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Abstract: We study a set of conditions that must be imposed directly at the level of

on-shell scattering amplitudes to obtain the coupling of axion-like particles (ALPs) to

matter. We identify three conditions that allow to compute amplitudes that correspond

to shift-symmetric Lagrangians, both at the level of dimension 5 operators and at the

level of higher dimensional operators. In particular, one of the conditions allows one to

link the 3-point amplitude between one ALP and two massive fermions to an high energy

amplitude invariant under the Standard Model symmetry group, and highlight the

connection with the Adler’s zero. Finally, we discuss a phenomenological application,

showing that in the process ℓ+ℓ− → ϕh (with ℓ± two charged leptons, ϕ the ALP and

h the Higgs boson), as a result of the structure of the 3-point and 4-point amplitudes,

dimension-7 operators can dominate over the dimension-5 ones well before the energy

reaches the cutoff of the theory.
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1 Introduction

In recent years, the study of modern on-shell methods [1–5], together with their appli-

cation to phenomenological issues, has been gaining much attention and giving fruitful

results. Without a doubt, the most innovative feature of these methods consists of

writing down scattering amplitudes by relying on nothing but the covariance of the S-

matrix under little-group transformations of the Lorentz group [6], thus putting aside

the need for fields and Lagrangians. The consequences and applications of the on-shell

approach are far-reaching. On the phenomenological side, much progress has been

made, for instance, in the computation of loop-integrals and anomalous dimensions [7–

13], in the understanding of the Standard Model (SM) and of Effective Field Theories

(EFTs) [14–32], in the study of the physics of higher-spin dark-matter [33] and also

in the formulation of neutrino oscillations [34, 35]. One less pursued question is that

of establishing a precise connection between the physical properties of infra-red (IR)

on-shell amplitudes to the physics of the ultra-violet (UV) [14, 22, 28, 36–39]. In the

Lagrangian approach, the different assumptions about the UV dynamics are translated

in the IR to specific EFTs and power counting (e.g. SILH [40], HEFT [41]), giving us

much more control over the properties of the low-energy amplitudes. The same exercise

still needs to be carried out in a systematic way in the on-shell approach, in which the

UV properties are reconstructed from the IR amplitudes.

Along these lines, an interesting problem that can be studied using on-shell meth-

ods is the one concerning the physics of axion-like particles (ALPs). From the usual

quantum field theoretical perspective, it is well known that ALPs interactions must be

invariant under a shift symmetry if the underlying global symmetry is exact. This has

extensive physical consequences, among which the existence of soft-theorems and the

appearance of the so-called Adler’s zero, which state that amplitudes involving ALPs

(or, equivalently, Nambu–Goldstone bosons) are either regular or vanish in the limit

in which the ALP momentum becomes soft [42–45]. It is not straightforward, how-

ever, to invert the reasoning of the field theoretical approach and ask: what are the

physical properties that amplitudes should satisfy in order to recover shift-symmetry?

Given that on-shell methods allow us to write the amplitudes without assuming any

Lagrangian or symmetry, they are the ideal framework to approach this question. Pre-

vious studies in the literature have partially tackled it, showing that amplitudes only

involving exactly massless ALPs make manifest soft-theorems [46], as well as Adler’s

zero conditions [38, 39, 47–49]. In addition, it is possible to read off from IR prop-

erties of these amplitudes of ALPs the structure of the coset group associated to the

spontaneous symmetry breaking in the UV [37].

In this paper, we continue to further explore this direction and investigate the
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coupling between ALPs and other Standard Model (SM) fields. We will first reproduce

the well-known results of ALP 3-point couplings to massive fermions and vectors, which

will then be uplifted to the study of 3- and 4-point amplitudes with SM particles in the

unbroken electroweak phase. Understanding the properties of the simplest scattering

amplitudes of ALPs and matter particles will allow us to generalize this procedure and

construct higher-point functions in a systematic way.

The paper is organized as follows. In Section 2, we formulate our approach in

terms of on-shell methods and apply it to generic 3-point amplitudes involving one

ALP. In Section 3, we match the massive amplitudes in the IR to the massless ones in

the UV, while specializing to the SM particle content, discussing also how to handle

electroweak symmetry breaking effects. We also comment on the physical interpretation

of the shift-symmetry breaking invariants introduced in Ref. [50]. In Section 4, we

build higher-point contact amplitudes up to dimension 8 in the ALP scale, while some

phenomenological applications are discussed in Section 5. In particular, we study the

production of an ALP in association to a Higgs in a lepton collider, ℓ−ℓ+ → ϕh, and

show that higher-order contact operators can give the leading contribution to the cross-

section at high-energies. Finally, we conclude in Section 6. We also add a number of

appendices with more technical material: in Appendix A, we present our conventions for

spinors; in Appendix B, we propose an alternative on-shell derivation of the connection

between Yukawa couplings and fermions masses; finally, in Appendix C, we present

detailed computations of the running of the 4-particle amplitude involving one ALP, a

fermion-antifermion pair and one Higgs doublet.

2 ALP couplings to matter

2.1 General remarks

On-shell techniques have been previously used in the literature to study amplitudes

involving massless scalar particles. More precisely, under the assumption that these

amplitudes vanish as any of the momenta go soft, i.e. p → 0, it is possible to derive

a number of features of such scalars and in some cases even completely determined

the underlying theory [14, 36–39, 46, 47]. However, these analyses are restricted to

amplitudes with nothing but scalars, and therefore do not apply when they interact

with other matter fields, for instance SM particles, making necessary the addition

of extra assumptions. One of the goals of the present paper is then to extend this

discussion and characterise the interactions of ALPs with other particles from an on-

shell perspective.
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Our starting point are amplitudes involving ALPs, hereafter denoted by ϕ, in the

limit in which the ALP momentum pϕ → 0. We will thus be focusing on

lim
pϕ→0
A[ϕ, O] , (2.1)

where A denotes the amplitude and O is a set of other arbitrary particles. In this

section, we will restrict ourselves to 3-point amplitudes, A3, with one (massless) ALP

and two other massive particles, which we will in turn take to have spin 0, 1/2 and 1.

In on-shell language, 3-point amplitudes are special objects, since they are completely

fixed by little-group covariance and have constant coefficients. Moreover, massless 3-

point amplitudes can only make sense when considering complex momenta, since the

three-body kinematics forces the amplitude to vanish for real momenta [2, 5]. 3-point

amplitudes can also be used as building blocks to form the so-called “constructible”

higher-point amplitudes [26, 51, 52]. Contact interactions, that cannot be constructed

in this way, will be discussed in Section 4. For the 3-point amplitudes, we cannot apply

the reasoning behind the limit (2.1) directly, because this would leave us with a non-

physical 2-point amplitude. We must then consider them as part of a generic (n + 1)-

point amplitude An+1[ϕ, O], where now O is a set of at least n ≥ 3 other particles. We

will now focus on the coupling between one ALP and two massive particles of the same

species (we will relax this condition in Section 2.5). The amplitudes we are interested

in are written as

A3

[
ϕPI1,··· ,I2s1 P̄J1,...,J2s2

]
, (2.2)

where P is a particle of spin s, P̄ its antiparticle, {I1, · · · I2s}, {J1, · · · , J2s} are sym-

metrized massive little-group indices and the subscripts denote the labels of the mo-

menta. For more details on the notation and conventions, we refer the reader to Ap-

pendix A. The soft-limit gives us

lim
pϕ→0
An+1

[
ϕ · · · PI1,···I2si,p · · ·

]
=

lim
pϕ→0

n∑
i=1

An
[
· · · PK1,···K2s

i,p+pϕ
· · ·

] ϵK1J1 · · · ϵK2sJ2s

(p+ pϕ)2 −m2
Pi
A3

[
ϕPI1,··· ,I2si,p P̄J1,...,J2si,−p−pϕ

]
, (2.3)

where we sum over all particles P ,1 which are labeled by i in An+1 and An, and ϵIJ is

the Levi–Civita tensor that takes into account the sum over spin configurations of the

propagating particle (see Fig. 1). We can understand Eq. (2.3) as follows. Since the

ALP couples to two particles of the same species, in the pϕ → 0 limit the momentum

1For simplicity, we consider only external particles P, but analogous equations hold for external

antiparticles P̄.
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lim
pϕ→0

An+1

Pi,p

ϕ

= lim
pϕ→0

n∑
i=1

An
Pi,p+pϕ

A3

Pi,p

ϕ

Figure 1. Diagramatic representation of Eq. (2.3). The index i labels the particle species.

of the particle in the propagator is very close to p2 = m2
Pi , i.e. the particle is very close

to its mass shell. According to polology [6], the total amplitude will then factorize into

the product of the two sub-amplitudes multiplied by the intermediate propagator and

hence we obtain Eq. (2.3). We can rewrite it more compactly as

lim
pϕ→0
An+1

[
ϕ · · · PI1,···I2si,p · · ·

]
= lim

pϕ→0

n∑
i=1

An
[
· · · PK1,···K2s

i,p · · ·
]
× (SPi)

I1,··· ,I2s
K1,···K2s

, (2.4)

with the soft factor given by

(SPi)
I1,··· ,I2s
K1,···K2s

=
ϵK1J1 · · · ϵK2sJ2s

2p · pϕ
A3

[
ϕPI1,··· ,I2si,p P̄J1,...,J2si,−p−pϕ

]
. (2.5)

In the last step we have simplified the propagator using the fact that ϕ is massless,

which gives (p + pϕ)2 − m2
Pi = 2p · pϕ. We observe that, under our hypothesis, the

amplitude An+1 has the same kinematical configuration of An without the ALP, i.e.

the ingoing particle Pi is on-shell in both cases. Having said this, we impose the

following condition:

Soft factorization condition

When, in the limit pϕ → 0, the amplitude An+1[ϕ, O] factorizes as

An+1[ϕ, O]
pϕ→0
−−−→ An[O]× S, (2.6)

then we demand that no poles appear in S in all phase space for real momenta.

This condition applies to 3-point amplitudes A3 in which the ALP interacts with

the same species of particles, such that An+1 has the same kinematical structure

as An without the ALP.

The motivation for the condition in Eq. (2.6) comes from the fact that we want the

regularity of the soft-limit to be a general property of the amplitude, and not simply
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a characteristic of a particular point in the phase-space. Stated in another way: if

the factorization above holds, i.e. if the set of particles O is the same in An+1 and

An, the condition of regularity will be valid for any kinematical configuration of O.

As a consequence, the constraint we impose on SP will be independent of particular

choices of momenta. Note that the soft factorization condition is valid after dropping

subleading terms in pϕ coming from An, that can be safely neglected as An is an

arbitrary amplitude and so will not affect any of the results. Due to the singularities

of the propagator in SP , the soft factorization condition is expected to give non-trivial

requirements on A3.
2

To make progress we need to specify the particle content of the amplitude A3. We

will now analyze in turn the cases in which P has spin 0, 1/2 and 1.

