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1 Introduction

Supersymmetry (SUSY) [1-6] predicts the existence of a new symmetry that requires that,
for each fermion (boson) in the standard model (SM), there is also a bosonic (fermionic)
superpartner. Searches for SUSY are among the important focal points of the physics
program at the CERN LHC, since SUSY naturally solves the problem of quadratically
divergent loop corrections to the mass of the Higgs boson [7-9]. If R parity [10] is conserved,
supersymmetric particles would be produced in pairs, and their decay chains would end with
the lightest supersymmetric particle (LSP), often considered to be the lightest neutralino
%(1) . Such an LSP, being neutral, weakly interacting, and massive, would have the required
characteristics for a dark matter particle, and thus, would offer a solution to another
shortcoming of the SM. When the symmetry is broken, the scalar partners of an SM fermion
acquire a mass different from the mass of the SM partner, with the mass splitting between
scalar mass eigenstates being proportional to the mass of the SM fermion. Since the top
quark is the heaviest fermion of the SM, the splitting between its chiral supersymmetric
partners can be the largest among all supersymmetric quarks (squarks). Furthermore, the
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Figure 1. Diagram of top squark pair production E;l in pp collisions, with a four-body decay of
each top squark.

top Yukawa coupling can be the greatest among all fermions, which affects the masses
of the squarks through the renormalization group equations. The lighter supersymmetric
scalar partner of the top quark, the top squark (fl), could therefore be the lightest squark.
If SUSY is realized in nature, cosmological observations imply that for many models the
lightest top squark should be almost degenerate with the LSP [11]. In this scenario, because
the mass difference between the {1 and the %(1] is smaller than the mass of the W boson,
the two- and three-body decays of the gl are kinematically forbidden, while the two-body
decay to C)Z(l) can be suppressed depending on the parameters of the model. This motivates
the search for the four-body decay fl — bff/%?, where b stands for the bottom quark,
and the fermions f and f' can be either quarks or leptons. Throughout this paper, charge
conjugation is assumed. Figure 1 represents a simplified model [12-17] of the production of
t,t, in proton-proton (pp) collisions, where each t, and t, undergoes a four-body decay.

In this paper, the previous 2016 result of CMS at /s = 13 TeV [18] is combined with
data recorded in 2017 and 2018. The results of 2016 are directly taken from ref. [18], except
the integrated luminosity and its uncertainty, which are updated to their latest values [19].
The total integrated luminosity for the combined 20162018 analysis is 138 fh 1.

In the present search a final state is considered, where the fermions f and £ represent
a charged lepton and its neutrino for the decay products of one El, and two quarks for
the other top squark. A 100% branching fraction is assumed for the four-body decay
when interpreting the results [12]. The considered final states contain at least one jet, a
large missing transverse momentum, and exactly one charged lepton, which can be either
an electron or a muon. The choice of final states where one top squark decays into a
lepton is motivated by the decrease of the contributions from the multijet background in
this mode, while increasing the selection efficiency with the other top squark decaying
hadronically. The selected jet, attributed to initial-state radiation (ISR) of a parton, is
required to have high transverse momentum (pr). Both neutralinos and the neutrino
escape undetected, leaving high missing transverse momentum. Electrons and muons can



be efficiently reconstructed and identified with pr as low as 5.0 and 3.5 GeV, respectively.
The signal selection is based on a multivariate analysis, followed by a counting experiment.
This approach takes advantage of the different correlations between the discriminating
variables for signal and background, and is adapted for different Am = m(t,) — m(x))
kinematic regions, thus enhancing the reach of the search across the (m(t,), m(x})) space.
The main contributions to the background events are W+jets, tt, and Z+jets processes,
and are predicted from data. A search in the single-lepton final state for the four-body
decays of the t; has been performed by the ATLAS Collaboration at /s = 13TeV [20],
and a comparison of its results to the present search is provided in this paper. Tabulated
results are provided in the HEPData record for this search [21].

2 The CMS detector

The central feature of the CMS apparatus [22] is a superconducting solenoid of 6 m internal
diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel
and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass
and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap
sections. Forward calorimeters extend the pseudorapidity coverage provided by the barrel
and endcap detectors. The silicon tracker measures charged particles within the pseudo-
rapidity range |n| < 2.5. Muons are detected in gas-ionization chambers embedded in the
steel flux-return yoke outside the solenoid. It is a multipurpose, nearly hermetic detector,
designed to trigger on [23, 24] and identify electrons, muons, photons, and hadrons [25-27].

3 Data and simulated samples

The search described in this paper is performed using data from pp collisions recorded in
20172018 by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV. These
results are statistically combined with the result from the search using the data of 2016,
corresponding to an integrated luminosity of 36.3 fb~! that was updated for this paper.
The 2017 and 2018 data samples correspond to an integrated luminosity of 41.5 fb~! and
59.8 fb_l, respectively, bringing the total integrated luminosity for the combined 2016-2018
analysis to 138 fht.

