trunc response requires different mass calibration functions depending
on |η|. This is because not only the MPV but also the shape of the Landau distribution
depends on |η| (the Landau tails are reduced increasing the traversed silicon thickness).
The ionisation loss response is therefore treated by slicing in |η| throughout this analysis.

6 Selection of events, tracks and mass windows

In this section, criteria applied to events and tracks are described in detail. These selections
except the mass windows described in section 6.4 are summarised in table 1.
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Figure 5. |η|-dependence of the MPV of 〈dE/dx〉trunc for various charged-particle βγ values before
MPV equalisation over |η| for the OFIBL = 0 case. A value of βγ = 3 is approximately the MIP
case. In the signal region of this search, 〈dE/dx〉trunc approximately corresponds to βγ < 0.9. A
low-pileup dataset recorded in 2017 (21 pb−1) with pT > 100 MeV track reconstruction is used to
probe the dependence on βγ.

6.1 Event selection

Events in the signal region are first selected with a trigger based on Emiss
T , which is cal-

culated using energy measurements in the calorimeter with corrections for multiple pp

interactions in each event [43]. The high-level Emiss
T trigger threshold varies from 70 GeV

to 110 GeV during the data-taking period. In the offline reconstruction of the recorded
events, Emiss

T is built from calibrated muons and electrons which pass baseline selections,
and from calibrated jets reconstructed with the anti-kt jet clustering algorithm [72, 73] with
radius parameter R = 0.4, using clusters of energy depositions in the calorimeter as inputs.
A term that includes soft tracks not associated with any other objects in the event [74] but
consistent with the hard-scatter primary vertex (PV) (i.e. the vertex with the largest

∑

p2
T

for the associated tracks) is added to the Emiss
T calculation. Events are required to have

Emiss
T > 170 GeV to enhance the signal sensitivity and to ensure that the selected events

are near the efficiency plateau of the trigger. To ensure a reliable calculation of Emiss
T ,

events are rejected if they contain a jet with ET > 20 GeV that is consistent with detector
noise or beam-induced background, as determined from shower shape information. Unlike
in standard ATLAS selections for jet-cleaning [75], a requirement on the relationship be-
tween track and calorimeter measurements of pT and a requirement on the fraction of jet
energy deposited in the electromagnetic calorimeter are not applied, since they are found
to be inefficient for signal events in which an LLP decays before or inside the calorimeters.

Events that pass the trigger and Emiss
T selections are required to have a PV built from

at least two reconstructed tracks each with pT above 500 MeV, and must contain at least
one candidate track that passes the track-level selections detailed below.
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Category Item Description

Event topology Trigger Unprescaled lowest-threshold Emiss

T trigger

Emiss

T Emiss

T > 170 GeV

Primary vertex The hard-scatter vertex must have at least two tracks

Events are required to have at least one track fulfilling all criteria listed below; tracks sorted in pT descending order

Track kinematics Momentum pT > 120 GeV

Pseudorapidity |η| < 1.8

W ± → ℓ±ν veto mT(track, ~p miss

T ) > 130 GeV

Track quality Impact parameters Track matched to the hard-scatter vertex; |d0| < 2 mm and |∆z0 sin θ| < 3 mm

Rel. momentum resolution σp < max

(

10%, −1% + 90% ×
|p|

TeV

)

and σp < 200%

Cluster requirement (1) At least two clusters used for the 〈dE/dx〉trunc calculation

Cluster requirement (2) Must have a cluster in the IBL (if this is expected), or

a cluster in the next-to-innermost pixel layer

(if this is expected while a cluster is not expected in IBL)

Cluster requirement (3) No shared pixel clusters and no split pixel clusters

Cluster requirement (4) Number of SCT clusters > 5

Vetoes Isolation

(

∑

trk
pT

)

< 5 GeV (cone size ∆R = 0.3)

Electron veto EM fraction < 0.95

Hadron and τ -lepton veto Ejet/ptrack < 1

Muon requirement SR-Mu: MS track matched to ID track; SR-Trk: otherwise

Pixel dE/dx
Inclusive

Low: dE/dx ∈ [1.8, 2.4] MeV g−1cm2

High: dE/dx > 2.4 MeV g−1cm2

Binned

IBL0_Low: dE/dx ∈ [1.8, 2.4] MeV g−1cm2 and OFIBL = 0

IBL0_High: dE/dx > 2.4 MeV g−1cm2 and OFIBL = 0

IBL1: dE/dx > 1.8 MeV g−1cm2 and OFIBL = 1

Table 1. Summary of signal selection.

6.2 Track selection

All the track parameters are derived using only ID information, including the TRT hits.
This choice is justified by the desire to remain agnostic about the decay products of the
LLPs. When combining an ID track and muon spectrometer track segments, it is assumed
that the combined track has β = 1. Therefore, the addition of track information from the
muon spectrometer would not improve the mass resolution of selected low-βγ LLPs and
would induce η-dependent effects related to the particle’s time of flight.

In order to enrich the selected sample in potential signal events, candidate tracks are
required to have pT > 120 GeV and |η| < 1.8. To reject non-prompt background tracks
and those inconsistent with the PV, the transverse impact parameter4 of candidate tracks,
|d0|, must be less than 2 mm, and the absolute value of the product of the longitudinal

4The transverse impact parameter (d0) is defined as the distance of closest approach in the transverse

plane between a track and the beam line. The longitudinal impact parameter (z0) corresponds to the z-

coordinate distance between the point along the track at which the transverse impact parameter is defined

and the primary vertex.
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impact parameter relative to the z-position of the PV, ∆z0, and sin θ of the track, must
satisfy |∆z0 sin θ| < 3 mm. Reconstructed tracks must have at least six clusters across
the SCT detectors,5 and to be considered a candidate, the track must have an associated
cluster in the innermost active pixel detector module within the first two layers. Tracks
are rejected if any pixel cluster is shared by two or more tracks (shared cluster), or if the
shape of a pixel cluster is judged to be likely to arise from energy deposited by multiple
particles (split cluster) by a neural-network algorithm applied to the pixel pattern of the
cluster [48, 76]. To enhance the selection of isolated tracks, the scalar sum of the pT of
other tracks, with pT > 1 GeV and consistent with the PV, in a cone of size ∆R = 0.3

around the candidate track must be less than 5 GeV.
To reject tracks from leptonic W decays, the transverse mass, mT,6 associated with

the candidate track must be greater than 130 GeV. Tracks from electrons are removed
by considering any jets with pT > 20 GeV that are within ∆R(track, jet) = 0.05 of the
candidate track,7 and rejecting the track if any such jet deposits at least 95% of its energy
in the electromagnetic calorimeter. SM hadrons are removed by excluding tracks for which
a nearby jet satisfying ∆R(track, jet) < 0.05 has a calibrated energy larger than the track
momentum.