2.2 Scalars

In the simple case in which P = S, with S a spin-0 particle, there are no little group

indices associated with S and SS is simply given by

SS =
1

2p · pϕ
A3

[
ϕSpS̄−p−pϕ

]
. (2.7)

The 3-point amplitude among 3 scalars amounts just to a simple constant, therefore

the only way to avoid SS of diverging as pϕ → 0 is to set it to zero. This is nothing

but a manifestation of the fact that in the usual quantum theoretical language the

interactions of a ALP with two scalars, given by (∂µϕ)(S†i
←→
∂µS), gives a vanishing

amplitude when all particles are taken on-shell.

2.3 Fermions

Moving to the case of fermions P = ψ, we now have a non-trivial little-group scaling

and the 3-point amplitude can be written as

A3

[
ϕψI1ψ̄

J
2

]
= gL ⟨12⟩+ gR [12] , (2.8)

with gL,R dimensionless constants that are related to the couplings to the left- and right-

handed components of the fermions, respectively. In the previous amplitude we have

used the bold notation introduced in Ref. [3], which amounts to simply bold the particle

momenta instead of writing explicitly the little group indices. More specifically, in this

2We see that the factorization in Eq. (2.4) may in general affect the spin configuration of the

remaining n-point amplitude when compared to the original (n+1)-point one. As we will see, however,

the leading term in the soft expansion will always satisfy (SP)I1,··· ,I2sK1,···K2s
∝ δI1K1

· · · δI2sK2s
+ symm, i.e.

the spin configuration will remain the same, with a change in spin configuration arising only in the

subleading terms. Here, ”symm” indicates the symmetric combinations of little-group indices.
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case the bolded spinor products are matrices in the {I, J} space (see Appendix A).

Also, we use the short-hand notation |pn⟩ ≡ |n⟩, and similar for other spinors, to label

the momenta. Calling p1 = p, p2 = −p− pϕ and using Eqs. (A.13) and (A.16), the soft

factor Sψ becomes

(Sψ)IK =
mψ

2p · pϕ
(gL + gR)δIK + (Sp0ϕ)IK , (2.9)

where Sp0ϕ denote terms that do not depend on pϕ and we will always assume masses

to be real and positive. As we are going to see, these terms will play an important

role in determining the form of gL and gR. To avoid the divergence of Sψ in the soft

limit we need gL = −gR,3 which implies that the coupling of the ALP to the fermions

must necessarily be axial. This condition is nevertheless not enough to guarantee the

regularity for all p, as a divergence may still appear when the (real) 3-momenta p⃗ and

p⃗ϕ are collinear with p⃗ · p⃗ϕ > 0. In this case

1

2p · pϕ
=

1

2|p⃗ϕ|
(√

m2
ψ + |p⃗ |2 − |p⃗ |

) mψ
|p⃗| ≪1

−−−−→ |p⃗ |
|p⃗ϕ|m2

ψ

, (2.10)

i.e. it diverges for very small masses. Note that the massless limit mψ → 0 is precisely

the limit that will allow us to match the massive amplitudes in the IR into amplitudes

invariant under the SM symmetry group in the UV. To ensure that it is possible to

perform this IR/UV matching, we must then require the soft factor Sψ to be regular

also in the collinear configuration. Since, with the condition gψ = gL = −gR, the

first term in Eq. (2.9) vanishes, we turn to Sp0ϕ . In the collinear limit, this term is

proportional to (see Eq. (A.18))

lim
collinear

(Sp0ϕ)IK =
gψ ϵJK
2mψ

(
δI2δ

J
1 + δJ2 δ

I
1

)
, (2.11)

where the structure carrying the little group indices is diagonal traceless because of

the contraction with the ϵJK tensor, ϵJK
(
δI2δ

J
1 + δJ2 δ

I
1

)
= (σ3)IK . The only way to

guarantee a non-singular massless limit is to have the couplings to be proportional to the

mass, since then Eq. (2.9) becomes independent of mψ in this limit. As a consequence,

remembering that the couplings gL,R are dimensionless, we are forced to introduce a

new scale f in order to correct their dimensionality. From the arguments above, we

then find that gR = −gL ∝ mψ/f .

We can obtain more information about the phase of the couplings by imposing CPT

invariance and unitarity of the amplitude. The relation of the amplitude with their

3Since, under parity, angle and square brackets are exchanged, the condition gL = −gR amounts

to a parity-odd amplitude, i.e. to a pseudoscalar ALP.
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CPT conjugate is given by Eq. (A.21), and implies in the present case that gL = g∗R.

This, together with the previous conditions, leads to purely imaginary coefficients. In

short, we conclude that the coefficients in Eq. (2.8) must be of the form

gL = −gR = Cψ
imψ

f
, Cψ ∈ R. (2.12)

This result agrees exactly with what we have from the usual quantum theoretical ap-

proach starting from an interaction given by (Cψ/2f)(∂µϕ)ψ̄γ5γµψ.

2.4 Vectors

We now move to the case P = V , with V a spin 1 particle of mass mV . Without any

loss of generality we take V̄ = V . The 3-point amplitude reads

A3

[
ϕV I1,I2

1 V J1,J2
2

]
=
g−
f
⟨12⟩2 +

g+
f

[12]2 +
g0
mV

⟨12⟩ [12] , (2.13)

with g±, g0 dimensionless constants and f again a new scale needed to correct the

dimension of the coefficients. We observe that, unlike g±, the coupling g0 is instead

divided by a factor m−1
V to ensure a well-defined high-energy limit [24, 28]. Similar to

Eq. (2.8), we use the bold notation to leave the little-group indices implicit. It is worth

stressing again that we need to symmetrize over the little-group indices, so for instance4

⟨12⟩2 =
1

2

(〈
1I12J1

〉 〈
1I22J2

〉
+
〈
1I22J1

〉 〈
1I12J2

〉)
, (2.14)

and analogous expressions for the other spinor structures. With this amplitude we

compute the soft factor:

(SV )I1,I2K1,K2
=

m2
V

2p · pϕ

(
g− + g+

f
+

g0
mV

)
1

2

(
δI1K1

δI2K2
+ δI2K1

δI1K2

)
+(Sp0ϕ)I1,I2K1,K2

. (2.15)

As in the case of the fermions, regularity when |p⃗ϕ| → 0 imposes that the term in

brackets of the first term vanishes. Regularity in the collinear limit (when mV → 0),

or more precisely, regularity of Sp0ϕ , requires g0 = 0. Together with CPT and unitarity,

the constraints on the couplings we obtain are

g− = −g+ = iCV , CV ∈ R. (2.16)

Similarly to the case of fermions, the equation above implies that the couplings of the

ALP to two vectors are purely imaginary and axial. It is possible to show that the

amplitude with such couplings corresponds exactly to the operator (CV /2f)ϕVµνṼ
µν ,

where Ṽµν ≡ 1
2
ϵµναβV

αβ (see Appendix A).

4Here we choose the normalization of 1/2 for all values of I1,2, J1,2 for simplicity, but other con-

ventions can be useful in other contexts, for example in Refs. [18, 24].
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2.5 Fermions - Many species case

So far we have analysed the couplings of the ALP assuming that only one species of

particle P couples to ϕ. For the discussion in Section 3, it will also be necessary to

consider the case in which the ALP couples to at least two non-degenerate fermion

species. For this scenario, the first obstacle comes from the fact that the soft factor-

ization condition (2.6) does not hold anymore, as the kinematics is changed due to the

mass splitting. Stated in other terms: the external particles appearing in An+1 and An
are different and, as such, the two amplitudes cannot have the same kinematical config-

uration. To avoid this, we can work first in the high-energy limit, where all fermions are

massless and Eq. (2.6) holds. On the one hand, at leading order in pϕ, the soft factor in

Eq. (2.5) vanishes automatically as ⟨pp⟩ = [pp] = 0 and regularity is trivially satisfied.

On the other hand, the subleading terms that are constant in pϕ do not vanish and can

be constrained in the collinear configuration. Considering that the angle between the

3-momenta is θ ≪ 1, we obtain for each helicity configuration (see Eq. (A.19))

lim
θ≪1
Sψ ∝

1

θ
. (2.17)

Thus, using the regularity condition in the collinear limit, we arrive at the conclusion

that the coefficients of the amplitude should vanish in the massless limit, i.e. they

should be proportional to the mass of the fermions involved in the amplitude. The

couplings, that are now matrices in the space of fermion species, can always be put into

the form

gL,R =
i

f
[MψBL,R − AL,RMψ] , (2.18)

where Mψ is the fermion mass matrix and AL,R, BL,R are arbitrary matrices, that can

depend on Mψ as well. If there is any massless fermion in the spectrum, we must

treat them separately as the form of the amplitude is different, meaning that we can

always take Mψ to be diagonal with positive entries. Since the parametrization above is

redundant under the transformation AL,R → AL,R +MψX, BL,R → BL,R +XMψ, with

X some matrix, we can always choose AL,R to be hermitian by choosing X = M−1
ψ A†

L,R.

Imposing finally CPT and unitarity, which based on Eq. (A.21) amounts to gL = g†R,

we obtain

gL,R =
i

f
[MψAR,L − AL,RMψ] . (2.19)

This expression agrees with what one would expect from a shift-symmetric coupling of

one ALP to fermions [50, 53–55], and precisely corresponds to the operator

(1/f)(∂µϕ)ψ̄[CV + CAγ
5]γµψ, with AL,R = CV ∓ CA. In the 1-family case, it follows

from Eq. (2.19) that gL = −gR, in agreement with Eq. (2.12), and hence the dependency

on CV drops out.
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In principle we could also analyse the soft-limit of amplitudes with many species of

scalars and vectors and try to obtain similar constraints as for fermions. However, we

anticipate that, for the purpose of studying amplitudes with the SM particle content,

it is not necessary to consider amplitudes with more than one type of scalar or vector.

We close this section by emphasising that the requirement of regularity of the

soft factor SP , combined with UV/IR compatibility of low- (massive) and high-energy

(massless) amplitudes and CPT invariance plus unitarity, allowed us to fully determine

the structure of the 3-point amplitudes. In addition, they all agree with the amplitudes

one would obtain by imposing shift-symmetry at the level of Lagrangian.

a

3 ALP interactions with the SM particles

We turn now our attention to the following question: how can we link the amplitudes

derived so far with amplitudes invariant under the SM symmetry group GSM = SU(3)c×
SU(2)L × U(1)Y ? Here in general, as in Section 2.5, particles of different species will

couple to the ALP and we cannot simply apply the soft factorization condition of Eq.

(2.6).