Signal and background processes are simulated using several Monte Carlo (MC) event
generators. The SM background MC samples are used to estimate the relation between the
control and signal regions for the main background processes, to validate the background es-
timation methods based on control samples in data, and finally, to predict the contributions
from other processes. The W+jets, Z — vv+jets, and multijet processes are generated
at leading order (LO) by MADGRAPH5 _aMC@QNLO 2.4.2 [28]. The tt process is generated
at next-to-leading order (NLO) by MADGRAPH5 aMC@NLO. The POWHEG v2.0 [29-36]
generators are used for the NLO simulations of single top and associated tW production.
Diboson events are simulated at NLO with MADGRAPH5 aMC@QNLO and POWHEG. The
LO (NLO) NNPDF3.1LO (NNPDF3.1INLO) [37] parton distribution functions are used



consistently with the order of the matrix element calculation in the generated events. Addi-
tional backgrounds such as tt produced in association with a Z boson, W boson, or photon,
referred to as ttX, are generated with MADGRAPH5 aMC@NLO at NLO [38]. Hadroniza-
tion and showering of events in all generated samples are simulated using PYTHIA 8.230 [39]
with the CP5 tune [40] for the underlying event. All SM MC events are passed through
a full simulation of the CMS apparatus, where the response of the detector is modeled
using the GEANT4 [41] software. Generated events are processed using the same version
of the CMS event reconstruction software used as for data. Additional pp collisions in
the same or nearby beam crossings (pileup) are simulated and overlaid on the main pp
interaction in the MC samples, with distributions that reproduce the conditions observed
year-to-year in data. For the pair production of top squarks (flfl), simulated samples
are produced for 250 < m(t;) < 800GeV in steps of 25GeV, and 10 < Am < 80GeV
in steps of 10GeV. The cross section for t,t; production, calculated using PROSPINO
v.2 [42-48], is computed at next-to-next-to-leading-order (NNLO) accuracy, and includes
next-to-next-to-leading-logarithmic (NNLL) corrections [49, 50]. This cross section varies
between approximately 25 and 0.03 pb as m(t;) goes from 250 to 800 GeV. The generation
of signal events with up to two additional jets, which can originate from ISR, is performed
with MADGRAPH5__aMC@NLO and then interfaced with PYTHIA for the decay hadroniza-
tion and showering. The modeling of the detector response for the signal is done with the
CMS fast simulation program [51, 52]. The simulated samples of all background processes
are used to check the modeling of variables at the preselection level (see section 5.1). For
the final results, the yields of W+jets, tt, Z — VV-+jets and multijet backgrounds, as well
as the associated systematic uncertainties, are predicted using data-driven techniques (see
sections 6 and 7).

Both signal and background simulated samples are corrected to account for discrep-
ancies from data. Control regions (CRs) in data are used to measure the reconstruction
efficiencies of leptons and jets produced by the hadronization of b quarks, “b jets”, as well
as the b jet misidentification probabilities for light-quark and gluon jets. The corrections
are applied as a function of the pp and 7 of the objects. Fast simulation signal samples
are additionally corrected to take into account any potential difference with respect to the
GEANT4 modeling. The latter corrections translate into efficiencies applied to b jets, lep-
tons, and the modeling of the missing transverse momentum. The simulations of W—+jets,
tt, and signal processes are corrected for the effect of ISR. The modeling of ISR for these
processes is checked in data-based control samples that are highly enriched in tt or W+jets
events. The simulation of tt events is tested by comparing the jet multiplicity observed in
a control sample with the simulation, and the tt and signal samples are reweighted based
on this comparison. The simulation of W+jets events is corrected based on the distribution
of the sum of the magnitudes of the lepton ¢ transverse momentum pr(¢) and the missing
transverse momentum in a control sample.



4 Event reconstruction and object selection

Data and simulated events are reconstructed using the CMS particle-flow (PF) algo-
rithm [53], which matches the information from all CMS subdetectors in order to describe
the event in terms of global physics objects. These objects are denoted as PF candi-
dates and are classified into mutually exclusive categories: electrons, muons, photons, and
charged and neutral hadrons. The primary vertex (PV) is taken to be the vertex corre-
sponding to the hardest scattering in the event, evaluated using tracking information alone,
as described in section 9.4.1 of ref. [54].

Jets are reconstructed by applying the anti-kt clustering algorithm [55, 56] to PF
candidates with a distance parameter of 0.4. The pileup contribution to the jet momentum
is partially taken into account by excluding the charged hadrons originating from vertices
other than the PV from the jet-clustering algorithm. To account for pileup contributions
from neutral particles and any inhomogeneity in the detector response, the jet pr is further
calibrated as described in ref. [57]. Jets are required to satisfy pp > 30 GeV, and |n| < 2.4.
The tagging of b jets (b tagging) is performed with the DeepCSV algorithm [58] that
uses information from the secondary vertex and is based on a deep neural network. The
b tagging discriminant is used to tag jets as b jets based on a set of working points
(loose, medium, tight) and to define further event variables based on the discriminant
value or the jet with highest discriminant value. The b jet identification working points
are defined as the selection values in the discriminator distribution at which the probability
of misidentifying a light-flavor jet as a b jet is 10%, 1% and 0.1%, respectively, for the loose,
medium and tight working points [59].

The missing transverse momentum vector, pr iss, is computed as the negative vector

pr sum of all PF candidates in the event, and its magnitude is p=™*. The calibrations

associated with the jet energy estimations are propagated to the 7™ [60].

Electron candidates are reconstructed from energy deposits in the ECAL and matched
charged particle tracks in the inner tracker obtained using the Gaussian sum filter algo-
rithm [25]. To reduce the number of misidentified electrons, additional constraints on the
shape of the electromagnetic shower in the ECAL, the quality of the match between the
trajectory of the track, and the ECAL energy deposit around the electron, and the relative
HCAL deposit in the electron direction are applied. Electrons are required to have pp
above 5GeV and |n| < 2.5, with a veto on electron candidates in the ECAL gap region
(1.4442 < |n| < 1.5660). They are identified with requirements on the observables that
describe the matching of the measurements in the tracker and the ECAL, the description of
energy clusters in the ECAL, and the amount of bremsstrahlung radiation emitted during
the propagation through the detector. A loose working point of this algorithm is required
for electrons to be selected, which has an average efficiency of 90%.