At least two pixel clusters, after discarding the cluster (or the two clusters) with the
highest ionisation, must be included in the calculation of dE/dx to ensure it is robust.

The relative uncertainty in the momentum measurement depends linearly on the
momentum, and the uncertainty upper bound should lie between 10% and 200%, and
must satisfy

σp < max

(

10%,

(

−1% + 90% × |p|
TeV

))

and σp < 200%

where σp ≡
∣

∣δ(p−1)/(p−1)
∣

∣ is the relative uncertainty of the inverse of the charge-signed
track momentum. This selection was chosen so as to maximise the statistical significance
of the signal over the full lifetime and mass range of the LLPs under study.

The dE/dx of the candidate track must be larger than 1.8 MeV g−1cm2, which corre-
sponds to a selection of approximately 1% of the whole track set in data. This threshold
value was used in all previous ATLAS searches based on dE/dx measurement in the pixel
detector [37–40] and is related to the data-driven background generation method. The
background extrapolation from a ‘below-threshold’ sample to the ‘above-threshold’ be-
haviour is driven by the sample size. The larger the available sample, the higher the
threshold setting can be. The larger integrated luminosity available for this measurement
allows a higher threshold setting. The threshold setting was optimised by maximising the
statistical significance of the signal, and a specific-ionisation threshold of 2.4 MeV g−1cm2

was found to be the optimal choice (approximately 0.15% of the whole track set survives
this cut). The interval dE/dx ∈ [1.8, 2.4] MeV g−1cm2 below this threshold contains a

5In the SCT, clusters on each side of a double-sided strip module are individually counted as clusters;

typically, two clusters are produced along a track in a module.
6mT ≡

√

2p track

T
Emiss

T
(1 − cos ∆φ), where ∆φ is the azimuthal separation between the track and ~p miss

T .
7The angular separation of two objects (i, j) is defined as ∆R(i, j) ≡

√

(∆ηij)2 + (∆φij)2.
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Figure 6. Simulated density distribution of representative signal tracks in the p–dE/dx plane
after event selection except the dE/dx requirement. The region above the dashed horizontal line
at dE/dx = 1.8 MeV g−1cm2 corresponds to the signal region. No events are expected above
dE/dx = 20 MeV g−1cm2 because of the limited dynamic range of the pixel electronics. The data-
driven dE/dx template technique described in section 5 is used in the simulation of the dE/dx

variable for these plots.

sizeable fraction of the signal, approximately 25%–40% for particles with a hypothetical
mass of 2.2–0.4 TeV respectively, but with less favourable statistical significance.

Two mutually exclusive intervals are considered: ‘Low’ for dE/dx ∈
[1.8, 2.4] MeV g−1cm2 and ‘High’ for dE/dx > 2.4 MeV g−1cm2. The latter has the
higher sensitivity, but the former also contributes to the sensitivity, especially for smaller
LLP masses.

Figure 6 illustrates the distribution of representative signal samples in the recon-
structed p–dE/dx plane after the selection. While the Bethe–Bloch relation is clearly
retained, a substantial amount of smearing is visible for higher LLP masses, reflecting the
limited ID momentum resolution.
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SR name Discovery Limit setting Track category IBL overflow dE/dx [MeV g−1cm2]

SR-Inclusive_Low X
inclusive yes or no

[1.8, 2.4]

SR-Inclusive_High X > 2.4

SR-Trk-IBL0_Low X

track

no [1.8, 2.4]

SR-Trk-IBL0_High X no > 2.4

SR-Trk-IBL1 X yes > 1.8

SR-Mu-IBL0_Low X

muon tracks

no [1.8, 2.4]

SR-Mu-IBL0_High X no > 2.4

SR-Mu-IBL1 X yes > 1.8

Table 2. Table of signal-region bins, showing their purpose (discovery or limit setting) and prop-
erties.

6.3 Event subsamples

A candidate track may be matched to a ‘combined muon’ object when a track recon-
structed in the MS is consistent with the candidate track when using ‘combined fitting’ in
the standard muon reconstruction algorithm [77, 78]. Depending on muon identification by
ID–MS track matching using the ‘medium’ criteria [78], candidate tracks are categorised
as either ‘muon tracks’ (SR-Mu) or ‘tracks’ (SR-Trk). This classification is useful because,
as is described later, the SR-Mu category contains the majority of background tracks but
only a limited fraction of the signal tracks, especially when the LLP’s average decay length
βγcτ is insufficient to traverse the MS. Indeed, even for the stable lifetime case, a sub-
stantial fraction of the signal tracks remain in the SR-Trk category, as can be seen in
figures 7–9. This is not only due to the intrinsic muon identification inefficiency, but also
due to the fact that the standard ATLAS muon reconstruction algorithm assumes β = 1

muons, and a substantial fraction of the signal tracks arrive at the MS much later than SM
muons. For R-hadron signal samples, there is additional complexity because R-hadrons
have strong interactions with the calorimeter material, and generally the probability of
muon identification is expected to be even smaller. For consistency, especially with the
background estimation, the pT of the track always refers to that of ID tracks, even for
muon-identified candidates.

The presence of an IBL overflow cluster on a track can provide a useful way to discrim-
inate signal from background. The data sample can then be split into two independent
subsets according to the presence (IBL1) or absence (IBL0) of an IBL overflow cluster
on the candidate track. These subsets are treated independently and their sensitivity is
combined.