The case of the coupling between one ALP and to two Higgs doublets is identical

to the one already discussed in Eq. (2.7), so we can skip directly to the case of the

fermions.

3.1 Fermions and EWSB

Unlike what happens in Eq. (2.8), we cannot build an amplitude with one ALP and

two fermions due to GSM-invariance and fermion helicities. Nevertheless, it is possible

to add a Higgs doublet and write

A4

[
ϕψ−

L1ψ̄
−
R2H̄

]
=
C̄ψ
f
⟨12⟩ , A4

[
ϕψ̄+

L1ψ
+
R2H

]
=
Cψ
f

[12] , (3.1)

where ψL,R denote the chiral fermions of the SM, while H is the Higgs doublet (in the

case of couplings to up-quarks one should swap H ↔ H̄). The ± superscripts show

explicitly the helicities of the spin 1/2 particles. For simplicity, in the previous equation

we have suppressed all indices and tensor structures related to GSM. Also, it is important

to notice that the dimensionless couplings Cψ, C̄ψ are matrices in fermion flavor space

and the spinor structures ⟨12⟩ and [12] are flavor-independent since all fermions are

massless. This also implies that we have the freedom to redefine Cψ and C̄ψ, because in

the massless limit they can be seen as tensors of the flavor group U(3)ψL ×U(3)ψR [34].

At tree-level, CPT and unitarity enforces that C̄ψ = C†
ψ, that follows from Eq. (A.21).
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The fact that the amplitude in Eq. (3.1) is now a 4-point amplitude brings two

changes to the analysis. First, the coefficients Cψ can now depend on the kinematics

through kinematical invariants, which we will always assume to be regular, i.e. given by

a power expansion. Second, the reasoning that led us to the soft factorization condition

(2.6) fails, because taking pϕ → 0 does not guarantee that the particle exchanged in

the propagator goes on-shell and that the amplitude factorizes. The key to understand

the soft limit for these amplitudes lies in the Brout–Englert–Higgs mechanism. In gen-

eral, to connect the massless (high-energy) amplitudes with the massive (low-energy)

amplitudes without the Higgs, one uses

lim
pH→0

A[H, · · · ] = lim
high-energy

1

v
A[· · · ] , (3.2)

where v is the scale at which the Higgs becomes non-dynamical (“frozen” in the lan-

guage of Ref. [22]), which is introduced by dimensional analysis. The limit pH → 0 is

to be understood also as the limit in which the Higgs becomes non-dynamical, which

amounts to removing it from the amplitude, and the right hand side is to be taken

as the high-energy limit of the corresponding massive amplitude. What is stated in

Eq. (3.2) is nothing but the UV/IR compatibility for amplitudes involving the Higgs.

In short, we learn from the discussion above that the soft factorization condition

(2.6) is not directly applicable to amplitudes involving Higgs. Therefore, we are led to

impose an extra condition for such amplitudes:

3-point Higgs obstruction

If a low-energy 3-point amplitude A3 involving one ALP cannot be associated to a

non-vanishing gauge invariant 3-point amplitude in the UV, but only to a 4-point

one with an extra Higgs, then we impose the following condition:

lim
pϕ,pH→0

A4[ϕH · · · ] = lim
pϕ→0

lim
high-energy

1

v
A3[ϕ · · · ]. (3.3)

The prescription above guarantees that the result we obtained previously in Eq. (2.19)

holds, as the double soft-limit pϕ, pH → 0 assures that the factorization in Eq. (2.3)

takes place. Therefore, from Eq. (2.19), after applying Eq. (3.2) to (3.1), we obtain

Cψ (pH = 0) = i
(
YψÃR − ÃLYψ

)
, (3.4)

where Yψ the Yukawa couplings, ÃL,R = limv→0 UL,RAL,RU
†
L,R (with AL,R the original

couplings appearing in Eq. (2.19)), and UL,R ∈ U(3)ψL,R are flavor transformations.
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The equation above needs clarification. The first point regards the appearance of

flavor transformations. As mentioned previously, when the fermions are massless we

are free to perform flavor transformations, while this freedom is lost when they become

massive. Hence, when performing the UV/IR matching of both regimes they will in

general agree up to a flavor transformation [34]. Secondly, the Yukawa matrices can

be expressed here as vYψ = ULMψU
†
R, where the relation to the mass from an on-

shell perspective was shown in Refs. [22, 56] and we provide an alternative derivation

in Appendix B. Lastly, from the two previous points we can derive the expressions

for ÃL,R, where the high-energy limit was changed to the equivalent limit v → 0. At

zero Higgs momentum, that is, for constant coupling, Eq. (3.4) is identical to what one

would expect from ALPs coupled to fermions in a shift-symmetric manner [50, 53–55].

Before moving on to other amplitudes, it is worth to explore in more detail some

features of the amplitude A3

[
ϕψψ̄

]
and its relation to the 3-point Higgs obstruc-

tion. At face value, the high-energy limit of this amplitude with couplings given in

Eq. (2.19) leads to a vanishing result, since Cψ ∼Mψ. This naive result is inconsistent

with GSM-invariance and, for this reason, we had to promote the UV amplitude to a 4-

point amplitude with an additional Higgs. One could, however, imagine an alternative

route. Using the Weyl equations in Eq. (A.11), it is possible to trade the mass factor

for a momentum insertion in the spinor structures, e.g. Mψ ⟨12⟩ ∼ ⟨1|pϕ|2] for the

case of angle brackets, with an analogous identity holding for square brackets. This

form highlights that the amplitude does not vanish in the high-energy limit and should

be directly matched into GSM-invariant 3-point amplitudes A3

[
ϕψL,Rψ̄L,R

]
. But these

amplitudes nonetheless vanish identically due to the 3-particle kinematics, leaving us

with the 4-point amplitude already discussed as the unique route to match the massive

amplitude in the UV.

Another interesting feature of the coefficient in Eq. (3.4) is its connection with

the invariants that parameterise the breaking of shift-symmetry defined in Ref. [50].

In this reference, a total of 3 and 10 invariants were constructed in the lepton and

quark sector, respectively, using the mathematical properties of Cψ(pH = 0). From our

perspective, the only way to break the coupling structure of Eq. (3.4) is to violate the

scaling with the Yukawa matrices (which correspond to a breaking of the dependence

on the particle mass in Eq. (2.18)), as the phase of the amplitude and the hermiticity

of AL,R are fixed by CPT and unitarity. We thus conclude that the maximum number

of independent parameters that can break the shift-symmetry (in our language, that

gives a singular massless/high energy limit) amounts to the number of independent

parameters in the Yukawa matrices, i.e. the number of parameters left after all possible

flavor transformations are applied. For leptons, taking massless neutrinos, this implies

3 independent parameters; for quarks (with two Yukawa matrices that are correlated
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in the UV because we have only one left handed doublet), the number increases to 10

(6 masses plus the 4 parameters of the Cabibbo–Kobayashi–Maskawa matrix5). Hence,

in the general case in which the Yukawas have the maximal amount of parameters,

this counting exactly corresponds to the one found in Ref. [50]. Since, however, the

invariants are constructed based on the exact form of the flavor group, we cannot

conclude that by reducing the physical parameters of the Yukawas will necessarily

reduce the amount of non-vanishing invariants. In general, their number will only

decrease once the flavor group is enlarged.

3.2 ϕV V amplitudes

For couplings to spin 1 particles we do not face such conceptual difficulties, as invariance

under GSM allows us to build the 3-point amplitudes at high-energies:

A3

[
ϕB−

1 B
−
2

]
=
g−B
f
⟨12⟩2 , A3

[
ϕB+

1 B
+
2

]
=
g+B
f

[12]2 ,

A3

[
ϕW−

1 W
−
2

]
=
g−W
f
⟨12⟩2 , A3

[
ϕW+

1 W
+
2

]
=
g+W
f

[12]2 ,

(3.5)

ignoring again GSM indices. At low-energies we apply the soft-limit to 3-point ampli-

tudes with two charged W±’s and two Z’s, for which the soft factorization condition

(2.6) holds. In this case the result given in Eq. (2.16) follows. For amplitudes with two

photons or one photon and one Z the same reasoning does not work, because the photon

remains massless at low-energies and the amplitude with one photon and one Z does

not respect Eq. (2.6). Nevertheless, since γ, Z are connected to the massless electroweak

bosons W,B through spontaneous symmetry breaking [56, 57], using GSM-invariance we

can relate the couplings obtained for the charged W ’s and Z’s to the ones of Eq. (3.5).

We thus conclude that g±B,W also satisfy Eq. (2.16), that is g∓B,W = −g±B,W = iCB,W ,

with CB,W ∈ R.

Gluons, on the other hand, cannot be related to other gauge bosons via symmetry

breaking, nor they are massive at low energy. At all energies at which perturbation

theory is valid, the coupling between the ALP and gluons will be

A3

[
ϕG−

1 G
−
2

]
=
g−G
f
⟨12⟩2 , A3

[
ϕG+

1 G
+
2

]
=
g+G
f

[12]2 , (3.6)

as usual omiting GSM structures. The way we found to extract some information out of

these amplitudes is to go to the 1-loop level. More precisely, we compute the anomalous

5The emergence of the Cabibbo–Kobayashi–Maskawa and the Pontecorvo–Maki–Nakagawa–Sakata

matrices from the on-shell perspective was studied in Ref. [34].
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dimension of the couplings Cψ in Eq. (3.1) induced by Eq. (3.6). Then, the specific

structure (3.4) will give some constraints on g±G. We carry out this computation in

Appendix C and show that we can obtain the same results for gluons, namely g−G =

−g+G = iCG, with CG real. It is worth stressing that the reasoning above makes the

amplitudes in Eq. (3.6) qualitatively different from the others, as we were only able to

arrive at the constraints above by using other amplitudes.

4 Constructing higher-point functions

So far we dealt with 3-point functions, i.e. amplitudes with couplings proportional to

1/f that, at leading order, can be matched onto dimension d = 5 operators. We now

proceed to extend our discussion to amplitudes of higher-order and build explicitly the

amplitude basis up to 1/f 4. In the literature, only d = 6 (for instance in Refs. [58,

59]) and a couple of d = 7 operators [58, 60–62] were considered and studied at the

phenomenological level. Our present work provides the complete amplitudes, and a

corresponding operator basis, up to d = 8 consistent with the ALP properties.

The higher-point amplitudes we are interested in are contact ones, i.e. amplitudes

that are regular in the kinematical invariants. These necessarily involve 4 or more

particles and, as a consequence, the factorization in Eqs. (2.3) and (2.6) does not hold

anymore. However, since they are not 3-point amplitudes, we can study their soft limit

directly, without the need of embedding them in an auxiliary amplitude. Given that

they are contact amplitudes, by definition they are regular as pϕ → 0, so in order to

make progress we need an additional physical constraint on them. We impose:

Soft contact condition

If An[· · · ] is a contact amplitude with n ≥ 4 involving at least one ALP, then

lim
pϕ→0
An[· · · ] = 0, (4.1)

for each ALP ϕ present in the amplitude.

