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Abstract

In this report we briefly describe three-dimensional, time-dependent FEL simulation code FAST. The equations
of motion of the particles and Maxwell’s equations are solved simultaneously taking into account the slippage
effect. Radiation fields are calculated using integral solution of Maxwell’s equations. Special technique has been
developed for fast calculations of the radiation field reducing drastically required CPU time. As a result, the
developed code allows one to use personal computer for time-dependent simulations. The code allows one to
simulate the radiation from the electron bunch of any transverse and longitudinal bunch shape; to simulate
simultaneously external seed with superimposed noise in the electron beam; to take into account energy spread
in the electron beam and the space charge fields; and to simulate high-gain, high-efficiency FEL amplifier with
tapered undulator. It is important, that in the developed code there are no significant memory limitations and
the electron bunch of any length can be simulated.

1. Introduction tudinal coherence in the SASE FELs. Nevertheless,
the one-dimensional approximation omits an essen-
tial effect of the diffraction of the radiation giving

Complete calculation of the parameters of the FEL ) )
amplifier can be performed only with numerical sim- only rough estimation of the SASE FEL parameters.
Complete simulation of the physical process in the
SASE FEL can be done only with a three-dimensional,

time dependent simulation code. Unfortunately, the

ulation codes. At present there are several numeri-
cal simulation codes calculating the amplification pro-
cess in the FEL amplifier using the steady-state ap-

proximation. Such an approximation describes rather progress in this field is rather limited, and the main

well the case when the FEL amplifier is seeded by reason for this is due to limited possibilities of the
the monochromatic external radiation and when the computers.

slippage effect can be neglected. Such a simplification In this paper we report on the development of
allows one to simulate the electron beam with one slice a fast three-dimensional, time-dependent simulation
equal to the radiation wavelength, thus reducing sig- code FAST. The ideas implemented during the con-
nificantly the requirements to the computer resources. struction of this code allowed to reduce significantly
Nevertheless, the steady-state simulations do not pro- the requirements to the computer and the simulations
vide a correct result when the slippage of the radiation of actual devices can be performed using a conven-
is comparable with the length of the electron bunch. tional personal computer.

The steady-state code can not be used in principle for
the simulations of the FEL amplifier starting from the 5.
shot noise (SASE FELs), and complete simulation of
the SASE FELs can be done only with a fully three-

dimensional, time-dependent simulation code.

General approach

Time-dependent simulations of the FEL amplifier
should be performed by simultaneous solutions of

Recently it has been reported on the development Maxwell’s equations and the equations of motion of
of one-dimensional, time dependent simulation codes the electrons. Nevertheless, the problem formulated
which revealed the possibility to perform detailed in- in such a general form can not be implemented in
vestigation of the process of formation of the longi- the simulation code and some physical approxima-
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tion should be made. Here it is reasonable to re-
member that the free electron laser is a resonance de-
vice amplifying the radiation within the narrow band-
width. Using resonance approximation we present
the transverse beam current density is presented as
J1(7t) = J1(F, t) exp(iw(z/c — t)) 4+ C.C., where w cor-
responds to the resonance FEL frequency and 31(77, t)
is the slowly varying complex amplitude. The radia-

tion field is also presented in the resonance approxi-

mation, E(7,t) = E(F, tyexp(iw(z/c—t)) + C.C. with
the slowly varying complex amplitude £ (7, t). Using
paraxial approximation one can obtain the following

expression for E(F, t):
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Simulation code is organized as follows. We divide
the electron beam in a large number of elementary vol-
umes. The longitudinal size of each volume is equal
(or multiple) to the radiation wavelength. Also, the
electron beam is divided into a large number of divi-
sions in the transverse direction. The FEL equations
for the particle motion in each elementary volume are
solved at each integration step. Then the radiation
fields are calculated for each elementary volume us-
ing integral solution (1). At the next integration step
these fields are substituted into the FEL equations,
etc. As a result, one can trace the evolution of the
radiation field and the particle distribution when the
electron beam passes the undulator. One can obtain
from the integrals (1) that the radiation field at each
point is defined only by the sources located closer than
the slippage distance and there is not necessary to
keep in the memory all the current sources. The pro-
cedure of the simulations begins from the tail slice of
the electron bunch and the procedure of integration is
performed over the whole undulator length. Then the
equation of motion for the second slice are integrated
taking into account the radiation field from the first
slice, etc. As a result, the self-consistent FEL equa-
tions can be integrated for the electron bunch of any
length. The memory requirements for the code are
rather moderate. Our experience shows that a few
tens of megabytes is sufficient to simulate with suffi-
cient accuracy the most number of practical devices.