The analysis was therefore built to treat all the subsamples (IBL overflow yes/no,
track identified as a muon yes/no) independently as well as all combined in a single sample,
which is defined as the ‘Inclusive’ sample. All samples are split into Low and High dE/dx

intervals, with the exception of the IBL1 events, where the tracks must satisfy the condition
dE/dx > 1.8 MeV g−1cm2. This choice is justified by the small number of IBL1 tracks and
by the better statistical significance expected in this sample.
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In summary, the search is performed by splitting the data sample as illustrated in
table 2. If multiple tracks in an event are found in a single signal-region bin after all signal
selections listed in table 1, the track with the highest pT is selected. However, more than
one track can be selected from the same event if they enter different signal-region bins.
The probability of this occurrence is negligibly small for the background events, while for
the signal models, depending on the mass and lifetime parameters, the probability is as
large as 10% when considering all events in the signal region. Figures 7–9 show how signal
events are partitioned by this binning, depending on the LLP masses and lifetimes.

The two inclusive signal regions are less dependent on specific theory models and are
therefore better suited to the search for an excess in the mass distribution. The six non-
inclusive signal regions can be compared in detail to the LLP models considered in this
analysis and are then used to derive limits directly related to these models.

6.4 Mass windows

In the signal region, the expected background has a broad mass distribution which falls
monotonically for m & 120 GeV (see section 7), while the signal forms a peak around
its nominal mass. The signal mass resolution mainly reflects the momentum resolution
of the tracks; the relative width of the core distribution is O(30%) × (m/TeV), but it
varies with the LLP’s decay length and therefore its lifetime. Therefore, a mass window is
defined for each target mass, and for both the ‘short’ and ‘long’ lifetime regimes, targeting
τ ≤ 1 ns and τ > 1 ns, respectively. While the cross-sections span multiple orders of
magnitude in the benchmarking models described in section 4, the mass-spectrum shapes
of these models are similar for a common target mass, reflecting the common kinematic
nature of the βγ spectrum of pair-produced particles. Therefore, the mass window for a
given LLP mass is defined by taking the average of the normalised mass distributions of
these models and finding the mass range that captures approximately 70% of the signal
events in the signal region while excluding as much background as possible. Reflecting
the steeply falling background distribution and the asymmetric long-tail mass distribution
of the signal, especially at higher target masses, the window is asymmetric with respect
to the target mass value and extends more to higher reconstructed masses. The lower
boundary of the mass window is determined by maximising 1/

√
B, where B is the expected

background yield. Values of the window boundaries are tested in steps of 10 GeV (m ≤
300 GeV) or 50 GeV (m > 300 GeV). The range m < 120 GeV is not used for the window
definition owing to signal selection cut-offs. The window is common to all signal-region
bins (see table 2) at a given target mass; minor acceptance differences for the various LLPs
and the various lifetimes are taken care of in the sensitivity calculations. The windows
cover the full range of target masses from 100 GeV to 3 TeV as shown in figure 10. The
‘short’-lifetime regime has wider windows than the ‘long’-lifetime regime, reflecting poorer
momentum resolution for shorter tracks. For consecutive target masses, the corresponding
mass windows can largely overlap, and events common to such windows can be counted in
each. The outcome of this search depends on the comparison of the data and background
yields in each predefined mass window.
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bins increase with the lifetime. The total probability to pass the event selection is 9.5% for τ = 3 ns,
20.7% for τ = 30 ns and 9.3% if the gluino is stable.
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Figure 8. Relative fraction of events in the signal-region bins for chargino scenarios with m(χ̃
±

1 ) =

1.3 TeV and different lifetime values. The fractions of events in muon-identified bins increase with
the lifetime. The total probability to pass the event selection is 7.3% for τ = 4 ns, 15.3% for
τ = 30 ns and 8.4% if the chargino is stable.
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Figure 9. Relative fraction of events in the signal-region bins for stau scenarios with m(τ̃) =

400 GeV and different lifetime values. The fractions of events in muon-identified bins increase with
the lifetime. The total probability to pass the event selection is 3.4% for τ = 3 ns, 4.0% for τ = 30 ns

and 1.4% if the stau is stable.
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Region pT [GeV] |η| Emiss
T [GeV] dE/dx [MeV g−1cm2]

SR

> 120 < 1.8

> 170 > 1.8

CR-kin > 170 < 1.8

CR-dEdx < 170 > 0

VR-LowPt

[50, 110] < 1.8

> 170 > 1.8

CR-LowPt-kin > 170 < 1.8

CR-LowPt-dEdx < 170 > 0

VR-HiEta

> 50 [1.8, 2.5]

> 170 > 1.6

CR-HiEta-kin > 170 < 1.6

CR-HiEta-dEdx < 170 > 0

Table 3. Definitions of the signal, control and validation regions.
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Figure 11. Event distributions of (a) kinematic control regions in the 1/pT–|η| plane and (b)
dE/dx control regions in the dE/dx–|η| plane for the inclusive sample.

after applying the corrections. As a result, the dE/dx template is sliced in bins of |η|.
The event rate in CR-dEdx changes over time, reflecting adjustments to the Emiss

T trigger
threshold during Run 2, while the event rate in CR-kin is stable since the Emiss

T requirement
of 170 GeV is well above the trigger threshold. In order to compensate for this effect, events
in the dE/dx template extracted from CR-dEdx are reweighted. The weight factor for the
i-th run, wi, is defined as wi ≡ Ri0/Ri where the Ri is the ratio of the numbers of events
in CR-LowPT-dEdx and CR-LowPt-kin for a given run i and i0 is the reference run against
which the events are calibrated. The weight factor differs from unity by up to ±2%.

The CR-kin region, used to predict the background in signal regions requiring tracks
to have a hit in the IBL overflow, is statistically sparse. To mitigate this, the kinematic
template in the CR-kin region, requiring tracks have no hits in the IBL overflow, is used
instead, with a weight factor n(OFIBL = 1)/n(OFIBL = 0) applied to each |η| slice.