If we look back at the results from Section 2, the only reason that the soft-limit did

not give a zero was because of the pϕ-independent terms, that only appeared because

of the singular propagator in Eq. (2.5). Since, now, we do not have such singular

terms as we are looking directly at the contact amplitudes, the natural extension of

the previous requirement is to have the amplitudes to vanish in the soft-limit. The
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Dimension 6

Particle content A× f 2 O × f 2

ϕ2HH̄ pϕ1 · pϕ2 (∂µϕ)(∂µϕ)|H|2

Table 1. Amplitudes suppressed by 1/f2 and corresponding d = 6 operators. All the

amplitudes are stripped of overall coefficients.

only exceptions we found to the condition above are the amplitudes (3.1), that have a

constant coefficient in Eq. (3.4). However, as discussed in Section 3, these amplitudes

must be treated according to the 3-point Higgs obstruction (3.3) and thus must not

necessarily respect the soft contact condition (4.1) at order O (1/f).

We stress that the regularity conditions of Eqs. (2.6) and (4.1) are, in most cases,

equivalent to the Adler’s zero condition [43]. In Quantum Field Theoretical language

the Adler’s zero condition states that, in the soft limit pϕ → 0, the soft factor is regular

when ϕ is emitted from some external leg and vanishes when ϕ is emitted from the

interior of the diagram. The only exceptions are, as explained above, those amplitudes

involving the Higgs doublet that match into 3-point amplitudes at low energy.

We will now systematically build amplitudes involving ALPs and SM particles

in the unbroken electroweak phase, imposing Eq. (4.1). In practice, these amplitudes

must scale with some positive power of the ALP momentum. This can either appear in

the coefficients through Lorentz invariant combinations such as p · pϕ, or in the spinor

structures themselves, for instance as ⟨p|pϕ|p′], with p, p′ the momenta of other particles

in the amplitude. To have any chance to contribute to amplitudes suppressed at most

by f 4, the spinor structures appearing must have dimension ≤ 4. Additionally, we also

have to impose Bose symmetry when there is more than one identical particle. For

simplicity, we assume only one species of ALP ϕ.

Let us illustrate the method with an example, ϕ2V1V2, for which we have four

helicity configurations for the vectors: (−,−), (+,+), (+,−) and (−,+). For the

(−,−) configuration, little-group covariance and dimensional analysis allow us to write

only the spinor structure ⟨12⟩2. This can satisfy Eq. (4.1) only if multiplied by invariants

proportional to pϕ1,2 , appropriately symmetrized to satisfy Bose symmetry. The only

possibility at the mass dimension of interest is pϕ1 · pϕ2 and the amplitude is

A4

[
ϕϕV −

1 V
−
2

]
∝ pϕ1 · pϕ2

f 4
⟨12⟩2 . (4.2)

Note that we could have built different kinematical invariants with more powers of mo-

menta, but they would induce an amplitude of higher order in f . An identical reasoning

– 15 –



Dimension 7

Particle content A× f 3 O × f 3

ϕψ1ψ̄2H
(pϕ · p1) ⟨12⟩ (∂µϕ)ψ̄H(Dµψ)

(pϕ · p2) ⟨12⟩ (∂µϕ)(Dµψ̄)Hψ

ϕψ1ψ̄2V3 ⟨13⟩ ⟨3|pϕ|2] , ⟨23⟩ ⟨3|pϕ|1]

(∂µϕ)ψ̄γνψVµν

(∂µϕ)ψ̄γνψṼµν

(∂µϕ)ψ̄γνTAψV A
µν

(∂µϕ)ψ̄γνTAψṼ A
µν

ϕH1H̄2V3 ⟨3| pϕ(p1 − p2) |3⟩

(∂µϕ)(H†i
←→
DνH)V µν

(∂µϕ)(H†i
←→
DνH)Ṽ µν

(∂µϕ)(H†i
←→
Dν

AH)V A,µν

(∂µϕ)(H†i
←→
Dν

AH)Ṽ A,µν

ϕHH̄ψ1ψ̄2 ⟨1|pϕ|2]
(∂µϕ)(ψ̄γµψ)|H|2

(∂µϕ)(ψ̄γµTAψ)(H†TAH)

ϕH1H̄2H3H̄4 pϕ · (p1 − p2) + symm. (∂µϕ)(H†i
←→
DµH)|H|2

Table 2. Amplitudes suppressed by 1/f3 and corresponding d = 7 operatores. The symbol

ψ denotes SM fermions, while V = B and V A =WA, GA denote the abelian and non-abelian

SM gauge bosons, respectively. Each operator must be invariant under the SM gauge group

and this restricts the type of fields that can appear. The symbol ‘symm’ indicates that it

is necessary to symmetrize the momenta of identical particles according to Bose symmetry.

Additional spinor structures can be obtained from the ones shown by swapping angle and

square brackets. The operator
←→
Dµ

A is defined as
←→
Dµ

A = TA
−→
Dµ −

←−
DµT

A and the dual field

strength as Ṽµν = 1
2ϵµναβV

αβ.

applies to the (+,+) helicity configuration, for which the amplitude has exactly the

same form, provided we exchange the angle brackets with square brackets. We thus ob-

tain a second independent spinor structure. The (−,+) configuration requires, instead,

a momentum insertion of the ALP in between the brackets, as we need to connect an
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Dimension 8

Particle content A× f 4 O × f 4

ϕ4 (pϕ1 · pϕ2)(pϕ3 · pϕ4) + symm. (∂µϕ ∂
µϕ)2

ϕ2H1H̄2

(pϕ1 · pϕ2)2 (∂µ∂νϕ ∂
µ∂νϕ)|H|2

(pϕ1 · p1) (pϕ2 · p2) + symm. (∂µϕ ∂νϕ)(DµH
†DνH)

ϕ2V1V2

(pϕ1 · pϕ2) ⟨12⟩2

(∂αϕ ∂
αϕ)VµνV

µν

(∂αϕ ∂
αϕ)VµνṼ

µν

(∂αϕ ∂
αϕ)V A

µνV
A,µν

(∂αϕ ∂
αϕ)V A

µνṼ
A,µν

⟨1|pϕ1|2] ⟨1|pϕ2|2]
(∂µϕ ∂νϕ)VµαV

αν

(∂µϕ ∂νϕ)V A
µαV

A,αν

ϕ2ψ1ψ̄2 (pϕ1 · p1) ⟨1|pϕ2|2] + symm. (∂µϕ ∂νϕ)(ψ̄γµDνψ)

ϕ2ψ1ψ̄2H (pϕ1 · pϕ2) ⟨12⟩ (∂µϕ ∂
µϕ)ψ̄Hψ

ϕ2H4 pϕ1 · pϕ2 (∂µϕ ∂
µϕ)|H|4

Table 3. Same as Tables 1 and 2 for amplitudes of order 1/f4 and the correspondent d = 8

operators.

angle with a square spinor. The only symmetric combination in pϕ1,2 is then

A4

[
ϕϕV −

1 V
+
2

]
∝ 1

f 4
⟨1|pϕ1|2] ⟨1|pϕ2|2] . (4.3)

The (+,−) configuration can be obtained from the equation above just swapping angle

for squared brackets. Unlike the previous case, this does not produce an independent

spinor structure since, due to Bose symmetry, once we exchange angle and square

brackets, re-label the momenta as 1 ↔ 2 and use the identity [p|q|k⟩ = ⟨k|q|p], we

obtain exactly the same spinor combination we began with. As a consequence, for each

vector V we can reconstruct only 3 independent operators:

Ld=8 ⊃
C

f 4
(∂αϕ)(∂αϕ)VµνV

µν +
C ′

f 4
(∂αϕ)(∂αϕ)VµνṼ

µν +
C ′′

f 4
(∂µϕ)(∂νϕ)VµαV

αν ,

(4.4)
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with C,C ′, C ′′ dimensionless coefficients. Note that in the list above we do not have the

operator (∂µϕ)(∂νϕ)VµαṼ
αν . Although not trivial, it can be shown that this operator is

redundant [63]. From our on-shell construction, however, the non-redundant operators

were singled out automatically.6

We present the list of higher-point amplitudes suppressed by f−2, f−3 and f−4 and

the correspondent dimension 6, 7 and 8 operators in Tables 1, 2 and 3, respectively.

For each amplitude we only show independent spinor structures, with the exception

of those that can be obtained exchanging angle with square brackets which are left

implicit. We also do not write explicitly overall coefficients that may depend on SM

gauge group structures like group generators7. These coefficients will depend on the

particles appearing in the amplitude and their quantum numbers. We show explicit

examples in Appendix A for the case of 3-point amplitudes with SM particles. For

the higher dimensional operators, we only show the general particle content, with ψ

representing SM fermions, V = B the abelian SM gauge boson and V A = WA or GA

the SM non-abelian gauge bosons. Each operator should be invariant under the SM

gauge group and, as usual, this imposes restrictions on the particles that can appear in

each operators. We observe that some spinor structure involving spin 1 particles may

involve both abelian or non-abelian gauge bosons. The difference in this case lies in

the overall coefficient that we do not write explicitly, but the amplitude corresponds

to different operators depending on the nature of the spin 1 particle involved. To

avoid confusion, we make explicit the dependence on the gauge bosons when we write

the operators corresponding to the amplitude under consideration. For instance, the

⟨1|pϕ1|2]⟨1|pϕ2|2] amplitude may correspond to the d = 8 operators (∂µϕ∂νϕ)VµαV
να or

(∂µϕ∂νϕ)V A
µαV

A,να, depending on the vector considered.

The construction of amplitudes suppressed by higher powers of f follows in similar

fashion, with their number growing exponentially. Among all of them, one interesting

class of amplitudes is A
[
ϕV V HnH̄n

]
, with n ≥ 1, that start only at dimension 9.