The code is realized in two versions: linear and non-
linear. The linear simulation code is based on solution

of the kinetic equation describing evolution of the dis-
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tribution function of the electron beam, and the non-
linear simulation code uses traditional technique of
macroparticles for the simulation of the distribution
function of the electron beam.

3. Self-consistent equations

To be specific, in this section we present explicit
formulae implemented in the code for the simula-
tion of the FEL amplifier with an axially symmet-
ric electron beam. The transverse distribution of the
beam current density is assumed to be the Gaus-
sian, j(r,z) = I(z) exp(—r2/2crf)/\/(27raf) with o, =
v/€nB/v where €, is rms normalized emittance, 3 is
focusing beta function and v = So/mec2 is relativistic
factor. The electron beam is divided into L = Iy /kX
slices in the longitudinal direction (k is integer num-
ber), in M slices over azimuthal angle ¢, and in N
divisions in the radial direction (we use the polar co-
ordinate system (r, ¢, z) here). As a result, we have
L x M x N elementary volumes. The self-consistent
equations for the linear simulation code are as follows
[1, 3]:

2o db
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= Z exp(zn¢)Ur(n) (F7 ’27 t) ?
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where by (7, 2, ¢, t) is the beam bunching in the elemen-
tary volume, o(F, 2,t) = I(%,t)exp(—?)/Imax and
U (2,7) is the n-th azimuthal harmonic of the ef-
fective potential of interaction of the particle with the
electromagnetic radiation:

U

X
S
TN

I3
I> = -
=>
w | 2
N
¢}
>
T
—

Here term Ué:t) (2,7) corresponds to the external elec-
tromagnetic field, b(ln) (7, 2,t) are azimuthal harmonics
of the beam bunching calculated using the values of
b1 (7, 2,4,t) and J,, are the Bessel functions.

When writing down the normalized equations we
used the following notations. The transverse coordi-
nate is normalized as 7 = r/\/ﬁ. The corresponding
reduced variables are as follows: £ = I"z is reduced lon-
gitudinal coordinate, €' = (27/Aw —w/(2¢42))/T is the
detuning parameter, /A\f) = Aﬁ/f‘2 = 4c? (HscrrwAJJ)_2



is the space parameter, B = 2I'02w/c is the diffraction
parameter, and the gain parameter I' is

T = [[maxA3Jw2932/(2]Ac2'yz2'y)] Lz ,

(4)
where w = 2wc/) is the frequency of the radiation
field and 7pn =
planar with amplitude of the magnetic field Hy, and

mecs/e. Undulator is assumed to be
period Aw. The undulator parameter K, the angle
of electron oscillations 6, the longitudinal relativistic
factor =, and the factor Aj; are defined as follows:
K = eHulw /2mmec?, 8 = K/v, v2 = ¥*/(1 4+ K?/2)
and Ay; = Jo(K?/(4 4+ 2K?)) — JiI(K?/(4 + 2K?)),
where Jo and J; are the Bessel functions.

In the nonlinear simulation code the electron beam
distribution function is simulated with N, macropar-
ticles in each elementary volume. The equations of
motions for the macroparticle written down in the
“energy-phase” variables are as follows (for the low
efficiency approximation):

dp _ " . (n)(a =

= Re | 2ie Z:exp(mqb)Ur (7, 2)| + U
dp A s

FE C+ P, (5)

where P = (€ — &)/p&o is the reduced energy de-
viation, % is the phase of the macroparticle within
the longitudinal slice and p = ¢42T'/w is the efficiency
parameter. Algorithm for the calculation of the space
charge contribution, U,, can be found in ref. [3]. Com-
plex amplitude of the beam bunching is calculated by
the averaging of the macroparticle ensemble in the el-
ementary volume, by = {(exp(iyx)), and is used for the
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Fig. 1. The dependence of the maximal reduced field gain
max Re(A/T") on the diffraction parameter B. Here [Xg =0,
A2T = 0. Curve (1): TEMgp mode, curve (2): TEM; ¢ mode
and curve (3): TEMg; mode. Solid curves are analytical
results and the circles are the results of the numerical sim-
ulation code.
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(n)

calculations of the azimuthal harmonics of b; /. Equa-
tions (5) can be simply extended to the case of a high
efficiency approximation and undulator tapering [3, 4].
Complication for the case of the betatron oscillations
and the undulator field errors to be taken into account
is also straightforward [5].