To form a ‘toy’ background track, a pair of 1/pT and |η| values is sampled from the
kinematic template. A dE/dx value is sampled from the corresponding |η| bin of the
dE/dx template. From these sampled values, the track mass, m, is calculated using the
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dE/dx–βγ calibration. In total, 10 (40) million toy tracks are generated for the Low (High)
dE/dx range so that the number of toy samples does not limit the accuracy of predictions
in any mass range. Because there is no restriction on the range of dE/dx in sampling
from CR-dEdx, these toy samples predict the background distribution in both of the signal
regions and CR-kin simultaneously. Finally, the toy samples are normalised to data in a
sub-region of CR-kin which is expected to be depleted in signal, with m < 160 GeV and
dE/dx < 1.8 MeV g−1cm2. After the normalisation, the mass distributions in the m >

160 GeV range of CR-kin are in good agreement with those derived from the toy samples.
The background estimation procedure is validated in two sets of validation regions:

one set (VR-LowPt) selects tracks with lower pT and the other set (VR-HiEta) selects tracks
with higher |η| and has a looser pT requirement than in the signal regions. The definitions
of these regions and the corresponding control regions used for the background estimation
are shown in table 3. The dE/dx requirement for the VR-HiEta region is loosened in order
to probe a similar tail fraction of the narrower dE/dx distribution found at high |η|, and
there is no subdivision of VR-HiEta into Low and High dE/dx ranges because of the limited
sample size.

The expected and observed mass distributions for two of the individual val-
idation regions, VR-LowPt-Inclusive_High (with dE/dx > 2.4 MeV g−1cm2) and
VR-HiEta-Inclusive (with dE/dx > 1.6 MeV g−1cm2), are shown in figure 12. The
expected and observed distributions agree well across the lower mass range probed by
VR-LowPt-Inclusive_High and the higher mass range probed by VR-HiEta-Inclusive.

The expected and observed yields in all of the validation-region bins are shown in
table 4, and the ratios of the observed to expected yields are shown in figure 13. Good
agreement is visible across all region bins except VR-LowPt-Trk-IBL0_Low, where the ob-
served yield is approximately 35% lower than the prediction and unlikely to be a statistical
fluctuation. In order to relieve this tension, an empirical systematic scale uncertainty is
added. The details of this treatment are described in section 8. This additional uncer-
tainty is already included in figures 12 and 13 and in table 4, combined with the rest of
the systematic uncertainties.

8 Systematic uncertainties

The systematic uncertainties associated with the background estimate are evaluated for
each mass window, as shown in figure 14. The leading uncertainty at high masses is the
template correlation uncertainty, labelled ‘Template corr.’, which estimates the effect of
residual correlations between the template distributions used to generate the background.
To test the assumption that the kinematic and dE/dx templates can be sampled separately
to form a toy track, a pseudo signal region is defined in the CR-dEdx region (the one based on
inverting the Emiss

T requirement) by requiring dE/dx > 1.8 MeV g−1cm2. The background
estimation procedure is then executed, extracting both the (p−1

T , |η|) pair and the dE/dx

from the distributions in the CR-dEdx region. The difference of the event counts in each
mass window between the predicted and observed mass distributions in the pseudo signal
regions is taken as a systematic uncertainty. The size of the uncertainty is evaluated for
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Region Category Bin Expected Observed

VR-LowPt

Trk

IBL0_Low 65.6 ± 18.3 43

IBL0_High 6.8 ± 2.2 6

IBL1 3.8 ± 1.5 4

Mu

IBL0_Low 292 ± 17 300

IBL0_High 24.8 ± 3.6 32

IBL1 20.4 ± 3.7 19

Inclusive
Low 391 ± 24 361

High 37.2 ± 4.4 43

VR-HiEta

Trk
IBL0 26.6 ± 7.3 23

IBL1 8.0 ± 2.6 5

Mu
IBL0 56.4 ± 2.5 59

IBL1 15.1 ± 1.5 10

Inclusive — 101 ± 6 97

Table 4. Expected and observed event yields in the validation-region bins.

each signal-region bin separately. This uncertainty is the dominant uncertainty in the
target mass above ∼1 TeV.
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(a) SR-Inclusive_Low, Long lifetime regime
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Figure 14. Systematic uncertainties in the background estimate for each mass window targeting
long lifetimes in the (a) SR-Inclusive_Low region and (b) SR-Inclusive_High region.

In the background estimation procedure, the dE/dx templates are sliced in |η| due to
the remaining |η|-dependence of the dE/dx tails. To ensure that the background estimate
is not heavily dependent on the choice of these bins, the background estimation is repeated
with an alternative set of |η| bins. The difference between the resulting mass distribution
and the nominal one is taken as a systematic uncertainty, labelled ‘η slicing’. The OFIBL = 1

region uses a reweighted version of the OFIBL = 0 region’s kinematic template as explained
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in section 7. An uncertainty is assigned to this method by generating an alternative
background distribution using the original OFIBL = 1 region’s kinematic template and
comparing it with the background distribution generated by the reweighted kinematic
template. This uncertainty only affects the IBL1 SR.

Since the Emiss
T trigger thresholds changed during Run 2, the dE/dx templates in

the background estimation are reweighted to correct for any bias which may arise in the
CR-dEdx region, which is populated by events with low Emiss

T . An uncertainty labelled
‘MET trig.’, derived by comparing the predicted mass distributions with and without this
reweighting, is applied to cover any deficiencies in the reweighting.

Uncertainties that account for the effect of statistical fluctuations in the control-region
templates are also evaluated. The statistical uncertainties of the template histograms
are derived by fluctuating each bin in the template histograms according to a Poisson
distribution with a mean equal to the number of entries in the bin. The root-mean-
square deviation of alternative mass distributions generated from the randomly fluctuated
templates is taken as the uncertainty, which is labelled ‘Stat.’. To quantify the effect
of statistical fluctuations in the tail of the dE/dx template distributions and assign an
uncertainty, labelled ‘dE/dx tail’, each tail is fitted with a Crystal Ball distribution, which
is then used instead of the data in the dE/dx template to generate an alternative mass
distribution. A statistical uncertainty, labelled ‘Norm.’, in the normalisation factor of the
background prediction is also calculated and applied as a uniform uncertainty.