Muon candidates are reconstructed by combining the information from the silicon
tracking systems and the muon spectrometer in a global fit [26] that assigns a quality to
the matching between the tracker and muon systems and imposes minimal requirements
on the track to reduce the misidentification of muons. The medium working point of this
algorithm is required for muons to be selected, which ensures an efficiency above 98%.
Muons are required to pass the selection requirements of pp > 3.5GeV and || < 2.4.



To select electrons or muons originating from the PV, the point of closest approach
of the associated track with respect to the PV is required to have a transverse distance
|dzyl < 0.02cm, and a longitudinal distance |d,| < 0.1cm. A lepton is defined as being
nonprompt either when it does not originate from the PV, or when a jet is misidentified as
a lepton. Background processes with nonprompt leptons are one of the main contributions
to the SM background in the signal regions. In this analysis, nonprompt leptons mostly
arise from heavy-quark decays in jets produced in association with a Z — vV +jets decay,
from multijet production, or from W+jets and tt events where the prompt lepton was
not reconstructed and a different one was accepted. In order to suppress these types
of processes, a requirement on the lepton isolation is applied, which uses a combination
of an absolute and a relative isolation variable. The absolute isolation variable I, of
the lepton is defined as the scalar sum of the pp of PF candidates within a cone size of
R=vV (A¢)2 + (An)2 = 0.3, where ¢ is the azimuthal angle, around the lepton candidate,
which is excluded from the sum, as are charged PF candidates not associated with the PV.
The contributions from neutral particles originating from pileup are estimated according
to the method described in refs. [61, 62], and are subtracted from I,;,. The ratio of the
lepton 1,34 to the lepton pt is defined as the lepton relative isolation I,. A uniform lepton
selection efficiency as a function of pr is achieved by requiring leptons to have I,;, < 5 GeV
for pr(¢) < 25GeV and I, < 0.2 for pp(£) > 25 GeV.

5 Event selection

miss miss

The data events collected by the trigger system are required to have both pt~ and Hp
above 120 GeV, where H™®* is the magnitude of the missing transverse momentum cal-
culated only from jets. In order to maintain the performance of the online selection with
increased luminosity from the late runs of 2017 onward, the condition H > 60 GeV is also
required, where Hr is defined as the scalar pp sum of all jets in the event. The efficiency
of the combined p%ﬁss and Hp' iss trigger is measured using an independent event sample
with single-electron triggers and pp thresholds of 35 and 32 GeV for the 2017 and 2018
data-taking periods, respectively.

The offline event selection is a two-step process. First, a preselection is applied to
reduce the contribution of the main background processes (section 5.1) by selecting a
single charged lepton, large p=%, and jets. Then, boosted decision trees (BDTs) [63, 64] are
trained and used to define the signal selection (section 5.2). The preselection is constructed
to be as inclusive as possible in order to maintain a high signal efficiency for all Am values,
leaving the main selection to the BDT.

5.1 Preselection

The value of the preselection p'™ threshold is set close to the beginning of the maximum

efficiency plateau of the combined p™ and H™* trigger, while optimizing the separation

between signal and background performed by the BDTs. Events with prrfliss > 280 GeV
are selected, favoring the signal where two )Nc(l) ’s escape detection and where the pp'™ is

therefore larger than for SM processes. For these events, the trigger efficiency is above 98%



for both years. To account for the small inefficiency, simulated samples are reweighted as
a function of p%liss to match the efficiency of the triggers in data.

To suppress the contribution of SM processes, additional requirements are imposed
on the selected events. In particular, to reduce the W+jets background, Hp > 200 GeV is
required. To select the single-lepton topology, it is demanded exactly one identified electron
or muon in the event, along with at least one jet. This selection reduces the contribution
from the dilepton topology of tt events. To further improve the selection of signal over
SM background events, at least one jet must have pp > 110 GeV. These requirements are
geared towards signal events in which the flfl system recoils against a high-momentum
ISR jet, Lorentz boosting the )Nc(l) and increasing p%liss. The ISR jet will often be the highest
momentum (leading) jet in these events, and the leading-jet p threshold value is optimized
in the same manner as for p™. Lastly, in events with at least two jets, the azimuthal
angle between the directions of the leading and second-highest-pr (subleading) jets must
be smaller than 2.5 radians, suppressing the SM multijet background.

After the preselection, the Wjets and tt processes are the main SM backgrounds,
making up about 70 and 20%, respectively, of the total expected background. The Z —

S
, and a

VV+jets process contributes to the SM background by having jets, genuine p%is
jet misidentified as a lepton. The remaining background processes are diboson, single top
quark, Drell-Yan (DY), multijet, and ttX production where X is a vector boson. These
processes are a less-important part of the expected background because of having a smaller
cross section, a lower acceptance, or both. The pr(¢), p%liss, and Nje distributions after the
preselection from the 2017 and 2018 data and the simulations are shown in figure 2, where
Nt is the number of jets in the event satisfying the jet criteria. The simulated background
distributions for each year are normalized to the corresponding integrated luminosity. The
level of agreement with data gives us confidence in training the BDTs with the simulated

distributions for the second step in the event selection.