In the non-dynamical limit of the Higgs, these amplitudes are the only ones that can

contribute to the 3-point couplings of the ALPs to gauge bosons, thus they can give

us an insight of how the low-energy amplitudes are affected by the higher-dimensional

ones. According to the soft contact condition (4.1), we must have an insertion of the

ALP momentum and either a gauge boson and/or a Higgs momentum. Structures

with the latter, however, vanish in the non-dynamical limit (3.2), so only insertions of

6On-shell techniques have been used to systematically construct higher-dimensional operators in

general effective theories [27, 64].
7In Eqs. (4.2) and (4.3), for example, if V is an abelian boson the proportionality factor is just a

constant, while if it is non-abelian then A4[ϕϕV
A
1 V

B
2 ] ∝ δAB , where δAB takes into account the GSM

tensor structure.
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ℓ− h

ℓ
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Figure 2. Diagrams contributing to ℓ−ℓ+ → ϕh generated by the operators described in the

text. Black circles denote the insertion of operators containing the ALP. For the last diagram,

also the crossed contribution in which the h and ϕ legs are exchanged should be considered.

gauge boson momenta are relevant. We can show that at low energies, after pH,H̄ → 0,

all possible amplitudes reduce to the same spinor structure as in Eqs. (3.5) and (3.6)

multiplied by powers of p2ϕ. If the ALP is exactly massless, it means that the low-

energy couplings are not corrected by higher-dimensional operators, while if we allow

for a small mass p2ϕ = m2
ϕ, it implies that all corrections are suppressed by at least

the ALP mass squared. This conclusion agrees with what was previously argued in

Refs. [65–67] and follows straightforwardly from our formalism.

We conclude stressing that the coefficients that multiply the amplitudes in Tables 1,

2 and 3 are not further constrained by Eq. (4.1), in sharp contrast to the amplitudes

suppressed by f−1 discussed in Section 3. At d = 8 we do not consider amplitudes that

violate baryon or lepton number.

5 A phenomenological application : ℓ−ℓ+ → ϕh

The phenomenological impact of higher-dimensional ALP operators have been previ-

ously considered in Refs. [58, 60–62], where the effects of the d=6 operator

(∂µϕ)(∂µϕ)|H|2 and of the d=7 operator (∂µϕ)(H†i
←→
D µH)|H|2 were studied in the con-

text of collider physics. In this section we will turn our attention to the d=7 operators

(∂µϕ)(Dµψ̄)Hψ, (∂µϕ)ψ̄H(Dµψ) and explore their phenomenology at lepton colliders.

More precisely, we will study the impact of these operators in the process ℓ−ℓ+ → ϕh,

with ℓ = e, µ and h the physical Higgs, that can in principle be tested at future lepton

colliders.
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The full set of operators that we will consider is

Lint =
Cϕ2H2

2f 2
(∂µϕ)(∂µϕ)|H|2 +

CϕH4

f 3
(∂µϕ)(H†i

←→
D µH)|H|2+

+
∑
ℓ=e,µ

i
Cϕℓ2H
f

yℓϕL̄ℓHℓR +
C

(1)

ϕℓ2HD2

f 3
(∂µϕ)(DµL̄ℓ)HℓR +

C
(2)

ϕℓ2HD2

f 3
(∂µϕ)L̄ℓH(DµℓR) + h.c.,

(5.1)

where Le,µ are the left-handed doublets of the first and second families, while eR and µR
are the corresponding right-handed fields. We denote by Cϕ2H2 , CϕH4 , Cϕℓ2H , C

(1,2)

ϕℓ2HD2

the Wilson coefficients, noticing that Cϕℓ2H is real and we have already factorized the

Yukawa yℓ explicitly8. We do not consider lepton flavor violating couplings and will

always assume that the d = 5 coupling has the structure given by Eq. (3.4). Also, we

only consider ALP effective interactions and do not include any SMEFT operators.

After electroweak symmetry breaking, the operators in Eq. (5.1) will generate the

diagrams contributing to ℓ−ℓ+ → ϕh shown in Fig. 2. More in detail, diagrams (i)

and (iv) receive contributions from both Cϕℓ2H and C
(1,2)

ϕℓ2HD2 , diagram (ii) gets contri-

butions from Cϕℓ2H , C
(1,2)

ϕℓ2HD2 and Cϕ2H2 while diagram (iii) is only generated by CϕH4 .

To compute the corresponding cross-section, we generate and manipulate the total am-

plitude using FeynRules [68], FeynArts [69] and FeynCalc [70, 71]. In the limit of very

high-energies,
√
s ≫ v, with

√
s the center-of-mass energy and v the Higgs vacuum

expectation value, the differential cross-section in the center-of-mass frame simplifies

to the following expression:

dσtot(ℓ−ℓ+ → ϕh)

d cos θ
≃ 1

512πf 6

[
(u2 + t2)

(
|C(1)

ϕℓ2HD2|2 + |C(2)

ϕℓ2HD2|2
)

+

+ 4tuRe
(
C

(1)

ϕℓ2HD2C
(2)∗
ϕℓ2HD2

) ]
,

(5.2)

where t = (pℓ− − ph)
2 and u = (pℓ− − pϕ)2. Inspection of Eq. (5.2) shows that, in

the high energy limit, the only relevant contributions are those coming from C
(1,2)

ϕℓ2HD2

and, more specifically, from diagram (i), due to the fact that only this diagram give a

contribution that grows quadratically with the center-of-mass energy. The conclusion is

that, even though d=7 operators are suppressed by more powers of f , they can still give

the dominant contribution to observables for sufficiently high energies. This strongly

relies on the fact that the coefficient of the d = 5 operator is Yukawa suppressed, while

8Having in mind the structure of Eq. (3.4), our parametrization amounts to suppose that YℓÃR −
ÃLYℓ equals the Yukawa coupling times an order one factor that we denote by Cϕℓ2H , as expected by

power counting.
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Figure 3. Left : Ratio between the cross-sections with and without dimension 7 operators

as a function of the center of mass energy. We take the modulus of the ratio of d = 7 and

d = 5 operators equal to 1. The bands are obtained by varying the sign between C
(1,2)
ϕℓ2HD2 .

Right : Total cross-section with the inclusion of d = 7 operators as a function of the center of

mass energy, taking C
(1,2)
ϕℓ2HD2 = Cϕℓ2H = 1. All cross-sections are computed taking mϕ = 0.

For both panels the solid curves denote ℓ = e and dashed ℓ = µ, while blue (orange) means

f = 104 (105) GeV.

an analog suppression does not exist for the d = 7 operators. We also observe that

Eq. (5.2) is still the leading contribution even if effects from d = 8, 9 operators are

included. This is because, to give a cross section at the same order in 1/f , they would

need to interfere with d = 6, 5 operators, respectively, and would thus be suppressed

by powers of masses and v.

To quantify the effects of the d = 7 operators and compare them to those of the

d = 5 operator, we show in Fig. 3 the complete cross-section (in which particle masses

and the Higgs vacuum expectation value are properly taken into account) as a function

of
√
s, with σtot,(5) denoting, respectively, the total cross-section and the cross-section

computed with only d = 5 operators. Since C
(1,2)

ϕℓ2HD2 give the dominant contribution at

high-energies, we set Cϕ2H2 = CϕH4 = 0. Furthermore, we take Cϕℓ2H = |C(1,2)

ϕℓ2HD2| = 1,

while we allow for a different signs between C
(1)

ϕℓ2HD2 and C
(2)

ϕℓ2HD2 . On the left panel,

we plot the ratio σtot/σ(5) for ℓ = e, µ and f = 104 GeV (blue lines) and f = 105

GeV (orange lines). Continuous lines refer to e+e− → ϕh while dashed lines refer to

µ+µ− → ϕh. The bands are obtained varying the sign between C
(1)

ϕℓ2HD2 and C
(2)

ϕℓ2HD2 .

As we can see, at high energies σtot can be larger than σ(5) by many orders of magnitude.

The effect is larger for electrons, since σ(5) is suppressed by smaller Yukawa couplings.

On the right panel we instead show how σtot grows with energy, with the same

conventions used in the left panel. Inspecting the two muon cross-sections shown,
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we clearly see the transition from the low energy regime (dominated by the d = 5

operator and essentially independent on energy 9) and the high energy energy regime,

in which the d = 7 operator dominates and the cross-section scales as s2 as predicted by

Eq. (5.2). It is interesting to notice that for f = 104 GeV the dimension 7 effects can

push the cross-section to reasonable values (σtot ∼ 1 fb), while it would remain out of

reach considering only the d = 5 operator (σ(5) ≲ 10−5 fb).

From the EFT perspective, it is to be expected that higher-dimensional operators

dominate the cross-section when the energy is close to the cut-off f . What makes the

present case more special and interesting is that the effects of the d = 7 operators

are relevant much before
√
s ∼ f . This is a direct consequence of the fact that the

soft factorization condition (2.6) required the coefficient of the d = 5 amplitude to be

proportional to the Yukawa, while the soft contact condition (4.1) did not impose such

selection rule on the d = 7 operators. We see from Fig. 3 that, at the phenomenological

level, this distinction between d = 5 and d = 7 operators might be extremely relevant,

since, for instance for electrons, the contribution from d = 5 is always subdominant.

6 Conclusions

Given a scattering amplitude involving ALPs, what is the set of physical properties that

it must satisfy to recover shift-symmetry? Of course, starting from a Lagrangian and

requiring it to be shift-symmetry invariant is not a complete answer to this question,

as we are not making statements about the amplitudes themselves. Taking the on-shell

approach, that bypasses fields and Lagrangians, makes the question even less obvious,

but provides a natural framework for working it out. In this paper, using on-shell

methods, we have identified three conditions that allow us to construct amplitudes

with the desired shift-symmetric properties. All three conditions rely on the properties

of the amplitude in the limit of soft ALP momentum.

The first condition, that we call soft factorization condition, Eq. (2.6), enables

to reproduce the correct amplitudes when the ALP is interacting with two massive

particles, i.e., in the case of amplitudes suppressed by f−1, with f the scale associated

with the ALP (Section 2). In addition to constructing these amplitudes, we also discuss

at length how they can be connected with amplitudes that involve SM particles and

are invariant under the SM symmetry group at high energies. While the case of the

coupling of an ALP to Higgs doublets or gauge bosons is straightforward, the case of

fermions is much more subtle, due to an interesting obstruction that emerges because

9When
√
s is comparable to the Higgs mass, the cross section is not flat with respect to

√
s because

of the threshold.
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of a combination of the kinematic of 3-point amplitudes and invariance under the

SM symmetry group. In Section 3 we identify a second condition, the 3-point Higgs

obstruction, that deals with this latter amplitude by relying on electroweak symmetry

breaking and on the fact that, in the limit in which the Higgs momentum becomes soft,

the 4-point amplitude which is invariant under the SM symmetry becomes a 3-point

amplitude with massive fermions. The consequence is that the scattering amplitude

ends up being proportional to the Yukawa coupling of the fermions involved.

The third condition, that we call soft contact condition, Eq. (4.1), allows to deter-

mine the correct amplitudes when the ALP is interacting with more than two other

particles. Since these higher-point amplitudes correspond to effective operators sup-

pressed by higher powers of f , we determine in Section 4, solely using scattering am-

plitudes, the complete list of operators up to d = 8. We also study a phenomenological

application in which these higher dimensional operators can dominate over the d = 5

ones: the process ℓ+ℓ− → ϕh at high energy lepton colliders (Section 5). We find that,

due to the Yukawa suppression of the d = 5 operator, the d = 7 ones can dominate al-

ready at energies
√
s≪ f , where they are typically expected to give only subdominant

contributions with respect to the d = 5 operators.