As described in the previous section, in validation-region bin VR-LowPt-Trk-IBL0_Low,
a deficit of 35% relative to the prediction is observed in the range m . 120 GeV, which
is significantly larger than the statistical uncertainty. In the other bins, no significant
excesses or deficits are found. This deficit can be attributed to the difference between
the dE/dx tail distributions for dE/dx ∈ [1.8, 2.4] MeV g−1cm2 in the CR-LowPt-dEdx

and VR-LowPt samples. An empirical scale uncertainty in the number of events, labelled
‘dE/dx scale’, is assigned based on the following considerations: the observed mismatch
depends on the amount of pileup, and for the Mu categories the dE/dx tail fraction is
stable and the observed yield agrees with the prediction very well. The dE/dx response
of well-isolated muon tracks is considered more robust against pileup than that of other
tracks. Therefore, different uncertainties are assigned to the Trk and Mu categories, and the
uncertainty is correlated over all validation- and signal-region bins in the same category.
With this global approach, a scale uncertainty of 27% (3%) is assigned to the Trk (Mu)
category. For the Inclusive category, the combined scale uncertainty is found to be 5%,
and this is consistent with the fact that the majority of the background tracks in the
Inclusive category are identified as muons. The derived ‘dE/dx scale’ uncertainty is
assumed to be uniform over mass and is dominant, uniquely for the Trk category, below
∼1.0 TeV.

Additional systematic uncertainties associated with the modelling and predicted yield
of the signals in simulation are also considered when setting limits on specific models.
An uncertainty of 1.7% applied to the dataset’s integrated luminosity is derived from
x–y beam-separation scans [79]. Uncertainties in the QCD radiation modelling, which
significantly impact the efficiency of triggering on signals with large initial-state radiation,
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are estimated using MC samples. These MC samples are generated identically to their
corresponding signal MC samples but with variations in the factorisation, renormalisation,
and merging scales, as well as in the parton showering tunes and radiation tunes. The
differences between results from the nominal and alternative MC samples are then used as
the systematic uncertainties. The majority of these uncertainties are found to be of order
of 1%. The only exceptions are parton shower and radiation tuning uncertainties that can
grow to be ∼ 10% for some MC samples.

For the MC signal samples, the dE/dx distribution (and therefore the mass distribu-
tion), as well as the probability of a track to have OFIBL = 1, is based on a template derived
from a 2017 low-pileup dataset. This dataset is also used to calibrate the dE/dx–βγ re-
lationship. Although the run-dependent corrections applied to the dE/dx measurement
mitigate any time dependence of the most probable dE/dx measurement for a MIP-like
particle, any remaining time dependence of the dE/dx distribution for particles with small
βγ in data is not accounted for in signal samples because the data-driven template is taken
from a fixed point in time. To quantify the potential impact of this, the dE/dx–βγ rela-
tionship was calibrated again, this time using a similar low-pileup dataset taken in 2018.
The probability of a track to have OFIBL = 1 was also measured in this dataset. The dif-
ference between the two calibrations, quantified by comparing the resulting signal-region
track masses, is negligible compared to the mass resolution and is less than ∼3%. The
probability of a track to have OFIBL = 1 was found to have increased significantly in 2018
due to a change in the IBL ToT front-end configuration. An associated uncertainty is there-
fore calculated by comparing the probabilities of a track to have OFIBL = 1 in the 2017 and
2018 low-pileup datasets and applied by using the βγ-dependent ratio of these probabilities
to reweight the events.

Other uncertainties associated with the simulation modelling include those related
to the pileup distribution, track-level quantities, muon identification, the Emiss

T trigger,
and the offline Emiss

T calculation. The largest of these are the modelling uncertainties
associated with track momentum measurement errors due to detector misalignments, the
pileup distribution, and the offline Emiss

T calculation.

9 Results

In total, 223 events are observed in the signal region combining all exclusive bins. The
observation in each mass window (defined for each hypothetic particle mass) for the
Inclusive signal-region bins is presented in table 5, and in total 196 (27) events are
observed in the SR-Inclusive_Low (SR-Inclusive_High) bin over the full mass range
(see table 2). The mass, pT, |η| and dE/dx distributions in each of the SR-Inclusive_Low

and SR-Inclusive_High bins are shown in figures 15 and 16, compared with the expected
background yields and several representative signal points. Overall, the observed event dis-
tribution agrees well with the expected background distribution in these variables within
the estimated uncertainties, except in the SR-Inclusive_High bin in the high mass range.

The statistical analysis and likelihood construction were implemented in the pyhf

software framework [80]. For each mass window, the likelihood of the background-only
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Target

mass

[GeV]

Mass

win-

dow

[GeV]

Signal region bin

SR-Inclusive_Low SR-Inclusive_High

Exp. Obs. p0 Zlocal S95
exp. S95

obs.
Exp. Obs. p0 Zlocal S95

exp. S95
obs.

Short lifetime

200 [120, 225] 81 ± 4 76 5.00 × 10−1 0.0 21
+8
−6 18 5.6 ± 0.7 7 2.65 × 10−1 0.6 6.3+2.5

−1.7 7.8

300 [200, 350] 72 ± 4 72 4.72 × 10−1 0.1 20
+8
−6 20 9.2 ± 0.8 14 7.11 × 10−2 1.5 7.6+3.0

−2.1 12.5

400 [300, 500] 45.6 ± 3.3 43 5.00 × 10−1 0.0 16
+6
−4 14 5.8 ± 0.4 6 4.39 × 10−1 0.1 6.1+2.5

−1.8 6.5

450 [350, 600] 37.6 ± 2.7 44 1.72 × 10−1 0.9 15
+6
−4 20 5.1 ± 0.4 3 5.00 × 10−1 0.0 6.0+2.2

−1.6 4.6

500 [400, 700] 30.6 ± 2.2 42 3.41 × 10−2 1.8 13
+5
−4 24 4.3 ± 0.4 4 5.00 × 10−1 0.0 5.4+2.2

−1.3 5.2

550 [400, 800] 33.9 ± 2.5 45 4.74 × 10−2 1.7 14
+5
−4 24 4.8 ± 0.4 4 5.00 × 10−1 0.0 5.8+2.5

−1.8 5.4

600 [450, 900] 27.5 ± 1.9 35 9.48 × 10−2 1.3 12.1+5.3
−3.5 19.3 3.91 ± 0.31 2 5.00 × 10−1 0.0 5.5+2.2

−1.6 4.0

650 [500, 1000] 22.5 ± 1.6 29 1.03 × 10−1 1.3 11.2+4.4
−2.8 17.2 3.22 ± 0.31 2 5.00 × 10−1 0.0 5.2+1.9