5.2 Classification and final selection

The selection of the signal events is based on a BDT [64] to take advantage of the different
correlations among the discriminating variables for the signal and background processes.
For each event passing the preselection, the BDT discriminator value, henceforth referred
to as the BDT output, is evaluated. If the discriminator value exceeds the determined
threshold, the event is retained. The choice of the discriminating variables used as input
to the BDT is made by maximizing a figure of merit (FOM) [65] that takes into account
the statistical and systematic uncertainties in a selection. Various BDTs are trained with
different sets of discriminating variables, and a variable is included in the final set only
if it significantly increases the FOM obtained for any selection using the BDT output.
The list of the twelve retained input variables and a short description of their signal and
background distributions is as follows:

o Variables related to pr: pr and my , where my is the transverse mass of

SS

system, defined as: mp = v Qp{}p%ﬁss[l — COS(Agbeﬁmiss)]’ where

miss

A¢ is the azimuthal angular difference between the lepton pp and pp . The pr

the lepton + ;E’ITni
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Figure 2. Distributions of pr(¢) (upper), pr~ (middle), and Nj, (lower), after the preselection

from 2017 (left) and 2018 (right) data (points) and simulation (colored histograms). The simulated
distribution of two signal points are represented by colored lines, while not being stacked on the
background distributions: (m(t,), m(¥x])) = (500, 490) and (500, 420) GeV. The last bin in each
plot includes the overflow events. The lower panels show the ratio of data to the sum of the
simulated SM backgrounds. The shaded bands indicate only the statistical uncertainty in the
simulation predictions.



distribution extends to higher values for the signal than for the backgrounds due to
the two undetected LSPs in the signal decays. The my spectrum peaks around
80 GeV for the SM background and is a broad distribution for the signal.

« Lepton-related variables: pr(¢), n(£), and Q(¢). The correlations between p™ and
pr(¢) are different for the signal, where p1 comes from three undetected particles

miss

(two 7~C(1) and a v), than for W+jets and tt backgrounds, where pt" is the result of
a single undetected particle (v). Because the decay products of the signal are more
centrally produced than those of the W+jets process, the lepton pseudorapidity 7(¢)
distribution is populated at more central values for the signal than this background.
The lepton charge Q(¢) is a discriminating variable because W and W™ bosons are
not produced equally at the LHC, while the signal events contain equal numbers of
positively and negatively charged leptons.

o Jet-related variables: pp(ISR), pp(b), Nje, and Hyp. The variable pp(ISR) is defined
as the pr of the leading jet, and selects the high-momentum ISR jet in signal events.
The p(b) variable is the transverse momentum of the jet with the highest b tagging
discriminant value. Both the pp(ISR) and pr(b) variables are sensitive to the avail-
able phase space, which depends on m(t,) — m(¥}) for the signal, and m(t) — m(W)
for the tt background. The Nj variable is sensitive to the mass difference Am, while
the H variable provides discrimination between signal and both the W+jets and tt
backgrounds.

¢ b jet-related variables: N(b'°°), AR(,b), and D(b). The number of loosely b
tagged jets N (bloose), the distance in (7, ¢) space between the directions of the
lepton and the jet with the highest b tagging discriminant AR(¢,b), and the highest
b tagging discriminant per event D(b) are included as input variables. While the
preselection has no requirement on b tagging, information related to it is passed to
the BDT to help discriminate between the signal and mainly the W +jets background.

The five most discriminating variables, in decreasing power, are pp(), pr=, pr(ISR), Hr,
and m .

The discrimination power of the input variables varies as a function of Am, as il-
lustrated in figure 3 (left). An important feature of this search is the adaptation of the
selection tool to the evolving kinematic variables of the signal over the (m(t;), m(%}))
plane. Therefore, this plane is divided into eight Am regions (from 10 to 80 GeV, in steps
of 10), and a separate BDT is trained for each Am region. The BDTs are trained to dis-
criminate signal from background using the binomial log-likelihood loss function. Only the
W+jets and tt processes, which constitute a large fraction of the total background after
preselection, are included in the training. They are normalized in proportion to their theo-
retical cross sections. As seen in figure 3 (right), different signal points with the same Am
have similar input variable distributions. This is expected since with the same Am they
have the same available phase space. Because of this, all the signal points with the same
Am are grouped together when training the BDT, thus increasing the number of signal



events for each training. Because of the large variation of the pp(¢) spectrum across the
(m(ty), m(%x?)) plane, pr(f) < 30 GeV is required for Am < 70 GeV signal regions before
training the BDTs, while imposing no restriction on pp(¢) for signal regions with higher
Am. This improves the ability of the BDT to separate the signal from the tt background.

The BDT output distributions for data and simulated SM background are shown in
figures 4 and 5 for the 2017 and 2018 data, respectively. In each case a (m(t,), m(¥})) sig-
nal point belonging to the Am value for which the training has been done is also reported.
The BDT output is found to be different for various values of Am, which is to be expected
because of the changing mix of signal and background and the varying correlations across
the (m(t,), m(x}))) plane, resulting in different BDT outputs for different Am values. A
good agreement between the data and simulation is observed for the BDT output distribu-
tions over the entire range, for all trainings; the region at small BDT output values (e.g.,
<0.3) is dominated by background events.