We observe that the soft factorization condition and the soft contact condition

are equivalent to requiring the amplitude to manifest the Adler’s zero in the limit

of soft ALP limit. Nevertheless, this procedure is not completely universal, since

they cannot be applied to 4-point amplitudes involving one Higgs doublet. As we

have shown, in this case we must resort to the 3-point Higgs obstruction condition of

Eq. (3.3), which can be seen as kind of a generalization of the Adler’s zero to this case.

Our work can be extended in several directions. First of all, having derived the

shift-symmetric ALP amplitudes, it follows immediately that all additional terms that

do not satisfy our conditions must break the shift symmetry. An interesting point

would be to investigate how some sort of power counting could be applied to such

coefficients without resorting to Lagrangians. A second aspect that can be explored

would be the generalization to amplitudes involving several different ALPs, i.e. to the

case in which we have spontaneous symmetry breaking of a non-abelian group. Possible

applications would be to the study of amplitudes involving light mesons and matter

particles (like nucleons or vector mesons) in Chiral Perturbation Theory, or the coupling

between a Composite Higgs and SM fermions and gauge bosons. Moreover, since on-

shell methods can be used to derive the renormalization group equations of effective

operators [10–13], amplitudes with more than one ALP can be used to study the effects

of light ALPs in the running of Wilson coefficients of operators of the Standard Model

Effective Field Theory. Finally, the on-shell scattering amplitudes formalism extended

using the techniques of Ref. [72] can, in principle, be used to compute the interactions
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between ALPs and photons when magnetic monolopoles are present [73, 74]. We leave

the study of these aspects to future work.

Note added: While completing this paper, Refs. [75, 76] appeared, in which the

list of d = 8 operators with ALPs is presented. Our list agrees with the one shown in

these papers.
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A Conventions

A.1 Spinor variables

In this appendix, we set the notation for the spinor variables and summarize the identi-

ties we use. The starting point is the covariance of the S-matrix under little-group, that

allows us to write scattering amplitudes as a sum of all possible kinematical structures

that carry the correct little-group transformation, each multiplied by a corresponding

coupling. The building blocks for these kinematical structures are 2-component spinors.

For massless momenta we define the spinor variables as

|p⟩ ≡ |p⟩α , |p] ≡ |p]α̇ , ⟨p| ≡ ⟨p|α , [p| ≡ [p|α̇ , (A.1)

where α, α̇ are SL(2, C) indices for left- and right-handed spinors, respectively. The

spinors |p⟩ , ⟨p| are referred as angle spinors, while |p] , [p| as square spinors. They
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transform under the U(1) little-group with opposite phases:

|p⟩ → e−iϕ |p⟩ , |p]→ eiϕ |p] , ϕ ∈ R. (A.2)

All indices can be raised and lowered with the Levi–Civita tensor that is defined by

ϵ12 = −ϵ12 = 1, for instance |p⟩α = ϵαβ ⟨p|β. The spinors above satisfy

pµ(σ̄µ)α̇α ≡ pα̇α ≡ |p]α̇ ⟨p|α , pµ(σµ)αα̇ ≡ pαα̇ ≡ |p⟩α [p|α̇ , (A.3)

p |p⟩ = p |p] = ⟨p| p = [p| p = 0. (A.4)

Equation (A.3) is simply the defining equation of the spinors, where σµ = (1, σ⃗)

and σ̄µ = (1,−σ⃗), while in Eq. (A.4) we have the Weyl equations. For a massless

4-momentum (pµ) = p(1, sin θ cosϕ, sin θ sinϕ, cos θ), with p ≡ |p⃗ |, one possible realiza-

tion for the spinors in Eq. (A.3) is given by

(⟨p|α) = −
√

2p

(
c

s∗

)
, (|p]α̇) = −

√
2p

(
c

s

)
,

(|p⟩α) =
√

2p

(
s∗

−c

)
, ([p|α̇) =

√
2p

(
s

−c

)
,

(A.5)

where c ≡ cos θ
2
, s ≡ eiϕ sin θ

2
. We can also define the usual anti-symmetric Lorentz

invariant products of spinors:

⟨pq⟩ ≡ ⟨p|α |q⟩α , [pq] ≡ [p|α̇ |q]
α̇ , (A.6)

with the contraction of up- and down-indices performed with the Levi–Civita tensor.

These products can be computed explicitly using Eq. (A.5).

For massive momenta we adopt the notation of Ref. [3] and define bold angle and

square spinors as

|p⟩ ≡
∣∣pI〉

α
, |p] ≡

∣∣pI]α̇ , ⟨p| ≡
〈
pI
∣∣α , [p| ≡

[
pI
∣∣
α̇
, (A.7)

where now I = 1, 2 is the SU(2) index of the little-group, that are also raised and

lowered through the Levi–Civita tensor. Contrary to the massless case, they transform

in the same way under little-group as∣∣pI〉→ W I
J

∣∣pJ〉 , ∣∣pI]→ W I
J

∣∣pJ] , W ∈ SU(2), (A.8)

and analogous to ⟨p| and [p|. The massive spinors satisfy similar relations as

Eqs. (A.3) and (A.4), but with the inclusion of the SU(2) little-group indices:

pα̇α ≡ ϵIJ
∣∣pI]α̇ 〈pJ ∣∣α , pαα̇ ≡ −ϵIJ

∣∣pI〉
α

[
pJ
∣∣
α̇
. (A.9)

– 25 –



With the same parametrization as in Eq. (A.5), we can represent the massive spinors

in terms of the components of the 4-momentum as

(
〈
pI
∣∣α) = −

(
c
√
E + p −s

√
E − p

s∗
√
E + p c

√
E − p

)
, (

∣∣pI]α̇) = −
(
s∗
√
E − p c

√
E + p

−c
√
E − p s

√
E + p

)
,

(
∣∣pI〉

α
) = +

(
s∗
√
E + p c

√
E − p

−c
√
E + p s

√
E − p

)
, (

[
pI
∣∣
α̇
) = +

(
−c
√
E − p s

√
E + p

−s∗
√
E − p −c

√
E + p

)
,

(A.10)

where the first (second) column refers to I = 1 (2), while the rows are for different

SL(2, C) indices. Also, E =
√
m2 + p2 is the energy and, as before, p ≡ |p⃗ |. In writing

Eq. (A.10), we have assumed that momenta, and in particular the mass m, are real. For

the expressions with complex momenta, we refer the reader to Ref. [3] and references

therein. From the expressions above it is trivial to check that

pαα̇
∣∣pI]α̇ = −m

∣∣pI〉
α
, pα̇α

∣∣pI〉
α

= −m
∣∣pI]α ,〈

pI
∣∣α pαα̇ = m

[
pI
∣∣
α̇
,

[
pI
∣∣
α̇
pα̇α = m

〈
pI
∣∣α , (A.11)

which are the massive version of the Weyl equations in (A.4). We notice that in the

massive Weyl equations (A.11) the two types of spinors are related by the mass m. The

anti-symmetric spinor product is defined in the same way as before

⟨pq⟩ ≡
〈
pIqJ

〉
=

〈
pI
∣∣α ∣∣qJ〉

α
, [pq] ≡

[
pIqJ

]
=

[
pI
∣∣
α̇

∣∣qJ]α̇ . (A.12)

From the Weyl equations we can also derive〈
pIpJ

〉
= −mϵIJ ,

[
pIpJ

]
= mϵIJ . (A.13)

We notice that spinor variables associated to massless particles can be defined as the

high-energy limit of the massive spinors. As a practical rule of thumb, this amounts to

simply un-bold the massive spinors

|p⟩ → |p⟩ , |p]→ |p] . (A.14)

The un-bolding in Eq. (A.14) states that only one linear combination of the SU(2)

little-group indices is selected in the massless limit, while the orthogonal combination

is always proportional to the mass. This can be seen more explicitly from the explicitly

expressions (A.5) and (A.10), where

(
〈
pI
∣∣α)→ (

〈
p1
∣∣α) = (⟨p|α), (

∣∣pI]α̇)→ (
∣∣p2]α̇) = (|p]α̇),

(
∣∣pI〉

α
)→ (

∣∣p1〉
α
) = (|p⟩α), (

[
pI
∣∣
α̇
)→ (

[
p2
∣∣
α̇
) = ([p|α̇),

(A.15)
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that makes manifest that the high-energy limit selects I = 1 for angle and I = 2 for

square spinors. It is important to notice that the limit above is for up-index little-group

indices.

It is also useful to consider spinors with negative momenta, for which the analytic

continuation compatible with Eq. (A.11) reads

|−p⟩ = |p⟩ , |−p] = − |p] . (A.16)

Other useful identities are

⟨p|q|k] = [k|q|p⟩ ,
⟨p|σµ|q] ⟨k|σµ|l] = −2 ⟨pk⟩ [ql]

(A.17)

where ⟨p|q|k] ≡ ⟨p|α qαα̇ |k]α̇ and similar for [k|q|p⟩. The same relations also hold for

massive spinors.

Finally, to compute the soft factors in Section 2, more precisely the pϕ-independet

piece in Eq. (2.9), we can use the explicit representations for the spinors in Eqs.(A.5)

and (A.10). Starting with a massive momentum p and a massless one pϕ, we have:

〈
pI (p+ pϕ)J

〉
=

(
0 −m√

(E − p)(E + p+ 2pϕ) 0

)IJ

,

[
pI (p+ pϕ)J

]
=

(
0

√
(E − p)(E + p+ 2pϕ)

−m 0

)IJ

,

(A.18)

where we are assuming that the angle between the 3-momenta p⃗ and p⃗ϕ is zero. We

can see that in the limit pϕ → 0 we recover Eq. (A.12). If instead we had started with

both massless p and pϕ, such that the angle between the 3-momenta is θ ≪ 1, we would

have obtained

⟨p p+ pϕ⟩ = − [p p+ pϕ] = −pϕ
√

p

p+ pϕ
θ +O

(
θ2
)
, (A.19)

which are relevant quantities for the computation of Eq. (2.17).

A.2 Construction of amplitudes

To write down amplitudes, we use the fact that the S-matrix is covariant under little-

group transformations. This implies that we can express the amplitudes as a sum of

all possible Lorentz-invariant combinations of spinor variables that have the correct

little-group transformation.