−1.6 4.4

700 [550, 1100] 18.7 ± 1.4 23 1.71 × 10−1 0.9 10.3+4.0
−2.7 14.3 2.64 ± 0.31 2 5.00 × 10−1 0.0 4.7+1.9

−1.0 4.3

800 [600, 1200] 15.6 ± 1.3 20 1.47 × 10−1 1.1 9.5+3.8
−2.9 13.7 2.22 ± 0.24 3 2.86 × 10−1 0.6 4.5+1.8

−1.0 5.5

900 [650, 1400] 13.8 ± 1.3 17 2.09 × 10−1 0.8 9.1+3.5
−2.5 11.9 2.0 ± 0.3 4 9.74 × 10−2 1.3 4.3+1.6

−0.9 6.8

1000 [700, 1850] 13.1 ± 1.3 17 1.54 × 10−1 1.0 8.8+3.6
−2.3 12.7 1.9 ± 0.5 4 9.01 × 10−2 1.3 4.1+1.9

−0.7 7.0

1200 [800, 2400] 11 ± 2 14 1.85 × 10−1 0.9 8.6+3.3
−2.5 11.9 1.5 ± 0.7 6 9.10 × 10−3 2.4 4.0+1.6

−0.8 10.0

1400 [900, 2900] 8.5 ± 2.1 11 2.37 × 10−1 0.7 8.1+3.1
−2.6 10.5 1.1 ± 0.7 7 2.08 × 10−3 2.9 4.0+1.4

−0.7 11.5

1600 [1000, 3450] 6.9 ± 2.4 9 2.57 × 10−1 0.7 7.8+3.0
−2.6 10.1 0.9 ± 0.5 7 6.03 × 10−4 3.2 3.6+1.5

−0.5 11.8

1800 [1100, 4000] 5.7 ± 2.6 8 2.35 × 10−1 0.7 7.3+2.8
−2.3 9.9 0.8 ± 0.6 7 8.87 × 10−4 3.1 3.5+1.1

−0.2 11.9

2000 [1200, 4600] 5 ± 4 6 3.03 × 10−1 0.5 7.3+3.0
−2.3 9.0 0.6 ± 0.5 5 4.92 × 10−3 2.6 3.1+1.1

−0.1 9.4

Long lifetime

100 [120, 200] 68 ± 4 63 5.00 × 10−1 0.0 19
+7
−5 16 3.9 ± 0.6 5 2.81 × 10−1 0.6 5.4+2.1

−1.0 6.7

200 [150, 225] 63 ± 4 54 5.00 × 10−1 0.0 18
+7
−4 13 5.5 ± 0.6 7 2.61 × 10−1 0.6 6.1+2.6

−1.8 7.8

300 [250, 350] 40.9 ± 2.7 35 5.00 × 10−1 0.0 15
+6
−4 11 5.1 ± 0.5 7 2.01 × 10−1 0.8 5.9+2.4

−1.4 8.0

400 [350, 500] 29.2 ± 2.2 33 2.54 × 10−1 0.7 12.6+5.3
−3.2 16.0 3.83 ± 0.26 2 5.00 × 10−1 0.0 5.4+1.9

−1.3 4.2

450 [400, 550] 21.5 ± 1.6 30 5.03 × 10−2 1.6 11.0+4.2
−2.9 19.4 3.00 ± 0.23 2 5.00 × 10−1 0.0 5.1+1.7

−1.3 4.3

500 [450, 650] 19.4 ± 1.2 27 5.62 × 10−2 1.6 10.3+4.3
−2.6 17.4 2.73 ± 0.22 1 5.00 × 10−1 0.0 4.7+1.9

−0.9 3.9

550 [450, 700] 21.8 ± 1.5 29 7.73 × 10−2 1.4 11.0+4.2
−3.2 17.8 3.06 ± 0.32 2 5.00 × 10−1 0.0 5.0+2.1

−1.5 4.2

600 [500, 800] 18.4 ± 1.3 24 1.12 × 10−1 1.2 10
+4
−3 15 2.64 ± 0.19 2 5.00 × 10−1 0.0 4.4+2.2

−1.2 4.2

650 [550, 850] 15 ± 1 19 1.32 × 10−1 1.1 9.1+3.7
−2.7 13.4 2.07 ± 0.17 2 5.00 × 10−1 0.0 4.5+1.5

−1.2 4.6

700 [550, 950] 16.6 ± 1.2 21 1.52 × 10−1 1.0 9.7+3.8
−2.8 13.7 2.4 ± 0.2 2 5.00 × 10−1 0.0 4.5+2.0

−0.9 4.3

800 [650, 1150] 12.0 ± 1.1 14 2.86 × 10−1 0.6 8.4+3.5
−2.3 10.4 1.74 ± 0.16 3 1.79 × 10−1 0.9 4.1+1.8

−0.8 5.8

900 [700, 1250] 10.4 ± 0.9 13 2.17 × 10−1 0.8 8.1+3.0
−2.6 10.3 1.5 ± 0.4 3 1.35 × 10−1 1.1 3.9+1.8

−1.0 6.0

1000 [800, 1550] 8.6 ± 0.8 11 2.16 × 10−1 0.8 7.5+2.9
−2.5 9.6 1.2 ± 0.6 4 3.73 × 10−2 1.8 3.8+1.4

−0.8 7.5

1100 [900, 1800] 7.1 ± 0.7 10 1.46 × 10−1 1.1 7.0+2.5
−1.9 9.8 1.0 ± 0.5 4 2.13 × 10−2 2.0 3.7+1.2

−0.8 7.6

1200 [950, 2100] 6.7 ± 1.3 10 1.38 × 10−1 1.1 7.0+2.5
−2.3 10.2 0.9 ± 0.5 6 1.65 × 10−3 2.9 3.7+1.3

−0.6 10.4

1300 [1000, 2200] 6.1 ± 1.2 9 1.48 × 10−1 1.0 6.5+2.9
−1.4 9.7 0.8 ± 0.4 6 5.47 × 10−4 3.3 3.5+1.2

−0.5 10.3

1400 [1100, 2800] 5.2 ± 1.7 8 1.76 × 10−1 0.9 6.5+2.6
−2.0 9.6 0.7 ± 0.4 7 1.46 × 10−4 3.6 3.2+1.1