To check the validity of the BDT output in regions depleted in signal, a set of vali-
dation regions (VRs) are defined. These regions are chosen to be kinematically close but
nonoverlapping with the region selected by the preselection, while using the same online
selection. The first VR uses the preselection requirements discussed in section 5.1, but
where 200 < p%liss < 280 GeV is required. This VR is used to validate the BDT output
for all the trained BDTs. The second VR also uses the preselection requirements, but
where pp(£) > 30 GeV is required. It is used for the validation of BDTs trained for signals
with Am < 70 GeV. This region is not used for BDTs trained for signals with Am = 70
or 80 GeV because the entire range of the pp(¢) distribution is considered at preselection.
The BDT output distributions for these VRs from data are consistent with those from the
simulation. Figure 6 illustrates for both years the pp(¢) distribution for the VR where
200 < ph < 280 GeV, as well as the output of the BDT for Am = 10GeV. Figure 7
reports for both years the pt™ distribution for the VR where pr(¢) > 30 GeV, and the
output of the BDT for Am = 60 GeV. As observed in these figures, the BDT output of data
is well described by the simulation. The mismodeling of an input variable, possibly result-
ing in the one of the BDT output, is covered by a systematic uncertainty. As described in
section 6, the VRs are used to evaluate the uncertainty in the background determination.

A signal region (SR) is defined by requiring a lower limit on each BDT output. This
limit is determined by minimizing the expected upper limit on the signal cross section of
a benchmark (m(t,), m(¥})) signal point at the exclusion limit of the 2016 search. This
choice implies that the benchmark signal points for the search from 2017 and 2018 data
are at higher fl and %? masses than for the 2016 search. The exact values of the BDT
selection requirements are reported in table 2. As an illustration of the selection power of
the BDT, in the case of Am = 80 GeV, the SM background is suppressed by a factor of
~3.7%x10° compared to the preselection, while the signal is only reduced by a factor of ~13.

6 Background estimation

The main background processes in this search are W-jets and tt, both with a prompt
lepton, and events where the lepton arises from the decay of heavy-flavor quarks or from
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Figure 4. BDT output distributions from data (points) and simulation (colored histograms) after
the preselection in 10 GeV steps of Am from 10 (upper left) to 80 (lower right) GeV for the 2017 data.
The last bin corresponds to the SR. For each Am value, the predicted signal distribution is shown
by the solid red line for a representative (m(t,), m(X})) point, unstacked from the histograms.
The lower panels show the ratio of the data to the sum of the background predictions, with the
vertical bars and shaded area giving only the statistical uncertainty in the data and the simulated
background, respectively.

misidentified hadrons that pass the lepton criteria. The latter category is labeled as non-
prompt background. The processes contributing to the nonprompt background are mainly
Z — VV+ijets, and to a lesser extent, W-jets and tt, where a jet is misidentified as a
lepton, as well as the multijet background. Furthermore, there can also be events in which
a genuine lepton (mainly from W +jets or tt) escapes detection, while a nonprompt lepton
is selected. These three main sources of background are estimated using data, as described
in sections 6.1 and 6.2. The background from other SM processes, such as single top quark,
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Figure 5. BDT output distributions from data (points) and simulation (colored histograms) after
the preselection in 10 GeV steps of Am from 10 (upper left) to 80 (lower right) GeV for the 2018 data.
The last bin corresponds to the SR. For each Am value, the predicted signal distribution is shown
by the solid red line for a representative (m(t,), m(X})) point, unstacked from the histograms.
The lower panels show the ratio of the data to the sum of the background predictions, with the
vertical bars and shaded area giving only the statistical uncertainty in the data and the simulated
background, respectively.

diboson, DY, and ttX production, are estimated from simulation. In the following sec-

tion, background yields estimated using data are denoted by Y while background yields

estimated only from simulated samples are denoted by V.

6.1

Nonp

rompt background

The nonprompt background is estimated from data using the “tight-to-loose” method [66].

The tight criteria correspond to the selection of the lepton as described in section 4. The
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Figure 6. Distributions of pp(¢) (upper) and BDT output for Am = 10GeV (lower) in the VR
where 200 < pP'™ < 280 GeV, from 2017 (left) and 2018 (right) data (points) and simulation (col-
ored histograms). The predicted signal distribution is shown by the solid red line for (m(t,), m(¥1))
= (475, 465), unstacked from the histograms. The lower panels show the ratio of data to the sum
of the simulated SM backgrounds. The shaded bands indicate only the statistical uncertainty in
the simulation predictions.

loose selection is defined by relaxing the requirement on the isolation variable to [, <
20 GeV for pr () < 25 GeV and I, < 0.8 for pr(¢) > 25 GeV, and on the impact parameters
to |dy,| < 0.1cm and [d,| < 0.5cm. A lepton passing these requirements is called a loose
lepton. The probability er, for a loose lepton to pass the tight criteria is measured as a
function of its p and 7 in a data CR that is largely dominated by multijet events and
enriched in nonprompt leptons. For each SR, it is defined a side-band region with the same
requirements, but where the lepton must pass the loose criteria while failing the tight ones
(“LIT”). The number of such events in data is denoted as NL!T(Data). The number of
events NpL !T(MC) from simulation where a vector boson or a top quark produce a prompt
lepton are subtracted from the data sample with a loose-not-tight lepton. The predicted
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Figure 7. Distributions of p'™™ (upper) and BDT output for Am = 60GeV (lower) in the VR
where pr(¢) > 30GeV, from 2017 (left) and 2018 (right) data (points) and simulation (colored
histograms). The predicted signal distribution is shown by the solid red line for (m(t,), m(¥X3)) =
(576, 516), unstacked from the histograms. The lower panels show the ratio of data to the sum of
the simulated SM backgrounds. The shaded bands indicate only the statistical uncertainty in the
simulation predictions.