For massless particles the little-group transformation is given by Eq. (A.2) and,

according to the covariance of the S-matrix, the amplitude must transform as A →
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e−2ihA, with h the helicity of the corresponding particle. Specializing to the case of 3-

point amplitudes, little-group covariant gives us three constraints, while the amplitude

can be built of 6 spinor products, namely ⟨12⟩ , ⟨23⟩ , ⟨13⟩ and the same with square

brackets. We use here the short-hand notation |pn⟩ ≡ |n⟩ to label the momenta in

the spinors. Due to 3-particle kinematics, however, all these products vanish if the

momenta are real. Relaxing this hypothesis, we find that we can either have the angle

contractions or the square ones to be non-vanishing, thus leaving us with only three

independent Lorentz-invariant products. Up to coefficients, this allows us to completely

fix the amplitude [1, 2, 5]:

A3 ∝

{
⟨12⟩h3−h1−h2 ⟨23⟩h1−h2−h3 ⟨13⟩h2−h1−h3 ,

∑
i hi ≤ 0

[12]h1+h2−h3 [23]h2+h3−h1 [13]h1+h3−h2 ,
∑

i hi ≥ 0
, (A.20)

where h1,2,3 are the helicities of the particles. For higher-point functions, we cannot

completely fix the amplitude, since we have more spinor contractions than little-group

transformation rules.

When considering massive particles the discussion is more involved, because both

angle and square spinors transform in the same way under little-group. Nevertheless,

one can simply write the amplitude as a sum of all independent spinor structures, each

with a different coefficient (see Ref. [32] for a classification). For a massive particle

of spin s, the transformation of the amplitude is given by the completely symmetric

2s tensor representation, which is equivalent to the usual representation in terms of

the total spin and its projection [3]. Hence, each term in the amplitude must contain

exactly 2s spinors, angle and/or square, of this given particle.

A.3 CPT invariance and unitarity

To extract information on the phases of the amplitudes, we need to relate them to their

complex conjugate, which can be done using CPT invariance and unitarity. In terms of

the transfer matrix T , the amplitude for a state O is written as A [O] = ⟨0|TO⟩, where

we take all particles to be incoming and 0 is the vacuum. Using CPT invariance of

the S-matrix, one can show that ⟨0|TO⟩ = ⟨OΘ|T0⟩, with Θ representing the action of

CPT in the multi-particle states, that amounts to reversing the spin (i.e. changing up

and down little-group indices in the massive case, or flipping the helicity for massless

particles) and swapping particles with anti-particles [6]. In addition, when applying Θ

we must also reverse the ordering of the particles in the amplitude, that can lead to

extra minus signs in the case of fermions. Then, unitarity of the S-matrix imposes that

T ≃ T † up to corrections of order T †T . We therefore obtain at leading order

A [O] ≃ A [OΘ]∗ . (A.21)
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The complex conjugation of spinor structures can be found to yield〈
pIqJ

〉∗
= − [pIqJ ] , (A.22)

that holds when considering real momenta with positive energy [78, 79].

A.4 Feynman rules with spinor variables

It is also instructive to show how some Feynman rules for effective operators are trans-

lated in terms of spinor variables. To do so, we first need to express the external

wave-functions in terms of spinors. For spin 1/2 and spin 1 particles we have, respec-

tively,

vI(p) =

(∣∣pI〉∣∣pI]
)
, v̄I(p) = (−⟨pI | , [pI |) ,

uI(p) =

( ∣∣pI〉
−
∣∣pI]

)
, ūI(p) = (⟨pI | , [pI |) ,

(A.23)

ϵµ(p) =
⟨p|σµ|p]√

2mV

, or ϵ(p)αα̇ =
√

2
|p⟩ [p|
mV

, (A.24)

where u, v, ū, v̄ are the usual solutions to the Dirac equation, and ϵµ is the massive

polarization vector, with mV the mass of the spin 1 particle. Considering a Yukawa

interaction of the form

LYukawa = −ϕ
(
gLψ

†
RψL + gRψ

†
LψR

)
, (A.25)

the corresponding on-shell amplitude with all-in convention is

A3

[
ϕψI1ψ̄

J
2

]
= −ūJ(−p2)

(
gL 0

0 gR

)
uI(p1) = gL

〈
1I2J

〉
+ gR

[
1I2J

]
. (A.26)

For vectors the relevant interactions are

LV =
mV c0

2
ϕVµV

µ + gϕVµνV
µν + g̃ϕVµνṼ

µν . (A.27)

The corresponding amplitude is

A3

[
ϕV I1,I2

1 V J1,J2
2

]
=

(
2
mV c0

2
ηµν + 4g[pν1p

µ
2 − (p1 · p2)ηµν ] + 4g̃ϵµναβp

α
1p

β
2

)
ϵµ(p1)ϵ

ν(p2)

= 2(ig̃ − g) ⟨12⟩2 − 2(ig̃ + g) [12]2 − c0
mV

⟨12⟩ [12] ,

(A.28)

where we note explicitly the 1/mV scaling of the last term. To manipulate the Levi–

Civita we have used

ϵµναβ =
1

4i

(
Tr[σ̄µσν σ̄ασβ]− Tr[σµσ̄νσασ̄β]

)
. (A.29)
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A.5 SM amplitudes

For completeness, we present here as well the SM 3-point amplitudes we use to derive

our results in Section 3:

A3

[
Qibn

1 ūam2H
j
]

= (Y †
u )abδnmϵ

ij ⟨12⟩ , A3

[
Q̄b
in1u

am
2 H̄j

]
= (Yu )baδmn ϵij [12] ,

A3

[
Qibn

1 d̄am2H̄j

]
= (Y †

d )abδnmδ
i
j ⟨12⟩ , A3

[
Q̄b
in1d

am
2 Hj

]
= (Yd )baδmn δ

j
i [12] ,

A3

[
Qibn

1 Q̄a
jm2G

A+
3

]
= −
√

2gsT
A
mnδ

i
jδ
b
a

[23]2

[12]
, A3

[
Qibn

1 Q̄a
jm2G

A−
3

]
=
√

2gsT
A
mnδ

i
jδ
b
a

⟨13⟩2

⟨12⟩
,

A3

[
ubn1 ū

a
m2G

A+
3

]
=
√

2gsT
A
mnδ

b
a

[13]2

[12]
, A3

[
ubn1 ū

a
m2G

A−
3

]
= −
√

2gsT
A
mnδ

b
a

⟨23⟩2

⟨12⟩
,

A3

[
H i

1H̄j2W
A−
3

]
= −
√

2gTAji
⟨13⟩ ⟨23⟩
⟨12⟩

, A3

[
H i

1H̄j2W
A+
3

]
= −
√

2gTAji
[13] [23]

[12]
,

A3

[
H i

1H̄j2B
−
3

]
= −
√

2g′yHδ
i
j

⟨13⟩ ⟨23⟩
⟨12⟩

, A3

[
H i

1H̄j2B
+
3

]
= −
√

2g′yHδ
i
j

[13] [23]

[12]
,

(A.30)

where the expressions are analogous for other fermions and vector bosons, g′, g, gs
are the gauge couplings and yH the Higgs hypercharge. In the equations above a, b

denote flavor indices, i, j indices from the fundamental of SU(2)L and m,n for the

fundamental of SU(3)c. We use TA for the generators of both non-abelian groups.

Here, the conventions are chosen such to correspond to covariant derivatives defined as

Dµ = ∂µ − igVµ, and the Yukawas as LYukawa = −Yψψ̄LHψR + h.c..

B Yukawa - Mass connection

In this appendix we present an alternative way to understand the relation between

fermion masses in the broken electroweak phase and the Yukawa matrices in the un-

broken phase. This relation was previously studied in Ref. [22] (and more recently in

Ref. [56]) by analysing how the “freezing” of external Higgs particles can make massless

spinors to become massive. Here instead, we show explicitly that we can understand

the Higgsing as a modification to the dispersion relation of the fermions, which is very

similar to the analysis performed in Ref. [34] for neutrino propagation in matter.

Consider a generic amplitude A that has a factorization channel in ψR for p2 → 0,

with ψR being one of the right-handed fermions of the SM. More precisely,

lim
p2→0
A = lim

p2→0
AaL

δab

p2
AbR = AL

ψR AR , (B.1)
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where AaL,R are the sub-amplitudes, a, b are flavor indices and we leave implicit spinorial

indices and the Levi–Civita tensor. Consider now the same amplitude with the addition

of an Higgs - anti-Higgs pair in the pH , pH̄ → 0 limit, in such a way that the Higgs

become non-dynamical. Given that the Higgs interacts with the fermions through

Yukawa interactions,

A
[
ψbL,1ψ̄

a
R,2H̄

]
= (Y †

ψ)ab ⟨12⟩ , A
[
ψ̄aL,1ψ

b
R,2H

]
= (Yψ)ab [12] , (B.2)

where H ↔ H̄ in the case of u-quarks and ignoring SM group indices, we can make

recursive use of polology to show that the amplitude will feature extra factorization

channels as p2, pH , pH̄ → 0. Schematically10,

lim
pH ,pH̄→0

lim
p2→0
A
[
H, H̄

]
=
AL

ψR

H

ψL

H̄

ψR AR
. (B.3)

Note that we need one Higgs and one anti-Higgs, because otherwise we would not

obtain a factorization to the same amplitudes AaL,R. Evaluating the amplitude above

we obtain

lim
pH ,pH̄→0

lim
p2→0

v2A
[
H, H̄

]
= lim

pH ,pH̄→0
lim
p2→0
AaL

1

p2
v(Yψ)ca [(−p− pH)p]

(p+ pH)2
v(Y †

ψ)bc ⟨(p+ pH)(−p− pH − pH̄)⟩
(p+ pH + pH̄)2

AbR,

(B.4)

where we insert one factor of v for each Higgs becoming non-dynamical. The numerator

of the expression above can be rewritten as

[(−p− pH)p] ⟨(p+ pH)(−p− pH − pH̄)⟩ ≃ [ppH ] ⟨pHp⟩ = (p+ pH)2, (B.5)

where we have neglected higher-order terms in Higgs momenta. With the simplification

above the limit becomes

lim
pH ,pH̄→0

lim
p2→0

v2A
[
H, H̄

]
= lim

p2→0
AbR

1

p2
v2(Y †

ψYψ)ba

p2
AaL. (B.6)

It is clear that Eq. (B.6) contributes to the original amplitude without the Higgs - anti-

Higgs pair, as the latter are removed from the external states. Hence, after we take all

10Here we ignore the contributions from the Higgs being emitted by the other external legs, that

contribute to them becoming massive and therefore are not relevant to our computations.
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Higgs non-dynamical we arrive at

lim
pH ,pH̄→0

lim
p2→0

(
A+ v2A

[
H, H̄

]
+ · · ·

)
= lim

p2→0
AbR

1

p2

[
δba +

v2(Y †
ψYψ)ba

p2
+ · · ·

]
AaL,

(B.7)

where the dots denote similar amplitudes computed with more Higgs insertions, which

are given by analogous expressions. It is possible to resum all the contributions:

1

p2

[
δba +

v2(Y †
ψYψ)ba

p2
+ · · ·

]
=

[
1

p2 − v2Y †
ψYψ

]ba
, (B.8)

hence it is clear that the Higgs ”background” modifies the dispersion relations of the

fermions by inducing an effective mass. Note that the propagator above does not

respect locality manifestly, due to the matrix structure of the Yukawas. Nevertheless,

it is always possible to find basis in which the propagator becomes diagonal and we

therefore restore manifest locality. The necessity to perform such rotation is nothing

but a realization of the mismatch between the massless and massive flavor basis. The

mass matrix is given by

M2
ψ = v2U †

RY
†
ψYψUR = v2

(
Y †
ψYψ

)
diagonal

, (B.9)

where UR ∈ U(3)ψR , the right-handed flavor group of the massless phase of the theory.