−0.1 11.9

1500 [1150, 2900] 4.9 ± 2.4 7 2.41 × 10−1 0.7 6.6+2.8
−1.9 9.3 0.6 ± 0.4 6 6.09 × 10−4 3.2 3.2+1.2

−0.1 10.7

1600 [1250, 3400] 4.2 ± 3.4 5 3.24 × 10−1 0.5 7.0+2.9
−2.2 8.4 0.54 ± 0.35 5 1.19 × 10−3 3.0 3.1+1.2

−0.1 9.5

1800 [1400, 4250] 3
+4
−3 4 2.74 × 10−1 0.6 7.2+2.4

−1.5 8.3 0.44 ± 0.32 4 3.36 × 10−3 2.7 3.2+1.0
−0.1 8.1

2000 [1550, 4650] 3
+4
−3 3 3.14 × 10−1 0.5 6.2+1.9

−2.1 6.9 0.36 ± 0.25 3 6.96 × 10−3 2.5 3.1+1.0
−0.1 6.8

2200 [1650, 5900] 2
+5
−2 4 2.18 × 10−1 0.8 6.0+2.4

−2.2 8.2 0.33 ± 0.28 3 8.85 × 10−3 2.4 3.0+1.1
−0.1 6.8

2400 [1750, 6300] 2
+4
−2 3 3.17 × 10−1 0.5 5.5+1.5

−1.5 6.7 0.29 ± 0.28 3 9.75 × 10−3 2.3 3.2+0.8
−0.0 6.9

2600 [1900, 6500] 2
+4
−2 1 5.00 × 10−1 0.0 4.9+2.0

−1.6 4.0 0.25
+0.31
−0.25 3 9.71 × 10−3 2.3 3.1+0.7

−0.0 6.9

2800 [2000, 6700] 1.5+3.1
−1.5 1 5.00 × 10−1 0.0 4.5+2.1

−1.4 4.2 0.2+0.4
−0.2 1 1.07 × 10−1 1.2 3.0+0.6

−0.0 4.0

3000 [2100, 6700] 1.4+3.1
−1.4 1 5.00 × 10−1 0.0 4.4+1.4

−1.1 4.3 0.2+0.4
−0.2 1 9.43 × 10−2 1.3 2.9+0.4

−0.0 4.1

Table 5. List of expected and observed numbers of events, p0-value (capped at 0.5) and the
corresponding local Z significance, as well as the 95% CLs upper limit on the expected and observed
numbers of signal events (S95

exp. and S95
obs.) in each mass window for SR-Inclusive bins in the ‘short’

(τ ≤ 1 ns) and ‘long’ (τ > 1 ns) lifetime regimes.
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hypothesis given the observed data was constructed from the background prediction and
the associated systematic uncertainties. The effect of the systematic uncertainties is incor-
porated through nuisance parameters which are constrained to be Gaussian-distributed.
Using a profile-likelihood-based test statistic [81], independent p0-values quantifying the
level of agreement between the observed data and the background prediction were calcu-
lated for each of these windows. The lowest p0-value of 1.46 × 10−4 is associated with the
SR-Inclusive_High bin in the mass window of [1100, 2800] GeV, corresponding to a target
mass of 1.4 TeV in the ‘long’ lifetime regime. In this window, 0.7 ± 0.4 events are expected
and seven events are observed, and the p0-value corresponds to a local Z significance10 of
3.6. The mild excess reported in ref. [40] at around 600 GeV is not confirmed in the dataset
analysed here: the maximum local Z significance observed in that region is 1.8 for a target
mass of 500 GeV in the SR-Inclusive_Low bin in the ‘short’ lifetime regime.

After taking into account the look-elsewhere effect [82, 83], the corresponding global
Z significance for the 1.4 TeV target mass in the SR-Inclusive_High bin is evaluated to
be approximately 3.3 by using pseudo-experiments, including all ‘long’ and ‘short’ lifetime
windows. The pseudo-experiments generate event distributions in the signal-region bins
according to the background estimate, assuming the systematic uncertainty is correlated
over all masses. In total, one million pseudo-experiments were generated per signal-region
bin to evaluate the global significance. Reflecting the relatively broad mass resolution
above 1 TeV, the look-elsewhere effect is found to be mild, consistent with the relatively
small difference between the local and global Z significances.

Events in the mass window with the lowest p0-value were examined individually. Out
of these seven events, four are in the SR-Mu category and have no IBL overflow, two of the
remaining three events are in the SR-Trk category and have an IBL overflow, and the last
event is in the SR-Trk category and has no IBL overflow. One of the three events in the
SR-Trk category has a matched muon which does not satisfy the identification criterion
applied in this analysis. Detailed pixel cluster information was extracted, and no obvious
pathologies or instrumental data-quality problems were found. In particular, no signatures
of multiple densely clustered particles, which could lead to poor track reconstruction, were
found around the candidate tracks. Candidate tracks are well isolated both at the track
level and at the calorimeter cluster level, as required by the signal selection. For each of
the four SR-Mu category events and the one SR-Trk event that has a matched muon, the
track momentum when reconstructed as a muon using both the inner detector and the
muon spectrometer was compared with the nominal momentum obtained using only the
inner detector. Allowing for the momentum resolution, the two reconstructed momentum
values are compatible with each other for all five events.

The event topology of these excess events typically contains a counterbalancing jet,
opposite in φ to the candidate signal track. Such a ‘back-to-back’ topology is typical
in the CR-kin region at high-pT values above several hundred GeV. One event lacks a
counterbalancing jet, but a balancing amount of Emiss

T is present. Overall, no obvious
pathologies or instrumental issues were found.