nonprompt yield YH%R in each SR is obtained by weighting the resulting number of events
by err/(1 — erp): . ' '
Yot = L INMT(Data) — NJTT(MO)). (6.1)
1-— €711,
6.2 Dominant prompt backgrounds

To estimate the prompt contributions from the W+jets and tt processes, a method based
on the number of these background events observed in data CRs is used. The method
uses the output of the BDT, and a transfer factor between the CR and the SR, obtained
from simulation. This factor, of the order 102 for both backgrounds and for both years,
is the ratio of the number of predicted events in the SR, NSR, to the one in the CR,
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NS R The estimated yield YpSR of the dominant prompt background in the SR, estimated
independently per process and per year, is then determined using:

SR
YOR(x) = M [N(Data) — Ny (non-X) — Y, 0], (6.2)

where X refers to the background process being estimated, either W+jets or tt, and where
the terms prompt and nonprompt refer to their definition as given at the beginning of sec-
tion 6. To obtain a data sample enriched in the backgrounds being estimated, a CR is de-
fined by applying the preselection criteria, with the additional requirement BDT < 0. The
number of such events is denoted as NCR(Data). To enrich the CR in W+jets or tt events,
the number of loosely b tagged jets is required to be zero, or the number of tightly b tagged
jets to be at least one, respectively, where loose and tight were discussed in section 4 [59].
The purity of W+jets and tt processes in the corresponding CRs is approximately 93%
and 78%, respectively. The level of signal contamination in the CR is well below 5%. The
number NpC R(non—X ) is the number of prompt background events other than the process
being estimated in the CR, estimated from simulation and subtracted from the number of
Yoo
which is the predicted number of nonprompt background in the CR, is also subtracted.

data events; e.g.: if X = W+jets, this term includes tt, and vice versa. The yield

7 Summary of systematic uncertainties

Processes for which the absolute yield is predicted by simulation are subject to systematic
uncertainties in the determination of the integrated luminosity, which is estimated year-by-
year with uncertainties in the 1.2-2.5% range [67, 68]. All simulated samples are subject to
experimental uncertainties in the jet energy scale (JES) and jet energy resolution (JER).
The uncertainties arising from miscalibration of the JES are estimated by varying the
jet energy corrections up and down by one standard deviation of their uncertainties and
propagating the effect to the calculation of p%iss. Differences in the JER between data
and simulation are accounted for by smearing the momenta of jets in simulation. The
uncertainties corresponding to the b tagging efficiencies and misidentification rates for
tagging light-flavored quark or gluon jets as b jets have been evaluated for all simulated
samples. The systematic uncertainties in the scale factors applied to the simulated samples
for trigger and lepton efficiencies are taken into account. The uncertainty due to the
simulation of pileup for simulated background processes is estimated by varying the inelastic
pp cross section by 4.6% [69]. An uncertainty of 50% is assigned to the cross sections of
all backgrounds whose yields are predicted from simulation.

The estimation of nonprompt backgrounds, as described in section 6.1, depends on the
tight-to-loose fraction ety,, which is sensitive to the flavor content of jets. The systematic
uncertainty arising from this source in the measurement region is estimated by changing the
b tagging requirement in the b veto to demand at least one b tagged jet using the medium
working point. The resulting uncertainty ranges from 3 to 90% from low to high lepton
pr, respectively. The method is also tested by repeating this procedure on the simulated
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event samples, where any variations in the background determination are considered as
systematic uncertainties and added in quadrature to the aforementioned uncertainty.

The systematic uncertainties associated with the predictions of W+jets and tt pro-
cesses are based on the comparison of two methods: one to assess the closure of the
background prediction method, and the other to evaluate the effect of the modeling of the
BDT output distribution. The closure method measures differences between the predicted
number of events (obtained from eq. (6.2)) and the observed number of data events in both
VRs, as defined in section 5.2, where the statistical uncertainty in the number of CR, events
is taken into account. Uncertainties in modeling the BDT output distribution, which can
affect the background prediction, are assessed by comparing the ratio of the BDT output
distributions for data to the background prediction in the CR with the ratio in the SR, for
the two VRs. To be conservative, the uncertainties are evaluated in the two VRs for both
methods, and the largest value is used. These uncertainties range from 10 to 20% for the
prediction of W+jets events and from 8 to 80% for the estimation of tt processes over the
various SRs. The estimations of the W+jets and tt backgrounds rely partially on the simu-
lation and are therefore sensitive to theoretical uncertainties in the modeling of ISR. For the
tt process, half of the ISR correction is assigned as the systematic uncertainty, which also
applies to the simulated signal samples. For the W+jets process, the difference between
the ISR-corrected and uncorrected simulation is taken as the systematic uncertainty.

Uncertainties from unknown higher-order theoretical effects are estimated through
uncorrelated variations of the renormalization and factorization scales by factors of 0.5,
1, and 2 [70]. Finally, differences between the fast and the full GEANT4-based modelings
of p%liss are used as the corresponding systematic uncertainty and assigned to the signal
yields. The statistical uncertainty in the signal simulation samples of 3 to 20% over the
various SRs is included as a systematic uncertainty. The relative systematic uncertainties
in the signal from the various sources, and the total relative systematic uncertainties in the
W +jets, tt, and nonprompt backgrounds, are given in table 1 as ranges over the eight SRs.