Analysis of the integrals (3) shows that at chosen
radial mesh and at a fixed integration step Az, cal-
culations can be simplified significantly, since there is
finite set of the combination of the values z — z’, r and
r’. The integrals over Az for each of the combina-
tions are calculated only once for “unit” source term
b1. Then these data are transferred into the simula-
tion code solving the self-consistent equations. Such a
trick allows one to reduce drastically the required CPU
time for the field calculations, since at each integration
step the computer calculates simple sums weighted by
the current sources.

The procedure for the solution of the self-consistent
equations (5) has been described in the previous sec-
tion. The accuracy of the calculations is controlled by
means of changing the number of the axial, radial and
azimuthal divisions, and the number of the azimuthal
modes for the calculations of the radiation field. The
criterium is that the final result is independent on the
details of the simulations. Figures 1 and 2 present the
test results of the simulation code operating in a high
gain, steady-state limit. It is seen that there is a good
agreement between analytical [1] and simulation re-
sults. The relative accuracy for the calculation of the
radiation field and the gain is about 0.1 %.

At the exit the simulation code produces the ma-
trixes for the field values in the Fresnel diffraction

zone. Then the post-processor programs are used to
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Fig. 2. Transverse distribution of the radiation field for

TEMgo, TEM 9 and TEMp;. Here B = 10, [Xg = 0 and
A2T = 0. Curve (1): TEMgq, curve (2): TEM;o mode and
curve (3): TEMp; mode. Solid curves are analytical results
and the circles are the results of the numerical simulation
code.



extract additional information for the field distribu-
tion in the far diffraction zone, for the spectrum, for
the time, space and spectral correlation functions, and
for the probability distributions of the radiation power
and the radiation energy (see, e.g. ref [6]).

4. Initial conditions for the start-up from
noise

The initial shot noise in the electron beam is simulated
according to the algorithm presented in the paper [6].
The number of particles per elementary volume Ny is
large, so the bunching in each box is the sum of large
number of random phasors with fixed amplitudes and
Using the
central limit theorem, we can conclude that phases

uniformly distributed on (0,27) phases.

of bunching parameters are distributed also uniformly
and squared modules of amplitudes, | b, |?, are dis-
tributed in accordance with the negative exponential
distribution:

(|b|2)—;ex _% (6)
PO = s P\ < 2> )

where <| by |*>= 1/Ny. The distribution of the mod-
ules, | b1 |, is the Rayleigh probability density func-
tion. So, we use the negative exponential random gen-
erator setting 1/Ny as mean value to extract the values
of | by |? for each box and then we extract the square
root to find the values of | b |. The phases of b
are produced by random generator of uniform distri-
bution from 0 to 2wx. These values are directly used
as input parameters for the linear simulation code. In
the nonlinear simulation code the macroparticles are
distributed in such a way that the resulting bunching
corresponds to the target value of b; in each elemen-
tary volume.

5. Conclusion

In conclusion we should notice that the speed of cal-
culations is an essential parameter for the FEL code
calculating the start-up from noise. The reason for
this is that the most important characteristics of the
SASE FEL (the spectrum, time, space and spectral
correlation functions and the probability distributions
of the radiation power and energy) can be calcu-
lated only with statistical analysis of a large num-
ber of simulation runs [6]. For instance, the number
of the simulation runs required for the calculation of
the probability distribution of the radiation energy in
the pulse is about several thousands. The presented
code allows one to calculate all the above mentioned
statistical parameters of the SASE FEL within rea-

sonable time. For instance, typical simulation run
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with the linear simulation code for the parameters
of UCLA/LANL/RRCKI/SLAC SASE FEL [7] takes
about one minute at VAX processor [8] This is about
two orders of magnitude less than the time required
by another time-dependent codes (such as GINGER or
GENESIS) to obtain the same physical result [9, 10].
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