To be able to write directly the mass matrix in terms of the Yukawa, we can repeat

the same steps above with a factorization channel on a left-handed fermion and obtain

similarly M2
ψ = U †

LYψY
†
ψUL, where now UL ∈ U(3)ψL . In order for both expressions to

match, the mass must be given by

Mψ = vU †
LYψUR. (B.10)

It is interesting to notice that for the neutrino sector, in the absence of a Yukawa inter-

action involving right-handed neutrinos, we can still generate masses via the Weinberg

amplitude

A4

[
H2L2

]
= cW ⟨12⟩ , (B.11)

with L the lepton doublet. Repeating the reasoning above for this interaction, we

obtain

M2
ν = v4(c†W cW )diagonal, (B.12)

and we can thus see explicitly the different scaling with the scale v when compard to

Eq. (B.10).
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C One-loop running of A[ϕψψ̄H]

In this appendix we describe in more detail the computation of the beta function used

in Section 3 using the methods of generalized unitarity [5, 7–12, 80–88]. For 1-loop beta

functions, the master formula reads [10, 84](
γOi − γ

(Oi)
IR

)
A [Oi] =

i

8π4

∑
a

∫
dΠ[ℓ1, ℓ2]

∮
z=∞

dz

z
A(a)
L

[
ℓ̂1, ℓ̂2

]
A(a)
R

[
−ℓ̂1,−ℓ̂2

]
,

(C.1)

where γOi is the anomalous dimension of the amplitude A [Oi]. The formula above is

obtained by selecting bubble diagrams from the Passarino–Veltman decomposition [89],

which is the only topology that can contain UV divergences. This is achieved by first

performing all 2-cuts (labeled by a), that result in the product of two tree amplitudes

A(a)
L,R integrated over the 2-body phase-space dΠ[ℓ1, ℓ2] of the two cutted momenta ℓ1,2.

Doing so does not select only bubble, since 2-cuts get contributions from triangles and

boxes as well. To remove them, we shift ℓ1,2 to the complex plane using a BCFW-like

shift [51, 52], ℓ̂1,2 = ℓ1,2± zℓ2,1 and integrate over dz/z around z = 0. Then, we deform

the contour around the origin as a sum over contours around poles and at z =∞. The

poles can only come from triangles and boxes, as they have un-cutted propagators. So

dropping them and keeping only the residue at infinity guarantees that we are selecting

only the bubbles. The numerical factor i/8π4 arises from collecting the divergent piece

of the bubble (−1/8π2), normalizing the phase-space integral (2/π) and from Cauchy’s

theorem (1/2πi). Also, γ
(Oi)
IR denotes the IR contribution to the anomalous dimension

that must be subtracted, and that depends only on the external particles of A [Oi].
We are interested in computing the contribution of the amplitude A3 [ϕGG] to the

running of A4

[
ϕψψ̄H

]
. For concreteness, let us choose A4

[
ϕQ̄dH

]
and A4

[
ϕQd̄H̄

]
.

For the first amplitude we have only two possible 2-cuts:

(I) =

Q̄a
in Qa′i′n′

ϕ GA

Q̄b′

j′m′ dbm

GA′
Hj

, (II) =

dbm d̄b
′

m′

ϕ GA

da
′

n′ Q̄a
in

GA′
Hj

(C.2)

where we ignore other cuts that do not involve A3 [ϕGG]. In addition, A,A′ and

n, n′,m,m′ are indices of the adjoint and fundamental of SU(3)c, respectively, a, a′, b, b′

of flavor and i, i′, j, j′ of the fundamental of SU(2)L. To compute the 2-cuts above,

we need the corresponding 4-point amplitudes. They can be computed using Eqs. (3.6)
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and (A.30):

A4

[
ϕQa′i′n′

1 Q̄a
in2G

A+
3

]
= −
√

2gsg
+
G

f
TAnn′δi

′

i δ
aa′ [23]2

[12]
,

A4

[
ϕda

′n′

1 d̄ai2G
A+
3

]
=

√
2gsg

+
G

f
TAnn′δaa

′ [13]2

[12]
,

A4

[
ϕQa′i′n′

1 Q̄a
in2G

A−
3

]
=

√
2gsg

−
G

f
TAnn′δi

′

i δ
aa′ ⟨13⟩2

⟨12⟩
,

A4

[
ϕda

′n′

1 d̄an2G
A−
3

]
= −
√

2gsg
−
G

f
TAnn′δaa

′ ⟨23⟩2

⟨12⟩
,

A4

[
Q̄a
in1d

a′n′

2 GA−
3 H i′

]
= −
√

2gsT
A
nn′(Yd )aa

′
δi

′

i

[12]2

[23] [13]
,

A4

[
Qain

1 d̄a
′

n′2G
A+
3 H̄i′

]
= −
√

2gsT
A
nn′(Y

†
d )a

′aδii′
⟨12⟩2

⟨23⟩ ⟨13⟩
,

(C.3)

where TA denotes the generators of SU(3)c and g±G the ALP-gluon couplings. The

product of the two amplitudes in the left 2-cut in Eq. (C.2) reads

(I) = (−1)A4

[
ϕQa′i′n′

ℓ1
Q̄a
in1G

A+
ℓ2

]
A4

[
Q̄b′

j′m′(−ℓ1)d
bm
2 GA′−

(−ℓ2)H
j
4

]
δAA

′
δb

′a′δj
′

i′ δ
m′

n′

= −2CA(3)g2sg
+
G

f
(Yd)

abδji δ
m
n

[1ℓ2]
2 [ℓ12]2

[1ℓ1] [ℓ1ℓ2] [2ℓ2]
,

(C.4)

with CA(3) the Casimir of the adjoint of SU(3)c. The extra minus sign above takes

into account fermion ordering, i.e. to arrange the amplitudes as we have defined in

Eqs. (A.30) and (C.3) we need to anti-commute some fermions, leading to an extra

minus. Note that only one helicity configuration of the gluons contribute, as the SM

amplitude A4

[
Q̄dGH

]
is non-zero for only one choice of gluon helicity. Then, we shift

ℓ1,2 to the complex plane as

|ℓ1⟩ → |ℓ1⟩+ z |ℓ2⟩ , |ℓ2]→ |ℓ2]− z |ℓ1] , (C.5)

while |ℓ1] and |ℓ2⟩ remain unchanged. After performing the shift above and selecting

the residue at z =∞ we obtain

(I)→ −2πi
2CA(3)g2sg

+
G

f
(Yd)

abδji δ
m
n

2 [1ℓ2] [2ℓ1]− [1ℓ1] [2ℓ2]

[ℓ1ℓ2]
. (C.6)

Now comes the phase-space integration. To this end, we write ℓ1,2 as linear combinations

of external momenta [11, 22, 80, 82],(
|ℓ1]
|ℓ2]

)
=

(
cos θ −eiϕ sin θ

e−iϕ sin θ cos θ

)(
|4]

|2]

)
, (C.7)
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where ϕ is the azimutal and θ the half-polar angles. The angle spinors are related in

similar way, but with an extra complex conjugation. Inserting Eq. (C.7) in (C.6) and

integrating over phase-space∫
dΠ[ℓ1, ℓ2] (I) = −2πi

2CA(3)g2sg
+
G

f
(Yd)

abδji δ
m
n

(
−3π

4
[12]

)
. (C.8)

The 2-cut on the right in Eq. (C.2) is computed analogously. The product of the

amplitudes is

(II) = A4

[
ϕdbm2 d̄b

′

m′ℓ1G
A+
ℓ2

]
A4

[
Q̄a
in1d

a′

n′(−ℓ1)G
A′−
(−ℓ2)H

j
4

]
δAA

′
δb

′a′δn
′

m′

=
2CA(3)g2sg

+
G

f
(Yd)

abδji δ
m
n

[2ℓ2]
2 [ℓ11]2

[2ℓ1] [ℓ1ℓ2] [1ℓ2]
,

(C.9)

where now we do not have any extra minus from fermion ordering. Note that the spinor

structure from expression above is identical to the one in Eq. (C.4) by changing 1↔ 2.

Thus, ∫
dΠ[ℓ1, ℓ2] (II) = 2πi

2CA(3)g2sg
+
G

f
(Yd)

abδji δ
m
n

(
3π

4
[12]

)
. (C.10)

The result of both 2-cuts must be then plugged in Eq. (C.1) and compared to

A4

[
ϕQ̄dH

]
. It is important to notice that the 2-cuts produced the same kinemat-

ical structure as the original amplitude. Besides, there is no contribution from IR

divergences in this case [25, 26]. We arrive at

dCd
d log µ

= −g
2
sg

+
G

π2
Yd ,

dC̄d
d log µ

= −g
2
sg

−
G

π2
Y †
d , (C.11)

where we included the result also for the conjugate amplitude, that follows in a very

similar way. The results above, properly translated to the usual language by Eq. (A.28),

agree with previous computations in the literature [53–55]. At leading order, the cou-

plings g±G are related by complex conjugation according to Eq. (A.21), which implies

that
dC̄d

d log µ
≃ dC†

d

d log µ
, (C.12)

up to two-loop effects. As a consequence, we can use the results of Section 3 and, to

be consistent with the 1-flavor limit, must satisfy g−G = −g+G. Therefore,

g−G = −g+G = iCG, CG ∈ R, (C.13)

that corresponds solely to the ϕGG̃ coupling, as we wanted to demonstrate.
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[55] S. Das Bakshi, J. Machado-Rodŕıguez, and M. Ramos arXiv:2306.08036.

[56] B. Bachu arXiv:2305.02502.

[57] B. Bachu and A. Yelleshpur JHEP 08 (2020) 039, [arXiv:1912.04334].

[58] M. Bauer, M. Neubert, and A. Thamm JHEP 12 (2017) 044, [arXiv:1708.00443].
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