To combine the results from the different data-taking years, systematic uncertainties
whose sources are exactly the same for the different years are taken as fully correlated. This
includes the uncertainty in the theoretical cross sections, pileup, JES, the reweighting of
the W+jets sample, the renormalization and factorization scales, and the prediction of the
W +jets, tt, and nonprompt backgrounds. The systematic uncertainty in the integrated
luminosity has multiple components and is thus considered as partially correlated between
the years [19, 67, 68], as is the systematic uncertainty in the b tagging procedure.

8 Results and interpretation

The observed and expected numbers of signal and background events from the 2017-18
data analysis for the eight values of Am are given in table 2 and shown in figures 8 and 9.
The predictions and the associated uncertainties in these figures are given before a profiled
likelihood fit [71-73] is performed. The post-fit uncertainties do not get reduced because
of the lack of constraints from a single bin. It should be noted that the background com-
position varies for the same Am region for different years. This is because an independent
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2017 2018

Source Background Signal Background Signal
Integrated luminosity — 2.3 — 2.5
JES 0-2 3-9 0-2 5-10
JER 0-1 0-1 0-1 0-1
b tagging 0-1 0-6 0-1 0-1
Trigger 0-1 1 0-1 1
Lepton efficiency 0-1 0-1 0-1 0-1
Pileup 1-5 0-3 1-4 0-1
ISR (tt and signal) 0-1 0-5 0-1 0-5
ISR (W+jets) 0-4 — 0-4 —
Renorm./Fact. scales 0-7 0-1 0-10 0-1
PP modeling (FASTSIM) — 0-2 — 0-2
W +jets total 2-6 — 4-9 —
tt total 1-5 — 2-7 —
Nonprompt lepton total 2-5 — 2-4 —

Table 1. The relative systematic uncertainties in percent from the different sources in the signal
and the total relative uncertainty in the W+jets, tt, and nonprompt background predictions, shown
separately for the 2017 and 2018 data analysis. The ranges given are across the eight SRs. The
“—” symbol means that a given source of uncertainty is not applicable.

BDT is trained per Am and per year, with a different selection on its output. There is
good agreement between the observed and predicted numbers of events for all SRs. The
largest difference is for Am = 10GeV, where there are 1.1 and 2.9 standard deviations
(local significance) excesses of data events over the predicted background for the 2017 and
2018 data, respectively. The 2016 analysis had a similar excess for the same Am value,
corresponding to 0.7 standard deviations. None of these excesses is statistically significant,
so it is concluded that there is no evidence for direct top squark production.

The observed and expected number of events for each signal mass point and their
corresponding uncertainties are converted into 95% confidence level (CL) upper limits on
the t,t, production cross section in the (m(t,), m(X})) plane. These are shown by the
colored regions in figure 10 as a function of m(t,) and Am, where the color scale to the right
of the figure gives the corresponding upper limit values. The limits are calculated according
to the modified frequentist CLg criterion [71-73]. A test statistic is defined as the likelihood
ratio between the background-only and signal-plus-background hypotheses, and is used
to set exclusion limits on the top squark pair production. The distributions of the test
statistic are built using simulated experiments, where statistical uncertainties are modeled
with Poisson distributions, and where all systematic uncertainties are modeled with a log-
normal distribution. When interpreting the results, it is assumed a branching fraction of
100% for the four-body decay scenario. For the combined results of the three years, the
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Year Am (GeV) BDT > Yy (Wjets) Yy '(tf) Yol N°®(Other) N°®(Total) N°%(Observed)

10 0.31 11.0 £ 24 224+29 201+£35 54+£37 388+£6.3 49
20 032 374+46 33+52 496 +£70 184 £93 109 + 14 116
30 0.38 23.8+£3.8 0072 41.7+6.1 194 £9.9 85 + 14 86
2017 40 0.40 159 +26 0.0+£81 326+55 20=£10 69 + 15 66
50 0.43 109 +£2.0 0.0+6.7 223 +40 179 £9.2 51 + 12 48
60 0.47 3.9 +08 00+62 76+22 103£54 21.8£85 23
70 0.39 11.1 £2.0 89+ 76 129 +29 19.7£98 53 £ 13 50
80 0.41 156 £4.3 103 £9.7 83+£22 171 %82 51 + 14 51
10 0.32 173 +£43 00+24 16.7+36 71+£45 411+76 7
20 0.39 184 +28 03+31 145+34 63£35 394=+64 57
30 0.35 48,5 £ 8.1 9.1+94 225+48 33+£14 114 £ 19 127
2018 40 0.43 107 £ 3.1 34+45 11.7+£29 123£6.7 381=£9.1 49
50 0.46 8.7+ 3.0 34+45 105+28 103 £52 329 =£8.0 36
60 0.41 16.5 + 4.7 16.2 £88 173 £38 22+10 72 £ 15 61
70 0.40 35.6 £8.7 152 £86 169 +£52 30 %12 97 + 18 96
80 0.42 163 £ 3.7 109 £ 7.8 10.7+4.3 21.5+98 59 + 14 41

Table 2. The predicted number of W +jets, tT, nonprompt, and other (N°%(Other)) background
events and their sum (N5%(Total)), in the eight SRs for the 2017 and 2018 data analysis. The first
3 predicted yields are derived from data, while the yields of the other background processes come
from simulation. The uncertainties shown are the quadratic sum of the statistical and systematic
uncertainties given in table 1 for all the background processes. The corresponding Am and BDT
output threshold values for each SR are displayed in the first and second columns, respectively, and
the observed number of events in data is shown in the last column.

largest excess in the data corresponds to 2.5 standard deviations (local significance) for the
Am =10 GeV SR.