10By convention, the Z significance of a p0-value is defined as Z ≡ Φ−1(1 − p0) where Φ−1 is the inverse

of the cumulative distribution for a unit Gaussian function.
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The dE/dx values of the excess candidate tracks span 2.42–3.72 MeV g−1cm2, and
they map to particle speeds of β = 0.62–0.52 according to the dE/dx–βγ relationship
in eq. (5.1), which assumes the given dE/dx value is the MPV. This range of β should
result in a significantly longer time-of-flight through the ATLAS detector than for β = 1

SM particles, and this is used as a consistency test. As in the searches for stable charged
particles [37], two independent β values were examined: one is the β value measured by the
muon spectrometer (βMS) when fitting muon tracks with β as a free parameter; the other is
the β value obtained from calorimeter cell hits associated with the candidate track (βcalo).
In the latter case, β is derived from the average ToF weighted by the timing resolution of
the cells, which depends on the size of the energy deposit. The probability distributions
of these two β variables for the β = 1 SM particles are modelled from the CR-kin dataset.
Both β probability distributions exhibit non-Gaussianity with approximately symmetric
side-lobes. The FWHM of the peak divided by 2.35 for βMS is 0.045, while it is 0.075 and
0.050 for βcalo in the CR-kin-Mu and CR-kin-Trk samples, respectively. The efficiency of
obtaining a βMS value from the CR-kin-Mu sample is 95%, while that of obtaining a βcalo

value is 85% from the CR-kin-Mu sample and 95% for the CR-kin-Trk sample. Using MC
signal samples, where particles have low β, it was found that the β values from the ToF
observables and the β value deduced from the pixel dE/dx measurement agree within 6%.

The β values measured by ToF of the seven candidate tracks were all found to be
compatible with β = 1, with all the βMS and βcalo values being well within the 95%
confidence interval of the distribution. Therefore, the low particle speed suggested by the
pixel dE/dx measurement for the seven candidate tracks in the excess was not confirmed
by these ToF observables.

The results of this study are interpreted for the benchmark signal models considered,
and the 95% CL upper limit on the cross-section is extracted using the CLs prescription [42]
for each signal mass and lifetime hypothesis, using a simultaneous fit of the six exclusive
signal-region bins listed in table 2. These six signal-region bins are exclusive at the track
level. The cross-section limit is derived by combining the six track-based regions as inde-
pendent observations, with the exception of correlations through systematic uncertainties.
According to simulation, the probability of having multiple tracks from the same event
entering different bins is small and its impact is insignificant compared to the experimental
uncertainty. The mass spectra of these exclusive bins are presented in figure 17. When
both the ‘short’ and ‘long’ lifetime windows are available, the window which provides the
better expected limit is selected.

To more accurately probe the sensitivity of the analysis to LLP lifetimes other than
those used in the generation of the signal samples, the same samples are reinterpreted for
intermediate lifetime values by reweighting the LLP particle decay spectra. Intermediate
lifetimes are modelled by reweighting the closest longer-lifetime sample to shorter lifetimes,
except for τ > 30 ns. The choice of target lifetimes for τ > 30 ns is limited by the reduced
size of the reweighted sample.

Figure 18 show the mass limits for gluino R-hadron pair production for both the
m(χ̃

0
1) = 100 GeV and ∆m(g̃, χ̃

0
1) = 30 GeV cases. The highest observed lower limit on the

mass is 2.27 TeV (2.06 TeV) and is obtained at τ = 20 ns (τ = 30 ns) for m(χ̃
0
1) = 100 GeV
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(

∆m(g̃, χ̃
0
1) = 30 GeV

)

, while the corresponding expected limit is 2.35 TeV (2.14 TeV).
Similarly, the limits in the chargino and stau scenarios are shown in figure 19(a) and
figure 19(b), respectively. The highest observed mass limit of 1.07 TeV is obtained at
τ = 30 ns for the chargino production model, while the corresponding expected limit is
1.19 TeV. For the stau case, the mass range 220–360 GeV is excluded for τ = 10 ns, while
the corresponding expected exclusion is 200–470 GeV. Masses below the excluded mass
range are not excluded by this search because of acceptance losses mainly due to the pT

selection. These results provide the most stringent limits on these scenarios in the given
lifetime range to date. Due to the observation of more events than expected at high masses,
the observed limits are weaker than the expected limits for LLPs with mass m & 1 TeV.

10 Conclusion

A search is performed for heavy charged LLPs, with lifetimes sufficient (τ & 1 ns) to
reconstruct inner-detector tracks, produced at the LHC in 139 fb−1 of pp collisions at√
s = 13 TeV. The identification of LLPs is based on anomalously high specific ionisa-

tion measured by the ATLAS pixel detector for isolated high-momentum tracks in events
with high Emiss

T . The considerable increase in sensitivity compared to previous ATLAS
searches is not only due to the higher integrated luminosity, but also to several significant
improvements in the analysis strategy. The most noticeable are the use of a higher dE/dx

threshold, the separate treatment of the tracks with an IBL overflow flag and the use of a
data-driven dE/dx-response template instead of a simulated one, as well as a more opti-
mised definition of sub-regions in the signal region for exclusion interpretations. Evaluation
of systematic uncertainties was also improved through the adoption of a high-momentum
validation region and the implementation of a pseudo signal region to test the background
generation method.

Observed yields and distributions agree with the SM background expectations, with
the exception of an accumulation of events in the high-dE/dx and high-mass range. The
local (global) significance of this excess is 3.6σ (3.3σ) in a sub-range of the signal region
optimised for a target mass hypothesis of 1.4 TeV. The events in the excess region were
examined in detail. Although no obvious pathologies were identified in the measurement of
these events, the time-of-flight measurements in outer detector subsystems clearly indicate
that none of the candidate tracks are from charged particles moving significantly slower
than the speed of light.

Maximum sensitivity is reached for LLPs with lifetimes of around 10–30 ns. Masses
smaller than 2.27 TeV are excluded at the 95% confidence level for gluino R-hadrons with
a lifetime of 20 ns and m(χ̃

0
1) = 100 GeV. The mass limit for compressed-scenario R-

hadrons, with ∆m(g̃, χ̃
0
1) = 30 GeV and a lifetime of 30 ns, is 2.06 TeV. Masses below

1.07 TeV for charginos and in the range 220–360 GeV for staus are excluded for lifetimes of
30 ns and 10 ns, respectively. The limits in the mass–lifetime plane are the most stringent
to date and provide further constraints on the R-hadron, chargino and stau production
models considered.
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Figure 18. Lower limits on the gluino mass, from gluino R-hadron pair production, as a function of
gluino lifetime for two neutralino mass assumptions of (a) m(χ̃
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30 GeV. The upper 1 σexp expected bound is very close to the expected limit for some lifetime
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