Using the measured upper limits on the top squark pair cross section and the theoretical
predictions for the cross section, it is determined the 95% CL lower limits on m/(t,) versus
Am. The solid black line and thick dotted red line in figure 10 give the resulting 95%
CL observed and expected exclusion contours, respectively, on m(fl) as a function of Am,
obtained from combining the 2016, 2017, and 2018 data. The corresponding thin black lines
in figure 10 represent the +1 standard deviation (0peory) Variations in the limits due to the
theoretical uncertainties in the case of the observed limits. The thin dashed red lines give
the &1 and 42 standard deviation (Gexperiment) Variations in the case of the expected limits,
coming from the experimental uncertainties. The maximum sensitivity is reached for the
highest Am (Am ~ m(W)), where top squark masses up to 700 GeV are excluded. At the
lowest Am value of 10 GeV covered by the search, the corresponding value is 480 GeV. The
reduced sensitivity at lower Am is explained by the lower transverse momentum spectrum

of the decay products, as shown in figure 2, which results in a loss of acceptance.

The limits of the previous analysis are improved. At low Am the top squark mass
limit is 60 GeV higher, thus improving the sensitivity at low mass splittings beyond simple
luminosity scaling, while at high Am the top squark mass limit is extended by 140 GeV.
Compared to the results of a similar analysis by the ATLAS Collaboration for the same
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Figure 8. The observed yields in data (points) and the predicted background components (colored
histograms) in the eight SRs for the 2017 data. The vertical bars on the points give the statistical
uncertainty in the data. The hatched area shows the total uncertainty in the sum of the back-
grounds. The expected yields for two signal points with (m(t,), m(X7)) = (500, 490) and (600,
520) GeV are also given by the lines, unstacked from the histograms. The lower panel shows the
ratio of the number of observed events to the predicted total background. The vertical bars on the
points give the statistical uncertainty in the ratio and the hatched area the total uncertainty.

decay mode and final state [20], the search presented here has comparable limits at in-
termediate and high Am values. However, at low Am, the excluded top squark mass is
120 GeV higher than the ATLAS limit. This is attributed to a more inclusive preselection
criteria, where b tagging is not used, and where the discrimination between the signal
and the dominating W+jets background is done by a multivariate analysis tool, whose

performance is further enhanced by a BDT specifically trained for each Am.

9 Summary

The results of a search for the direct pair production of top squarks in single-lepton final
states are presented within a compressed scenario where R parity is conserved and the
mass difference Am = m(t,) —m(¥)) between the lightest top squark (t,) and the lightest
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Figure 9. The observed yields in data (points) and the predicted background components (colored
histograms) in the eight SRs for the 2018 data. The vertical bars on the points give the statistical
uncertainty in the data. The hatched area shows the total uncertainty in the sum of the back-
grounds. The expected yields for two signal points with (m(t,), m(X7)) = (500, 490) and (600,
520) GeV are also given by the lines, unstacked from the histograms. The lower panel shows the
ratio of the number of observed events to the predicted total background. The vertical bars on the
points give the statistical uncertainty in the ratio and the hatched area the total uncertainty.

supersymmetric particle, taken to be the lightest neutralino %(1], does not exceed the W
boson mass. The considered decay mode of the top squark is the prompt four-body decay
to bff/%(l], where the fermions in the final state f and f represent a charged lepton and its
neutrino for the decay products of one ft}, and two quarks for the other top squark. The
search is based on data collected from proton-proton collisions at /s = 13 TeV, recorded
with the CMS detector during the years 2016, 2017, and 2018, corresponding to an in-
tegrated luminosity of 138 fb!. Events are selected containing a single lepton (electron
or muon), at least one high-momentum jet, and significant missing transverse momentum.
The analysis is based on a multivariate tool specifically trained for different Am regions,
thus adapting the signal selection to the evolution of the kinematical variables as a function
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Figure 10. The 95% CL upper limits in the (m({l), Am) plane on the cross section for the
production and four-body decay of the top squark using the combined 2016, 2017, and 2018 data.
The color shading represents the observed upper limit for a given point in the plane, using the color
scale to the right of the figure. The solid black and dashed red lines show the observed and expected

95% CL lower limits, respectively, on m(t,) as a function of Am. The thick lines give the central
values of the limits. The corresponding thin lines represent the 4 1 standard deviation (oyheory)
variations in the limits due to the theoretical uncertainties in the case of the observed limits, and
+ 1 and 2 standard deviation (Gexperiment) Variations due to the experimental uncertainties in the
case of the expected limits.

of (m(ty), m(%})). The dominant background processes are W+jets, tt, and events with
nonprompt leptons, which are estimated using control regions in the data.

The observed number of events is consistent with the predicted standard model back-
grounds in all signal regions. Upper limits are set at the 95% confidence level on the flfl
production cross section as a function of the gl and %(1) masses, within the context of a
simplified model. Assuming a 100% branching fraction in the four-body decay mode, the
search excludes top squark masses up to 480 and 700 GeV at Am = 10 and 80 GeV, re-
spectively. The results summarized in this paper are among the best limits to date on the
top squark pair production cross section, where the top squark decays via the four-body
mode, and currently correspond to the most stringent limits for Am < 30 GeV.
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